1
|
Vaiciuleviciute R, Uzieliene I, Bernotas P, Novickij V, Alaburda A, Bernotiene E. Electrical Stimulation in Cartilage Tissue Engineering. Bioengineering (Basel) 2023; 10:bioengineering10040454. [PMID: 37106641 PMCID: PMC10135934 DOI: 10.3390/bioengineering10040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Electrical stimulation (ES) has been frequently used in different biomedical applications both in vitro and in vivo. Numerous studies have demonstrated positive effects of ES on cellular functions, including metabolism, proliferation, and differentiation. The application of ES to cartilage tissue for increasing extracellular matrix formation is of interest, as cartilage is not able to restore its lesions owing to its avascular nature and lack of cells. Various ES approaches have been used to stimulate chondrogenic differentiation in chondrocytes and stem cells; however, there is a huge gap in systematizing ES protocols used for chondrogenic differentiation of cells. This review focuses on the application of ES for chondrocyte and mesenchymal stem cell chondrogenesis for cartilage tissue regeneration. The effects of different types of ES on cellular functions and chondrogenic differentiation are reviewed, systematically providing ES protocols and their advantageous effects. Moreover, cartilage 3D modeling using cells in scaffolds/hydrogels under ES are observed, and recommendations on reporting about the use of ES in different studies are provided to ensure adequate consolidation of knowledge in the area of ES. This review brings novel insights into the further application of ES in in vitro studies, which are promising for further cartilage repair techniques.
Collapse
Affiliation(s)
- Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
| | - Paulius Bernotas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
| | - Vitalij Novickij
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, 08410 Vilnius, Lithuania
- Faculty of Electronics, High Magnetic Field Institute, Vilnius Gediminas Technical University, Plytines g. 27, 10105 Vilnius, Lithuania
| | - Aidas Alaburda
- Life Sciences Center, Institute of Biosciences, Vilnius University, Sauletekio al. 7, 10257 Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
- VilniusTech, Faculty of Fundamental Sciences, Sauletekio al. 11, 10223 Vilnius, Lithuania
| |
Collapse
|
2
|
Gao M, Liu X, Guo P, Wang J, Li J, Wang W, Stoddart MJ, Grad S, Li Z, Wu H, Li B, He Z, Zhou G, Liu S, Zhu W, Chen D, Zou X, Zhou Z. Deciphering postnatal limb development at single-cell resolution. iScience 2023; 26:105808. [PMID: 36619982 PMCID: PMC9813795 DOI: 10.1016/j.isci.2022.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/22/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The early postnatal limb developmental progression bridges embryonic and mature stages and mirrors the pathological remodeling of articular cartilage. However, compared with multitudinous research on embryonic limb development, the early postnatal stage seems relatively unnoticed. Here, a systematic work to portray the postnatal limb developmental landscape was carried out by characterization of 19,952 single cells from murine hindlimbs at 4 postnatal stages using single-cell RNA sequencing technique. By delineation of cell heterogeneity, the candidate progenitor sub-clusters marked by Cd34 and Ly6e were discovered in articular cartilage and enthesis, and three cellular developmental branches marked by Col10a1, Spp1, and Tnni2 were reflected in growth plate. The representative transcriptomes and developmental patterns were intensively explored, and the key regulation mechanisms as well as evolvement in osteoarthritis were discussed. Above all, these results expand horizons of postnatal limb developmental biology and reach the interconnections between limb development, remodeling, and regeneration.
Collapse
Affiliation(s)
- Manman Gao
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Sport Medicine, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen 518071, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Peng Guo
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jianmin Wang
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Junhong Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wentao Wang
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | | | - Sibylle Grad
- AO Research Institute Davos, Davos 7270, Switzerland
| | - Zhen Li
- AO Research Institute Davos, Davos 7270, Switzerland
| | - Huachuan Wu
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Baoliang Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongyuan He
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Guangqian Zhou
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen 518071, China
| | - Shaoyu Liu
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Weimin Zhu
- Department of Sport Medicine, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen 518071, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing 100035, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiyu Zhou
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Canon A, Roy L, Chevalier X, Giraudier S, Eymard F. Calcific tendinopathy: an unexpected side effect of tyrosine kinase inhibitor? Leuk Lymphoma 2022; 63:3175-3180. [PMID: 36054826 DOI: 10.1080/10428194.2022.2118538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Musculoskeletal (MSK) pains have been reported during TKI treatment or after its discontinuation in patients with chronic myeloid leukemia (CML). We hypothesized that MSK pains originate from calcific tendinopathy according to preliminary clinical observations. We conducted a retrospective study including CML patients divided into three groups: patients with MSK pain during TKI treatment; asymptomatic patients during TKI treatment; patients with MSK pain after TKI discontinuation. Patients with MSK pain were clinically evaluated, and the presence of calcific deposits was assessed in X-rays of both shoulders and pelvis. Forty-five patients were included; 14 described MSK pain during TKI treatment and 12 after TKI discontinuation. A diagnosis of rotator cuff tendinopathy was retained for 57.7% of patients and of gluteus tendinopathy in 19.2%. The prevalence of calcifications in shoulders and/or hips was 64.3% in symptomatic patients receiving TKIs, 63.2% in asymptomatic patients and 75.0% in patients with MSK pain after TKI treatment.
Collapse
Affiliation(s)
- Alice Canon
- Department of Rheumatology, AP-HP, Henri Mondor Hospital, Créteil, France
| | - Lydia Roy
- Department of Hematology, AP-HP, Henri Mondor Hospital, Créteil, France
| | - Xavier Chevalier
- Department of Rheumatology, AP-HP, Henri Mondor Hospital, Créteil, France
| | | | - Florent Eymard
- Department of Rheumatology, AP-HP, Henri Mondor Hospital, Créteil, France
| |
Collapse
|
4
|
Kaji DA, Montero AM, Patel R, Huang AH. Transcriptional profiling of mESC-derived tendon and fibrocartilage cell fate switch. Nat Commun 2021; 12:4208. [PMID: 34244516 PMCID: PMC8270956 DOI: 10.1038/s41467-021-24535-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The transcriptional regulators underlying induction and differentiation of dense connective tissues such as tendon and related fibrocartilaginous tissues (meniscus and annulus fibrosus) remain largely unknown. Using an iterative approach informed by developmental cues and single cell RNA sequencing (scRNA-seq), we establish directed differentiation models to generate tendon and fibrocartilage cells from mouse embryonic stem cells (mESCs) by activation of TGFβ and hedgehog pathways, achieving 90% induction efficiency. Transcriptional signatures of the mESC-derived cells recapitulate embryonic tendon and fibrocartilage signatures from the mouse tail. scRNA-seq further identify retinoic acid signaling as a critical regulator of cell fate switch between TGFβ-induced tendon and fibrocartilage lineages. Trajectory analysis by RNA sequencing define transcriptional modules underlying tendon and fibrocartilage fate induction and identify molecules associated with lineage-specific differentiation. Finally, we successfully generate 3-dimensional engineered tissues using these differentiation protocols and show activation of mechanotransduction markers with dynamic tensile loading. These findings provide a serum-free approach to generate tendon and fibrocartilage cells and tissues at high efficiency for modeling development and disease.
