1
|
Hill JD, Papoutsakis ET. Species-specific ribosomal RNA-FISH identifies interspecies cellular-material exchange, active-cell population dynamics and cellular localization of translation machinery in clostridial cultures and co-cultures. mSystems 2024; 9:e0057224. [PMID: 39254339 PMCID: PMC11495018 DOI: 10.1128/msystems.00572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The development of synthetic microbial consortia in recent years has revealed that complex interspecies interactions, notably the exchange of cytoplasmic material, exist even among organisms that originate from different ecological niches. Although morphogenetic characteristics, viable RNA and protein dyes, and fluorescent reporter proteins have played an essential role in exploring such interactions, we hypothesized that ribosomal RNA-fluorescence in situ hybridization (rRNA-FISH) could be adapted and applied to further investigate interactions in synthetic or semisynthetic consortia. Despite its maturity, several challenges exist in using rRNA-FISH as a tool to quantify individual species population dynamics and interspecies interactions using high-throughput instrumentation such as flow cytometry. In this work, we resolve such challenges and apply rRNA-FISH to double and triple co-cultures of Clostridium acetobutylicum, Clostridium ljungdahlii, and Clostridium kluyveri. In pursuing our goal to capture each organism's population dynamics, we demonstrate dynamic rRNA, and thus ribosome, exchange between the three species leading to the formation of hybrid cells. We also characterize the localization patterns of the translation machinery in the three species, identifying distinct, dynamic localization patterns among them. Our data also support the use of rRNA-FISH to assess the culture's health and expansion potential, and, here again, our data find surprising differences among the three species examined. Taken together, our study argues for rRNA-FISH as a valuable and accessible tool for quantitative exploration of interspecies interactions, especially in organisms which cannot be genetically engineered or in consortia where selective pressures to maintain recombinant species cannot be used. IMPORTANCE Though dyes and fluorescent reporter proteins have played an essential role in identifying microbial species in co-cultures, we hypothesized that ribosomal RNA-fluorescence in situ hybridization (rRNA-FISH) could be adapted and applied to quantitatively probe complex interactions between organisms in synthetic consortia. Despite its maturity, several challenges existed before rRNA-FISH could be used to study Clostridium co-cultures of interest. First, species-specific probes for Clostridium acetobutylicum and Clostridium ljungdahlii had not been developed. Second, "state-of-the-art" labeling protocols were tedious and often resulted in sample loss. Third, it was unclear if FISH was compatible with existing fluorescent reporter proteins. We resolved these key challenges and applied the technique to co-cultures of C. acetobutylicum, C. ljungdahlii, and Clostridium kluyveri. We demonstrate that rRNA-FISH is capable of identifying rRNA/ribosome exchange between the three organisms and characterized rRNA localization patterns in each. In combination with flow cytometry, rRNA-FISH can capture sub-population dynamics in co-cultures.
Collapse
Affiliation(s)
- John D. Hill
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eleftherios T. Papoutsakis
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Lindivat M, Bratbak G, Larsen A, Hess-Erga OK, Hoell IA. Flow Cytometric Analysis of Bacterial Protein Synthesis: Monitoring Vitality After Water Treatment. Front Microbiol 2021; 12:772651. [PMID: 34956134 PMCID: PMC8702973 DOI: 10.3389/fmicb.2021.772651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial vitality after water disinfection treatment was investigated using bio-orthogonal non-canonical amino acid tagging (BONCAT) and flow cytometry (FCM). Protein synthesis activity and DNA integrity (BONCAT–SYBR Green) was monitored in Escherichia coli monocultures and in natural marine samples after UV irradiation (from 25 to 200 mJ/cm2) and heat treatment (from 15 to 45 min at 55°C). UV irradiation of E. coli caused DNA degradation followed by the decrease in protein synthesis within a period of 24 h. Heat treatment affected both DNA integrity and protein synthesis immediately, with an increased effect over time. Results from the BONCAT method were compared with results from well-known methods such as plate counts (focusing on growth) and LIVE/DEAD™ BacLight™ (focusing on membrane permeability). The methods differed somewhat with respect to vitality levels detected in bacteria after the treatments, but the results were complementary and revealed that cells maintained metabolic activity and membrane integrity despite loss of cell division. Similarly, analysis of protein synthesis in marine bacteria with BONCAT displayed residual activity despite inability to grow or reproduce. Background controls (time zero blanks) prepared using different fixatives (formaldehyde, isopropanol, and acetic acid) and several different bacterial strains revealed that the BONCAT protocol still resulted in labeled, i.e., apparently active, cells. The reason for this is unclear and needs further investigation to be understood. Our results show that BONCAT and FCM can detect, enumerate, and differentiate bacterial cells after physical water treatments such as UV irradiation and heating. The method is reliable to enumerate and explore vitality of single cells, and a great advantage with BONCAT is that all proteins synthesized within cells are analyzed, compared to assays targeting specific elements such as enzyme activity.
Collapse
Affiliation(s)
- Mathilde Lindivat
- Faculty of Engineering and Science, Institute of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Haugesund, Norway
| | - Gunnar Bratbak
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Aud Larsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE Environment, NORCE Norwegian Research Center AS, Bergen, Norway
| | | | - Ingunn Alne Hoell
- Faculty of Engineering and Science, Institute of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Haugesund, Norway
| |
Collapse
|
3
|
Lactobacillus rhamnosus postbiotic-induced immunomodulation as safer alternative to the use of live bacteria. Cytokine 2021; 146:155631. [PMID: 34252871 DOI: 10.1016/j.cyto.2021.155631] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022]
Abstract
Many attempts have been made to search for safer immunomodulatory agents that enhance the immune response and reduce the number and severity of infections in at-risk populations. The use of postbiotics, non-viable microbial cells or cell fractions that confer a health benefit to the consumer, represents a safe and attractive way to modulate and enhance the immune function in order to improve human health. Therefore, the aim of this work is to evaluate the immunoregulatory effect of Lactobacillus rhamnosus CRL1505 postbiotics in a complex culture system using human intestinal epithelial cells (IECs) and dendritic cells (DCs) differentiated from peripheral blood mononuclear cells. First, we demonstrated that L. rhamnosus CRL1505 differentially modulate human IECs and DCs after the challenge with the TLR4 agonist LPS. The CRL1505 strain down-regulated CD40, CD80 and CD86 expression in DCs, and increased their production of TNF-α, IL-1β, IL-6 and IL-10. Interestingly, the non-viable strain was able to modulate the immune response of both types of human cells. Then, we showed that cell wall (CW1505) and peptidoglycan (PG1505) from L. rhamnosus CRL1505 modulated TLR4-triggered immune response in IECs and DCs. Of interest, CW1505 showed a strong stimulatory effect while the PG1505 presented immune characteristics that were more similar to viable and non-viable CRL1505. To date, several molecules of immunobiotics were identified, that can be connected to specific host-responses. We hereby demonstrated that peptidoglycan of L. rhamnosus CRL1505 is a key molecule for the immunobiotic properties of this strain in human IECs and DCs. Likewise, the result of these studies could provide predictive tools for the in vivo efficacy of postbiotics and the scientific basis for their future applications in immunocompromised patients.
Collapse
|
4
|
Thapa N, Danyluk MD, Gerberich KM, Johnson EG, Dewdney MM. Assessment of the Effect of Thermotherapy on ' Candidatus Liberibacter asiaticus' Viability in Woody Tissue of Citrus via Graft-Based Assays and RNA Assays. PHYTOPATHOLOGY 2021; 111:808-818. [PMID: 32976056 DOI: 10.1094/phyto-04-20-0152-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In 2019, citrus production in Florida declined by more than 70%, mostly because of Huanglongbing (HLB), which is caused by the bacterium 'Candidatus Liberibacter asiaticus' (CLas). Thermotherapy for HLB-affected trees was proposed as a short-term management solution to maintain field productivity. It was hypothesized that thermotherapy could eliminate HLB from affected branches; therefore, the study objectives were to show which time-temperature combinations eliminated CLas from woody tissues. Hardening, rounded Valencia twigs collected from HLB-affected field trees were treated in a steam chamber at different time-temperature combinations (50°C for 60 s; 55°C for 0, 30, 60, 90, and 120 s; 60°C for 30 s; and an untreated control). Three independent repetitions of 13 branches per treatment were grafted onto healthy rootstocks and tested to detect CLas after 6, 9, and 12 months. For the RNA-based CLas viability assay, three branches per treatment were treated and bark samples were peeled for RNA extraction and subsequent gene expression analyses. During the grafting study, at 12 months after grafting, a very low frequency of trees grafted with twigs treated at 55°C for 90 s and 55°C for 120 s had detectable CLas DNA. In the few individuals with CLas, titers were significantly lower (P ≤ 0.0001) and could have been remnants of degrading DNA. Additionally, there was a significant decrease (P ≤ 0.0001) in CLas 16S rRNA expression at 55°C for 90 s, 55°C for 120 s, and 60°C for 30 s (3.4-fold change, 3.4-fold change, and 2.3-fold change, respectively) in samples 5 days after treatment. Heat injury, not total CLas kill, could explain the limited changes in transcriptional activity; however, failed recovery and eventual death of CLas resulted in no CLas detection in most of the grafted trees treated with the highest temperatures or longest durations.
