1
|
Santos AJDC, Dias RS, Silva JD, Sousa MDP, Clarindo WR, Silva CCD, de Paula SO. Two marine sulfur-reducing bacteria co-culture is essential for productive infection by a T4-like Escherichia coli-infecting phage. Heliyon 2024; 10:e37934. [PMID: 39328515 PMCID: PMC11425119 DOI: 10.1016/j.heliyon.2024.e37934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
The control of microbiologically influenced corrosion (MIC) challenges the oil exploration sector. The MIC results from electrochemical reactions facilitated by microorganisms such as sulfate-reducing bacteria (SRB), which adhere to the surface of the ducts forming biofilms. SRB uses sulfate as the final electron acceptor, resulting in hydrogen sulfide as the final product, a highly reactive corrosive, and toxic compound. Due to the high diversity of the SRB group, this study evaluated the effect of an Escherichia coli phage, with biofilm degrading enzymes, in preventing biofilm formation by microbial consortium P48SEP and reducing H2S production in a complex SRB community. Three phage concentrations were evaluated (104, 108 and 1012 UFP/ml). High and medium phage concentrations prevented biofilm development, as evidenced by scanning electron microscopy, chemical analysis, and cell counts. In addition, the virus altered the expression pattern of some bacterial genes and the relative abundance of proteins related to biofilm formation and cell stress response. Using a complex culture formed mainly by SRB, it was possible to observe the bacterial growth, H2S, and metabolic activity reduction after the phage was added. This study shows for the first time the ability of an E. coli-infecting phage to prevent the biofilm formation of an SRB consortium and infect and replicate at high concentrations on the non-specific host. This new finding turns the use of non-specific phages a promising alternative for the control of biocorrosion in oil and gas installations, on the other side, alert to the use of large concentration of phages and the influence on bacterial groups with geological importance, opening a research field in phage biology.
Collapse
Affiliation(s)
- Adriele Jéssica do Carmo Santos
- Department of Microbiology, Federal University of Viçosa, Avenue Peter Henry Rolfs, s/n, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Avenue Peter Henry Rolfs, s/n, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Jéssica Duarte Silva
- Department of Microbiology, Federal University of Viçosa, Avenue Peter Henry Rolfs, s/n, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Maíra de Paula Sousa
- Leopoldo Américo Miguez de Mello Research and Development Center, Petrobras, Av. Horácio Macedo, 950, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-915, Brazil
| | - Wellington Ronildo Clarindo
- Department of General Biology, Federal University of Viçosa, Avenue Peter Henry Rolfs, s/n, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Cynthia Canêdo da Silva
- Department of Microbiology, Federal University of Viçosa, Avenue Peter Henry Rolfs, s/n, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Sérgio Oliveira de Paula
- Department of General Biology, Federal University of Viçosa, Avenue Peter Henry Rolfs, s/n, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
2
|
Detection and Level Evaluation of Antibodies Specific to Environmental Bacteriophage I11mO19 and Related Coliphages in Non-Immunized Human Sera. Antibiotics (Basel) 2023; 12:antibiotics12030586. [PMID: 36978455 PMCID: PMC10044619 DOI: 10.3390/antibiotics12030586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Bacteriophages (phages) are viruses infecting bacteria. They are widely present in the environment, food, and normal microflora. The human microbiome is a mutually interdependent network of bacteria, bacteriophages, and human cells. The stability of these tri-kingdom interactions may be essential for maintaining immunologic and metabolic health. Phages, as with each other’s antigens, may evoke an immune response during a human’s lifetime and induce specific antibody generation. In this manuscript, we labeled these antibodies as naturally generated. Naturally generated antibodies may be one of the most important factors limiting the efficacy of phage therapy. Herein, we attempted to determine the physiological level of these antibodies specific to a population bacteriophage named I11mO19 in human sera, using an ELISA-based assay. First, we purified the phage particles and assessed the immunoreactivity of phage proteins. Then, affinity chromatography was performed on columns with immobilized phage proteins to obtain a fraction of human polyclonal anti-phage antibodies. These antibodies were used as a reference to elaborate an immunoenzymatic test that was used to determine the level of natural anti-phage antibodies. We estimated the average level of anti-I11mO19 phage antibodies at 190 µg per one milliliter of human serum. However, immunoblotting revealed that cross-reactivity occurs between some proteins of I11mO19 and two other coliphages: T4 and ΦK1E. The antigens probably share common epitopes, suggesting that the determined level of anti-I11mO19 phage might be overestimated and reflects a group of antibodies reactive to a broad range of other E. coli phages. Anti-I11mO19 antibodies did not react with Pseudomonas bacteriophage F8, confirming specificity to the coliphage group. In this work, we wanted to show whether it is possible to determine the presence and level of anti-phage antibodies in nontargeted-immunized sera, using an immunoenzymatic assay. The conclusion is that it is possible, and specific antibodies can be determined. However, the specificity refers to a broader coliphage group of phages, not only the single phage strain.
Collapse
|
3
|
Cai L, Xu B, Li H, Xu Y, Wei W, Zhang R. Spatiotemporal Shift of T4-Like Phage Community Structure in the Three Largest Estuaries of China. Microbiol Spectr 2023; 11:e0520322. [PMID: 36877016 PMCID: PMC10101079 DOI: 10.1128/spectrum.05203-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 03/07/2023] Open
Abstract
Estuaries are one of the most highly productive and economically important ecosystems at the continent-ocean interface. Estuary productivity is largely determined by the microbial community structure and activity. Viruses are major agents of microbial mortality and are key drivers of global geochemical cycles. However, the taxonomic diversity of viral communities and their spatial-temporal distribution in estuarine ecosystems have been poorly studied. In this study, we investigated the T4-like viral community composition at three major Chinese estuaries in winter and in summer. Diverse T4-like viruses, which were divided into three main clusters (Clusters I to III), were revealed. The Marine Group of Cluster III, with seven identified subgroups, was the most dominant (averaging 76.5% of the total sequences) in the Chinese estuarine ecosystems. Significant variations of T4-like viral community composition were observed among estuaries and seasons, with higher diversity occurring in winter. Among various environmental variables, temperature was a main driver of the viral communities. This study demonstrates viral assemblage diversification and seasonality in Chinese estuarine ecosystems. IMPORTANCE Viruses are ubiquitous but largely uncharacterized members of aquatic environments that cause significant mortality in microbial communities. Recent large-scale oceanic projects have greatly advanced our understanding of viral ecology in marine environments, but those studies mostly focused on oceanic regions. There have yet to be spatiotemporal studies of viral communities in estuarine ecosystems, which are unique habitats that play a significant role in global ecology and biogeochemistry. This work is the first comprehensive study that provides a detailed picture of the spatial and seasonal variation of viral communities (specifically, T4-like viral communities) in three major estuarine ecosystems in China. These findings provide much-needed knowledge regarding estuarine viral ecosystems, which currently lags in oceanic ecosystem research.
Collapse
Affiliation(s)
- Lanlan Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bu Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huifang Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang, China
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Shandong, China
| | - Wei Wei
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Two Novel Yersinia pestis Bacteriophages with a Broad Host Range: Potential as Biocontrol Agents in Plague Natural Foci. Viruses 2022; 14:v14122740. [PMID: 36560744 PMCID: PMC9785759 DOI: 10.3390/v14122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages (phages) have been successfully used as disinfectors to kill bacteria in food and the environment and have been used medically for curing human diseases. The objective of this research was to elucidate the morphological and genomic characteristics of two novel Yersinia pestis phages, vB_YpeM_ MHS112 (MHS112) and vB_YpeM_GMS130 (GMS130), belonging to the genus Gaprivervirus, subfamily Tevenvirinae, family Myoviridae. Genome sequencing showed that the sizes of MHS112 and GMS130 were 170507 and 168552 bp, respectively. A total of 303 and 292 open reading frames with 2 tRNA and 3 tRNA were predicted in MHS112 and GMS130, respectively. The phylogenetic relationships were analysed among the two novel Y. pestis phages, phages in the genus Gaprivervirus, and several T4-like phages infecting the Yersinia genus. The bacteriophage MHS112 and GMS130 exhibited a wider lytic host spectrum and exhibited comparative temperature and pH stability. Such features signify that these phages do not need to rely on Y. pestis as their host bacteria in the ecological environment, while they could be based on more massive Enterobacteriales species to propagate and form ecological barriers against Y. pestis pathogens colonised in plague foci. Such characteristics indicated that the two phages have potential as biocontrol agents for eliminating the endemics of animal plague in natural plague foci.
Collapse
|
5
|
Efimov AD, Golomidova AK, Kulikov EE, Belalov IS, Ivanov PA, Letarov AV. RB49-like Bacteriophages Recognize O Antigens as One of the Alternative Primary Receptors. Int J Mol Sci 2022; 23:ijms231911329. [PMID: 36232640 PMCID: PMC9569957 DOI: 10.3390/ijms231911329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The power of most of the enterobacterial O antigen types to provide robust protection against direct recognition of the cell surface by bacteriophage receptor-recognition proteins (RBP) has been recently recognized. The bacteriophages infecting O antigen producing strains of E. coli employ various strategies to tackle this nonspecific protection. T-even related phages, including RB49-like viruses, often have wide host ranges, being considered good candidates for use in phage therapy. However, the mechanisms by which these phages overcome the O antigen barrier remain unknown. We demonstrate here that RB49 and related phages Cognac49 and Whisky49 directly use certain types of O antigen as their primary receptors recognized by the virus long tail fibers (LTF) RBP gp38, so the O antigen becomes an attractant instead of an obstacle. Simultaneously to recognize multiple O antigen types, LTFs of each of these phages can bind to additional receptors, such as OmpA protein, enabling them to infect some rough strains of E. coli. We speculate that the mechanical force of the deployment of the short tail fibers (STF) triggered by the LTF binding to the O antigen or underneath of it, allows the receptor binding domains of STF to break through the O polysaccharide layer.
Collapse
Affiliation(s)
- Alexandr D Efimov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Alla K Golomidova
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Eugene E Kulikov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ilya S Belalov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Pavel A Ivanov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Andrey V Letarov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
6
|
Carmody CM, Farquharson EL, Nugen SR. Enterobacteria Phage SV76 Host Range and Genomic Characterization. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:59-63. [PMID: 35495085 PMCID: PMC9041521 DOI: 10.1089/phage.2022.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background Increasing the quantity and detail of bacteriophage genomic data is critical to broadening our understanding of how bacteriophages operate to allow us to harness their unique properties for biotechnology advancements. Here we present the complete sequence of phage SV76's assembled and annotated genome (Accession OM339528). SV76 has previously been classified as a T4-like bacteriophage belonging to the Tequatrovirus genus within the Myoviridae family of contractile tailed bacteriophages. Materials and Methods Whole genome sequencing, assembly, and annotation was performed on SV76. Double-agar spot assays were utilized to determine SV76's host range against a panel of 72 Escherichia coli isolates meant to represent the diversity of E. coli, as well as a series of knockouts designed to identify required receptor binding proteins. The genome and host range were compared to the closely related phage, T2. Results Spot assays revealed that SV76 could plaque on 10 of the 72 strains (13.9 %) and nine of the nine E. coli K12 single gene knockout of known phage receptors (100%). SV76 did not plate on a ΔfadL E. coli indicating suggesting a requirement as a receptor binding protein. Conclusions SV76 is closely related to T2 with similar host ranges within ECOR. This study presents novel host range and genomic data on SV76 phage, providing a foundation for future studies to further characterize SV76 to understand more about SV76 and other T4-like phages that can be applied to create novel biotechnologies.
Collapse
Affiliation(s)
| | | | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, New York, USA.,Address correspondence to: Sam R. Nugen, PhD, Department of Food Science, Cornell University, 411 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Potapov SA, Tikhonova IV, Krasnopeev AY, Suslova MY, Zhuchenko NA, Drucker VV, Belykh OI. Communities of T4-like bacteriophages associated with bacteria in Lake Baikal: diversity and biogeography. PeerJ 2022. [DOI: 10.7717/peerj.12748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lake Baikal phage communities are important for lake ecosystem functioning. Here we describe the diversity of T4-bacteriophage associated with the bacterial fraction of filtered water samples collected from the pelagic zone, coastal zone and shallow bays. Although the study of the diversity of phages for the g23 gene has been carried out at Lake Baikal for more than ten years, shallow bays that comprise a significant part of the lake’s area have been neglected, and this gene has not previously been studied in the bacterial fraction. Phage communities were probed using amplicon sequencing methods targeting the gene of major capsid protein (g23) and compared phylogenetically across sample locations and with sequences previously retrieved from non-bacterial fractions (<0.2 um) and biofilms (non-fractionated). In this study, we examined six water samples, in which 24 to 74 viral OTUs were obtained. The sequences from shallow bays largely differed from those in the pelagic and coastal samples and formed individual subcluster in the UPGMA tree that was obtained from the comparison of phylogenetic distances of g23 sequence sets from various ecosystems, reflecting differences in viral communities depending on the productivity of various sites of Lake Baikal. According to the RefSeq database, from 58.3 to 73% of sequences of each sample had cultivated closest relatives belonging to cyanophages. In this study, for phylogenetic analysis, we chose the closest relatives not only from the RefSeq and GenBank NR databases but also from two marine and one freshwater viromes: eutrophic Osaka Bay (Japan), oligotrophic area of the Pacific Ocean (Station ALOHA) and mesotrophic and ancient Lake Biwa (Japan), which allowed us to more fully compare the diversity of marine and freshwater phages. The identity with marine sequences at the amino acid level ranged from 35 to 80%, and with the sequences from the viral fraction and bacterial one from Lake Biwa—from 35.3 to 98% and from 33.9 to 89.1%, respectively. Therefore, the sequences from marine viromes had a greater difference than those from freshwater viromes, which may indicate a close relationship between freshwater viruses and differences from marine viruses.
Collapse
Affiliation(s)
| | | | | | - Maria Yurjevna Suslova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | | | | | - Olga Ivanovna Belykh
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
8
|
Nikulin NA, Zimin AA. Influence of Non-canonical DNA Bases on the Genomic Diversity of Tevenvirinae. Front Microbiol 2021; 12:632686. [PMID: 33889139 PMCID: PMC8056088 DOI: 10.3389/fmicb.2021.632686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/08/2021] [Indexed: 12/03/2022] Open
Abstract
The Tevenvirinae viruses are some of the most common viruses on Earth. Representatives of this subfamily have long been used in the molecular biology studies as model organisms – since the emergence of the discipline. Tevenvirinae are promising agents for phage therapy in animals and humans, since their representatives have only lytic life cycle and many of their host bacteria are pathogens. As confirmed experimentally, some Tevenvirinae have non-canonical DNA bases. Non-canonical bases can play an essential role in the diversification of closely related viruses. The article performs a comparative and evolutionary analysis of Tevenvirinae genomes and components of Tevenvirinae genomes. A comparative analysis of these genomes and the genes associated with the synthesis of non-canonical bases allows us to conclude that non-canonical bases have a major influence on the divergence of Tevenvirinae viruses within the same habitats. Supposedly, Tevenvirinae developed a strategy for changing HGT frequency in individual populations, which was based on the accumulation of proteins for the synthesis of non-canonical bases and proteins that used those bases as substrates. Owing to this strategy, ancestors of Tevenvirinae with the highest frequency of HGT acquired genes that allowed them to exist in a certain niche, and ancestors with the lowest HGT frequency preserved the most adaptive of those genes. Given the origin and characteristics of genes associated with the synthesis of non-canonical bases in Tevenvirinae, one can assume that other phages may have similar strategies. The article demonstrates the dependence of genomic diversity of closely related Tevenvirinae on non-canonical bases.
Collapse
Affiliation(s)
- Nikita A Nikulin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Andrei A Zimin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
9
|
Cantu VA, Salamon P, Seguritan V, Redfield J, Salamon D, Edwards RA, Segall AM. PhANNs, a fast and accurate tool and web server to classify phage structural proteins. PLoS Comput Biol 2020; 16:e1007845. [PMID: 33137102 PMCID: PMC7660903 DOI: 10.1371/journal.pcbi.1007845] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/12/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
For any given bacteriophage genome or phage-derived sequences in metagenomic data sets, we are unable to assign a function to 50–90% of genes, or more. Structural protein-encoding genes constitute a large fraction of the average phage genome and are among the most divergent and difficult-to-identify genes using homology-based methods. To understand the functions encoded by phages, their contributions to their environments, and to help gauge their utility as potential phage therapy agents, we have developed a new approach to classify phage ORFs into ten major classes of structural proteins or into an “other” category. The resulting tool is named PhANNs (Phage Artificial Neural Networks). We built a database of 538,213 manually curated phage protein sequences that we split into eleven subsets (10 for cross-validation, one for testing) using a novel clustering method that ensures there are no homologous proteins between sets yet maintains the maximum sequence diversity for training. An Artificial Neural Network ensemble trained on features extracted from those sets reached a test F1-score of 0.875 and test accuracy of 86.2%. PhANNs can rapidly classify proteins into one of the ten structural classes or, if not predicted to fall in one of the ten classes, as “other,” providing a new approach for functional annotation of phage proteins. PhANNs is open source and can be run from our web server or installed locally. Bacteriophages (phages, viruses that infect bacteria) are the most abundant biological entity on Earth. They outnumber bacteria by a factor of ten. As phages are very different from each other and from bacteria, and we have relatively few phage genes in our database compared to bacterial genes, we are unable to assign function to 50–90% of phage genes. In this work, we developed PhANNs, a machine learning tool that can classify a phage gene as one of ten structural roles, or “other”. This approach does not require a similar gene to be known.
Collapse
Affiliation(s)
- Vito Adrian Cantu
- Computational Science Research Center, San Diego State University, San Diego, United States of America
- Viral Information Institute, San Diego State University, San Diego, United States of America
| | - Peter Salamon
- Viral Information Institute, San Diego State University, San Diego, United States of America
- Department of Mathematics and Statistics, San Diego State University, San Diego, United States of America
| | - Victor Seguritan
- Computational Science Research Center, San Diego State University, San Diego, United States of America
| | - Jackson Redfield
- Department of Biology, San Diego State University, San Diego, United States of America
| | - David Salamon
- Department of Mathematics and Statistics, San Diego State University, San Diego, United States of America
| | - Robert A. Edwards
- Computational Science Research Center, San Diego State University, San Diego, United States of America
- Viral Information Institute, San Diego State University, San Diego, United States of America
- Department of Biology, San Diego State University, San Diego, United States of America
| | - Anca M. Segall
- Computational Science Research Center, San Diego State University, San Diego, United States of America
- Viral Information Institute, San Diego State University, San Diego, United States of America
- Department of Biology, San Diego State University, San Diego, United States of America
- * E-mail:
| |
Collapse
|
10
|
Goldin S, Hulata Y, Baran N, Lindell D. Quantification of T4-Like and T7-Like Cyanophages Using the Polony Method Show They Are Significant Members of the Virioplankton in the North Pacific Subtropical Gyre. Front Microbiol 2020; 11:1210. [PMID: 32612586 PMCID: PMC7308941 DOI: 10.3389/fmicb.2020.01210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The North Pacific Subtropical Gyre (NPSG) is one of the largest biomes on Earth, with the cyanobacterium Prochlorococcus being the most abundant primary producer year-round. Viruses that infect cyanobacteria (cyanophages) influence cyanobacterial mortality, diversity and evolution. Two major cyanophage families are the T4-like cyanomyoviruses and T7-like cyanopodoviruses, yet their abundances and distribution patterns remain unknown due to difficulty in quantifying their populations. To address this limitation, we previously adapted the polony method (for PCR colony) to quantify T7-like cyanophages and applied it to spring populations in the Red Sea. Here, we further adapted the method for the quantification of T4-like cyanophages and analyzed the abundances of T4-like and T7-like cyanophage populations in the photic zone of the NPSG in summer 2015 and spring 2016. Combined, the peak abundances of these two cyanophage families reached 2.8 × 106 and 1.1 × 106 cyanophages ⋅ ml–1 in the summer and spring, respectively. They constituted between 3 and 16% of total virus-like particles (VLPs), comprising a substantial component of the virioplankton in the NPSG. While both cyanophage families were highly abundant, the T4-like cyanophages were generally 1.3–4.4 fold more so. In summer, cyanophages had similar and reproducible distribution patterns with depth. Abundances were relatively low in the upper mixed layer and increased to form a pronounced subsurface peak at 100 m (1.9 × 106 and 9.1 × 105 phages ⋅ ml–1 for the T4-like and T7-like cyanophages, respectively), coincident with the maximum in Prochlorococcus populations. Less vertical structure in cyanophage abundances was apparent in the spring profile, despite a subsurface peak in Prochlorococcus numbers. In the summer upper mixed layer, cyanophages constituted a smaller proportion of VLPs than below it and cyanophage to cyanobacteria ratios were considerably lower (1.3–2.8) than those of VLPs to bacteria (8.1–21.2). Differences in abundances between the two families and their contribution to VLPs with depth suggest differences in cyanophage production and/or decay processes relative to other members of the virioplankton in the upper mixed layer. These findings highlight the importance of quantifying distinct populations within the virioplankton to gain accurate understanding of their distribution patterns.
Collapse
Affiliation(s)
- Svetlana Goldin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yotam Hulata
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nava Baran
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Debbie Lindell
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
Lee STM, Ding JY, Chiang PW, Dyall-Smith M, Tang SL. Insights into gene regulation of the halovirus His2 infecting Haloarcula hispanica. Microbiologyopen 2020; 9:e1016. [PMID: 32212320 PMCID: PMC7221443 DOI: 10.1002/mbo3.1016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/16/2023] Open
Abstract
Gene expression in Haloarcula hispanica cells infected with the gammapleolipovirus His2 was studied using a custom DNA microarray. Total RNA from cells sampled at 0, 1, 2, 3, and 4.5 hr postinfection was reverse‐transcribed into labeled cDNA and hybridized to microarrays, revealing temporal and differential expression in both host and viral genes. His2 gene expression occurred in three main phases (early, middle, and late), and by 4.5 hr p.i. the majority of genes were actively transcribed, including those encoding the major structural proteins. Eighty host genes were differentially regulated ≥twofold postinfection, with most of them predicted to be involved in transport, translation, and metabolism. Differentially expressed host genes could also be grouped into early‐, middle‐, and late‐expressed genes based on the timing of their up‐ and downregulation postinfection. The altered host transcriptional pattern suggests regulation by His2 infection, which may reprogram host metabolism to facilitate its own DNA replication and propagation. This study enhances the characterization of many hypothetical viral genes and provides insights into the interaction between His2 and its host.
Collapse
Affiliation(s)
- Sonny T M Lee
- Division of Biology, Kansas State University, Manhattan, Kansas, United States
| | - Jiun-Yan Ding
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Mike Dyall-Smith
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Martinsried, Germany.,Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Vic., Australia
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Kaczorowska J, Casey E, Neve H, Franz CM, Noben JP, Lugli GA, Ventura M, van Sinderen D, Mahony J. A Quest of Great Importance-Developing a Broad Spectrum Escherichia coli Phage Collection. Viruses 2019; 11:E899. [PMID: 31561510 PMCID: PMC6832132 DOI: 10.3390/v11100899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/14/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Shigella ssp. and enterotoxigenic Escherichia coli are the most common etiological agents of diarrheal diseases in malnourished children under five years of age in developing countries. The ever-growing issue of antibiotic resistance and the potential negative impact of antibiotic use on infant commensal microbiota are significant challenges to current therapeutic approaches. Bacteriophages (or phages) represent an alternative treatment that can be used to treat specific bacterial infections. In the present study, we screened water samples from both environmental and industrial sources for phages capable of infecting E. coli laboratory strains within our collection. Nineteen phages were isolatedand tested for their ability to infect strains within the ECOR collection and E. coli O157:H7 Δstx. Furthermore, since coliphages have been reported to cross-infect certain Shigella spp., we also evaluated the ability of the nineteen phages to infect a representative Shigella sonnei strain from our collection. Based on having distinct (although overlapping in some cases) host ranges, ten phage isolates were selected for genome sequence and morphological characterization. Together, these ten selected phages were shown to infect most of the ECOR library, with 61 of the 72 strains infected by at least one phage from our collection. Genome analysis of the ten phages allowed classification into five previously described genetic subgroups plus one previously underrepresented subgroup.
Collapse
Affiliation(s)
- Joanna Kaczorowska
- School of Microbiology and APC Microbiome Ireland, University College Cork, Western Road, T12 YT20 Cork, Ireland; (J.K.); (E.C.)
| | - Eoghan Casey
- School of Microbiology and APC Microbiome Ireland, University College Cork, Western Road, T12 YT20 Cork, Ireland; (J.K.); (E.C.)
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany; (H.N.)
| | - Charles M.A.P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany; (H.N.)
| | - Jean-Paul Noben
- Biomedical Research Institute, Hasselt University, B-3590 Diepenbeek, Belgium;
| | - Gabriele A. Lugli
- Laboratory of Probiogenomics, Dept. Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.A.L.); (M.V.)
| | - Marco Ventura
- Laboratory of Probiogenomics, Dept. Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.A.L.); (M.V.)
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Western Road, T12 YT20 Cork, Ireland; (J.K.); (E.C.)
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Western Road, T12 YT20 Cork, Ireland; (J.K.); (E.C.)
| |
Collapse
|
13
|
Yang ZQ, Tao XY, Zhang H, Rao SQ, Gao L, Pan ZM, Jiao XA. Isolation and characterization of virulent phages infecting Shewanella baltica and Shewanella putrefaciens, and their application for biopreservation of chilled channel catfish (Ictalurus punctatus). Int J Food Microbiol 2019; 292:107-117. [DOI: 10.1016/j.ijfoodmicro.2018.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/21/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
|
14
|
Mikoulinskaia GV, Chernyshov SV, Shavrina MS, Molochkov NV, Lysanskaya VY, Zimin AA. Two novel thermally resistant endolysins encoded by pseudo T-even bacteriophages RB43 and RB49. J Gen Virol 2018; 99:402-415. [DOI: 10.1099/jgv.0.001014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Galina V. Mikoulinskaia
- Branch of Shemyakin & Ovchinnikov’s Institute of Bioorganic Chemistry RAS, Pushchino, Moscow region 142290, Russia
| | - Sergei V. Chernyshov
- Branch of Shemyakin & Ovchinnikov’s Institute of Bioorganic Chemistry RAS, Pushchino, Moscow region 142290, Russia
| | - Maria S. Shavrina
- Branch of Shemyakin & Ovchinnikov’s Institute of Bioorganic Chemistry RAS, Pushchino, Moscow region 142290, Russia
| | - Nikolai V. Molochkov
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow region 142290, Russia
| | - Valentina Ya. Lysanskaya
- Skryabin’s Institute of Biochemistry and Physiology of Micro-organisms RAS, Pushchino, Moscow region 142290, Russia
| | - Andrei A. Zimin
- Skryabin’s Institute of Biochemistry and Physiology of Micro-organisms RAS, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
15
|
Sokolov AS, Latypov OR, Kolosov PM, Shlyapnikov MG, Bezlepkina TA, Kholod NS, Kadyrov FA, Granovsky IE. Phage T4 endonuclease SegD that is similar to group I intron endonucleases does not initiate homing of its own gene. Virology 2018; 515:215-222. [PMID: 29306059 DOI: 10.1016/j.virol.2017.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022]
Abstract
Homing endonucleases are a group of site-specific endonucleases that initiate homing, a nonreciprocal transfer of its own gene into a new allele lacking this gene. This work describes a novel phage T4 endonuclease, SegD, which is homologous to the GIY-YIG family of homing endonucleases. Like other T4 homing endonucleases SegD recognizes an extended, 16bp long, site, cleaves it asymmetrically to form 3'-protruding ends and digests both unmodified DNA and modified T-even phage DNA with similar efficiencies. Surprisingly, we revealed that SegD cleavage site was identical in the genomes of segD- and segD+ phages. We found that segD gene was expressed during the T4 developmental cycle. Nevertheless, endonuclease SegD was not able to initiate homing of its own gene as well as genetic recombination between phages in its site inserted into the rII locus.
Collapse
Affiliation(s)
- Andrey S Sokolov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Oleg R Latypov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Peter M Kolosov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Michael G Shlyapnikov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Tamara A Bezlepkina
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Natalia S Kholod
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Farid A Kadyrov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia
| | - Igor E Granovsky
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino 142290, Russia; Laboratory of Molecular and Cellular Biology, Pushchino State Institute of Natural Sciences, 3 Prospekt Nauki, Pushchino 142290, Russia.
| |
Collapse
|
16
|
Letarov AV, Kulikov EE. Adsorption of bacteriophages on bacterial cells. BIOCHEMISTRY (MOSCOW) 2018. [DOI: 10.1134/s0006297917130053] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
He M, Cai L, Zhang C, Jiao N, Zhang R. Phylogenetic Diversity of T4-Type Phages in Sediments from the Subtropical Pearl River Estuary. Front Microbiol 2017; 8:897. [PMID: 28572798 PMCID: PMC5436276 DOI: 10.3389/fmicb.2017.00897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/03/2017] [Indexed: 11/23/2022] Open
Abstract
Viruses are an abundant and active component of marine sediments and play a significant role in microbial ecology and biogeochemical cycling at local and global scales. To obtain a better understanding of the ecological characteristics of the viriobenthos, the abundance and morphology of viruses and the diversity and community structure of T4-type phages were systematically investigated in the surface sediments of the subtropical Pearl River Estuary (PRE). Viral abundances ranged from 4.49 × 108 to 11.7 × 108 viruses/g and prokaryotic abundances ranged from 2.63 × 108 to 9.55 × 108 cells/g, and both decreased from freshwater to saltwater. Diverse viral morphotypes, including tailed, spherical, filamentous, and rod-shaped viruses, were observed using transmission electron microscopy. Analysis of the major capsid gene (g23) indicated that the sediment T4-type phages were highly diverse and, similar to the trend in viral abundances, their diversity decreased as the salinity increased. Phylogenetic analysis suggested that most of the g23 operational taxonomic units were affiliated with marine, paddy soil, and lake groups. The T4-type phage communities in freshwater and saltwater sediments showed obvious differences, which were related to changes in the Pearl River discharge. The results of this study demonstrated both allochthonous and autochthonous sources of the viral community in the PRE sediments and the movement of certain T4-type viral groups between the freshwater and saline water biomes.
Collapse
Affiliation(s)
- Maoqiu He
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Lanlan Cai
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, South University of Science and TechnologyShenzhen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| |
Collapse
|
18
|
Weigele P, Raleigh EA. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev 2016; 116:12655-12687. [PMID: 27319741 DOI: 10.1021/acs.chemrev.6b00114] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this review catalogs the identification and diversity of DNA modifications found in bacteria and bacteriophages. What is known about the biogenesis, context, and function of these modifications are also described. The second part of the review places these DNA modifications in the context of the arms race between bacteria and bacteriophages. It focuses particularly on the defense and counter-defense strategies that turn on direct recognition of the presence of a modified base. Where modification has been shown to affect other DNA transactions, such as expression and chromosome segregation, that is summarized, with reference to recent reviews.
Collapse
Affiliation(s)
- Peter Weigele
- Chemical Biology, New England Biolabs , Ipswich, Massachusetts 01938, United States
| | | |
Collapse
|
19
|
Xu J, Chen M, He L, Zhang S, Ding T, Yao H, Lu C, Zhang W. Isolation and characterization of a T4-like phage with a relatively wide host range within Escherichia coli. J Basic Microbiol 2015; 56:405-21. [PMID: 26697952 DOI: 10.1002/jobm.201500440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/02/2015] [Indexed: 01/05/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in poultry, resulting in severe economic losses worldwide. Coliphages represent alternative antibacterial substitutes based on high lytic efficiency and few side-effects. However, the complete genome sequences information of APEC phages are limited, and knowledge of undesired genes and the narrow host range restrict their applications. In this study, we isolated a virulent phage QL01, with a relatively broad lytic spectrum (41 of 78 APEC strains). Transmission electron micrography showed it belonged to the family Myoviridae with an elongated head and a contractile tail. Whole genome sequencing revealed a linear double-stranded DNA (170,527 kb; GC content, 39.6%) with 275 possible ORFs. Comparative genome analysis revealed high homology between QL01 and other T4-like phages. However, it also showed some unique features, for example, ORF142 and ORF143, which encode IP9 and IP8, respectively, and may counteract host resistance only exist in a few T4-like phages such as IME08 and vB_EcoM_VR5. Furthermore, phage therapy in artificially infected ducks showed a 26.67% decrease in mortality compared with the untreated group. Our study indicates the potential antibacterial function of phage QL01 against APEC infections and highlights unique molecular features underlying the relatively broad host range.
Collapse
Affiliation(s)
- Juntian Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Mianmian Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Lingchen He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Shuqing Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Tianyun Ding
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| |
Collapse
|
20
|
Jin J, Li ZJ, Wang SW, Wang SM, Chen SJ, Huang DH, Zhang G, Li YH, Wang XT, Wang J, Zhao GQ. Genome organisation of the Acinetobacter lytic phage ZZ1 and comparison with other T4-like Acinetobacter phages. BMC Genomics 2014; 15:793. [PMID: 25218338 PMCID: PMC4177764 DOI: 10.1186/1471-2164-15-793] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 09/10/2014] [Indexed: 01/18/2023] Open
Abstract
Background Phage ZZ1, which efficiently infects pathogenic Acinetobacter baumannii strains, is the fifth completely sequenced T4-like Acinetobacter phage to date. To gain a better understanding of the genetic characteristics of ZZ1, bioinformatics and comparative genomic analyses of the T4 phages were performed. Results The 166,687-bp double-stranded DNA genome of ZZ1 has the lowest GC content (34.4%) of the sequenced T4-like Acinetobacter phages. A total of 256 protein-coding genes and 8 tRNA genes were predicted. Forty-three percent of the predicted ZZ1 proteins share up to 73% amino acid identity with T4 proteins, and the homologous genes generally retained the same order and transcriptional direction. Beyond the conserved structural and DNA replication modules, T4 and ZZ1 have diverged substantially by the acquisition and deletion of large blocks of unrelated genes, especially in the first halves of their genomes. In addition, ZZ1 and the four other T4-like Acinetobacter phage genomes (Acj9, Acj61, 133, and Ac42) share a well-organised and highly conserved core genome, particularly in the regions encoding DNA replication and virion structural proteins. Of the ZZ1 proteins, 70, 64, 61, and 56% share up to 86, 85, 81, and 83% amino acid identity with Acj9, Acj61, 133, and Ac42 proteins, respectively. ZZ1 has a different number and types of tRNAs than the other 4 Acinetobacter phages, although some of the ZZ1-encoded tRNAs share high sequence similarity with the tRNAs from these phages. Over half of ZZ1-encoded tRNAs (5 out of 8) are related to optimal codon usage for ZZ1 proteins. However, this correlation was not present in any of the other 4 Acinetobacter phages. Conclusions The comparative genomic analysis of these phages provided some new insights into the evolution and diversity of Acinetobacter phages, which might elucidate the evolutionary origin and host-specific adaptation of these phages. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-793) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pathogen Biology and Immunology, Henan Medical College, Shuanghu Road #8, Zhengzhou 451191, P, R, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Bacteria Pseudomonas aeruginosa, being opportunistic pathogens, are the major cause of nosocomial infections and, in some cases, the primary cause of death. They are virtually untreatable with currently known antibiotics. Phage therapy is considered as one of the possible approaches to the treatment of P. aeruginosa infections. Difficulties in the implementation of phage therapy in medical practice are related, for example, to the insufficient number and diversity of virulent phages that are active against P. aeruginosa. Results of interaction of therapeutic phages with bacteria in different conditions and environments are studied insufficiently. A little is known about possible interactions of therapeutic phages with resident prophages and plasmids in clinical strains in the foci of infections. This chapter highlights the different approaches to solving these problems and possible ways to expand the diversity of therapeutic P. aeruginosa phages and organizational arrangements (as banks of phages) to ensure long-term use of phages in the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Victor N Krylov
- Mechnikov Research Institute for Vaccines & Sera, Russian Academy of Medical Sciences, Moscow, Russia.
| |
Collapse
|
22
|
Cavanagh D, Guinane CM, Neve H, Coffey A, Ross RP, Fitzgerald GF, McAuliffe O. Phages of non-dairy lactococci: isolation and characterization of ΦL47, a phage infecting the grass isolate Lactococcus lactis ssp. cremoris DPC6860. Front Microbiol 2014; 4:417. [PMID: 24454309 PMCID: PMC3888941 DOI: 10.3389/fmicb.2013.00417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/18/2013] [Indexed: 11/17/2022] Open
Abstract
Lactococci isolated from non-dairy sources have been found to possess enhanced metabolic activity when compared to dairy strains. These capabilities may be harnessed through the use of these strains as starter or adjunct cultures to produce more diverse flavor profiles in cheese and other dairy products. To understand the interactions between these organisms and the phages that infect them, a number of phages were isolated against lactococcal strains of non-dairy origin. One such phage, ΦL47, was isolated from a sewage sample using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. Visualization of phage virions by transmission electron microscopy established that this phage belongs to the family Siphoviridae and possesses a long tail fiber, previously unseen in dairy lactococcal phages. Determination of the lytic spectrum revealed a broader than expected host range, with ΦL47 capable of infecting 4 industrial dairy strains, including ML8, HP and 310, and 3 additional non-dairy isolates. Whole genome sequencing of ΦL47 revealed a dsDNA genome of 128, 546 bp, making it the largest sequenced lactococcal phage to date. In total, 190 open reading frames (ORFs) were identified, and comparative analysis revealed that the predicted products of 117 of these ORFs shared greater than 50% amino acid identity with those of L. lactis phage Φ949, a phage isolated from cheese whey. Despite their different ecological niches, the genomic content and organization of ΦL47 and Φ949 are quite similar, with both containing 4 gene clusters oriented in different transcriptional directions. Other features that distinguish ΦL47 from Φ949 and other lactococcal phages, in addition to the presence of the tail fiber and the genome length, include a low GC content (32.5%) and a high number of predicted tRNA genes (8). Comparative genome analysis supports the conclusion that ΦL47 is a new member of the 949 lactococcal phage group which currently includes the dairy Φ949.
Collapse
Affiliation(s)
- Daniel Cavanagh
- Department of Food Biosciences, Teagasc Food Research Centre Fermoy, Ireland ; Department of Microbiology, University College Cork Co. Cork, Ireland
| | - Caitriona M Guinane
- Department of Food Biosciences, Teagasc Food Research Centre Fermoy, Ireland
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food Kiel, Germany
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology Co. Cork, Ireland
| | - R Paul Ross
- Department of Food Biosciences, Teagasc Food Research Centre Fermoy, Ireland
| | | | - Olivia McAuliffe
- Department of Food Biosciences, Teagasc Food Research Centre Fermoy, Ireland
| |
Collapse
|
23
|
Letarov AV, Krisch HM. The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages. Ecol Evol 2013; 3:3628-35. [PMID: 24223296 PMCID: PMC3797505 DOI: 10.1002/ece3.730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 01/09/2023] Open
Abstract
The evolutionary adaptation of bacteriophages to their environment is achieved by alterations of their genomes involving a combination of both point mutations and lateral gene transfer. A phylogenetic analysis of a large set of collar fiber protein (fibritin) loci from diverse T4-like phages indicates that nearly all the modular swapping involving the C-terminal domain of this gene occurred in the distant past and has since ceased. In phage T4, this fibritin domain encodes the sequence that mediates both the attachment of the long tail fibers to the virion and also controls, in an environmentally sensitive way, the phage's ability to infect its host bacteria. Subsequent to its distant period of modular exchange, the evolution of fibritin has proceeded primarily by the slow vertical divergence mechanism. We suggest that ancient and sudden changes in the environment forced the T4-like phages to alter fibritin's mode of action or function. The genome's response to such episodes of rapid environmental change could presumably only be achieved quickly enough by employing the modular evolution mechanism. A phylogenetic analysis of the fibritin locus reveals the possible traces of such events within the T4 superfamily's genomes.
Collapse
Affiliation(s)
- A V Letarov
- Winogradsky Institute of Microbiology Russian Academy of Science 117312, pr. 60-letiya Oktyabrya, Moscow, Russia ; Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique UMR 5100 Université Paul Sabatier-Toulouse III 118 Route de Narbonne Toulouse, 31062, Toulouse, Cedex 09, France ; Moscow Institute of Physics and Technology State University 141700, Institutskiy lane 9, Dolgoprudny, Moscow Region, Russia
| | | |
Collapse
|
24
|
Zheng C, Wang G, Liu J, Song C, Gao H, Liu X. Characterization of the major capsid genes (g23) of T4-type bacteriophages in the wetlands of northeast China. MICROBIAL ECOLOGY 2013; 65:616-25. [PMID: 23306393 DOI: 10.1007/s00248-012-0158-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/09/2012] [Indexed: 05/08/2023]
Abstract
To obtain genetic information and to evaluate the composition of T4-type bacteriophage (phage) communities in wetlands, environmental soil and water DNAs were obtained from two natural wetlands dominated by Carex lasiocarpa and Deyeuxia angustifolia plant species, and a neighboring paddy field in Sanjiang plain of northeast China. The biomarker gene of g23, which encodes the major capsid protein of T4-type phages, was amplified with primers MZIA1bis and MZIA6, and the PCR products were cloned and sequenced. In total, 96 and 50 different g23 clones were obtained from natural wetlands and a paddy field, respectively. A larger number of clones with low levels of identity to known sequences were found in water than in soil both in the natural wetlands and the paddy field, suggesting that many of T4-type phages in wetland water and paddy floodwater in Sanjiang plain are uncharacterized. Phylogenetic analyses showed that the g23 clones in natural wetlands, irrespective of water and soil, were distinctly different from those in marine waters, lake waters, and upland black soils, but were similar to those in paddy fields. The UniFrac analysis of g23 assemblages indicated that T4-type phage community compositions were different between soils and waters, and also were different between the natural wetlands and the paddy field. In general, the global analysis of g23 clone assemblages demonstrated that T4-type phage community compositions were different among natural wetlands, marines, lakes, paddy fields, and upland black soils.
Collapse
Affiliation(s)
- Chunyu Zheng
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | | | | | | | | | | |
Collapse
|
25
|
Diversity of the major capsid genes (g23) of T4-like bacteriophages in the eutrophic Lake Kotokel in East Siberia, Russia. Arch Microbiol 2013; 195:513-20. [PMID: 23539063 DOI: 10.1007/s00203-013-0884-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
Numerous studies revealed high diversity of T4-like bacteriophages in various environments, but so far, little is known about T4-like virus diversity in freshwater bodies, particularly in eutrophic lakes. The present study was aimed at elucidating molecular diversity of T4-like bacteriophages in eutrophic Lake Kotokel located near Lake Baikal by partial sequencing of the major capsid genes (g23) of T4-like bacteriophages. The majority of g23 fragments from Lake Kotokel were most similar to those from freshwater lakes and paddy fields. Despite the proximity and direct water connection between Lake Kotokel and Lake Baikal, g23 sequence assemblages from two lakes were different. UniFrac analysis showed that uncultured T4-like viruses from Lake Kotokel tended to cluster with those from the distant lake of the same trophic status. This fact suggested that the trophic conditions affected the formation of viral populations, particularly of T4-like viruses, in freshwater environments.
Collapse
|
26
|
Jacobs-Sera D, Marinelli LJ, Bowman C, Broussard GW, Guerrero Bustamante C, Boyle MM, Petrova ZO, Dedrick RM, Pope WH, Modlin RL, Hendrix RW, Hatfull GF. On the nature of mycobacteriophage diversity and host preference. Virology 2012; 434:187-201. [PMID: 23084079 DOI: 10.1016/j.virol.2012.09.026] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/19/2012] [Accepted: 09/23/2012] [Indexed: 11/29/2022]
Abstract
The complete genome sequences of over 220 mycobacteriophages reveal them to be highly diverse, with numerous types sharing little or no nucleotide sequence identity with each other. We have determined the preferences of these phages for Mycobacterium tuberculosis and for other strains of Mycobacterium smegmatis, and find there is a correlation between genome type (cluster, subcluster, singleton) and host range. For many of the phages, expansion of host range occurs at relatively high frequencies, and we describe several examples in which host constraints occur at early stages of infection (adsorption or DNA injection), and phages have the ability to expand their host range through mutations in tail genes. We present a model in which phage diversity is a function of both the ability of phages to rapidly adapt to new hosts and the richness of the diversity of the bacterial population from which those phages are isolated.
Collapse
Affiliation(s)
- Deborah Jacobs-Sera
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Evaluation of two approaches for assessing the genetic similarity of virioplankton populations as defined by genome size. Appl Environ Microbiol 2012; 78:8773-83. [PMID: 23064328 DOI: 10.1128/aem.02432-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Viral production estimates show that virioplankton communities turn over rapidly in aquatic ecosystems. Thus, it is likely that the genetic identity of viral populations comprising the virioplankton also change over temporal and spatial scales, reflecting shifts in viral-host interactions. However, there are few approaches that can provide data on the genotypic identity of viral populations at low cost and with the sample throughput necessary to assess dynamic changes in the virioplankton. This study examined two of these approaches-T4-like major capsid protein (g23) gene polymorphism and randomly amplified polymorphic DNA-PCR (RAPD-PCR) fingerprinting-to ask how well each technique could track differences in virioplankton populations over time and geographic location. Seasonal changes in overall virioplankton composition were apparent from pulsed-field gel electrophoresis (PFGE) analysis. T4-like phages containing similar g23 proteins were found within both small- and large-genome populations, including populations from different geographic locations and times. The surprising occurrence of T4-like g23 within small genomic groups (23 to 64 kb) indicated that the genome size range of T4-like phages may be broader than previously believed. In contrast, RAPD-PCR fingerprinting detected high genotypic similarity within PFGE bands from the same location, time, and genome size class without the requirement for DNA sequencing. Unlike g23 polymorphism, RAPD-PCR fingerprints showed a greater temporal than geographic variation. Thus, while polymorphism in a viral signature gene, such as g23, can be a powerful tool for inferring evolutionary relationships, the degree to which this approach can capture fine-scale variability within virioplankton populations is less clear.
Collapse
|
28
|
Bioinformatic analysis of the Acinetobacter baumannii phage AB1 genome. Gene 2012; 507:125-34. [PMID: 22868206 DOI: 10.1016/j.gene.2012.07.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/18/2012] [Accepted: 07/17/2012] [Indexed: 11/21/2022]
Abstract
As one of the pathogens of hospital-acquired infections, Acinetobacter baumannii poses great challenges to the public health. A. baumannii phage could be an effective way to fight multi-resistant A. baumannii. Here, we completed the whole genome sequencing of the complete genome of A. baumannii phage AB1, which consists of 45,159 bp and is a double-stranded DNA molecule with an average GC content of 37.7%. The genome encodes one tRNA gene and 85 open reading frames (ORFs) and the average size of the ORF is 531 bp in length. Among 85 ORFs, only 14 have been identified to share significant sequence similarities to the genes with known functions, while 28 are similar in sequence to the genes with function-unknown genes in the database and 43 ORFs are uniquely present in the phage AB1 genome. Fourteen function-assigned genes with putative functions include five phage structure proteins, an RNA polymerase, a big sub-unit and a small sub-unit of a terminase, a methylase and a recombinase and the proteins involved in DNA replication and so on. Multiple sequence alignment was conducted among those homologous proteins and the phylogenetic trees were reconstructed to analyze the evolutionary courses of these essential genes. From comparative genomics analysis, it turned out clearly that the frame of the phage genome mainly consisted of genes from Xanthomonas phages, Burkholderia ambifaria phages and Enterobacteria phages and while it comprises genes of its host A. baumannii only sporadically. The mosaic feature of the phage genome suggested that the horizontal gene transfer occurred among the phage genomes and between the phages and the host bacterium genomes. Analyzing the genome sequences of the phages should lay sound foundation to investigate how phages adapt to the environment and infect their hosts, and even help to facilitate the development of biological agents to deal with pathogenic bacteria.
Collapse
|
29
|
Adriaenssens EM, Ackermann HW, Anany H, Blasdel B, Connerton IF, Goulding D, Griffiths MW, Hooton SP, Kutter EM, Kropinski AM, Lee JH, Maes M, Pickard D, Ryu S, Sepehrizadeh Z, Shahrbabak SS, Toribio AL, Lavigne R. A suggested new bacteriophage genus: "Viunalikevirus". Arch Virol 2012; 157:2035-46. [PMID: 22707043 PMCID: PMC4174289 DOI: 10.1007/s00705-012-1360-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/24/2012] [Indexed: 12/03/2022]
Abstract
We suggest a bacteriophage genus, “Viunalikevirus”, as a new genus within the family Myoviridae. To date, this genus includes seven sequenced members: Salmonella phages ViI, SFP10 and ΦSH19; Escherichia phages CBA120 and PhaxI; Shigella phage phiSboM-AG3; and Dickeya phage LIMEstone1. Their shared myovirus morphology, with comparable head sizes and tail dimensions, and genome organization are considered distinguishing features. They appear to have conserved regulatory sequences, a horizontally acquired tRNA set and the probable substitution of an alternate base for thymine in the DNA. A close examination of the tail spike region in the DNA revealed four distinct tail spike proteins, an arrangement which might lead to the umbrella-like structures of the tails visible on electron micrographs. These properties set the suggested genus apart from the recently ratified subfamily Tevenvirinae, although a significant evolutionary relationship can be observed.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Heverlee, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ray J, Dondrup M, Modha S, Steen IH, Sandaa RA, Clokie M. Finding a needle in the virus metagenome haystack--micro-metagenome analysis captures a snapshot of the diversity of a bacteriophage armoire. PLoS One 2012; 7:e34238. [PMID: 22509283 PMCID: PMC3324506 DOI: 10.1371/journal.pone.0034238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/24/2012] [Indexed: 12/12/2022] Open
Abstract
Viruses are ubiquitous in the oceans and critical components of marine microbial communities, regulating nutrient transfer to higher trophic levels or to the dissolved organic pool through lysis of host cells. Hydrothermal vent systems are oases of biological activity in the deep oceans, for which knowledge of biodiversity and its impact on global ocean biogeochemical cycling is still in its infancy. In order to gain biological insight into viral communities present in hydrothermal vent systems, we developed a method based on deep-sequencing of pulsed field gel electrophoretic bands representing key viral fractions present in seawater within and surrounding a hydrothermal plume derived from Loki's Castle vent field at the Arctic Mid-Ocean Ridge. The reduction in virus community complexity afforded by this novel approach enabled the near-complete reconstruction of a lambda-like phage genome from the virus fraction of the plume. Phylogenetic examination of distinct gene regions in this lambdoid phage genome unveiled diversity at loci encoding superinfection exclusion- and integrase-like proteins. This suggests the importance of fine-tuning lyosgenic conversion as a viral survival strategy, and provides insights into the nature of host-virus and virus-virus interactions, within hydrothermal plumes. By reducing the complexity of the viral community through targeted sequencing of prominent dsDNA viral fractions, this method has selectively mimicked virus dominance approaching that hitherto achieved only through culturing, thus enabling bioinformatic analysis to locate a lambdoid viral "needle" within the greater viral community "haystack". Such targeted analyses have great potential for accelerating the extraction of biological knowledge from diverse and poorly understood environmental viral communities.
Collapse
Affiliation(s)
- Jessica Ray
- Department of Biology, University of Bergen, Bergen, Norway
| | | | - Sejal Modha
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | | | - Ruth-Anne Sandaa
- Department of Biology, University of Bergen, Bergen, Norway
- * E-mail:
| | - Martha Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
31
|
Ignacio-Espinoza JC, Sullivan MB. Phylogenomics of T4 cyanophages: lateral gene transfer in the 'core' and origins of host genes. Environ Microbiol 2012; 14:2113-26. [PMID: 22348436 DOI: 10.1111/j.1462-2920.2012.02704.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The last two decades have revealed that phages (viruses that infect bacteria) are abundant and play fundamental roles in the Earth System, with the T4-like myoviruses (herein T4-like phages) emerging as a dominant 'signal' in wild populations. Here we examine 27 T4-like phage genomes, with a focus on 17 that infect ocean picocyanobacteria (cyanophages), to evaluate lateral gene transfer (LGT) in this group. First, we establish a reference tree by evaluating concatenated core gene supertrees and whole genome gene content trees. Next, we evaluate what fraction of these 'core genes' shared by all 17 cyanophages appear prone to LGT. Most (47 out of 57 core genes) were vertically transferred as inferred from tree tests and genomic synteny. Of those 10 core genes that failed the tree tests, the bulk (8 of 10) remain syntenic in the genomes with only a few (3 of the 10) having identifiable signatures of mobile elements. Notably, only one of these 10 is shared not only by the 17 cyanophages, but also by all 27 T4-like phages (thymidylate synthase); its evolutionary history suggests cyanophages may be the origin of these genes to Prochlorococcus. Next, we examined intragenic recombination among the core genes and found that it did occur, even among these core genes, but that the rate was significantly higher between closely related phages, perhaps reducing any detectable LGT signal and leading to taxon cohesion. Finally, among 18 auxiliary metabolic genes (AMGs, a.k.a. 'host' genes), we found that half originated from their immediate hosts, in some cases multiple times (e.g. psbA, psbD, pstS), while the remaining have less clear evolutionary origins ranging from cyanobacteria (4 genes) or microbes (5 genes), with particular diversity among viral TalC and Hsp20 sequences. Together, these findings highlight the patterns and limits of vertical evolution, as well as the ecological and evolutionary roles of LGT in shaping T4-like phage genomes.
Collapse
|
32
|
Abstract
The bacteriophage T4 head is an elongated icosahedron packed with 172 kb of linear double-stranded DNA and numerous proteins. The capsid is built from three essential proteins: gp23*, which forms the hexagonal capsid lattice; gp24*, which forms pentamers at 11 of the 12 vertices; and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. Intensive work over more than half a century has led to a deep understanding of the phage T4 head. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as numerous other icosahedral bacteriophages. However, phage T4 displays an unusual membrane and portal initiated assembly of a shape determining self-sufficient scaffolding core. Folding of gp23 requires the assistance of two chaperones, the Escherichia coli chaperone GroEL acting with the phage-coded gp23-specific cochaperone, gp31. The capsid also contains two nonessential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. Through binding to adjacent gp23 subunits, Soc reinforces the capsid structure. Hoc and Soc have been used extensively in bipartite peptide display libraries and to display pathogen antigens, including those from human immunodeficiency virus (HIV), Neisseria meningitides, Bacillus anthracis, and foot and mouth disease virus. The structure of Ip1*, one of a number of multiple (>100) copy proteins packed and injected with DNA from the full head, shows it to be an inhibitor of one specific restriction endonuclease specifically targeting glycosylated hydroxymethyl cytosine DNA. Extensive mutagenesis, combined with atomic structures of the DNA packaging/terminase proteins gp16 and gp17, elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. The cryoelectron microscopy structure of the T4 packaging machine showed a pentameric motor assembled with gp17 subunits on the portal vertex. Single molecule optical tweezers and fluorescence studies showed that the T4 motor packages DNA at the highest rate known and can package multiple segments. Förster resonance energy transfer-fluorescence correlation spectroscopy studies indicate that DNA gets compressed in the stalled motor and that the terminase-to-portal distance changes during translocation. Current evidence suggests a linear two-component (large terminase plus portal) translocation motor in which electrostatic forces generated by ATP hydrolysis drive DNA translocation by alternating the motor between tensed and relaxed states.
Collapse
Affiliation(s)
- Lindsay W Black
- Department of Biochemistry and Molecular Biology, University of Maryland Medical School, Baltimore, Maryland, USA
| | | |
Collapse
|
33
|
Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011; 75:610-35. [PMID: 22126996 PMCID: PMC3232739 DOI: 10.1128/mmbr.00011-11] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes, bacteria and archaea, are the most abundant cellular organisms among those sharing the planet Earth with human beings (among others). However, numerous ecological studies have revealed that it is actually prokaryotic viruses that predominate on our planet and outnumber their hosts by at least an order of magnitude. An understanding of how this viral domain is organized and what are the mechanisms governing its evolution is therefore of great interest and importance. The vast majority of characterized prokaryotic viruses belong to the order Caudovirales, double-stranded DNA (dsDNA) bacteriophages with tails. Consequently, these viruses have been studied (and reviewed) extensively from both genomic and functional perspectives. However, albeit numerous, tailed phages represent only a minor fraction of the prokaryotic virus diversity. Therefore, the knowledge which has been generated for this viral system does not offer a comprehensive view of the prokaryotic virosphere. In this review, we discuss all families of bacterial and archaeal viruses that contain more than one characterized member and for which evolutionary conclusions can be attempted by use of comparative genomic analysis. We focus on the molecular mechanisms of their genome evolution as well as on the relationships between different viral groups and plasmids. It becomes clear that evolutionary mechanisms shaping the genomes of prokaryotic viruses vary between different families and depend on the type of the nucleic acid, characteristics of the virion structure, as well as the mode of the life cycle. We also point out that horizontal gene transfer is not equally prevalent in different virus families and is not uniformly unrestricted for diverse viral functions.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, 25 rue du Dr. Roux, 75015 Paris, France.
| | | | | | | |
Collapse
|
34
|
Uchiyama J, Takemura I, Satoh M, Kato SI, Ujihara T, Akechi K, Matsuzaki S, Daibata M. Improved adsorption of an Enterococcus faecalis bacteriophage ΦEF24C with a spontaneous point mutation. PLoS One 2011; 6:e26648. [PMID: 22046321 PMCID: PMC3201976 DOI: 10.1371/journal.pone.0026648] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/30/2011] [Indexed: 11/19/2022] Open
Abstract
Some bacterial strains of the multidrug-resistant Gram-positive bacteria Enterococcus faecalis can significantly reduce the efficacy of conventional antimicrobial chemotherapy. Thus, the introduction of bacteriophage (phage) therapy is expected, where a phage is used as a bioagent to destroy bacteria. E. faecalis phage ΦEF24C is known to be a good candidate for a therapeutic phage against E. faecalis. However, this therapeutic phage still produces nonuniform antimicrobial effects with different bacterial strains of the same species and this might prove detrimental to its therapeutic effects. One solution to this problem is the preparation of mutant phages with higher activity, based on a scientific rationale. This study isolated and analyzed a spontaneous mutant phage, ΦEF24C-P2, which exhibited higher infectivity against various bacterial strains when compared with phage ΦEF24C. First, the improved bactericidal effects of phage ΦEF24C-P2 were attributable to its increased adsorption rate. Moreover, genomic sequence scanning revealed that phage ΦEF24C-P2 had a point mutation in orf31. Proteomic analysis showed that ORF31 (mw, 203 kDa) was present in structural components, and immunological analysis using rabbit-derived antibodies showed that it was a component of a long, flexible fine tail fiber extending from the tail end. Finally, phage ΦEF24C-P2 also showed higher bactericidal activity in human blood compared with phage ΦEF24C using the in vitro assay system. In conclusion, the therapeutic effects of phage ΦEF24C-P2 were improved by a point mutation in gene orf31, which encoded a tail fiber component.
Collapse
Affiliation(s)
- Jumpei Uchiyama
- Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan
| | - Iyo Takemura
- Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan
| | - Miho Satoh
- Science Research Center, Kochi University, Kochi, Japan
| | | | | | - Kazue Akechi
- Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan
| | - Shigenobu Matsuzaki
- Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan
- * E-mail:
| | - Masanori Daibata
- Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan
| |
Collapse
|
35
|
Trojet SN, Caumont-Sarcos A, Perrody E, Comeau AM, Krisch HM. The gp38 adhesins of the T4 superfamily: a complex modular determinant of the phage's host specificity. Genome Biol Evol 2011; 3:674-86. [PMID: 21746838 PMCID: PMC3157838 DOI: 10.1093/gbe/evr059] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tail fiber adhesins are the primary determinants of host range in the T4-type bacteriophages. Among the indispensable virion components, the sequences of the long tail fiber genes and their associated adhesins are among the most variable. The predominant form of the adhesin in the T4-type phages is not even the version of the gene encoded by T4, the archetype of the superfamily, but rather a small unrelated protein (gp38) encoded by closely related phages such as T2 and T6. This gp38 adhesin has a modular design: its N-terminal attachment domain binds at the tip of the tail fiber, whereas the C-terminal specificity domain determines its host receptor affinity. This specificity domain has a series of four hypervariable segments (HVSs) that are separated by a set of highly conserved glycine-rich motifs (GRMs) that apparently form the domain’s conserved structural core. The role of gp38’s various components was examined by a comparative analysis of a large series of gp38 adhesins from T-even superfamily phages with differing host specificities. A deletion analysis revealed that the individual HVSs and GRMs are essential to the T6 adhesin’s function and suggests that these different components all act in synergy to mediate adsorption. The evolutionary advantages of the modular design of the adhesin involving both conserved structural elements and multiple independent and easily interchanged specificity determinants are discussed.
Collapse
Affiliation(s)
- Sabrina N Trojet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique-UMR 5100, Université Paul Sabatier, Toulouse, France
| | | | | | | | | |
Collapse
|
36
|
Liao WC, Ng WV, Lin IH, Syu WJ, Liu TT, Chang CH. T4-Like genome organization of the Escherichia coli O157:H7 lytic phage AR1. J Virol 2011; 85:6567-78. [PMID: 21507986 PMCID: PMC3126482 DOI: 10.1128/jvi.02378-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/04/2011] [Indexed: 11/20/2022] Open
Abstract
We report the genome organization and analysis of the first completely sequenced T4-like phage, AR1, of Escherichia coli O157:H7. Unlike most of the other sequenced phages of O157:H7, which belong to the temperate Podoviridae and Siphoviridae families, AR1 is a T4-like phage known to efficiently infect this pathogenic bacterial strain. The 167,435-bp AR1 genome is currently the largest among all the sequenced E. coli O157:H7 phages. It carries a total of 281 potential open reading frames (ORFs) and 10 putative tRNA genes. Of these, 126 predicted proteins could be classified into six viral orthologous group categories, with at least 18 proteins of the structural protein category having been detected by tandem mass spectrometry. Comparative genomic analysis of AR1 and four other completely sequenced T4-like genomes (RB32, RB69, T4, and JS98) indicated that they share a well-organized and highly conserved core genome, particularly in the regions encoding DNA replication and virion structural proteins. The major diverse features between these phages include the modules of distal tail fibers and the types and numbers of internal proteins, tRNA genes, and mobile elements. Codon usage analysis suggested that the presence of AR1-encoded tRNAs may be relevant to the codon usage of structural proteins. Furthermore, protein sequence analysis of AR1 gp37, a potential receptor binding protein, indicated that eight residues in the C terminus are unique to O157:H7 T4-like phages AR1 and PP01. These residues are known to be located in the T4 receptor recognition domain, and they may contribute to specificity for adsorption to the O157:H7 strain.
Collapse
Affiliation(s)
- Wei-Chao Liao
- Department of Biotechnology and Laboratory Science in Medicine
| | | | | | - Wan-Jr Syu
- Institute of Microbiology and Immunology
| | - Tze-Tze Liu
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chuan-Hsiung Chang
- Center for Systems and Synthetic Biology
- Institute of Biomedical Informatics
| |
Collapse
|
37
|
Campylobacter jejuni group III phage CP81 contains many T4-like genes without belonging to the T4-type phage group: implications for the evolution of T4 phages. J Virol 2011; 85:8597-605. [PMID: 21697478 DOI: 10.1128/jvi.00395-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CP81 is a virulent Campylobacter group III phage whose linear genome comprises 132,454 bp. At the nucleotide level, CP81 differs from other phages. However, a number of its structural and replication/recombination proteins revealed a relationship to the group II Campylobacter phages CP220/CPt10 and to T4-type phages. Unlike the T4-related phages, the CP81 genome does not contain conserved replication and virion modules. Instead, the respective genes are scattered throughout the phage genome. Moreover, most genes for metabolic enzymes of CP220/CPt10 are lacking in CP81. On the other hand, the CP81 genome contains nine similar genes for homing endonucleases which may be involved in the attrition of the conserved gene order for the virion core genes of T4-type phages. The phage apparently possesses an unusual modification of C or G bases. Efficient cleavage of its DNA was only achieved with restriction enzymes recognizing pure A/T sites. Uncommonly, phenol extraction leads to a significant loss of CP81 DNA from the aqueous layer, a property not yet described for other phages belonging to the T4 superfamily.
Collapse
|
38
|
Pouillot F, Blois H, Iris F. Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria. Biosecur Bioterror 2010; 8:155-69. [PMID: 20569057 DOI: 10.1089/bsp.2009.0057] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural outbreaks of multidrug-resistant microorganisms can cause widespread devastation, and several can be used or engineered as agents of bioterrorism. From a biosecurity standpoint, the capacity to detect and then efficiently control, within hours, the spread and the potential pathological effects of an emergent outbreak, for which there may be no effective antibiotics or vaccines, become key challenges that must be met. We turned to phage engineering as a potentially highly flexible and effective means to both detect and eradicate threats originating from emergent (uncharacterized) bacterial strains. To this end, we developed technologies allowing us to (1) concurrently modify multiple regions within the coding sequence of a gene while conserving intact the remainder of the gene, (2) reversibly interrupt the lytic cycle of an obligate virulent phage (T4) within its host, (3) carry out efficient insertion, by homologous recombination, of any number of engineered genes into the deactivated genomes of a T4 wild-type phage population, and (4) reactivate the lytic cycle, leading to the production of engineered infective virulent recombinant progeny. This allows the production of very large, genetically engineered lytic phage banks containing, in an E. coli host, a very wide spectrum of variants for any chosen phage-associated function, including phage host-range. Screening of such a bank should allow the rapid isolation of recombinant T4 particles capable of detecting (ie, diagnosing), infecting, and destroying hosts belonging to gram-negative bacterial species far removed from the original E. coli host.
Collapse
|
39
|
Butina TV, Belykh OI, Belikov SI. Molecular-genetic identification of T4 bacteriophages in Lake Baikal. DOKL BIOCHEM BIOPHYS 2010; 433:175-8. [PMID: 20714850 DOI: 10.1134/s1607672910040083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Indexed: 11/23/2022]
Affiliation(s)
- T V Butina
- Institute of Limnology, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | | | | |
Collapse
|
40
|
Butina TV, Belykh OI, Maksimenko SY, Belikov SI. Phylogenetic diversity of T4-like bacteriophages in Lake Baikal, East Siberia. FEMS Microbiol Lett 2010; 309:122-9. [PMID: 20579103 DOI: 10.1111/j.1574-6968.2010.02025.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Among the tailed phages, the myoviruses, those with contractile tails, are widespread and diverse. An important component of the Myoviridae family is the genus 'T4-like viruses'. The present study was aimed at elucidating the molecular diversity of T4-type bacteriophages in Lake Baikal by partial sequencing of g23 genes of T4-type bacteriophages. Our study revealed that the g23 gene sequences investigated were highly diverse and different from those of T4-like bacteriophages and from g23 clones obtained from different environments. Phylogenetic analysis showed that all g23 fragments from Lake Baikal, except for the one sequence, were more closely related to marine T4 cyanophages and to previously described subgroups of uncultured T4 phages from marine and rice field environments.
Collapse
|
41
|
Low-temperature T4-like coliphages vB_EcoM-VR5, vB_EcoM-VR7 and vB_EcoM-VR20. Arch Virol 2010; 155:871-80. [PMID: 20361343 DOI: 10.1007/s00705-010-0656-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
Abstract
Bacteriophages vB_EcoM-VR5, vB_EcoM-VR7 and vB_EcoM-VR20, showing an unusual low-temperature plating profile and producing constantly growing plaques, were isolated from aquatic environments of Lithuania. Although vB_EcoM-VR5, vB_EcoM-VR7 and vB_EcoM-VR20 resembled phage T4 both in their genome size and in their major structural protein (gp23) pattern, physiological properties of all three phages tested differed significantly from those of T4. With an optimum temperature for plating around 24 degrees C and a high efficiency of plating in the range 7-30 degrees C, bacteriophages vB_EcoM-VR7 and vB_EcoM-VR20 failed to plate at 37 degrees C, whereas phage vB_EcoM-VR5 could not be plated at 40 degrees C. Sequence analysis of diagnostic g23 PCR products revealed that g23 of vB_EcoM-VR5, vB_EcoM-VR7 and vB_EcoM-VR20 differed from the corresponding T4 g23 DNA sequence by 21, 21 and 20%, respectively.
Collapse
|
42
|
Kim KH, Chang HW, Nam YD, Roh SW, Bae JW. Phenotypic characterization and genomic analysis of the Shigella sonnei bacteriophage SP18. J Microbiol 2010; 48:213-22. [PMID: 20437154 DOI: 10.1007/s12275-010-0055-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/01/2010] [Indexed: 11/29/2022]
Abstract
A novel bacteriophage that infects Shigella sonnei was isolated from the Gap River in Korea, and its phenotypic and genomic characteristics were investigated. The virus, called SP18, showed morphology characteristic of the family Myoviridae, and phylogenetic analysis of major capsid gene (gp23) sequences classified it as a T4-like phage. Based on host spectrum analysis, it is lytic to S. sonnei, but not to Shigella flexneri, Shigella boydii or members of the genera Escherichia and Salmonella. Pyrosequencing of the SP18 bacteriophage genome revealed a 170-kb length sequence. In total, 286 ORFs and 3 tRNA genes were identified, and 259 ORFs showed similarity (BLASTP e-value<0.001) to genes of other bacteriophages. The results from comparative genomic analysis indicated that the enterophage JS98, isolated from human stool, is the closest relative of SP18. Based on phylogenetic analysis of gp23 protein-coding sequences, dot plot comparison and BLASTP analysis of genomes, SP18 and JS98 appear to be closely related to T4-even phages. However, several insertions, deletions, and duplications indicate differences between SP18 and JS98. Comparison of duplicated gp24 genes and the soc gene showed that duplication events are responsible for the differentiation and evolution of T4-like bacteriophages.
Collapse
Affiliation(s)
- Kyoung-Ho Kim
- Department of Microbiology, Pukyong National University, Pusan, 608-737, Republic of Korea
| | | | | | | | | |
Collapse
|
43
|
Galan Bartual S, Garcia-Doval C, Alonso J, Schoehn G, van Raaij MJ. Two-chaperone assisted soluble expression and purification of the bacteriophage T4 long tail fibre protein gp37. Protein Expr Purif 2010; 70:116-21. [DOI: 10.1016/j.pep.2009.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/02/2009] [Accepted: 11/09/2009] [Indexed: 11/27/2022]
|
44
|
Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko CC, Weber RJ, Patel MC, Germane KL, Edgar RH, Hoyte NN, Bowman CA, Tantoco AT, Paladin EC, Myers MS, Smith AL, Grace MS, Pham TT, O'Brien MB, Vogelsberger AM, Hryckowian AJ, Wynalek JL, Donis-Keller H, Bogel MW, Peebles CL, Cresawn SG, Hendrix RW. Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 2010; 397:119-43. [PMID: 20064525 DOI: 10.1016/j.jmb.2010.01.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/08/2009] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
Abstract
Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of 60-all infecting a common bacterial host-provides further insight into their diversity and evolution. Of the 60 phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, 5 of which can be further divided into subclusters; 5 genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the 6 genomes in Cluster D share more than 97.5% average nucleotide similarity with one another. In contrast, similarity between the 2 genomes in Cluster I is barely detectable by diagonal plot analysis. In total, 6858 predicted open-reading frames have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries, and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit a smaller average size than genes of their host (205 residues compared with 315), phage genes in higher flux average only 100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Marston MF, Amrich CG. Recombination and microdiversity in coastal marine cyanophages. Environ Microbiol 2009; 11:2893-903. [DOI: 10.1111/j.1462-2920.2009.02037.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann HW, Kropinski AM. Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 2009; 9:224. [PMID: 19857251 PMCID: PMC2771037 DOI: 10.1186/1471-2180-9-224] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 10/26/2009] [Indexed: 11/30/2022] Open
Abstract
Background We advocate unifying classical and genomic classification of bacteriophages by integration of proteomic data and physicochemical parameters. Our previous application of this approach to the entirely sequenced members of the Podoviridae fully supported the current phage classification of the International Committee on Taxonomy of Viruses (ICTV). It appears that horizontal gene transfer generally does not totally obliterate evolutionary relationships between phages. Results CoreGenes/CoreExtractor proteome comparison techniques applied to 102 Myoviridae suggest the establishment of three subfamilies (Peduovirinae, Teequatrovirinae, the Spounavirinae) and eight new independent genera (Bcep781, BcepMu, FelixO1, HAP1, Bzx1, PB1, phiCD119, and phiKZ-like viruses). The Peduovirinae subfamily, derived from the P2-related phages, is composed of two distinct genera: the "P2-like viruses", and the "HP1-like viruses". At present, the more complex Teequatrovirinae subfamily has two genera, the "T4-like" and "KVP40-like viruses". In the genus "T4-like viruses" proper, four groups sharing >70% proteins are distinguished: T4-type, 44RR-type, RB43-type, and RB49-type viruses. The Spounavirinae contain the "SPO1-"and "Twort-like viruses." Conclusion The hierarchical clustering of these groupings provide biologically significant subdivisions, which are consistent with our previous analysis of the Podoviridae.
Collapse
Affiliation(s)
- Rob Lavigne
- Biosystems Department, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Millard AD, Zwirglmaier K, Downey MJ, Mann NH, Scanlan DJ. Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: implications for mechanisms of cyanophage evolution. Environ Microbiol 2009; 11:2370-87. [PMID: 19508343 DOI: 10.1111/j.1462-2920.2009.01966.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vast majority of cyanophages isolated to date are cyanomyoviruses, a group related to bacteriophage T4. Comparative genome analysis of five cyanomyoviruses, including a newly sequenced cyanophage S-RSM4, revealed a 'core genome' of 64 genes, the majority of which are also found in other T4-like phages. Subsequent comparative genomic hybridization analysis using a pilot microarray showed that a number of 'host' genes are widespread in cyanomyovirus isolates. Furthermore, a hyperplastic region was identified between genes g15-g18, within a highly conserved structural gene module, which contained a variable number of inserted genes that lacked conservation in gene order. Several of these inserted genes were host-like and included ptoX, gnd, zwf and petE encoding plastoquinol terminal oxidase, 6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase and plastocyanin respectively. Phylogenetic analyses suggest that these genes were acquired independently of each other, even though they have become localized within the same genomic region. This hyperplastic region contains no detectable sequence features that might be mechanistically involved with the acquisition of host-like genes, but does appear to be a site specifically associated with the acquisition process and may represent a novel facet of the evolution of marine cyanomyoviruses.
Collapse
Affiliation(s)
- Andrew D Millard
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | | | | | | | | |
Collapse
|
48
|
Krisch HM, Comeau AM. The immense journey of bacteriophage T4--from d'Hérelle to Delbrück and then to Darwin and beyond. Res Microbiol 2008; 159:314-24. [PMID: 18621124 DOI: 10.1016/j.resmic.2008.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 11/15/2022]
Abstract
In spite of their importance, the genomics, diversity and evolution of phages and their impact on the biosphere have remained largely unexplored research domains in microbiology. Here, we report on some recent studies with the T4 phage superfamily that shed some new light on these topics.
Collapse
Affiliation(s)
- H M Krisch
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, Université Paul Sabatier-Toulouse III UMR5100, 31062 Toulouse, France.
| | | |
Collapse
|
49
|
Comeau AM, Krisch HM. The Capsid of the T4 Phage Superfamily: The Evolution, Diversity, and Structure of Some of the Most Prevalent Proteins in the Biosphere. Mol Biol Evol 2008; 25:1321-32. [DOI: 10.1093/molbev/msn080] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
50
|
Pham TT, Jacobs-Sera D, Pedulla ML, Hendrix RW, Hatfull GF. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. MICROBIOLOGY-SGM 2007; 153:2711-2723. [PMID: 17660435 PMCID: PMC2884959 DOI: 10.1099/mic.0.2007/008904-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mycobacteriophage Tweety is a newly isolated phage of Mycobacterium smegmatis. It has a viral morphology with an isometric head and a long flexible tail, and forms turbid plaques from which stable lysogens can be isolated. The Tweety genome is 58 692 bp in length, contains 109 protein-coding genes, and shows significant but interrupted nucleotide sequence similarity with the previously described mycobacteriophages Llij, PMC and Che8. However, overall the genome possesses mosaic architecture, with gene products being related to other mycobacteriophages such as Che9d, Omega and Corndog. A gene encoding an integrase of the tyrosine-recombinase family is located close to the centre of the genome, and a putative attP site has been identified within a short intergenic region immediately upstream of int. This Tweety attP–int cassette was used to construct a new set of integration-proficient plasmid vectors that efficiently transform both fast- and slow-growing mycobacteria through plasmid integration at a chromosomal locus containing a tRNALys gene. These vectors are maintained well in the absence of selection and are completely compatible with integration vectors derived from mycobacteriophage L5, enabling the simple construction of complex recombinants with genes integrated simultaneously at different chromosomal positions.
Collapse
Affiliation(s)
- Thuy T. Pham
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Marisa L. Pedulla
- Department of Biology, Montana Tech, University of Montana, Butte, MT 59701, USA
| | - Roger W. Hendrix
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F. Hatfull
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|