Collapse
Affiliation(s)
- Deepak A Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angela M Montero
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roosheel Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Martire D, Garnier S, Sagnol S, Bourret A, Marchal S, Chauvet N, Guérin A, Forgues D, Berrebi D, Chardot C, Bellaiche M, Rendu J, Kalfa N, Faure S, de Santa Barbara P. Phenotypic switch of smooth muscle cells in paediatric chronic intestinal pseudo-obstruction syndrome. J Cell Mol Med 2021; 25:4028-4039. [PMID: 33656779 PMCID: PMC8051695 DOI: 10.1111/jcmm.16367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Smooth Muscle Cells (SMC) are unique amongst all muscle cells in their capacity to modulate their phenotype. Indeed, SMCs do not terminally differentiate but instead harbour a remarkable capacity to dedifferentiate, switching between a quiescent contractile state and a highly proliferative and migratory phenotype, a quality often associated to SMC dysfunction. However, phenotypic plasticity remains poorly examined in the field of gastroenterology in particular in pathologies in which gut motor activity is impaired. Here, we assessed SMC status in biopsies of infants with chronic intestinal pseudo-obstruction (CIPO) syndrome, a life-threatening intestinal motility disorder. We showed that CIPO-SMCs harbour a decreased level of contractile markers. This phenotype is accompanied by an increase in Platelet-Derived Growth Factor Receptor-alpha (PDGFRA) expression. We showed that this modulation occurs without origin-related differences in CIPO circular and longitudinal-derived SMCs. As we characterized PDGFRA as a marker of digestive mesenchymal progenitors during embryogenesis, our results suggest a phenotypic switch of the CIPO-SMC towards an undifferentiated stage. The development of CIPO-SMC culture and the characterization of SMC phenotypic switch should enable us to design therapeutic approaches to promote SMC differentiation in CIPO.
Collapse
Affiliation(s)
- Delphine Martire
- PhyMedExp, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sarah Garnier
- PhyMedExp, Université de Montpellier, CNRS, INSERM, Montpellier, France.,Visceral Paediatric Surgery Unit, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Sébastien Sagnol
- PhyMedExp, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Annick Bourret
- PhyMedExp, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Stéphane Marchal
- PhyMedExp, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Norbert Chauvet
- PhyMedExp, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Amandine Guérin
- PhyMedExp, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Dominique Forgues
- Visceral Paediatric Surgery Unit, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Dominique Berrebi
- Department of Paediatric Gastroenterology, Assistance Publique Hôpitaux (APHP) Hospital Robert Debré, Paris, France
| | | | - Marc Bellaiche
- Department of Paediatric Gastroenterology, Assistance Publique Hôpitaux (APHP) Hospital Robert Debré, Paris, France
| | - John Rendu
- Centre Hospitalier Universitaire de Grenoble Alpes, Biochimie Génétique et Moléculaire, Grenoble, France
| | - Nicolas Kalfa
- Visceral Paediatric Surgery Unit, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Sandrine Faure
- PhyMedExp, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | | |
Collapse
|
6
|
Fowler DA, Larsson HCE. The tissues and regulatory pattern of limb chondrogenesis. Dev Biol 2020; 463:124-134. [PMID: 32417169 DOI: 10.1016/j.ydbio.2020.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Initial limb chondrogenesis offers the first differentiated tissues that resemble the mature skeletal anatomy. It is a developmental progression of three tissues. The limb begins with undifferentiated mesenchyme-1, some of which differentiates into condensations-2, and this tissue then transforms into cartilage-3. Each tissue is identified by physical characteristics of cell density, shape, and extracellular matrix composition. Tissue specific regimes of gene regulation underlie the diagnostic physical and chemical properties of these three tissues. These three tissue based regimes co-exist amid a background of other gene regulatory regimes within the same tissues and time-frame of limb development. The bio-molecular indicators of gene regulation reveal six identifiable patterns. Three of these patterns describe the unique bio-molecular indicators of each of the three tissues. A fourth pattern shares bio-molecular indicators between condensation and cartilage. Finally, a fifth pattern is composed of bio-molecular indicators that are found in undifferentiated mesenchyme prior to any condensation differentiation, then these bio-molecular indicators are upregulated in condensations and downregulated in undifferentiated mesenchyme. The undifferentiated mesenchyme that remains in between the condensations and cartilage, the interdigit, contains a unique set of bio-molecular indicators that exhibit dynamic behaviour during chondrogenesis and therefore argue for its own inclusion as a tissue in its own right and for more study into this process of differentiation.
Collapse
Affiliation(s)
- Donald A Fowler
- Redpath Museum, McGill University, 859 Sherbrooke St W, Montréal, QC, H3A 0C4, Canada; Department of Biology, McGill University, Stewart Biology Building, 1205 Docteur Penfield, Montréal, QC, H3A 1B1, Canada.
| | - Hans C E Larsson
- Redpath Museum, McGill University, 859 Sherbrooke St W, Montréal, QC, H3A 0C4, Canada.
| |
Collapse
|
7
|
Cheng B, Tu T, Shi X, Liu Y, Zhao Y, Zhao Y, Li Y, Chen H, Chen Y, Zhang M. A novel construct with biomechanical flexibility for articular cartilage regeneration. Stem Cell Res Ther 2019; 10:298. [PMID: 31547887 PMCID: PMC6757433 DOI: 10.1186/s13287-019-1399-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/13/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although tissue-engineered cartilage has been broadly studied, complete integration of regenerated cartilage with residual cartilage is still difficult for the inferior mechanical and biochemical feature of neocartilage. Chondrogenesis of mesenchymal stem cells can be induced by biophysical and biochemical factors. METHODS In this study, autologous platelet-rich fibrin (PRF) membrane was used as a growth factor-rich scaffold that may facilitate differentiation of the transplanted bone marrow mesenchymal stem cells (BMSCs). At the same time, hydrostatic pressure was adopted for pre-adjustment of the seed cells before transplantation that may promote the mechanical flexibility of neocartilage. RESULTS An in vitro study showed that the feasible hydrostatic pressure stimulation substantially promoted the chondrogenic potential of in vitro-cultured BMSC/PRF construct. In vivo results revealed that at every time point, the newborn tissues were the most favorable in the pressure-pretreated BMSC/PRF transplant group. Besides, the transplantation of feasible hydrostatic pressure-pretreated construct by BMSC sheet fragments and PRF granules could obviously improve the integration between the regenerated cartilage and host cartilage milieu, and thereby achieve boundaryless repair between the neocartilage and residual host cartilage tissue in rabbit temporomandibular joints. It could be concluded that feasible hydrostatic pressure may effectively promote the proliferation and chondrogenic differentiation of BMSCs in a BMSC/PRF construct. CONCLUSION This newly formed construct with biomechanical flexibility showed a superior capacity for cartilage regeneration by promoting the mechanical properties and integration of neocartilage.
Collapse
Affiliation(s)
- Baixiang Cheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Teng Tu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Xiao Shi
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Yanzheng Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Ying Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Yinhua Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Yijie Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Hui Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Yongjin Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China.
| | - Min Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
8
|
Lee GS, Kim MG, Kwon HJ. Electrical stimulation induces direct reprogramming of human dermal fibroblasts into hyaline chondrogenic cells. Biochem Biophys Res Commun 2019; 513:990-996. [PMID: 31005261 DOI: 10.1016/j.bbrc.2019.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/03/2019] [Indexed: 01/15/2023]
Abstract
The repair of articular cartilage needs a sufficient number of chondrocytes to replace the defect tissue. Direct reprogramming of fibroblasts into chondrocytes can provide a sufficient number of chondrocytes because fibroblasts can be expanded efficiently. Herein, we demonstrate for the first time that electrical stimulation can drive direct reprogramming of human dermal fibroblasts (HDFs) into hyaline chondrogenic cells. Our results shows that electrical stimulation drives condensation of HDFs and then enhances expression levels of chondrogenic markers, such as type II collagen, aggrecan, and Sox9, and decreases type I collagen levels without the addition of exogenous growth factors or gene transduction. Electrical stimulation-directly reprogrammed chondrogenic cells showed the normal karyotype. It was also found that electrical stimulation increased the secretion levels of TGF-beta1, PDGF-AA, and IGFBP-2, 3. These findings may contribute to not only novel approach of direct reprogramming but also cell therapy for cartilage regeneration.
Collapse
Affiliation(s)
- Gyu Seok Lee
- Department of Physical Therapy and Rehabilitation, College of Health Science, Eulji University, Seongnam, Republic of Korea
| | - Min Gu Kim
- Department of Physical Therapy and Rehabilitation, College of Health Science, Eulji University, Seongnam, Republic of Korea
| | - Hyuck Joon Kwon
- Department of Physical Therapy and Rehabilitation, College of Health Science, Eulji University, Seongnam, Republic of Korea.
| |
Collapse
|
9
|
Goldhamer DJ, Lees-Shepard JB. Response to comment on 'Palovarotene reduces heterotopic ossification in juvenile FOP mice but exhibits pronounced skeletal toxicity'. eLife 2019; 8:43928. [PMID: 30698142 PMCID: PMC6353591 DOI: 10.7554/elife.43928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/09/2019] [Indexed: 01/06/2023] Open
Abstract
We respond to concerns expressed by Pacifici and Shore (2019) about a recent paper (Lees-Shepard and Goldhamer, 2018a) in which we reported that the drug palovarotene can have severe side effects in a mouse model of fibrodysplasia ossificans progressiva.
Collapse
Affiliation(s)
- David J Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States
| | - John B Lees-Shepard
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States
| |
Collapse
|
10
|
Minato Y, Kuwahara-Otani S, Maeda S, Yagi H. Platelet-derived growth factor receptor α gene is regulated by multiple first exons. Biochem Biophys Res Commun 2019; 510:489-494. [PMID: 30654933 DOI: 10.1016/j.bbrc.2019.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
Transcription of the platelet-derived growth factor receptor α (PDGFRA/Pdgfra) gene is considered to be precisely regulated. We have previously reported that the PDGFRA/Pdgfra gene is regulated by a dual promoter system in human and mouse, in which a novel PDGFRA/Pdgfra transcript has a first exon (exon 1β) different from that of the canonical PDGFRA/Pdgfra transcript (exon 1α). To elucidate the function of each transcript, we first investigated the contribution of different PDGFRA transcripts to final protein levels. Notably, knockdown experiments suggested the existence of other PDGFRA transcripts, and we identified five additional first exons (exons 1γ, 1δ, 1ε, 1ζ, and 1η) in intron 1 in both the human and mouse genes. The first exons of the mouse Pdgfra gene showed unique expression patterns: exon 1α was broadly expressed; exon 1β was highly expressed in embryos; exon 1γ was observed at relatively high levels in the adult central nervous system (CNS); and exon 1δ was expressed at relatively high levels in the developing CNS. Furthermore, in silico analysis of common putative transcription factor binding sites in the upstream regions of the first exons of both human and mouse PDGFRA/Pdgfra genes predicted common (such as Sry, Mzf1, and Cdx) and unique (such as Sox5, Lmo2, and GATA) transcription factors. Our findings show the diversity of the transcriptional regulation of the PDGFRA/Pdgfra gene.
Collapse
Affiliation(s)
- Yusuke Minato
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Sachi Kuwahara-Otani
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Seishi Maeda
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hideshi Yagi
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
11
|
de Kroon LMG, van den Akker GGH, Brachvogel B, Narcisi R, Belluoccio D, Jenner F, Bateman JF, Little CB, Brama PAJ, Blaney Davidson EN, van der Kraan PM, van Osch GJVM. Identification of TGFβ-related genes regulated in murine osteoarthritis and chondrocyte hypertrophy by comparison of multiple microarray datasets. Bone 2018; 116:67-77. [PMID: 30010080 DOI: 10.1016/j.bone.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a joint disease characterized by progressive degeneration of articular cartilage. Some features of OA, including chondrocyte hypertrophy and focal calcification of articular cartilage, resemble the endochondral ossification processes. Alterations in transforming growth factor β (TGFβ) signaling have been associated with OA as well as with chondrocyte hypertrophy. Our aim was to identify novel candidate genes implicated in chondrocyte hypertrophy during OA pathogenesis by determining which TGFβ-related genes are regulated during murine OA and endochondral ossification. METHODS A list of 580 TGFβ-related genes, including TGFβ signaling pathway components and TGFβ-target genes, was generated. Regulation of these TGFβ-related genes was assessed in a microarray of murine OA cartilage: 1, 2 and 6 weeks after destabilization of the medial meniscus (DMM). Subsequently, genes regulated in the DMM model were studied in two independent murine microarray datasets on endochondral ossification: the growth plate and transient embryonic cartilage (joint development). RESULTS A total of 106 TGFβ-related genes were differentially expressed in articular cartilage of DMM-operated mice compared to sham-control. From these genes, 43 were similarly regulated during chondrocyte hypertrophy in the growth plate or embryonic joint development. Among these 43 genes, 18 genes have already been associated with OA. The remaining 25 genes were considered as novel candidate genes involved in OA pathogenesis and endochondral ossification. In supplementary data of published human OA microarrays we found indications that 15 of the 25 novel genes are indeed regulated in articular cartilage of human OA patients. CONCLUSION By focusing on TGFβ-related genes during OA and chondrocyte hypertrophy in mice, we identified 18 known and 25 new candidate genes potentially implicated in phenotypical changes in chondrocytes leading to OA. We propose that 15 of these candidates warrant further investigation as therapeutic target for OA as they are also regulated in articular cartilage of OA patients.
Collapse
Affiliation(s)
- Laurie M G de Kroon
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Guus G H van den Akker
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Bent Brachvogel
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne, Germany.
| | - Roberto Narcisi
- Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Daniele Belluoccio
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Florien Jenner
- Equine University Hospital, University of Veterinary Medicine, Vienna, Austria.
| | - John F Bateman
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales, Australia.
| | - Pieter A J Brama
- Veterinary Clinical Sciences, School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | - Esmeralda N Blaney Davidson
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Peter M van der Kraan
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Gerjo J V M van Osch
- Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Cassano JM, Kennedy JG, Ross KA, Fraser EJ, Goodale MB, Fortier LA. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc 2018; 26:333-342. [PMID: 26831858 DOI: 10.1007/s00167-016-3981-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE Bone marrow concentrate (BMC) and platelet-rich plasma (PRP) are used extensively in regenerative medicine. The aim of this study was to determine differences in the cellular composition and cytokine concentrations of BMC and PRP and to compare two commercial BMC systems in the same patient cohort. METHODS Patients (29) undergoing orthopaedic surgery were enrolled. Bone marrow aspirate (BMA) was processed to generate BMC from two commercial systems (BMC-A and BMC-B). Blood was obtained to make PRP utilizing the same system as BMC-A. Bone marrow-derived samples were cultured to measure colony-forming units, and flow cytometry was performed to assess mesenchymal stem cell (MSC) markers. Cellular concentrations were assessed for all samples. Catabolic cytokines and growth factors important for cartilage repair were measured using multiplex ELISA. RESULTS Colony-forming units were increased in both BMCs compared to BMA (p < 0.0001). Surface markers were consistent with MSCs. Platelet counts were not significantly different between BMC-A and PRP, but there were differences in leucocyte concentrations. TGF-β1 and PDGF were not different between BMC-A and PRP. IL-1ra concentrations were greater (p = 0.0018) in BMC-A samples (13,432 pg/mL) than in PRP (588 pg/mL). The IL-1ra/IL-1β ratio in all BMC samples was above the value reported to inhibit IL-1β. CONCLUSIONS The bioactive factors examined in this study have differing clinical effects on musculoskeletal tissue. Differences in the cellular and cytokine composition between PRP and BMC and between BMC systems should be taken into consideration by the clinician when choosing a biologic for therapeutic application. LEVEL OF EVIDENCE Clinical, Level II.
Collapse
Affiliation(s)
- Jennifer M Cassano
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, VMC C3-181, Ithaca, NY, 14853, USA
| | - John G Kennedy
- Department of Foot and Ankle Surgery, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Keir A Ross
- Department of Foot and Ankle Surgery, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Ethan J Fraser
- Department of Foot and Ankle Surgery, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Margaret B Goodale
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, VMC C3-181, Ithaca, NY, 14853, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, VMC C3-181, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
14
|
Mesenchymal Stem/Stromal Cells seeded on cartilaginous endplates promote Intervertebral Disc Regeneration through Extracellular Matrix Remodeling. Sci Rep 2016; 6:33836. [PMID: 27652931 PMCID: PMC5031983 DOI: 10.1038/srep33836] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is characterized by significant biochemical and histomorphological alterations, such as loss of extracellular matrix (ECM) integrity, by abnormal synthesis of ECM main components, resultant from altered anabolic/catabolic cell activities and cell death. Mesenchymal Stem/Stromal Cell (MSC) migration towards degenerated IVD may represent a viable strategy to promote tissue repair/regeneration. Here, human MSCs (hMSCs) were seeded on top of cartilaginous endplates (CEP) of nucleotomized IVDs of bovine origin and cultured ex vivo up to 3 weeks. hMSCs migrated from CEP towards the lesion area and significantly increased expression of collagen type II and aggrecan in IVD, namely in the nucleus pulposus. Concomitantly, hMSCs stimulated the production of growth factors, promoters of ECM synthesis, such as fibroblast growth factor 6 (FGF-6) and 7 (FGF-7), platelet-derived growth factor receptor (PDGF-R), granulocyte-macrophage colony-stimulating factor (GM-CSF) and insulin-like growth factor 1 receptor (IGF-1sR). Overall, our results demonstrate that CEP can be an alternative route to MSC-based therapies for IVD regeneration through ECM remodeling, thus opening new perspectives on endogenous repair capacity through MSC recruitment.
Collapse
|
15
|
Holton J, Imam M, Ward J, Snow M. The Basic Science of Bone Marrow Aspirate Concentrate in Chondral Injuries. Orthop Rev (Pavia) 2016; 8:6659. [PMID: 27761221 PMCID: PMC5066111 DOI: 10.4081/or.2016.6659] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 12/13/2022] Open
Abstract
There has been great interest in bone marrow aspirate concentrate (BMAC) as a cost effective method in delivering mesenchymal stem cells (MSCs) to aid in the repair and regeneration of cartilage defects. Alongside MSCs, BMAC contains a range of growth factors and cytokines to support cell growth following injury. However, there is paucity of information relating to the basic science underlying BMAC and its exact biological role in supporting the growth and regeneration of chondrocytes. The focus of this review is the basic science underlying BMAC in relation to chondral damage and regeneration.
Collapse
Affiliation(s)
- James Holton
- Royal Orthopedic Hospital, The Woodlands, Birmingham, West Midlands, UK
| | - Mohamed Imam
- Royal Orthopedic Hospital, The Woodlands, Birmingham, West Midlands, UK
- Department of Orthopedics, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Jonathan Ward
- Royal Orthopedic Hospital, The Woodlands, Birmingham, West Midlands, UK
| | - Martyn Snow
- Royal Orthopedic Hospital, The Woodlands, Birmingham, West Midlands, UK
| |
Collapse
|
16
|
Agarwal S, Loder S, Brownley C, Cholok D, Mangiavini L, Li J, Breuler C, Sung HH, Li S, Ranganathan K, Peterson J, Tompkins R, Herndon D, Xiao W, Jumlongras D, Olsen BR, Davis TA, Mishina Y, Schipani E, Levi B. Inhibition of Hif1α prevents both trauma-induced and genetic heterotopic ossification. Proc Natl Acad Sci U S A 2016; 113:E338-47. [PMID: 26721400 PMCID: PMC4725488 DOI: 10.1073/pnas.1515397113] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pathologic extraskeletal bone formation, or heterotopic ossification (HO), occurs following mechanical trauma, burns, orthopedic operations, and in patients with hyperactivating mutations of the type I bone morphogenetic protein receptor ACVR1 (Activin type 1 receptor). Extraskeletal bone forms through an endochondral process with a cartilage intermediary prompting the hypothesis that hypoxic signaling present during cartilage formation drives HO development and that HO precursor cells derive from a mesenchymal lineage as defined by Paired related homeobox 1 (Prx). Here we demonstrate that Hypoxia inducible factor-1α (Hif1α), a key mediator of cellular adaptation to hypoxia, is highly expressed and active in three separate mouse models: trauma-induced, genetic, and a hybrid model of genetic and trauma-induced HO. In each of these models, Hif1α expression coincides with the expression of master transcription factor of cartilage, Sox9 [(sex determining region Y)-box 9]. Pharmacologic inhibition of Hif1α using PX-478 or rapamycin significantly decreased or inhibited extraskeletal bone formation. Importantly, de novo soft-tissue HO was eliminated or significantly diminished in treated mice. Lineage-tracing mice demonstrate that cells forming HO belong to the Prx lineage. Burn/tenotomy performed in lineage-specific Hif1α knockout mice (Prx-Cre/Hif1α(fl:fl)) resulted in substantially decreased HO, and again lack of de novo soft-tissue HO. Genetic loss of Hif1α in mesenchymal cells marked by Prx-cre prevents the formation of the mesenchymal condensations as shown by routine histology and immunostaining for Sox9 and PDGFRα. Pharmacologic inhibition of Hif1α had a similar effect on mesenchymal condensation development. Our findings indicate that Hif1α represents a promising target to prevent and treat pathologic extraskeletal bone.
Collapse
MESH Headings
- Activin Receptors, Type I/metabolism
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Animals
- Burns/complications
- Burns/genetics
- Chondrogenesis/drug effects
- Chondrogenesis/genetics
- Disease Models, Animal
- Gene Regulatory Networks/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Integrases/metabolism
- Luminescent Measurements
- Mesenchymal Stem Cells/drug effects
- Mice, Knockout
- Models, Biological
- Mustard Compounds/pharmacology
- Ossification, Heterotopic/diagnostic imaging
- Ossification, Heterotopic/drug therapy
- Ossification, Heterotopic/genetics
- Ossification, Heterotopic/prevention & control
- Phenylpropionates/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- SOX9 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Sirolimus/pharmacology
- Tendons/drug effects
- Tendons/pathology
- Tendons/surgery
- Tenotomy
- Up-Regulation/drug effects
- Wound Healing/drug effects
- Wounds and Injuries/complications
- Wounds and Injuries/pathology
- X-Ray Microtomography
Collapse
Affiliation(s)
- Shailesh Agarwal
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Shawn Loder
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Cameron Brownley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - David Cholok
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Laura Mangiavini
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109
| | - John Li
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | | | - Hsiao H Sung
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Shuli Li
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | | | - Joshua Peterson
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Ronald Tompkins
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114
| | - David Herndon
- Department of Surgery, Shriners Hospital for Children and University of Texas Medical Branch, Galveston, TX 77555
| | - Wenzhong Xiao
- Department of Surgery, Genome Technology Center, Stanford University, Palo Alto, CA 94305
| | - Dolrudee Jumlongras
- Department of Developmental Biology, Harvard Dental School, Boston, MA 02115
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard Dental School, Boston, MA 02115
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD 20910
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Ernestina Schipani
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109;
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
17
|
Kabiri A, Esfandiari E, Esmaeili A, Hashemibeni B, Pourazar A, Mardani M. Platelet-rich plasma application in chondrogenesis. Adv Biomed Res 2014; 3:138. [PMID: 25161985 PMCID: PMC4139981 DOI: 10.4103/2277-9175.135156] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 03/10/2013] [Indexed: 01/15/2023] Open
Abstract
Platelet-rich plasma (PRP), an autologous derivative of whole blood, has been recently used in surgical treatment. PRP contains growth factors including transforming growth factor-β (TGF-β), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) and also bioactive proteins that influence the healing of tendon, ligament, muscle, and bone. This article describes the current clinical applications of PRP in chondrogenesis. This study reviews and evaluates the studies that have been published in the field of chondrogenesis. All aspects of using PRP in chondrogenesis are reviewed.
Collapse
Affiliation(s)
- Azadeh Kabiri
- Department of Anatomical Sciences, Paramedical School, Guilan University of Medical Sciences, Langeroud, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Biology, Molecular and Developmental Division, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Pourazar
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mardani
- Department of Anatomical Sciences and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Wu CL, Diekman BO, Jain D, Guilak F. Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids. Int J Obes (Lond) 2012; 37:1079-87. [PMID: 23164698 PMCID: PMC3582830 DOI: 10.1038/ijo.2012.171] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/30/2012] [Accepted: 09/09/2012] [Indexed: 02/06/2023]
Abstract
Introduction Obesity is a major risk factor for several musculoskeletal conditions that are characterized by an imbalance of tissue remodeling. Adult stem cells are closely associated with the remodeling and potential repair of several mesodermally derived tissues such as fat, bone, and cartilage. We hypothesized that obesity would alter the frequency, proliferation, multipotency, and immunophenotype of adult stem cells from a variety of tissues. Materials and Methods Bone marrow-derived mesenchymal stem cells (MSCs), subcutaneous adipose-derived stem cells (sqASCs), and infrapatellar fat pad-derived stem cells (IFP cells) were isolated from lean and high-fat diet induced obese mice, and their cellular properties were examined. To test the hypothesis that changes in stem cell properties were due to the increased systemic levels of free fatty acids (FFAs), we further investigated the effects of FFAs on lean stem cells in vitro. Results Obese mice showed a trend toward increased prevalence of MSCs and sqASCs in the stromal tissues. While no significant differences in cell proliferation were observed in vitro, the differentiation potential of all types of stem cells was altered by obesity. MSCs from obese mice demonstrated decreased adipogenic, osteogenic, and chondrogenic potential. Obese sqASCs and IFP cells showed increased adipogenic and osteogenic differentiation, but decreased chondrogenic ability. Obese MSCs also showed decreased CD105 and increased PDGFRα expression, consistent with decreased chondrogenic potential. FFA treatment of lean stem cells significantly altered their multipotency but did not completely recapitulate the properties of obese stem cells. Conclusions These findings support the hypothesis that obesity alters the properties of adult stem cells in a manner that depends on the cell source. These effects may be regulated in part by increased levels of FFAs, but may involve other obesity-associated cytokines. These findings contribute to our understanding of mesenchymal tissue remodeling with obesity, as well as the development of autologous stem cell therapies for obese patients.
Collapse
Affiliation(s)
- C-L Wu
- Departments of Orthopaedic Surgery and Biomedical Engineering, Duke University Medical Center, Durham, NC, USA
| | | | | | | |
Collapse
|
19
|
Zhao J, Zhang P, Qin L, Pan XH. Hypoxia is essential for bone-tendon junction healing: the molecular biological evidence. INTERNATIONAL ORTHOPAEDICS 2010; 35:925-8. [PMID: 21127862 DOI: 10.1007/s00264-010-1157-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 10/24/2010] [Accepted: 10/30/2010] [Indexed: 11/29/2022]
Abstract
Bone-tendon junction (BTJ) injury is difficult to cure due to its special anatomical structure. Most methods applied for BTJ injury treatment cannot lead to the perfect restoration of the fibrocartilage zone and perfect vascular regeneration, which are two important facets of BTJ reconstruction. Based on current research, hypoxia, which has been discovered to induce chondrogenesis and angiogenesis in vivo, plays an essential role in the tissue repair process. Consequently, it is reasonable to confirm that a hypoxic environment is the prerequisite condition to obtain physiological healing of BTJ injury. In this paper, the potential relationship between hypoxia and BTJ healing is discussed. Moreover, an operation model and possible drug application to obtain hypoxic conditions are delineated.
Collapse
Affiliation(s)
- Jian Zhao
- Orthopedic Department, Affiliated Hospital of Nantong University, Xisi Road 20, 226001 Nantong City, China
| | | | | | | |
Collapse
|
20
|
Abstract
Normal development and function of the testis are controlled by endocrine and paracrine signaling pathways. Platelet-derived growth factors (PDGFs) are growth factors that mediate epithelial-mesenchymal interactions in various tissues during normal and abnormal processes such as embryo development, wound healing, tissue fibrosis, vascular disorders, and cancer. PDGFs and their receptors (PDGFRs) have emerged as key players in the regulation of embryonic and postnatal development of the male gonad. Cells that express PDGFs and PDGFRs are found in the testis of mammals, birds, and reptiles, and their distribution, regulation, and function vary across species. Testicular PDGFs and PDGFRs appear after the process of sex determination in animals that use either genetic sex determination or environmental sex determination. Sertoli cells are the main PDGF-producing cells during the entire period of prenatal and postnatal testis development. Fetal Leydig cells and their precursors, adult Leydig cells and their stem cell precursors, peritubular myoid cells, cells of the blood vessels, and gonocytes are the testicular cell types expressing PDGFRs. Genetically targeted deletions of PDGFs, PDGFRs, PDGFR target genes or pharmacological silencing of PDGF signaling produce profound damage on the target cells that, depending on the developmental period, are under direct or indirect control of PDGF. PDGF signaling may also serve diverse functions outside of the realm of testis development, including testicular tumors. In this review, we provide a framework of the current knowledge to clarify the useful information regarding how PDGFs function in individual cells of the testis.
Collapse
Affiliation(s)
- Sabrina Basciani
- Department of Medical Physiopathology, I Faculty of Medicine, University of Rome La Sapienza, Policlinico Umberto I, 00161 Rome, Italy
| | | | | | | |
Collapse
|
21
|
Gelse K, Brem M, Klinger P, Hess A, Swoboda B, Hennig F, Olk A. Paracrine effect of transplanted rib chondrocyte spheroids supports formation of secondary cartilage repair tissue. J Orthop Res 2009; 27:1216-25. [PMID: 19274742 DOI: 10.1002/jor.20874] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The study's objective was to investigate if transplanted chondrocyte or periosteal cell spheroids have influence on ingrowing bone marrow-derived cells in a novel cartilage repair approach in miniature pigs. Autologous rib chondrocytes or periosteal cells were cultured as spheroids and press-fitted into cavities that were milled into large, superficial chondral lesions of the patellar joint surface. Within the milled cavities, the subchondral bone plate was either penetrated or left intact (full-thickness or partial-thickness cavities). The transplantation of chondrocyte spheroids into full-thickness cavities induced the formation of additional secondary repair cartilage that exceeded the original volume of the transplanted spheroids. The resulting continuous tissue was rich in proteoglycans and stained positive for type II collagen. Cell labeling revealed that secondarily invading repair cells did not originate from transplanted spheroids, but rather from arroded bone marrow. However, secondary invasion of repair cells was less pronounced following transplantation of periosteal cells and absent in partial-thickness cavities. According to in vitro analyses, these observations could be ascribed to the ability of chondrocyte spheroids to secrete relevant amounts of bone morphogenetic protein-2, which was not detected for periosteal cells. Transplanted chondrocyte spheroids exert a dual function: they provide cells for the repair tissue and have a stimulatory paracrine activity, which promotes ingrowth and chondrogenesis of bone marrow-derived cells.
Collapse
Affiliation(s)
- Kolja Gelse
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Quintana L, Muiños TF, Genove E, Del Mar Olmos M, Borrós S, Semino CE. Early tissue patterning recreated by mouse embryonic fibroblasts in a three-dimensional environment. Tissue Eng Part A 2009; 15:45-54. [PMID: 19025338 DOI: 10.1089/ten.tea.2007.0296] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular self-organization studies have been mainly focused on models such as Volvox, the slime mold Dictyostelium discoideum, and animal (metazoan) embryos. Moreover, animal tissues undergoing regeneration also exhibit properties of embryonic systems such as the self-organization process that rebuilds tissue complexity and function. We speculated that the recreation in vitro of the biological, biophysical, and biomechanical conditions similar to those of a regenerative milieu could elicit the intrinsic capacity of differentiated cells to proceed to the development of a tissue-like structure. Here we show that, when primary mouse embryonic fibroblasts are cultured in a soft nanofiber scaffold, they establish a cellular network that causes an organized cell contraction,proliferation, and migration that ends in the formation of a symmetrically bilateral structure with a distinct central axis. A subset of mesodermal genes (brachyury, Sox9, Runx2) is upregulated during this morphogenetic process. The expression of brachyury was localized first at the central axis, extending then to both sides of the structure. The spontaneous formation of cartilage-like tissue mainly at the paraxial zone followed expression ofSox9 and Runx2. Because cellular self-organization is an intrinsic property of the tissues undergoing development,this model could lead to new ways to consider tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lluís Quintana
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
23
|
Hoben GM, Willard VP, Athanasiou KA. Fibrochondrogenesis of hESCs: growth factor combinations and cocultures. Stem Cells Dev 2009; 18:283-92. [PMID: 18454697 DOI: 10.1089/scd.2008.0024] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The successful differentiation of human embryonic stem cells (hESCs) to fibrochondrocyte-like cells and characterization of these differentiated cells is a critical step toward tissue engineering of musculoskeletal fibrocartilages (e.g., knee meniscus, temporomandibular joint disc, and intervertebral disc). In this study, growth factors and primary cell cocultures were applied to hESC embryoid bodies (EBs) for 3 weeks and evaluated for their effect on the synthesis of critical fibrocartilage matrix components: glycosaminoglycans (GAG) and collagens (types I, II, and VI). Changes in surface markers (CD105, CD44, SSEA, PDGFR alpha) after the differentiation treatments were also analyzed. The study was conducted in three phases: (1) examination of growth factors (TGF-beta 3, BMP-2, BMP-4, BMP-6, PDGF-BB, sonic hedgehog protein); (2) comparison of two cocultures (primary chondrocytes or fibrochondrocytes); and (3) the combination of the most effective growth factor and coculture regimen. TGF-beta 3 with BMP-4 yielded EBs positive for collagens I, II, and VI, with up to 6.7- and 4.8-fold increases in GAG and collagen, respectively. Analysis of cell surface markers showed a significant increase in CD44 with the TGF-beta 3 + BMP-4 treatment compared to the controls. Coculture with fibrochondrocytes resulted in up to a 9.8-fold increase in collagen II production. The combination of the growth factors BMP-4 + TGF-beta 3 with the fibrochondrocyte coculture led to an increase in cell proliferation and GAG production compared to either treatment alone. This study determined two powerful treatments for inducing fibrocartilaginous differentiation of hESCs and provides a foundation for using flow cytometry to purify these differentiated cells.
Collapse
Affiliation(s)
- Gwendolyn M Hoben
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
24
|
Asanbaeva A, Masuda K, Thonar EJMA, Klisch SM, Sah RL. Regulation of immature cartilage growth by IGF-I, TGF-beta1, BMP-7, and PDGF-AB: role of metabolic balance between fixed charge and collagen network. Biomech Model Mechanobiol 2008; 7:263-76. [PMID: 17762943 PMCID: PMC2704288 DOI: 10.1007/s10237-007-0096-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 04/29/2007] [Indexed: 12/17/2022]
Abstract
Cartilage growth may involve alterations in the balance between the swelling tendency of proteoglycans and the restraining function of the collagen network. Growth factors, including IGF-I, TGF-beta1, BMP-7, and PDGF-AB, regulate chondrocyte metabolism and, consequently, may regulate cartilage growth. Immature bovine articular cartilage explants from the superficial and middle zones were incubated for 13 days in basal medium or medium supplemented with serum, IGF-I, TGF-beta1, BMP-7, or PDGF-AB. Variations in tissue size, accumulation of proteoglycan and collagen, and tensile properties were assessed. The inclusion of serum, IGF-I, or BMP-7 resulted in expansive tissue growth, stimulation of proteoglycan deposition but not of collagen, and a diminution of tensile integrity. The regulation of cartilage metabolism by TGF-beta1 resulted in tissue homeostasis, with maintenance of size, composition, and function. Incubation in basal medium or with PDGF-AB resulted in small volumetric and compositional changes, but a marked decrease in tensile integrity. These results demonstrate that the phenotype of cartilage growth, and the associated balance between proteoglycan content and integrity of the collagen network, is regulated differentially by certain growth factors.
Collapse
Affiliation(s)
- Anna Asanbaeva
- Department of Bioengineering and Whitaker Institute of Biomedical Engineering, University of California-San Diego, 9500 Gilman Dr., Mail Code 0412, La Jolla, CA 92093-0412, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) have served as prototypes for growth factor and receptor tyrosine kinase function for more than 25 years. Studies of PDGFs and PDGFRs in animal development have revealed roles for PDGFR-alpha signaling in gastrulation and in the development of the cranial and cardiac neural crest, gonads, lung, intestine, skin, CNS, and skeleton. Similarly, roles for PDGFR-beta signaling have been established in blood vessel formation and early hematopoiesis. PDGF signaling is implicated in a range of diseases. Autocrine activation of PDGF signaling pathways is involved in certain gliomas, sarcomas, and leukemias. Paracrine PDGF signaling is commonly observed in epithelial cancers, where it triggers stromal recruitment and may be involved in epithelial-mesenchymal transition, thereby affecting tumor growth, angiogenesis, invasion, and metastasis. PDGFs drive pathological mesenchymal responses in vascular disorders such as atherosclerosis, restenosis, pulmonary hypertension, and retinal diseases, as well as in fibrotic diseases, including pulmonary fibrosis, liver cirrhosis, scleroderma, glomerulosclerosis, and cardiac fibrosis. We review basic aspects of the PDGF ligands and receptors, their developmental and pathological functions, principles of their pharmacological inhibition, and results using PDGF pathway-inhibitory or stimulatory drugs in preclinical and clinical contexts.
Collapse
|
26
|
Abstract
Once articular cartilage is injured, it has a very limited capacity for self repair. Although current surgical therapeutic procedures for cartilage repair are clinically useful, they cannot restore a normal articular surface. Current research offers a growing number of bioactive reagents, including proteins and nucleic acids, that may be used to augment various aspects of the repair process. As these agents are difficult to administer effectively, gene-transfer approaches are being developed to provide their sustained synthesis at sites of repair. To augment regeneration of articular cartilage, therapeutic genes can be delivered to the synovium or directly to the cartilage lesion. Gene delivery to the cells of the synovial lining is generally considered more suitable for chondroprotective approaches, based on the expression of anti-inflammatory mediators. Gene transfer targeted at cartilage defects can be achieved by either direct vector administration to cells located at or surrounding the defects, or by transplantation of genetically modified chondrogenic cells into the defect. Several studies have shown that exogenous cDNAs encoding growth factors can be delivered locally to sites of cartilage damage, where they are expressed at therapeutically relevant levels. Furthermore, data is beginning to emerge indicating that efficient delivery and expression of these genes is capable of influencing a repair response toward the synthesis of a more hyaline cartilage repair tissue in vivo. This review presents the current status of gene therapy for cartilage healing and highlights some of the remaining challenges.
Collapse
Affiliation(s)
- Andre F. Steinert
- Orthopaedic Center for Musculoskeletal Research König-Ludwig-Haus, Julius-Maximilians-University, Würzburg, Germany
| | - Ulrich Nöth
- Orthopaedic Center for Musculoskeletal Research König-Ludwig-Haus, Julius-Maximilians-University, Würzburg, Germany
| | - Rocky S. Tuan
- Cartilage Biology and Orthopaedics Branch National Institute of Arthritis, and Musculoskeletal and Skin Diseases National Institutes of Health, Department of Health and Human Services Bethesda, MD, U.S.A
| |
Collapse
|
27
|
Tozer S, Bonnin MA, Relaix F, Di Savino S, García-Villalba P, Coumailleau P, Duprez D. Involvement of vessels and PDGFB in muscle splitting during chick limb development. Development 2007; 134:2579-91. [PMID: 17553906 DOI: 10.1242/dev.02867] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Muscle formation and vascular assembly during embryonic development are usually considered separately. In this paper, we investigate the relationship between the vasculature and muscles during limb bud development. We show that endothelial cells are detected in limb regions before muscle cells and can organize themselves in space in the absence of muscles. In chick limbs, endothelial cells are detected in the future zones of muscle cleavage, delineating the cleavage pattern of muscle masses. We therefore perturbed vascular assembly in chick limbs by overexpressing VEGFA and demonstrated that ectopic blood vessels inhibit muscle formation, while promoting connective tissue. Conversely, local inhibition of vessel formation using a soluble form of VEGFR1 leads to muscle fusion. The endogenous location of endothelial cells in the future muscle cleavage zones and the inverse correlation between blood vessels and muscle suggests that vessels are involved in the muscle splitting process. We also identify the secreted factor PDGFB (expressed in endothelial cells) as a putative molecular candidate mediating the muscle-inhibiting and connective tissue-promoting functions of blood vessels. Finally, we propose that PDGFB promotes the production of extracellular matrix and attracts connective tissue cells to the future splitting site, allowing separation of the muscle masses during the splitting process.
Collapse
Affiliation(s)
- Samuel Tozer
- Biologie du Développement, CNRS, UMR 7622, Université P. et M. Curie, 9 Quai Saint-Bernard, Bât. C, 6 E, Case 24, 75252 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Koay EJ, Hoben GMB, Athanasiou KA. Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 2007; 25:2183-90. [PMID: 17540854 DOI: 10.1634/stemcells.2007-0105] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study describes the development and application of a novel strategy to tissue engineer musculoskeletal cartilages with human embryonic stem cells (hESCs). This work expands the presently limited understanding of how to chondrogenically differentiate hESCs through the use of chondrogenic medium alone (CM) or CM with two growth factor regimens: transforming growth factor (TGF)-beta3 followed by TGF-beta1 plus insulin-like growth factor (IGF)-I or TGF-beta3 followed by bone morphogenic protein (BMP)-2. It also extends the use of the resulting chondrogenically differentiated cells for cartilage tissue engineering through a scaffoldless approach called self-assembly, which was conducted in two modes: with (a) embryoid bodies (EBs) or (b) a suspension of cells enzymatically dissociated from the EBs. Cells from two of the differentiation conditions (CM alone and TGF-beta3 followed by BMP-2) produced fibrocartilage-like constructs with high collagen I content, low collagen II content, relatively high total collagen content (up to 24% by dry weight), low sulfated glycosaminoglycan content (approximately 4% by dry weight), and tensile properties on the order of megapascals. In contrast, hESCs treated with TGF-beta3 followed by TGF-beta1 + IGF-I produced constructs with no collagen I. Results demonstrated significant differences among the differentiation conditions in terms of other biochemical and biomechanical properties of the self-assembled constructs, suggesting that distinct growth factor regimens differentially modulate the potential of the cells to produce cartilage. Furthermore, this work shows that self-assembly of cells obtained by enzymatic dissociation of EBs is superior to self-assembly of EBs. Overall, the results of this study raise the possibility of manipulating the characteristics of hESC-generated tissue toward specific musculoskeletal cartilage applications.
Collapse
Affiliation(s)
- Eugene J Koay
- Rice University, Department of Bioengineering, Houston, Texas 77251-1892, USA
| | | | | |
Collapse
|
29
|
Ozolek JA, Carrau R, Barnes EL, Hunt JL. Nasal chondromesenchymal hamartoma in older children and adults: series and immunohistochemical analysis. Arch Pathol Lab Med 2006; 129:1444-50. [PMID: 16253025 DOI: 10.5858/2005-129-1444-nchioc] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Nasal chondromesenchymal hamartoma is a benign mass lesion of the nasal cavity predominantly described in young infants. These unusual lesions are composed of a proliferation of mesenchymal and cartilaginous elements. Their pathogenesis is unknown, but they may be derived from embryologic rests. To our knowledge, only 1 case in an older child has been reported, and no cases have been reported in adults. OBJECTIVE To report 4 cases of nasal chondromesenchymal hamartoma occurring in older children and adults, including immunohistochemical analysis of these unusual lesions. DESIGN Cases identified from our archives were examined to confirm the diagnosis of nasal chondromesenchymal hamartoma. Immunohistochemical analysis was performed using a panel of antibodies (epithelial membrane antigen, smooth muscle actin, all muscle actin, cytokeratin, S100, and KP1) to evaluate for epithelial, smooth muscle, neural, chondroid, and histiocytic differentiation. RESULTS Four cases of nasal chondromesenchymal hamartoma in patients of 11, 69, 17, and 25 years of age demonstrated histologic evidence of mesenchymal and cartilaginous elements underlying a chronically inflamed respiratory mucosa. Bony and adipose elements and rare glandular elements were interspersed. Cartilaginous elements stained strongly with S100, whereas mesenchymal regions showed variable and weaker staining. Smooth muscle differentiation was seen primarily in the mesenchymal areas. Epithelial membrane antigen was focally positive in all cases. CONCLUSIONS Nasal chondromesenchymal hamartomas can rarely occur in the older child and adult. Mesenchymal areas show both myofibroblastic and cartilaginous differentiation. We speculate that inflammation or a recapitulation of developmental signals may be components in the pathogenesis of these lesions.
Collapse
Affiliation(s)
- John A Ozolek
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
30
|
Barbero A, Grogan SP, