1
|
Sato M, Torres-Bacete J, Sinha PK, Matsuno-Yagi A, Yagi T. Essential regions in the membrane domain of bacterial complex I (NDH-1): the machinery for proton translocation. J Bioenerg Biomembr 2014; 46:279-87. [PMID: 24973951 DOI: 10.1007/s10863-014-9558-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023]
Abstract
The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) is the first and largest enzyme of the respiratory chain which has a central role in cellular energy production and is implicated in many human neurodegenerative diseases and aging. It is believed that the peripheral domain of complex I/NDH-1 transfers the electron from NADH to Quinone (Q) and the redox energy couples the proton translocation in the membrane domain. To investigate the mechanism of the proton translocation, in a series of works we have systematically studied all membrane subunits in the Escherichia coli NDH-1 by site-directed mutagenesis. In this mini-review, we have summarized our strategy and results of the mutagenesis by depicting residues essential for proton translocation, along with those for subunit connection. It is suggested that clues to understanding the driving forces of proton translocation lie in the similarities and differences of the membrane subunits, highlighting the communication of essential charged residues among the subunits. A possible proton translocation mechanism with all membrane subunits operating in unison is described.
Collapse
Affiliation(s)
- Motoaki Sato
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, CA, 92037, USA,
| | | | | | | | | |
Collapse
|
2
|
Larosa V, Coosemans N, Motte P, Bonnefoy N, Remacle C. Reconstruction of a human mitochondrial complex I mutation in the unicellular green alga Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:759-768. [PMID: 22268373 DOI: 10.1111/j.1365-313x.2012.04912.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Defects in complex I (NADH:ubiquinone oxidoreductase (EC 1.6.5.3)) are the most frequent cause of human respiratory disorders. The pathogenicity of a given human mitochondrial mutation can be difficult to demonstrate because the mitochondrial genome harbors large numbers of polymorphic base changes that have no pathogenic significance. In addition, mitochondrial mutations are usually found in the heteroplasmic state, which may hide the biochemical effect of the mutation. We propose that the unicellular green alga Chlamydomonas could be used to study such mutations because (i) respiratory complex-deficient mutants are viable and mitochondrial mutations are found in the homoplasmic state, (ii) transformation of the mitochondrial genome is feasible, and (iii) Chlamydomonas complex I is similar to that of humans. To illustrate this proposal, we introduced a Leu157Pro substitution into the Chlamydomonas ND4 subunit of complex I in two recipient strains by biolistic transformation, demonstrating that site-directed mutagenesis of the Chlamydomonas mitochondrial genome is possible. This substitution did not lead to any respiratory enzyme defects when present in the heteroplasmic state in a patient with chronic progressive external ophthalmoplegia. When present in the homoplasmic state in the alga, the mutation does not prevent assembly of whole complex I (950 kDa) and the NADH dehydrogenase activity of the peripheral arm of the complex is mildly affected. However, the NADH:duroquinone oxidoreductase activity is strongly reduced, suggesting that the substitution could affect binding of ubiquinone to the membrane domain. The in vitro defects correlate with a decrease in dark respiration and growth rate in vivo.
Collapse
Affiliation(s)
- Véronique Larosa
- Genetics of Microorganisms, Department of Life Sciences, Institute of Botany, University of Liege, B-4000 Liege, Belgium
| | | | | | | | | |
Collapse
|
3
|
Pätsi J, Maliniemi P, Pakanen S, Hinttala R, Uusimaa J, Majamaa K, Nyström T, Kervinen M, Hassinen IE. LHON/MELAS overlap mutation in ND1 subunit of mitochondrial complex I affects ubiquinone binding as revealed by modeling in Escherichia coli NDH-1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:312-8. [PMID: 22079202 DOI: 10.1016/j.bbabio.2011.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Defects in complex I due to mutations in mitochondrial DNA are associated with clinical features ranging from single organ manifestation like Leber hereditary optic neuropathy (LHON) to multiorgan disorders like mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Specific mutations cause overlap syndromes combining several phenotypes, but the mechanisms of their biochemical effects are largely unknown. The m.3376G>A transition leading to p.E24K substitution in ND1 with LHON/MELAS phenotype was modeled here in a homologous position (NuoH-E36K) in the Escherichia coli enzyme and it almost totally abolished complex I activity. The more conservative mutation NuoH-E36Q resulted in higher apparent K(m) for ubiquinone and diminished inhibitor sensitivity. A NuoH homolog of the m.3865A>G transition, which has been found concomitantly in the overlap syndrome patient with the m.3376G>A, had only a minor effect. Consequences of a primary LHON-mutation m.3460G>A affecting the same extramembrane loop as the m.3376G>A substitution were also studied in the E. coli model and were found to be mild. The results indicate that the overlap syndrome-associated m.3376G>A transition in MTND1 is the pathogenic mutation and m.3865A>G transition has minor, if any, effect on presentation of the disease. The kinetic effects of the NuoH-E36Q mutation suggest its proximity to the putative ubiquinone binding domain in 49kD/PSST subunits. In all, m.3376G>A perturbs ubiquinone binding, a phenomenon found in LHON, and decreases the activity of fully assembled complex I as in MELAS.
Collapse
Affiliation(s)
- Jukka Pätsi
- Department of Medical Biochemistry and Molecular Biology, University of Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Mitochondrial dysfunction often leads to cell death and disease. We can now draw correlations between the dysfunction of one of the most important mitochondrial enzymes, NADH:ubiquinone reductase or complex I, and its structural organization thanks to the recent advances in the X-ray structure of its bacterial homologs. The new structural information on bacterial complex I provide essential clues to finally understand how complex I may work. However, the same information remains difficult to interpret for many scientists working on mitochondrial complex I from different angles, especially in the field of cell death. Here, we present a novel way of interpreting the bacterial structural information in accessible terms. On the basis of the analogy to semi-automatic shotguns, we propose a novel functional model that incorporates recent structural information with previous evidence derived from studies on mitochondrial diseases, as well as functional bioenergetics.
Collapse
|
5
|
Rea SL, Graham BH, Nakamaru-Ogiso E, Kar A, Falk MJ. Bacteria, yeast, worms, and flies: exploiting simple model organisms to investigate human mitochondrial diseases. ACTA ACUST UNITED AC 2011; 16:200-18. [PMID: 20818735 DOI: 10.1002/ddrr.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extensive conservation of mitochondrial structure, composition, and function across evolution offers a unique opportunity to expand our understanding of human mitochondrial biology and disease. By investigating the biology of much simpler model organisms, it is often possible to answer questions that are unreachable at the clinical level. Here, we review the relative utility of four different model organisms, namely the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, in studying the role of mitochondrial proteins relevant to human disease. E. coli are single cell, prokaryotic bacteria that have proven to be a useful model system in which to investigate mitochondrial respiratory chain protein structure and function. S. cerevisiae is a single-celled eukaryote that can grow equally well by mitochondrial-dependent respiration or by ethanol fermentation, a property that has proven to be a veritable boon for investigating mitochondrial functionality. C. elegans is a multicellular, microscopic worm that is organized into five major tissues and has proven to be a robust model animal for in vitro and in vivo studies of primary respiratory chain dysfunction and its potential therapies in humans. Studied for over a century, D. melanogaster is a classic metazoan model system offering an abundance of genetic tools and reagents that facilitates investigations of mitochondrial biology using both forward and reverse genetics. The respective strengths and limitations of each species relative to mitochondrial studies are explored. In addition, an overview is provided of major discoveries made in mitochondrial biology in each of these four model systems.
Collapse
Affiliation(s)
- Shane L Rea
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| | | | | | | | | |
Collapse
|
6
|
Eukaryotic complex I: functional diversity and experimental systems to unravel the assembly process. Mol Genet Genomics 2008; 280:93-110. [DOI: 10.1007/s00438-008-0350-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 05/01/2008] [Indexed: 10/21/2022]
|
7
|
Torres-Bacete J, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T. Characterization of the NuoM (ND4) Subunit in Escherichia coli NDH-1. J Biol Chem 2007; 282:36914-22. [PMID: 17977822 DOI: 10.1074/jbc.m707855200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jesus Torres-Bacete
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
8
|
Lucioli S, Hoffmeier K, Carrozzo R, Tessa A, Ludwig B, Santorelli FM. Introducing a novel human mtDNA mutation into the Paracoccus denitrificans COX I gene explains functional deficits in a patient. Neurogenetics 2005; 7:51-7. [PMID: 16284789 DOI: 10.1007/s10048-005-0015-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 08/22/2005] [Indexed: 10/25/2022]
Abstract
We identified a novel mutation (S142F) in the human mtDNA CO I gene in a patient with a clinical phenotype resembling mitochondrial cardioencephalomyopathy. To substantiate pathogenicity, we modeled the identified mutation in the homologous gene in Paracoccus denitrificans and analyzed the biochemical consequences. We observed a deleterious effect on enzyme activity, with a lack of heme a3. Taking advantage of the extensive structural homology between the bacterial enzyme and the mammalian core complex, we conclude that the novel S142F mutation is disease-related. This approach can be used in other cases to support the pathogenicity of novel variants in the mitochondrial genome.
Collapse
Affiliation(s)
- Simona Lucioli
- Molecular Medicine, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Duarte M, Schulte U, Ushakova AV, Videira A. Neurospora strains harboring mitochondrial disease-associated mutations in iron-sulfur subunits of complex I. Genetics 2005; 171:91-9. [PMID: 15956670 PMCID: PMC1456533 DOI: 10.1534/genetics.105.041517] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We subjected the genes encoding the 19.3-, 21.3c-, and 51-kDa iron-sulfur subunits of respiratory chain complex I from Neurospora crassa to site-directed mutagenesis to mimic mutations in human complex I subunits associated with mitochondrial diseases. The V135M substitution was introduced into the 19.3-kDa cDNA, the P88L and R111H substitutions were separately introduced into the 21.3c-kDa cDNA, and the A353V and T435M alterations were separately introduced into the 51-kDa cDNA. The altered cDNAs were expressed in the corresponding null-mutants under the control of a heterologous promoter. With the exception of the A353V polypeptide, all mutated subunits were able to promote assembly of a functional complex I, rescuing the phenotypes of the respective null-mutants. Complex I from these strains displays spectroscopic and enzymatic properties similar to those observed in the wild-type strain. A decrease in total complex I amounts may be the major impact of the mutations, although expression levels of mutant genes from the heterologous promoter were sometimes lower and may also account for complex I levels. We discuss these findings in relation to the involvement of complex I deficiencies in mitochondrial disease.
Collapse
Affiliation(s)
- Margarida Duarte
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | | | | | | |
Collapse
|
10
|
Kao MC, Di Bernardo S, Perego M, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T. Functional roles of four conserved charged residues in the membrane domain subunit NuoA of the proton-translocating NADH-quinone oxidoreductase from Escherichia coli. J Biol Chem 2004; 279:32360-6. [PMID: 15175326 DOI: 10.1074/jbc.m403885200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The H(+)(Na(+))-translocating NADH-quinone (Q) oxidoreductase (NDH-1) of Escherichia coli is composed of 13 different subunits (NuoA-N). Subunit NuoA (ND3, Nqo7) is one of the seven membrane domain subunits that are considered to be involved in H(+)(Na(+)) translocation. We demonstrated that in the Paracoccus denitrificans NDH-1 subunit, Nqo7 (ND3) directly interacts with peripheral subunits Nqo6 (PSST) and Nqo4 (49 kDa) by using cross-linkers (Di Bernardo, S., and Yagi, T. (2001) FEBS Lett. 508, 385-388 and Kao, M.-C., Matsuno-Yagi, A., and Yagi, T. (2004) Biochemistry 43, 3750-3755). To investigate the structural and functional roles of conserved charged amino acid residues, a nuoA knock-out mutant and site-specific mutants K46A, E51A, D79N, D79A, E81Q, E81A, and D79N/E81Q were constructed by utilizing chromosomal DNA manipulation. In terms of immunochemical and NADH dehydrogenase activity-staining analyses, all site-specific mutants are similar to the wild type, suggesting that those NuoA site-specific mutations do not significantly affect the assembly of peripheral subunits in situ. In addition, site-specific mutants showed similar deamino-NADH-K(3)Fe(CN)(6) reductase activity to the wild type. The K46A mutation scarcely inhibited deamino-NADH-Q reductase activity. In contrast, E51A, D79A, D79N, E81A, and E81Q mutation partially suppressed deamino-NADH-Q reductase activity to 30, 90, 40, 40, and 50%, respectively. The double mutant D79N/E81Q almost completely lost the energy-transducing NDH-1 activities but did not display any loss of deamino-NADH-K(3)Fe(CN)(6) reductase activity. The possible functional roles of residues Asp-79 and Glu-81 were discussed.
Collapse
Affiliation(s)
- Mou-Chieh Kao
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
11
|
Gong X, Xie T, Yu L, Hesterberg M, Scheide D, Friedrich T, Yu CA. The ubiquinone-binding site in NADH:ubiquinone oxidoreductase from Escherichia coli. J Biol Chem 2003; 278:25731-7. [PMID: 12730198 DOI: 10.1074/jbc.m302361200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An azido-ubiquinone derivative, 3-azido-2-methyl-5-methoxy[3H]-6-decyl-1,4-benzoquinone ([3H]azido-Q), was used to study the ubiquinone/protein interaction and to identify the ubiquinone-binding site in Escherichia coli NADH:ubiquinone oxidoreductase (complex I). The purified complex I showed no loss of activity after incubation with a 20-fold molar excess of [3H]azido-Q in the dark. Illumination of the incubated sample with long wavelength UV light for 10 min at 0 degrees C caused a 40% decrease of NADH:ubiquinone oxidoreductase activity. SDS-PAGE of the complex labeled with [3H]azido-Q followed by analysis of the radioactivity distribution among the subunits revealed that subunit NuoM was heavily labeled, suggesting that this protein houses the Q-binding site. When the [3H]azido-Q-labeled NuoM was purified from the labeled reductase by means of preparative SDS-PAGE, a 3-azido-2-methyl-5-methoxy-6-decyl-1,4-benzoquinone-linked peptide, with a retention time of 41.4 min, was obtained by high performance liquid chromatography of the protease K digest of the labeled subunit. This peptide had a partial NH2-terminal amino acid sequence of NH2-VMLIAILALV-, which corresponds to amino acid residues 184-193 of NuoM. The secondary structure prediction of NuoM using the Toppred hydropathy analysis showed that the Q-binding peptide overlaps with a proposed Q-binding motif located in the middle of the transmembrane helix 5 toward the cytoplasmic side of the membrane. Using the PHDhtm hydropathy plot, the labeled peptide is located in the transmembrane helix 4 toward the periplasmic side of the membrane.
Collapse
Affiliation(s)
- Xing Gong
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Liolitsa D, Hanna MG. Models of mitochondrial disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:429-66. [PMID: 12512349 DOI: 10.1016/s0074-7742(02)53016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Danae Liolitsa
- Centre for Neuromuscular Disease, Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
| | | |
Collapse
|
13
|
Chevallet M, Dupuis A, Issartel JP, Lunardi J, van Belzen R, Albracht SPJ. Two EPR-detectable [4Fe-4S] clusters, N2a and N2b, are bound to the NuoI (TYKY) subunit of NADH:ubiquinone oxidoreductase (Complex I) from Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1557:51-66. [PMID: 12615348 DOI: 10.1016/s0005-2728(02)00398-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
NADH:ubiquinone oxidoreductases (Complex I) contain a subunit, TYKY in the bovine enzyme and NuoI in the enzyme from Rhodobacter capsulatus, which is assumed to bind two [4Fe-4S] clusters because it contains two sets of conserved cysteine motifs similar to those found in the 2[4Fe-4S] ferredoxins. It was recently shown that the TYKY subunit is not an ordinary 2[4Fe-4S] ferredoxin, but has a unique amino acid sequence, which is only found in NAD(P)H:quinone oxidoreductases and certain membrane-bound [NiFe]-hydrogenases expected to be involved in redox-linked proton translocation [FEBS Lett. 485 (2000) 1]. We have generated a set of R. capsulatus mutants in which five out of the eight conserved cysteine residues in NuoI were replaced by other amino acids. The resulting mutants fell into three categories with virtually no, intermediate or quite normal Complex I activities. EPR-spectroscopic analysis of the membranes of the C67S and C106S mutants, two mutants belonging to the second and third group, respectively, showed a specific 50% decrease of the EPR signal attributed to cluster N2. It is concluded that the NuoI (TYKY) subunit binds two clusters N2, called N2a and N2b, which exhibit very similar spectral features when analyzed by X-band EPR spectroscopy.
Collapse
Affiliation(s)
- Mireille Chevallet
- BECP/DBMS/CEA Grenoble, EMI INSERM 9931, 17 Av des Martyrs, F-38054 Grenoble Cedex 09, France
| | | | | | | | | | | |
Collapse
|
14
|
Mathiesen C, Hägerhäll C. Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1556:121-32. [PMID: 12460669 DOI: 10.1016/s0005-2728(02)00343-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nicotinamide adenine dinucleotide-reduced form (NADH):quinone oxidoreductase (respiratory Complex I), F420H2 oxidoreductase and complex, membrane-bound NiFe-hydrogenase contain protein subunits homologous to a certain type of bona fide antiporters. In Complex I, these polypeptides (NuoL/ND5, NuoM/ND4, NuoN/ND2) are most likely core components of the proton pumping mechanism, and it is thus important to learn more about their structure and function. In this work, we have determined the transmembrane topology of one such polypeptide, and built a 2D structural model of the protein valid for all the homologous polypeptides. The experimentally determined transmembrane topology was different from that predicted by majority vote hydrophobicity analyses of members of the superfamily. A detailed phylogenetic analysis of a large set of primary sequences shed light on the functional relatedness of these polypeptides.
Collapse
Affiliation(s)
- Cecilie Mathiesen
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100, Lund, Sweden
| | | |
Collapse
|
15
|
Abstract
The energy-transducing NADH: quinone (Q) oxidoreductase (complex I) is the largest and most complicated enzyme complex in the oxidative phosphorylation system. Complex I is a redox pump that uses the redox energy to translocate H(+) (or Na(+)) ions across the membrane, resulting in a significant contribution to energy production. The need to elucidate the molecular mechanisms of complex I has greatly increased. Many devastating neurodegenerative disorders have been associated with complex I deficiency. The structural and functional complexities of complex I have already been established. However, intricate biogenesis and activity regulation functions of complex I have just been identified. Based upon these recent developments, it is apparent that complex I research is entering a new era. The advancement of our knowledge of the molecular mechanism of complex I will not only surface from bioenergetics, but also from many other fields as well, including medicine. This review summarizes the current status of our understanding of complex I and sheds light on new theories and the future direction of complex I studies.
Collapse
Affiliation(s)
- Takahiro Yano
- Department of Biochemistry and Biophysics, School of Medicine, Johnson Research Foundation, University of Pennsylvania, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
16
|
Carelli V. Chapter 4 Leber's Hereditary Optic Neuropathy. MITOCHONDRIAL DISORDERS IN NEUROLOGY 2 2002. [DOI: 10.1016/s1877-3419(09)70063-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Dupuis A, Prieur I, Lunardi J. Toward a characterization of the connecting module of complex I. J Bioenerg Biomembr 2001; 33:159-68. [PMID: 11695825 DOI: 10.1023/a:1010770600418] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Complex I [NADH-ubiquinone oxidoreductase (complex I, EC 1.6.5.3)] couples electron transfer between NADH and ubiquinone to proton transport across the bacterial cytoplasmic membrane and the mitochondrial inner membrane. This sophisticated enzyme consists of three specialized modules: (1) a hydrophilic NADH-oxidizing module that constitutes the input machinery of the enzyme; (2) a hydrophobic module that anchors the enzyme in the membrane and must take part in proton transport; and (3) a connecting domain that links the two previous modules. Using the complex I of Rhodobacter capsulatus, we developed a genetic study of the structure and function of the connecting module. In the present review, we put together the salient results of these studies, with recent reports of the literature, to try and elucidate the structure of the connecting module and its potential role in the coupling process between electron and proton flux within complex I. From this overview, we conclude that the NUOB-NUOD dimer of the connecting module and a hydrophobic subunit such as NUOH must share a quinone-reduction site. The function of this site in the mechanism of complex I is discussed.
Collapse
Affiliation(s)
- A Dupuis
- Département de Biologie Moléculaire et Structurale, CEA Grenoble, France.
| | | | | |
Collapse
|