Collapse
Affiliation(s)
- Naweena Thapa
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
| | - Michelle D Danyluk
- Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
| | - Kayla M Gerberich
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
| | - Evan G Johnson
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
| | - Megan M Dewdney
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
| |
Collapse
|
5
|
Gramajo Lopez A, Gutiérrez F, Saavedra L, Hebert EM, Alvarez S, Salva S. Improvement of Myelopoiesis in Cyclophosphamide-Immunosuppressed Mice by Oral Administration of Viable or Non-Viable Lactobacillus Strains. Front Immunol 2021; 12:647049. [PMID: 33912172 PMCID: PMC8072128 DOI: 10.3389/fimmu.2021.647049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/22/2021] [Indexed: 01/24/2023] Open
Abstract
Myelosuppression is the major dose-limiting toxicity of cancer chemotherapy. There have been many attempts to find new strategies that reduce myelosuppression. The dietary supplementation with lactic acid bacteria (LAB) improved respiratory innate immune response and the resistance against respiratory pathogens in immunosupressed hosts. Although LAB viability is an important factor in achieving optimal protective effects, non-viable LAB are capable of stimulating immunity. In this work, we studied the ability of oral preventive administration of viable and non-viable Lactobacillus rhamnosus CRL1505 or L. plantarum CRL1506 (Lr05, Lr05NV, Lp06V or Lp06NV, respectively) to minimize myelosuppressive and immunosuppressive effects derived from chemotherapy. Cyclophosphamide (Cy) impaired steady-state myelopoiesis in lactobacilli-treated and untreated control mice. Lr05V, Lr05NV and Lp06V treatments were the most effective to induce the early recovery of bone marrow (BM) tissue architecture, leukocytes, myeloid, pool mitotic and post-mitotic, peroxidase positive, and Gr-1Low/High cells in BM. We selected the CRL1505 strain for being the one capable of maintaining its myelopoiesis-enhancing properties in its non-viable form. Although the CRL1505 treatments do not modify the Cy ability to induce apoptosis, both increased the incorporation of BrdU in BM cells. Consequently, Lr05NV and Lr05V treatments were able to promote early recovery of LSK cells (Lin-Sca-1+c-Kit+ cells), multipotent progenitors (Lin-Sca-1+c-Kit+CD34+ cells), and myeloid cells (Gr-1+Ly6G+Ly6C- cells) with respect to the untreated Cy control. In addition, these treatments were able to increase the frequency of IL17A-producing innate lymphoid cells in the intestinal lamina propria (IL-17A+RORγt+CD4-NKp46+ cells) after Cy injection. These results were correlated with an increase in the IL-17A serum levels, a GM-CSF high expression and a CXCL12 lower expression in BM. Therefore, both Lr05V and Lr05NV treatments are able to activate beneficially the IL-17A/GM-CSF axis and accelerate the recovery of Cy-induced immunosuppression by increasing BM myeloid precursors. We demonstrated for the first time the beneficial effect of CRL1505 strain on myelopoiesis affected by a chemotherapeutic drug. Furthermore, Lr05NV could be a good and safe resource for reducing chemotherapy-induced leukopenia. The results are a starting point for future research and open up broad prospects for future applications of the immunobiotics.
Collapse
Affiliation(s)
- Andrés Gramajo Lopez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Florencia Gutiérrez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Lucila Saavedra
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Elvira Maria Hebert
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Susana Alvarez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Institute of Applied Biochemistry, Tucumán University, San Miguel de Tucumán, Argentina
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
6
|
Cao R, Wan Q, Tan L, Xu X, Wu G, Wang J, Xu H, Huang T, Wen G. Evaluation of the vital viability and their application in fungal spores' disinfection with flow cytometry. CHEMOSPHERE 2021; 269:128700. [PMID: 33127110 DOI: 10.1016/j.chemosphere.2020.128700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 05/14/2023]
Abstract
More attention was focused on fungi contamination in drinking water. Most researches about the inactivation of fungal spores has been conducted on disinfection efficiency and the leakage of intracellular substances. However, the specific structural damage of fungal spores treated by different disinfectants is poorly studied. In this study, the viability assessment methods of esterase activities and intracellular reactive oxygen species (ROS) were optimized, and the effects of chlorine-based disinfectants on fungal spores were evaluated by flow cytometry (FCM) and plating. The optimal staining conditions for esterase activity detection were as follows: fungal spores (106 cells/mL) were stained with 10 μM carboxyfluorescein diacetate and 50 mM ethylene diamine tetraacetic acid at 33 °C for 10 min (in dark). The optimal staining conditions for intracellular ROS detection were as follows: dihydroethidium (the final concentration of 2 μg/mL) was added into fungal suspensions (106 cells/mL), and then samples were incubated at 35 °C for 20 min (in dark). The cell culturability, membrane integrity, esterase activities, and intracellular ROS were examined to reveal the structural damage of fungal spores and underlying inactivation mechanisms. Disinfectants would cause the loss of the cell viability via five main steps: altered the morphology of fungal spores; increased the intracellular ROS levels; decreased the culturability, esterase activities and membrane integrity, thus leading to the irreversible death. It is appropriate to assess the effects of disinfectants on fungal spores and investigate their inactivation mechanisms using FCM.
Collapse
Affiliation(s)
- Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Lili Tan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
7
|
Cazals M, Stott R, Fleury C, Proulx F, Prévost M, Servais P, Dorner S, Burnet JB. Near real-time notification of water quality impairments in recreational freshwaters using rapid online detection of β-D-glucuronidase activity as a surrogate for Escherichia coli monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137303. [PMID: 32145611 DOI: 10.1016/j.scitotenv.2020.137303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Waterborne disease outbreaks associated with recreational waters continue to be reported around the world despite existing microbiological water quality monitoring frameworks. Most regulations resort to the use of culture-based enumeration of faecal indicator bacteria such as Escherichia coli to protect bathers from gastrointestinal illness risks. However, the long sample-to-result time of standard culture-based assays (minimum 18-24 h) and infrequent regulatory sampling (weekly or less) do not enable detection of episodic water quality impairments and associated public health risks. The objective of this study was to assess the suitability of an autonomous online technology measuring β-D-glucuronidase (GLUC) activity for near real-time monitoring of microbiological water quality in recreational waters and for the resulting beach management decisions. GLUC activity and E. coli concentrations were monitored at three freshwater sites in Quebec, Canada (sites Qc1-3) and one site in New Zealand (site NZ) between 2016 and 2018. We found site-dependent linear relationships between GLUC activity and E. coli concentrations and using confusion matrices, we developed site-specific GLUC activity beach action values (BAVs) matching the regulatory E. coli BAVs. Using the regulatory E. coli BAV as the gold standard, rates of false alarms (unnecessary beach advisories using GLUC activity BAV) and failures to act (failure to trigger advisories using GLUC activity) ranged between 0 and 32% and between 3 and 10%, respectively, which is comparable to the rates reported in other studies using qPCR-defined BAVs. However, a major benefit of the autonomous enzymatic technology is the real-time reporting of threshold exceedances, while temporal trends in GLUC activity can assist in understanding the underlying dynamics of faecal pollution and potential health risks. Our study is the first to describe the applicability of online near real-time monitoring of microbiological water quality as a tool for improved beach management and public health protection.
Collapse
Affiliation(s)
- Margot Cazals
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Rebecca Stott
- National Institute of Water and Atmospheric Research (NIWA), Gate 10, Silverdale Road, Hillcrest, Hamilton 3251, New Zealand
| | - Carole Fleury
- Service de l'eau, Direction de L'épuration des Eaux Usées, Montréal, Québec H1C 1V3, Canada
| | - François Proulx
- Service du Traitement des Eaux, Quebec City, Quebec G1N 3X6, Canada
| | - Michèle Prévost
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Pierre Servais
- Écologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la Plaine, CP 221, Boulevard du Triomphe, B-1050 Brussels, Belgium
| | - Sarah Dorner
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Jean-Baptiste Burnet
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada; NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
8
|
Searching for Activity Markers that Approximate (VBNC) Legionella pneumophila Infectivity in Amoeba after Ultraviolet (UV) Irradiation. WATER 2018. [DOI: 10.3390/w10091219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legionella pneumophila is an increasingly recognized threat to public health via aerosol exposures; with a variety of control measures including: water temperature/flow management and free chlorine used to reduce the risk of infection within healthcare centers. Despite these efforts, L. pneumophila often recolonizes plumbing systems after specific treatments, which prompted us to examine ultraviolet (UV) irradiation for a point-of-use, secondary control measure. Currently, there is no data on the efficacy of high (>254 nm) wavelength UV-C (100–280 nm) light inactivation of L. pneumophila with resuscitation of viable but non-culturable (VBNC) cells. We report for the first time L. pneumophila dose-responses for 268.6 nm and 288.6 nm UV-C, as compared to 256 nm, and demonstrate UV induced VBNC L. pneumophila remaining infectious to Acanthamoeba polyphaga during co-culture experiments. Findings were correlated to molecular-based activity assays to identify additional measures of L. pneumophila viability following UV disinfection compared to culture. A collection of viability markers may provide a more representative measure of risk compared to current culture-based detection, since UV-C irradiated L. pneumophila lose culturability, yet retain activity, increased ATP production, and the ability to be resuscitated by amoeba co-culture. This finding is significant as it identifies potential concern from VBNC cells following UV-C disinfection and the need for further research into the efficacy of UV inactivation as a point-of-use application for L. pneumophila control and management.
Collapse
|
9
|
Vesga FJ, Moreno Y, Ferrús MA, Campos C, Trespalacios AA. Detection of Helicobacter pylori in drinking water treatment plants in Bogotá, Colombia, using cultural and molecular techniques. Int J Hyg Environ Health 2018; 221:595-601. [PMID: 29709385 DOI: 10.1016/j.ijheh.2018.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori is one of the most common causes of chronic bacterial infection in humans, and a predisposing factor for peptic ulcer and gastric cancer. The infection has been consistently associated with lack of access to clean water and proper sanitation. H. pylori has been detected in surface water, wastewater and drinking water. However, its ability to survive in an infectious state in the environment is hindered because it rapidly loses its cultivability. The aim of this study was to determine the presence of cultivable and therefore viable H. pylori in influent and effluent water from drinking water treatment plants (DWTP). A total of 310 influent and effluent water samples were collected from three drinking water treatment plants located at Bogotá city, Colombia. Specific detection of H. pylori was achieved by culture, qPCR and FISH techniques. Fifty-six positive H. pylori cultures were obtained from the water samples. Characteristic colonies were covered by the growth of a large number of other bacteria present in the water samples, making isolation difficult to perform. Thus, the mixed cultures were submitted to Fluorescent in situ Hybridization (FISH) and qPCR analysis, followed by sequencing of the amplicons for confirmation. By qPCR, 77 water samples, both from the influent and the effluent, were positive for the presence of H. pylori. The results of our study demonstrate that viable H. pylori cells were present in both, influent and effluent water samples obtained from drinking water treatment plants in Bogotá and provide further evidence that contaminated water may act as a transmission vehicle for H. pylori. Moreover, FISH and qPCR methods result rapid and specific techniques to identify H. pylori from complex environmental samples such as influent water.
Collapse
Affiliation(s)
- Fidson-Juarismy Vesga
- Microbiology Department, Science Faculty, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia; Research Institute of Water Engineering and Environment (IIAMA), Universitat Politècnica de València, Valencia, 46022, Spain
| | - Yolanda Moreno
- Research Institute of Water Engineering and Environment (IIAMA), Universitat Politècnica de València, Valencia, 46022, Spain.
| | - María Antonia Ferrús
- Biotechnology Department, ETSIAM, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Claudia Campos
- Microbiology Department, Science Faculty, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Alba Alicia Trespalacios
- Microbiology Department, Science Faculty, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| |
Collapse
|
10
|
Vondrakova L, Turonova H, Scholtz V, Pazlarova J, Demnerova K. Impact of various killing methods on EMA/PMA-qPCR efficacy. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Fan X, Huang R, Chen H. Application of ultraviolet C technology for surface decontamination of fresh produce. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Frösler J, Panitz C, Wingender J, Flemming HC, Rettberg P. Survival of Deinococcus geothermalis in Biofilms under Desiccation and Simulated Space and Martian Conditions. ASTROBIOLOGY 2017; 17:431-447. [PMID: 28520474 DOI: 10.1089/ast.2015.1431] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biofilm formation represents a successful survival strategy for bacteria. In biofilms, cells are embedded in a matrix of extracellular polymeric substances (EPS). As they are often more stress-tolerant than single cells, biofilm cells might survive the conditions present in space and on Mars. To investigate this topic, the bacterium Deinococcus geothermalis was chosen as a model organism due to its tolerance toward desiccation and radiation. Biofilms cultivated on membranes and, for comparison, planktonically grown cells deposited on membranes were air-dried and exposed to individual stressors that included prolonged desiccation, extreme temperatures, vacuum, simulated martian atmosphere, and UV irradiation, and they were exposed to combinations of stressors that simulate space (desiccation + vacuum + UV) or martian (desiccation + Mars atmosphere + UV) conditions. The effect of sulfatic Mars regolith simulant on cell viability during stress was investigated separately. The EPS produced by the biofilm cells contained mainly polysaccharides and proteins. To detect viable but nonculturable (VBNC) cells, cultivation-independent viability indicators (membrane integrity, ATP, 16S rRNA) were determined in addition to colony counts. Desiccation for 2 months resulted in a decrease of culturability with minor changes of membrane integrity in biofilm cells and major loss of membrane integrity in planktonic bacteria. Temperatures between -25°C and +60°C, vacuum, and Mars atmosphere affected neither culturability nor membrane integrity in both phenotypes. Monochromatic (254 nm; ≥1 kJ m-2) and polychromatic (200-400 nm; >5.5 MJ m-2 for planktonic cells and >270 MJ m-2 for biofilms) UV irradiation significantly reduced the culturability of D. geothermalis but did not affect cultivation-independent viability markers, indicating the induction of a VBNC state in UV-irradiated cells. In conclusion, a substantial proportion of the D. geothermalis population remained viable under all stress conditions tested, and in most cases the biofilm form proved advantageous for surviving space and Mars-like conditions. Key Words: Biofilms-Desiccation-UV radiation-Mars-Lithopanspermia. Astrobiology 17, 431-447.
Collapse
Affiliation(s)
- Jan Frösler
- 1 Biofilm Centre, University of Duisburg-Essen , Essen, Germany
| | - Corinna Panitz
- 2 Uniklinik/RWTH Aachen, Institute of Pharmacology and Toxicology , Aachen, Germany
| | - Jost Wingender
- 1 Biofilm Centre, University of Duisburg-Essen , Essen, Germany
| | | | - Petra Rettberg
- 3 DLR (Deutsches Zentrum für Luft- und Raumfahrt e.V.), Institute of Aerospace Medicine , Radiation Biology Department, Research Group Astrobiology, Cologne, Germany
| |
Collapse
|
13
|
Kirschner AK. Determination of viable legionellae in engineered water systems: Do we find what we are looking for? WATER RESEARCH 2016; 93:276-288. [PMID: 26928563 PMCID: PMC4913838 DOI: 10.1016/j.watres.2016.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 05/06/2023]
Abstract
In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health.
Collapse
Affiliation(s)
- Alexander K.T. Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090 Vienna, Austria
- Interuniversity Cooperation Centre for Water & Health, Austria
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene Kinderspitalgasse 16, A-1090 Vienna, Austria . URL: http://www.waterandhealth.at
| |
Collapse
|
14
|
Monitoring the live to dead transition of bacteria during thermal stress by a multi-method approach. J Microbiol Methods 2016; 123:24-30. [DOI: 10.1016/j.mimet.2016.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/21/2022]
|
15
|
Lin W, Li S, Zhang S, Yu X. Reduction in horizontal transfer of conjugative plasmid by UV irradiation and low-level chlorination. WATER RESEARCH 2016; 91:331-338. [PMID: 26803268 DOI: 10.1016/j.watres.2016.01.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/29/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
The widespread presence of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the drinking water system facilitates their horizontal gene transfer among microbiota. In this study, the conjugative gene transfer of RP4 plasmid after disinfection including ultraviolet (UV) irradiation and low-level chlorine treatment was investigated. It was found that both UV irradiation and low-level chlorine treatment reduced the conjugative gene transfer frequency. The transfer frequency gradually decreased from 2.75 × 10(-3) to 2.44 × 10(-5) after exposure to UV doses ranging from 5 to 20 mJ/cm(2). With higher UV dose of 50 and 100 mJ/cm(2), the transfer frequency was reduced to 1.77 × 10(-6) and 2.44 × 10(-8). The RP4 plasmid transfer frequency was not significantly affected by chlorine treatment at dosages ranging from 0.05 to 0.2 mg/l, but treatment with 0.3-0.5 mg/l chlorine induced a decrease in conjugative transfer to 4.40 × 10(-5) or below the detection limit. The mechanisms underlying these phenomena were also explored, and the results demonstrated that UV irradiation and chlorine treatment (0.3 and 0.5 mg/l) significantly reduced the viability of bacteria, thereby lowering the conjugative transfer frequency. Although the lower chlorine concentrations tested (0.05-0.2 mg/l) were not sufficient to damage the cells, exposure to these concentrations may still depress the expression of a flagellar gene (FlgC), an outer membrane porin gene (ompF), and a DNA transport-related gene (TraG). Additionally, fewer pili were scattered on the bacteria after chlorine treatment. These findings are important in assessing and controlling the risk of ARG transfer and dissemination in the drinking water system.
Collapse
Affiliation(s)
- Wenfang Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shuai Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shuting Zhang
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
16
|
Mechanism to control the cell lysis and the cell survival strategy in stationary phase under heat stress. SPRINGERPLUS 2015; 4:599. [PMID: 26543734 PMCID: PMC4627973 DOI: 10.1186/s40064-015-1415-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 10/07/2015] [Indexed: 11/10/2022]
Abstract
An array of stress signals triggering the bacterial cellular stress response is well known in Escherichia coli and other bacteria. Heat stress is usually sensed through the misfolded outer membrane porin (OMP) precursors in the periplasm, resulting in the activation of σ(E) (encoded by rpoE), which binds to RNA polymerase to start the transcription of genes required for responding against the heat stress signal. At the elevated temperatures, σ(E) also serves as the transcription factor for σ(H) (the main heat shock sigma factor, encoded by rpoH), which is involved in the expression of several genes whose products deal with the cytoplasmic unfolded proteins. Besides, oxidative stress in form of the reactive oxygen species (ROS) that accumulate due to heat stress, has been found to give rise to viable but non-culturable (VBNC) cells at the early stationary phase, which is in turn lysed by the σ(E)-dependent process. Such lysis of the defective cells may generate nutrients for the remaining population to survive with the capacity of formation of colony forming units (CFUs). σ(H) is also known to regulate the transcription of the major heat shock proteins (HSPs) required for heat shock response (HSR) resulting in cellular survival. Present review concentrated on the cellular survival against heat stress employing the harmonized impact of σ(E) and σ(H) regulons and the HSPs as well as their inter connectivity towards the maintenance of cellular survival.
Collapse
|
17
|
Bekir K, Barhoumi H, Braiek M, Chrouda A, Zine N, Abid N, Maaref A, Bakhrouf A, Ouada HB, Jaffrezic-Renault N, Mansour HB. Electrochemical impedance immunosensor for rapid detection of stressed pathogenic Staphylococcus aureus bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15796-15803. [PMID: 26036585 DOI: 10.1007/s11356-015-4761-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
In this work, we report the adaptation of bacteria to stress conditions that induce instability of their cultural, morphological, and enzymatic characters, on which the identification of pathogenic bacteria is based. These can raise serious issues during the characterization of bacteria. The timely detection of pathogens is also a subject of great importance. For this reason, our objective is oriented towards developing an immunosensing system for rapid detection and quantification of Staphylococcus aureus. Polyclonal anti-S. aureus are immobilized onto modified gold electrode by self-assembled molecular monolayer (SAM) method. The electrochemical performances of the developed immunosensor were evaluated by impedance spectroscopy through the monitoring of the charge transfer resistance at the modified solid/liquid interface using ferri-/ferrocyanide as redox probe. The developed immunosensor was applied to detect stressed and resuscitate bacteria. As a result, a stable and reproducible immunosensor with sensitivity of 15 kΩ/decade and a detection limit of 10 CFU/mL was obtained for the S. aureus concentrations ranging from 10(1) to 10(7) CFU/mL. A low deviation in the immunosensor response (±10 %) was signed when it is exposed to stressed and not stressed bacteria.
Collapse
Affiliation(s)
- Karima Bekir
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie de Monastir, Monastir, Tunisia
| | - Houcine Barhoumi
- Laboratoire des Sciences Analytiques, UMR CNRS 5180, Université Claude Bernard-Lyon1, Bâtiment CPE, 69622, Villeurbanne Cedex, France
| | - Mohamed Braiek
- Laboratoire des Sciences Analytiques, UMR CNRS 5180, Université Claude Bernard-Lyon1, Bâtiment CPE, 69622, Villeurbanne Cedex, France
- Laboratoire de Physique et Chimie des Interfaces, Faculté des Sciences de Monastir, Tunisie, Avenue de l'Environnement, 5019, Monastir, Tunisia
| | - Amani Chrouda
- Laboratoire des Sciences Analytiques, UMR CNRS 5180, Université Claude Bernard-Lyon1, Bâtiment CPE, 69622, Villeurbanne Cedex, France
- Laboratoire de Physique et Chimie des Interfaces, Faculté des Sciences de Monastir, Tunisie, Avenue de l'Environnement, 5019, Monastir, Tunisia
| | - Nadia Zine
- Laboratoire des Sciences Analytiques, UMR CNRS 5180, Université Claude Bernard-Lyon1, Bâtiment CPE, 69622, Villeurbanne Cedex, France
| | - Nabil Abid
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie de Monastir, Monastir, Tunisia
| | - Abdelrazek Maaref
- Laboratoire de Physique et Chimie des Interfaces, Faculté des Sciences de Monastir, Tunisie, Avenue de l'Environnement, 5019, Monastir, Tunisia
| | - Amina Bakhrouf
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie de Monastir, Monastir, Tunisia
| | - Hafedh Ben Ouada
- Research Unit, Analysis and processes applied to Environment Higher Institute of Applied Sciences and Technology of Mahdia, Monastir University, Monastir, Tunisia
| | - Nicole Jaffrezic-Renault
- Laboratoire des Sciences Analytiques, UMR CNRS 5180, Université Claude Bernard-Lyon1, Bâtiment CPE, 69622, Villeurbanne Cedex, France
| | - Hedi Ben Mansour
- Research Unit, Analysis and processes applied to Environment Higher Institute of Applied Sciences and Technology of Mahdia, Monastir University, Monastir, Tunisia.
| |
Collapse
|
18
|
Santiago P, Moreno Y, Ferrús MA. Identification of Viable Helicobacter pylori in Drinking Water Supplies by Cultural and Molecular Techniques. Helicobacter 2015; 20:252-259. [PMID: 25655472 DOI: 10.1111/hel.12205] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Helicobacter pylori is one of the most common causes of chronic bacterial infection in humans, directly related to peptic ulcer and gastric cancer. It has been suggested that H. pylori can be acquired through different transmission routes, including water. In this study, culture and qPCR were used to detect and identify the presence of H. pylori in drinking water. Furthermore, the combined techniques PMA-qPCR and DVC-FISH were applied for detection of viable cells of H. pylori. RESULTS Among 24 drinking water samples, 16 samples were positive for the presence of H. pylori, but viable cells were only detected in six samples. Characteristic colonies, covered by a mass of bacterial unspecific growth, were observed on selective agar plates from an only sample, after enrichment. The mixed culture was submitted to DVC-FISH and qPCR analysis, followed by sequencing of the amplicons. Molecular techniques confirmed the growth of H. pylori on the agar plate. CONCLUSIONS Our results demonstrate for the first time that H. pylori can survive and be potentially infective in drinking water, showing that water distribution systems could be a potential route for H. pylori transmission.
Collapse
Affiliation(s)
- Paula Santiago
- Biotechnology Department, Polytechnic University of Valencia, 46022, Valencia, Spain
| | - Yolanda Moreno
- Research Institute of Water and Environmental Ingeneering (IIAMA), Polytechnic University of Valencia, 46022, Valencia, Spain
| | - M Antonía Ferrús
- Biotechnology Department, Polytechnic University of Valencia, 46022, Valencia, Spain
| |
Collapse
|
19
|
UV-induced self-aggregation of E . coli after low and medium pressure ultraviolet irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 148:310-321. [DOI: 10.1016/j.jphotobiol.2015.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/12/2015] [Accepted: 04/16/2015] [Indexed: 11/20/2022]
|
20
|
Kolling Y, Salva S, Villena J, Marranzino G, Alvarez S. Non-viable immunobiotic Lactobacillus rhamnosus CRL1505 and its peptidoglycan improve systemic and respiratory innate immune response during recovery of immunocompromised-malnourished mice. Int Immunopharmacol 2015; 25:474-84. [DOI: 10.1016/j.intimp.2015.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/16/2022]
|
21
|
Ceuppens S, Li D, Uyttendaele M, Renault P, Ross P, Ranst MV, Cocolin L, Donaghy J. Molecular Methods in Food Safety Microbiology: Interpretation and Implications of Nucleic Acid Detection. Compr Rev Food Sci Food Saf 2014; 13:551-577. [DOI: 10.1111/1541-4337.12072] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractBecause of increasing demand for rapid results, molecular techniques are now applied for the detection of microorganisms in foodstuffs. However, interpretation problems can arise for the results generated by molecular methods in relation to the associated public health risk. Discrepancies between results obtained by molecular and conventional culture methods stem from the difference in target, namely nucleic acids instead of actively growing microorganisms. Nucleic acids constitute 5% to 15% of the dry weight of all living cells and are relatively stable, even after cell death, so they may be present in a food matrix after the foodborne microorganisms have been inactivated. Therefore, interpretation of the public health significance of positive results generated by nucleic acid detection methods warrants some additional consideration. This review discusses the stability of nucleic acids in general and highlights the persistence of microbial nucleic acids after diverse food‐processing techniques based on data from the scientific literature. Considerable amounts of DNA and RNA (intact or fragmented) persist after inactivation of bacteria and viruses by most of the commonly applied treatments in the food industry. An overview of the existing adaptations for molecular assays to cope with these problems is provided, including large fragment amplification, flotation, (enzymatic) pretreatment, and various binding assays. Finally, the negligible risks of ingesting free microbial nucleic acids are discussed and this review ends with the future perspectives of molecular methods such as next‐generation sequencing in diagnostic and source attribution food microbiology.
Collapse
Affiliation(s)
- Siele Ceuppens
- Faculty of Bioscience Engineering Laboratory of Food Microbiology and Food Preservation (LFMFP) Dept. of Food Safety and Food Quality Ghent Univ. Ghent Belgium
| | - Dan Li
- Faculty of Bioscience Engineering Laboratory of Food Microbiology and Food Preservation (LFMFP) Dept. of Food Safety and Food Quality Ghent Univ. Ghent Belgium
| | - Mieke Uyttendaele
- Faculty of Bioscience Engineering Laboratory of Food Microbiology and Food Preservation (LFMFP) Dept. of Food Safety and Food Quality Ghent Univ. Ghent Belgium
| | - Pierre Renault
- Inst. Scientifique de Recherche Agronomique (INRA) France
| | - Paul Ross
- Moorepark Biotechnology Centre Teagasc Moorepark Fermoy Co. Cork Ireland
| | | | - Luca Cocolin
- Dept. of Agricultural Forest and Food Sciences Univ. of Torino Grugliasco Torino Italy
| | - John Donaghy
- Food Safety Microbiology Group Nestle Research Center Lausanne Switzerland
| |
Collapse
|
22
|
Žvab U, Lavrenčič Štangar U, Bergant Marušič M. Methodologies for the analysis of antimicrobial effects of immobilized photocatalytic materials. Appl Microbiol Biotechnol 2014; 98:1925-36. [PMID: 24384751 DOI: 10.1007/s00253-013-5464-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/08/2013] [Accepted: 12/10/2013] [Indexed: 01/08/2023]
Abstract
Photocatalytic coatings are considered sustainable materials as they only need sunlight for their activation and regeneration. Some photocatalytic disinfecting coatings are already commercialized, but many more are still in the developmental stage. Efficient and reliable analytical methodologies for testing the antimicrobial effects of photocatalytic coatings should therefore be used and further developed (1) to avoid inactive or unstable final products, (2) to allow fast, reproducible, and inexpensive antimicrobial activity measurements, and (3) to reflect real environmental conditions and challenges for these materials. Aiming to improve the existing methodologies of antimicrobial testing, this mini review summarizes and discusses the testing parameters and procedures in this expanding research field, including research on antimicrobial activity of photocatalytic coatings for different applications, i.e., self-cleaning/disinfecting coatings (films) and photocatalytic coatings for water and air treatment/disinfection.
Collapse
Affiliation(s)
- Urška Žvab
- Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, 5000, Nova Gorica, Slovenia
| | | | | |
Collapse
|
23
|
Viable but nonculturable bacteria: food safety and public health perspective. ISRN MICROBIOLOGY 2013; 2013:703813. [PMID: 24191231 PMCID: PMC3804398 DOI: 10.1155/2013/703813] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/01/2013] [Indexed: 11/28/2022]
Abstract
The viable but nonculturable (VBNC) state is a unique survival strategy of many bacteria in the environment in response to adverse environmental conditions. VBNC bacteria cannot be cultured on routine microbiological media, but they remain viable and retain virulence. The VBNC bacteria can be resuscitated when provided with appropriate conditions. A good number of bacteria including many human pathogens have been reported to enter the VBNC state. Though there have been disputes on the existence of VBNC in the past, extensive molecular studies have resolved most of them, and VBNC has been accepted as a distinct survival state. VBNC pathogenic bacteria are considered a threat to public health and food safety due to their nondetectability through conventional food and water testing methods. A number of disease outbreaks have been reported where VBNC bacteria have been implicated as the causative agent. Further molecular and combinatorial research is needed to tackle the threat posed by VBNC bacteria with regard to public health and food safety.
Collapse
|
24
|
Molecular assays for determining Mycobacterium leprae viability in tissues of experimentally infected mice. PLoS Negl Trop Dis 2013; 7:e2404. [PMID: 24179562 PMCID: PMC3750008 DOI: 10.1371/journal.pntd.0002404] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/23/2013] [Indexed: 11/25/2022] Open
Abstract
Background The inability of Mycobacterium leprae to grow on axenic media has necessitated specialized techniques in order to determine viability of this organism. The purpose of this study was to develop a simple and sensitive molecular assay for determining M. leprae viability directly from infected tissues. Methodology/Principle Findings Two M. leprae-specific quantitative reverse transcription PCR (qRT-PCR) assays based on the expression levels of esxA, encoding the ESAT-6 protein, and hsp18, encoding the heat shock 18 kDa protein, were developed and tested using infected footpad (FP) tissues of both immunocompetent and immunocompromised (athymic nu/nu) mice. In addition, the ability of these assays to detect the effects of anti-leprosy drug treatment on M. leprae viability was determined using rifampin and rifapentine, each at 10 mg/kg for 1, 5, or 20 daily doses, in the athymic nu/nu FP model. Molecular enumeration (RLEP PCR) and viability determinations (qRT-PCR) were performed via Taqman methodology on DNA and RNA, respectively, purified from ethanol-fixed FP tissue and compared with conventional enumeration (microscopic counting of acid fast bacilli) and viability assays (radiorespirometry, viability staining) which utilized bacilli freshly harvested from the contralateral FP. Both molecular and conventional assays demonstrated growth and high viability of M. leprae in nu/nu FPs over a 4 month infection period. In contrast, viability was markedly decreased by 8 weeks in immunocompetent mice. Rifapentine significantly reduced bacterial viability after 5 treatments, whereas rifampin required up to 20 treatments for the same efficacy. Neither drug was effective after a single treatment. In addition, host gene expression was monitored with the same RNA preparations. Conclusions hsp18 and esxA qRT-PCR are sensitive molecular indicators, reliably detecting viability of M. leprae in tissues without the need for bacterial isolation or immediate processing, making these assays applicable for in vivo drug screening and promising for clinical and field applications. M. leprae, the causative agent of leprosy, cannot be grown on laboratory culture media. This characteristic, along with its extremely long generation time of 12–14 days, makes the study of the pathogenicity of this organism and the experimental testing of new drugs for the treatment of leprosy extremely difficult. We developed two M. leprae-specific quantitative reverse transcription PCR assays and tested their utility as biological markers of M. leprae viability in tissue specimens. These assays could detect high viability of bacilli growing in immunosuppressed mice as well as the inhibitory effects of anti-leprosy drug treatment, or of the host immune system in immunocompetent mice. The RNA preparations were also successfully used for detection of host gene expression. The application of these assays to various experimental models would benefit characterization of the infection or novel drug screening. Furthermore, because these assays utilize fixed tissues, their potential application to clinical and field settings could enable monitoring of M. leprae viability in conjunction with the host immune response during treatment.
Collapse
|
25
|
Pinto D, Santos MA, Chambel L. Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol 2013; 41:61-76. [PMID: 23848175 DOI: 10.3109/1040841x.2013.794127] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Viable but nonculturable (VBNC) cells were recognized 30 years ago; and despite decades of research on the topic, most results are disperse and apparently incongruous. Since its description, a huge controversy arose regarding the ecological significance of this state: is it a degradation process without real significance for bacterial life cycles or is it an adaptive strategy of bacteria to cope with stressful conditions? In order to solve the molecular mechanisms of VBNC state induction and resuscitation, researchers in the field must be aware and overcome common issues delaying research progress. In this review, we discuss the intrinsic characteristic features of VBNC cells, the first clues on what is behind the VBNC state's induction, the models proposed for their resuscitation and the current methods to prove not only that cells are in VBNC state but also that they are able to resuscitate.
Collapse
Affiliation(s)
- Daniela Pinto
- Center for Biodiversity, Functional and Integrative Genomics (BioFIG), Faculty of Sciences, University of Lisbon , Lisbon , Portugal
| | | | | |
Collapse
|
26
|
Monthéard J, Garcier S, Lombard E, Cameleyre X, Guillouet S, Molina-Jouve C, Alfenore S. Assessment of Candida shehatae viability by flow cytometry and fluorescent probes. J Microbiol Methods 2012; 91:8-13. [DOI: 10.1016/j.mimet.2012.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/02/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
27
|
García-Hernández J, Moreno Y, Amorocho CM, Hernández M. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp.bulgaricus and Streptococcus thermophilus. Lett Appl Microbiol 2012; 54:247-254. [PMID: 22188589 DOI: 10.1111/j.1472-765x.2011.03201.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS We have developed a direct viable count (DVC)-FISH procedure for quickly and easily discriminating between viable and nonviable cells of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains, the traditional yogurt bacteria. METHODS AND RESULTS direct viable count method has been modified and adapted for Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus analysis by testing different times of incubation and concentrations of DNA-gyrase inhibitors. DVC procedure has been combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of both bacteria with specific rRNA oligonucleotide probes (DVC-FISH). Of the four antibiotics tested (novobiocin, nalidixic acid, pipemidic acid and ciprofloxacin), novobiocin was the most effective for DVC method and the optimum incubation time was 7 h for both bacteria. The number of viable cells was obtained by the enumeration of specific hybridized cells that were elongated at least twice their original length for Lactobacillus and twice their original size for Streptococcus. CONCLUSIONS This technique was successfully applied to detect viable cells in inoculated faeces. SIGNIFICANCE AND IMPACT OF THE STUDY Results showed that this DVC-FISH procedure is a quick and culture-independent useful method to specifically detect viable Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus in different samples, being applied for the first time to lactic acid bacteria.
Collapse
Affiliation(s)
- J García-Hernández
- Departamento de Biotecnología, Universitat Politècnica de València, Valencia, Spain.
| | | | | | | |
Collapse
|
28
|
García-Hernández J, Moreno Y, Amorocho C, Hernández M. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Lett Appl Microbiol 2012. [DOI: 10.1111/j.1472-765x.2012.03201.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Li X, McHugh GA, Damle N, Sikand VK, Glickstein L, Steere AC. Burden and viability of Borrelia burgdorferi in skin and joints of patients with erythema migrans or lyme arthritis. ACTA ACUST UNITED AC 2011; 63:2238-47. [PMID: 21590753 DOI: 10.1002/art.30384] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the burden and viability of Borrelia burgdorferi in the skin and joints of patients with Lyme disease. METHODS Standard and quantitative polymerase chain reaction (PCR) techniques were used to detect B burgdorferi DNA in skin samples from 90 patients with erythema migrans (EM) and in synovial fluid (SF) from 63 patients with Lyme arthritis (LA) and in synovial tissue from 9 patients. Quantitative PCR determinations of B burgdorferi DNA, messenger RNA (mRNA), and ribosomal RNA (rRNA) were made in 10 skin samples from EM patients and 11 SF samples from LA patients. RESULTS Skin lesions in most patients with EM had positive PCR results for B burgdorferi DNA. In the majority of patients with LA, a late disease manifestation, PCR results in pretreatment SF samples were positive. In patients with antibiotic-refractory arthritis, positive PCR results persisted for as long as 11 months, but positive results in samples taken during the postantibiotic period did not correlate with relapse or with the subsequent duration of arthritis, and at synovectomy, all results of PCR of synovial tissue were negative. B burgdorferi mRNA, a marker of spirochetal viability, was detected in 8 of 10 skin samples from EM patients, but in none of 11 SF samples from LA patients, even when obtained prior to antibiotic administration. Moreover, the median ratio of spirochetal rRNA to DNA, a measure of ribosomal activity, was 160 in the 10 EM skin samples, but only 0.15 in the 3 LA SF samples with positive results. CONCLUSION B burgdorferi in the skin lesions of EM patients were active and viable, whereas those in the SF of LA patients were moribund or dead at any time point. Thus, detection of B burgdorferi DNA in SF is not a reliable test of active joint infection in Lyme disease.
Collapse
Affiliation(s)
- Xin Li
- Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
30
|
Osibote E, Noah N, Sadik O, McGee D, Ogunlesi M. Electrochemical sensors, MTT and immunofluorescence assays for monitoring the proliferation effects of cissus populnea extracts on Sertoli cells. Reprod Biol Endocrinol 2011; 9:65. [PMID: 21575213 PMCID: PMC3117771 DOI: 10.1186/1477-7827-9-65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/16/2011] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND We describe the development of an electrochemical sensor array for monitoring the proliferation effects of cissus populnea plant extracts on TM4 Sertoli cells. METHODS The proliferation activities of the extracts on Sertoli cells were studied using a high-throughput electrochemical sensor array (DOX-96) and the analytical sensor characteristics were compared with conventional colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and fluorescence spectroscopy. RESULTS This work shows that there is a definite positive trend in the proliferation effect of the extract of Cissus populnea on the TM4 Sertoli cells. All of the three techniques confirmed that the most effective concentration for the proliferation is 10 ppm. At this concentration, the proliferation effect was established around 120% for both DOX-96 and MTT techniques, whereas fluorescence assays showed a higher level (120-150%). DOX-96 showed a lower limit of detection (1.25 × 10(4) cells/ml); whereas the LOD recorded for both MTT and fluorescence techniques was 2.5 × 10(4) cells/ml. Visual examination of the cells by means of confocal fluorescence microscopy confirmed the proliferation of Sertoli cells as was determined using the MTT assay. This investigation provides a confident interpretation of the results and proved that the most effective concentration for the proliferation using Cissus populnea plant extract is 10 ppm. CONCLUSIONS Overall, the DOX results compared well with the conventional methods of checking proliferation of cells. The fascinating feature of the sensor array is the ability to provide continuous proliferation experiments with no additional reagents including 96 simultaneous electrochemical experiments. The use of the DOX-96 could reduce a typical bioassay time by 20-fold. Thus the DOX-96 can be used as both a research tool and for practical cell culture monitoring.
Collapse
Affiliation(s)
- Elizabeth Osibote
- Department of Chemistry, Center for Advanced Sensors & Environmental Monitoring, State University of New York at Binghamton, NY 13902-6000, USA
| | - Naumih Noah
- Department of Chemistry, Center for Advanced Sensors & Environmental Monitoring, State University of New York at Binghamton, NY 13902-6000, USA
| | - Omowunmi Sadik
- Department of Chemistry, Center for Advanced Sensors & Environmental Monitoring, State University of New York at Binghamton, NY 13902-6000, USA
| | - Dennis McGee
- Department of Biological Sciences, State University of New York at Binghamton, NY 13902-6000, USA
| | - Modupe Ogunlesi
- Department of Chemistry, Center for Advanced Sensors & Environmental Monitoring, State University of New York at Binghamton, NY 13902-6000, USA
| |
Collapse
|
31
|
Jurkevica A, Halsall HB, Seliskar CJ, Heineman WR. Effect of some physico-chemical conditions on an immunoassay for viable Escherichia coli. Anal Bioanal Chem 2010; 397:3133-6. [DOI: 10.1007/s00216-010-3846-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 05/05/2010] [Accepted: 05/11/2010] [Indexed: 11/24/2022]
|
32
|
Zhang DL, Ross T, Bowman JP. Physiological aspects of Listeria monocytogenes during inactivation accelerated by mild temperatures and otherwise non-growth permissive acidic and hyperosmotic conditions. Int J Food Microbiol 2010; 141:177-85. [PMID: 20553835 DOI: 10.1016/j.ijfoodmicro.2010.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/14/2010] [Accepted: 05/14/2010] [Indexed: 11/25/2022]
Abstract
Application of simultaneous low pH (pH 3.5) and low water activity (a(w)=0.9; 2.5M NaCl) conditions to Listeria monocytogenes strains ScottA and FW03/0035, and growth permissive temperatures from 25 degrees C up to 45 degrees C result in increasingly accelerated inactivation rates. This phenomenon was related to i) increased cell permeability as suggested by ethidium homodimer-1 uptake and ii) de-energization as indicated by rapidly reduced ATP basal levels. Enrichment-based recovery experiments indicated that the stress conditions eventually lead to complete loss of reproductive capacity, possibly corresponding to an irreversible collapse of pH homeostasis. Transcriptomic analyses were used to obtain further insights into the physiology of the inactivation process occurring at 25 degrees C where inactivation times were more prolonged. QPCR, mRNA decay and microarray experiments revealed transcripts of tufA and other genes become substantially more stable during inactivation resulting from exposure to combined low pH/a(w) and from non-growth permissive temperature exposure. Genes that appear to be important for initial survival of combined low pH/a(w) were delineated by K-means clustering of expression data and included an overrepresentation of SigB-activated genes, the overall response of which fades with increasing time of inactivation exposure.
Collapse
Affiliation(s)
- Dong Lai Zhang
- Food Safety Centre, Tasmanian Institute of Agricultural Research, University of Tasmania, Hobart, Australia
| | | | | |
Collapse
|
33
|
Wang Y, Claeys L, van der Ha D, Verstraete W, Boon N. Effects of chemically and electrochemically dosed chlorine on Escherichia coli and Legionella beliardensis assessed by flow cytometry. Appl Microbiol Biotechnol 2010; 87:331-41. [DOI: 10.1007/s00253-010-2526-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 11/29/2022]
|
34
|
Rôças IN, Siqueira JF. Identification of bacteria enduring endodontic treatment procedures by a combined reverse transcriptase-polymerase chain reaction and reverse-capture checkerboard approach. J Endod 2010; 36:45-52. [PMID: 20003934 DOI: 10.1016/j.joen.2009.10.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/13/2009] [Accepted: 10/18/2009] [Indexed: 11/15/2022]
Abstract
INTRODUCTION This study identified the bacterial taxa enduring endodontic treatment procedures by using a combined 16S ribosomal RNA-based reverse-transcriptase polymerase chain reaction (RT-PCR) and reverse-capture checkerboard hybridization approach. METHODS Samples were taken from infected canals of 15 teeth with apical periodontitis before treatment (S1), after chemomechanical preparation with NaOCl as the irrigant (S2), and after interappointment medication with a calcium hydroxide paste (S3). Bacterial presence was first screened by a DNA-based single PCR assay. RNA extracts were subjected to RT-PCR, and the resulting products were surveyed for the presence of 28 targeted taxa by using the checkerboard method. RESULTS Bacteria were found in all S1 samples. Detectable levels of bacterial ribosomal RNA, used as an indicator of viability, were observed in 60% of the cases after chemomechanical preparation and 53% after intracanal medication. The most prevalent taxa in S1 were Olsenella uli (67%), Pyramidobacter piscolens (60%), Streptococcus species (53%), and Bacteroidetes clone X083 (53%). Streptococcus species (47%), Fusobacterium nucleatum (40%), and O. uli (33%) prevailed in S2, whereas Streptococcus species (47%), Propionibacterium acnes (27%), and O. uli (27%) were the most frequent taxa in S3. CONCLUSIONS The present study with a combined molecular approach revealed that bacterial diversity was overall markedly reduced by treatment procedures. Although bacterial taxa more frequently identified in post-treatment samples emerge as potential risk factors for persistent disease, this remains to be determined by longitudinal studies.
Collapse
Affiliation(s)
- Isabela N Rôças
- Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Estácio de Sá University, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
35
|
Stankiewicz N, Gold A, Yüksel Y, Berensmeier S, Schwartz T. In vivo labeling and specific magnetic bead separation of RNA for biofilm characterization and stress-induced gene expression analysis in bacteria. J Microbiol Methods 2009; 79:344-52. [PMID: 19837116 DOI: 10.1016/j.mimet.2009.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 11/26/2022]
Abstract
The method of in vivo labeling and separation of bacterial RNA was developed as an approach to elucidating the stress response of natural bacterial populations. This technique is based on the incorporation of digoxigenin-11-uridine-5'-triphosphate (DIG-11-UTP) in the RNA of active bacteria. The digoxigenin fulfills a dual role as a label of de novo synthesized RNA and a target for magnetic bead separation from a total RNA extract. Depending on the growth conditions and the population's composition, the assembly rate of DIG-11-UTP ranged from 1.2% to 12.5% of the total RNA in gram-positive and gram-negative reference bacteria as well as in natural biofilms from drinking water, surface water, and lake sediment. Separation of DIG-RNA from total RNA extracts was performed with a biotinylated anti-digoxigenin antibody and streptavidin-functionalized magnetic particles. The average separation yield from total RNA extracts was about 95% of labeled RNA. The unspecific bindings of non-labeled nucleic acids were smaller than 0.2%, as was evaluated by spiking experiments with an unmarked DNA amplicon. Applicability of the method developed was demonstrated by rRNA-directed PCR-DGGE population analysis of natural biofilms and expression profiling of two stress-induced genes (vanA and rpoS) in reference bacteria.
Collapse
Affiliation(s)
- Nikolai Stankiewicz
- Karlsruhe Institute of Technology - KIT (former: Forschungszentrum Karlsruhe), Institute of Functional Interfaces (IFG), Microbiology of Natural and Technical Interfaces Department, P.O. Box 3640, D-76021 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
36
|
Cenciarini-Borde C, Courtois S, La Scola B. Nucleic acids as viability markers for bacteria detection using molecular tools. Future Microbiol 2009; 4:45-64. [PMID: 19207099 DOI: 10.2217/17460913.4.1.45] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A large set of nucleic acid detection methods with good sensitivity and specificity are now available for the detection of pathogens in clinical, food and environmental samples. Given increasing demand, many efforts have been made to combine these methods to assess viability. Genomic DNA PCR amplification has been shown to be inappropriate for distinguishing viable from dead bacteria owing to DNA stability. Many authors have tried to bypass this difficulty by switching to RNA amplification methods such as reverse transcription-PCR and nucleic acid sequence-based amplification. More recently, researchers have developed methods combining specific sample pretreatment with nucleic acid detection methods, notably ethidium or propidium monoazide pretreatment coupled with PCR DNA detection or direct viable count methods and subsequent fluorescent in situ hybridization of 16S rRNA. This review evaluates the performance of these different methods for viability assessment.
Collapse
Affiliation(s)
- Claire Cenciarini-Borde
- CIRSEE (Centre International de Recherche Sur l'Eau et l'Environnement) - Suez Environment, 38 Rue Du Président Wilson 78230 Le Pecq, France.
| | | | | |
Collapse
|
37
|
Viability staining and detection of metabolic activity of sourdough lactic acid bacteria under stress conditions. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9972-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Fendrihan S, Bérces A, Lammer H, Musso M, Rontó G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H. Investigating the effects of simulated martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. ASTROBIOLOGY 2009; 9:104-12. [PMID: 19215203 PMCID: PMC3182532 DOI: 10.1089/ast.2007.0234] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The isolation of viable extremely halophilic archaea from 250-million-year-old rock salt suggests the possibility of their long-term survival under desiccation. Since halite has been found on Mars and in meteorites, haloarchaeal survival of martian surface conditions is being explored. Halococcus dombrowskii H4 DSM 14522(T) was exposed to UV doses over a wavelength range of 200-400 nm to simulate martian UV flux. Cells embedded in a thin layer of laboratory-grown halite were found to accumulate preferentially within fluid inclusions. Survival was assessed by staining with the LIVE/DEAD kit dyes, determining colony-forming units, and using growth tests. Halite-embedded cells showed no loss of viability after exposure to about 21 kJ/m(2), and they resumed growth in liquid medium with lag phases of 12 days or more after exposure up to 148 kJ/m(2). The estimated D(37) (dose of 37 % survival) for Hcc. dombrowskii was > or = 400 kJ/m(2). However, exposure of cells to UV flux while in liquid culture reduced D(37) by 2 orders of magnitude (to about 1 kJ/m(2)); similar results were obtained with Halobacterium salinarum NRC-1 and Haloarcula japonica. The absorption of incoming light of shorter wavelength by color centers resulting from defects in the halite crystal structure likely contributed to these results. Under natural conditions, haloarchaeal cells become embedded in salt upon evaporation; therefore, dispersal of potential microscopic life within small crystals, perhaps in dust, on the surface of Mars could resist damage by UV radiation.
Collapse
Affiliation(s)
- Sergiu Fendrihan
- University of Salzburg, Division of Molecular Biology, Department of Microbiology, Salzburg, Austria
| | - Attila Bérces
- Research Group for Biophysics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Helmut Lammer
- Space Research Institute of the Austrian Academy of Sciences, Graz, Austria
| | - Maurizio Musso
- University of Salzburg, Division of Materials Engineering and Physics, Department of Physics and Biophysics, Salzburg, Austria
| | - György Rontó
- Research Group for Biophysics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tatjana K. Polacsek
- University of Salzburg, Division of Molecular Biology, Department of Microbiology, Salzburg, Austria
| | - Anita Holzinger
- University of Salzburg, Division of Molecular Biology, Department of Microbiology, Salzburg, Austria
| | - Christoph Kolb
- Space Research Institute of the Austrian Academy of Sciences, Graz, Austria
- On leave from the Space Research Institute of the Austrian Academy of Sciences, Graz, Austria
| | - Helga Stan-Lotter
- University of Salzburg, Division of Molecular Biology, Department of Microbiology, Salzburg, Austria
| |
Collapse
|
39
|
Su F, Luo M, Zhang F, Li P, Lou K, Xing X. Performance of microbiological control by a point-of-use filter system for drinking water purification. J Environ Sci (China) 2009; 21:1237-1246. [PMID: 19999972 DOI: 10.1016/s1001-0742(08)62410-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Purification capacity of a faucet mounted type water filter for home use was evaluated, particularly with regard to microbiological performance under different running conditions. Biofilms were formed inside the filter, affecting the bacterial quality of the effluent water. Low flow rate, long stagnation period and high filter temperature were found favorable for bacterial growth inside. By commercial analytical profile index (API) kits, ten different bacterial species were identified in drinking water, four of which were probably contributed to the biofilm formation since they were also present in the biofilm. Fluorescence in situ hybridization (FISH) was used to confirm the API identification results, and direct viable count (DVC) method was employed to improve the sensitivity of FISH for the isolated Acinetobacter spp. and Pseudomonas putida as models. Relationship between the filter operating condition and the bacterial community alteration was partly revealed, which could provide the basic knowledge for the filter design and its practical use.
Collapse
Affiliation(s)
- Fengyi Su
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
40
|
Cenciarini C, Courtois S, Raoult D, La Scola B. Influence of long time storage in mineral water on RNA stability of Pseudomonas aeruginosa and Escherichia coli after heat inactivation. PLoS One 2008; 3:e3443. [PMID: 18941615 PMCID: PMC2566809 DOI: 10.1371/journal.pone.0003443] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 09/18/2008] [Indexed: 12/18/2022] Open
Abstract
Background Research of RNA viability markers was previously studied for many bacterial species. Few and different targets of each species have been checked and motley results can be found in literature. No research has been done about Pseudomonas aeruginosa in this way. Methodology/Principal Findings Disappearance of 48 transcripts was analyzed by two-steps reverse transcription and real time polymerase chain reaction (RT-PCR) after heat-killing of Pseudomonas aeruginosa previously stored in mineral water or not. Differential results were obtained for each target. 16S rRNA, 23S rRNA, groEL, and rpmE were showed as the most persistent transcripts and rplP, rplV, rplE and rpsD were showed as the most labile transcripts after P. aeruginosa death. However, the labile targets appeared more persistent in bacteria previously stored in mineral water than freshly cultivated (non stored). These nine transcripts were also analyzed in Escherichia coli after heat-killing and different to opposite results were obtained, notably for groEL which was the most labile transcript of E. coli. Moreover, opposite results were obtained between mineral water stored and freshly cultivated E. coli. Conclusions and Significance This study highlights four potential viability markers for P. aeruginosa and four highly persistent transcripts. In a near future, these targets could be associated to develop an efficient viability kit. The present study also suggests that it would be difficult to determine universal RNA viability markers for environmental bacteria, since opposite results were obtained depending on the bacterial species and the physiological conditions.
Collapse
Affiliation(s)
- Claire Cenciarini
- CIRSEE (Centre International de Recherche Sur l'Eau et l'Environnement) – Suez Environnement, Le Pecq, France
- URMITE, CNRS-IRD UMR 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Sophie Courtois
- CIRSEE (Centre International de Recherche Sur l'Eau et l'Environnement) – Suez Environnement, Le Pecq, France
| | - Didier Raoult
- URMITE, CNRS-IRD UMR 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Bernard La Scola
- URMITE, CNRS-IRD UMR 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
- * E-mail:
| |
Collapse
|
41
|
Abstract
Bacterial populations that are exposed to rapidly changing and sometimes hostile environments constantly switch between growth, survival, and death. Understanding bacterial survival and death are therefore cornerstones in a full comprehension of microbial life. During the last few years, new insights have emerged regarding the mechanisms of bacterial inactivation under stressful conditions. Particularly under mildly lethal stress, the ultimate cause of inactivation often seems mediated by the cell itself and is subject to additional regulation that integrates information about the global state of the cell and its environmental and social surrounding. This article explores the thin line between bacterial growth and inactivation and focuses on some emerging bacterial survival strategies, both from an individual cell and from a population perspective.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
42
|
Morphological changes of starvedSalmonella enterica serovar Agona cells in soil after resuscitation. ANN MICROBIOL 2008. [DOI: 10.1007/bf03175552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Köster S, Duan H, Holtze C, Weitz DA, Griffiths AD, Merten CA. Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms. ACTA ACUST UNITED AC 2008; 15:427-37. [DOI: 10.1016/j.chembiol.2008.04.004] [Citation(s) in RCA: 497] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 04/02/2008] [Accepted: 04/08/2008] [Indexed: 10/22/2022]
|
44
|
Vieira-Pinto M, Oliveira M, Aranha J, Martins C, Bernardo F. Influence of an enrichment step on Salmonella sp. detection by fluorescent in situ hybridization on pork samples. Food Control 2008. [DOI: 10.1016/j.foodcont.2007.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Resuscitation and morphological alterations of Salmonella bovismorbificans cells under starvation in soil. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9633-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Vieira-Pinto M, Oliveira M, Bernardo F, Martins C. Rapid detection of Salmonella sp. in pork samples using fluorescent in situ hybridization: a comparison with VIDAS®-SLM system and ISO 6579 cultural method. ARQ BRAS MED VET ZOO 2007. [DOI: 10.1590/s0102-09352007000600006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study reports the use of the fluorescent in situ hybridization (FISH) with Sal3 probe for Salmonella detection in swine carcasses inner surface (swab); and in the correspondent samples of ileum, ileocolic, and mandibular lymph nodes; and tonsils, after dilution (1:10) in buffered peptone water and a pre-enrichment step (37(0)C, 18h). In order to evaluate the efficiency of FISH, 235 naturally contaminated samples were simultaneously tested by the cultural method (ISO 6579) and by the Vitek Immuno Diagnostic Assay System (VIDAS®) - Salmonella (SLM) system. The cultural method identified 39 positive samples. From these, VIDAS®- SLM only detected 23. FISH identified 115 positive samples. This difference was highly significant (P<0.001). From positive samples, 32 were also confirmed by the cultural method. The results indicate FISH as a promising tool for rapid Salmonella detection in samples of pork and swine carcasses.
Collapse
Affiliation(s)
- M. Vieira-Pinto
- Universidade de Trás-os-Montes e Alto Douro Apartado, Portugal
| | | | | | - C. Martins
- Universidade de Trás-os-Montes e Alto Douro Apartado, Portugal
| |
Collapse
|
47
|
Moreno Y, Piqueres P, Alonso JL, Jiménez A, González A, Ferrús MA. Survival and viability of Helicobacter pylori after inoculation into chlorinated drinking water. WATER RESEARCH 2007; 41:3490-3496. [PMID: 17585990 DOI: 10.1016/j.watres.2007.05.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/30/2007] [Accepted: 05/04/2007] [Indexed: 05/02/2023]
Abstract
The aim of this work was to assess the effect of chlorine water treatment on Helicobacter pylori and to study the succession of cellular alterations in response to chlorine exposure. H. pylori NCTC 11637 reference strain was used for inoculating water samples. The culturability, substrate responsiveness combined with fluorescent in situ hybridization detection (DVC-FISH assay), RNA content, DNA content, and mRNA changes of H. pylori cells were analyzed. Culturability was lost at 5 min in water with 0.96 mg/l of free chlorine. Viable cells were detected by DVC-FISH after 3h of exposure to chlorine but not after 24h. The percentage of coccoid forms was higher than spiral forms after 40s of chlorine exposure, but even after 24h, FISH detection revealed the presence of spiral cells. After 24h, amplification of the specific H. pylori 16S rDNA gene was achieved. Expression of the vacA gene was detected with the same intensity at all time points tested, demonstrating that these genes are expressed in non-culturable H. pylori cells. Levels of 16S rRNA were constant during the chlorine treatment, so killing of bacteria with chlorine probably does not involve ribosome degradation. According to our results, H. pylori could survive to disinfection practices normally used in drinking water treatment in the viable but non-culturable form, which would allow them to reach final consumption points and, at the same time, enable them to be undetectable by culture methods.
Collapse
Affiliation(s)
- Yolanda Moreno
- Departamento de Biotecnología, Universidad Politécnica, Camino de Vera 14, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Bacterial amoA and 16S rRNA Genes Expression in Activated Sludge During Aeration Phase in Sequencing Batch Reactor. ACTA ACUST UNITED AC 2007. [DOI: 10.2478/v10020-007-0024-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Blázquez J, Gómez-Gómez JM, Oliver A, Juan C, Kapur V, Martín S. PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa. Mol Microbiol 2006; 62:84-99. [PMID: 16956383 DOI: 10.1111/j.1365-2958.2006.05366.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adaptive evolution depends on both the genetic variability in a population of organisms and the selection of the better adapted genotypes. However, for the fittest variants to be selected they must survive over a sufficient period under the new conditions. Bacteria are often exposed to different types of stress in nature, including antibiotics. We analysed the global expression profiles of the opportunistic pathogen Pseudomonas aeruginosa in response to ceftazidime, a PBP3 inhibitor, at different concentrations and times. PBP3 inhibition exerts a global impact on the transcription of a large number of genes. From an adaptive perspective, it is noteworthy the induction of several SOS genes, as well as adaptation, protection and antibiotic resistance genes. Intriguingly, transcription of pyocin genes, previously described as SOS-regulated, was repressed upon PBP3 inhibition. Ciprofloxacin, an SOS inducer, produced transcriptional induction of pyocins. Our results indicate that: (i) the SOS responses resulting from treatments with these two antibiotics cause only partially overlapping transcription profiles; (ii) PBP3 and DNA-gyrase inhibition produce opposite effects on transcription of pyocin genes. Consequently, ceftazidime decreases ciprofloxacin toxicity; (iii) error-prone DNA-polymerase DinB is induced by PBP3 inhibition but not by DNA-gyrase inhibition; (iv) PBP3 inhibition causes induced mutagenesis; (v) ceftazidime upregulates several antibiotic-resistance and adaptation genes; and (vi) ceftazidime concentrations thought previously to be lethal are not, as most cells treated with ceftazidime remain alive and recover their capacity to form colonies. Thus, transcriptional changes demonstrated in this work are likely to be adaptively relevant to cells that survive.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Blotting, Northern
- Ceftazidime/pharmacology
- Ciprofloxacin/pharmacology
- DNA Damage/genetics
- DNA Gyrase/genetics
- DNA Repair/genetics
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Bacterial/drug effects
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Mutation/genetics
- Oligonucleotide Array Sequence Analysis
- Penicillin-Binding Proteins/antagonists & inhibitors
- Pseudomonas aeruginosa/drug effects
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/metabolism
- Pyocins/metabolism
- SOS Response, Genetics/drug effects
- SOS Response, Genetics/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Jesús Blázquez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC). C/Darwin, 3, Campus de la Universidad Autónoma-Cantoblanco, 28049-Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
50
|
Aellen S, Que YA, Guignard B, Haenni M, Moreillon P. Detection of live and antibiotic-killed bacteria by quantitative real-time PCR of specific fragments of rRNA. Antimicrob Agents Chemother 2006; 50:1913-20. [PMID: 16723545 PMCID: PMC1479112 DOI: 10.1128/aac.00869-05] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assessing bacterial viability by molecular markers might help accelerate the measurement of antibiotic-induced killing. This study investigated whether rRNA could be suitable for this purpose. Cultures of penicillin-susceptible and penicillin-tolerant (Tol1 mutant) Streptococcus gordonii were exposed to mechanistically different penicillin and levofloxacin. Bacterial survival was assessed by viable counts and compared to quantitative real-time PCR amplification of either the 16S rRNA genes or the 16S rRNA, following reverse transcription. Penicillin-susceptible S. gordonii lost > or =4 log(10) CFU/ml of viability over 48 h of penicillin treatment. In comparison, the Tol1 mutant lost < or =1 log(10) CFU/ml. Amplification of a 427-bp fragment of 16S rRNA genes yielded amplicons that increased proportionally to viable counts during bacterial growth but did not decrease during drug-induced killing. In contrast, the same 427-bp fragment amplified from 16S rRNA paralleled both bacterial growth and drug-induced killing. It also differentiated between penicillin-induced killing of the parent and the Tol1 mutant (> or =4 log(10) CFU/ml and < or =1 log(10) CFU/ml, respectively) and detected killing by mechanistically unrelated levofloxacin. Since large fragments of polynucleotides might be degraded faster than smaller fragments, the experiments were repeated by amplifying a 119-bp region internal to the original 427-bp fragment. The amount of 119-bp amplicons increased proportionally to viability during growth but remained stable during drug treatment. Thus, 16S rRNA was a marker of antibiotic-induced killing, but the size of the amplified fragment was critical for differentiation between live and dead bacteria.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Colony Count, Microbial
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- Genes, Bacterial
- Genetic Markers
- Kinetics
- Levofloxacin
- Microbial Sensitivity Tests
- Mutation
- Ofloxacin/pharmacology
- Penicillins/pharmacology
- Polymerase Chain Reaction
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- RNA, Ribosomal/analysis
- RNA, Ribosomal/chemistry
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/isolation & purification
- Streptococcus/drug effects
- Streptococcus/genetics
- Streptococcus/growth & development
Collapse
Affiliation(s)
- Steve Aellen
- Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|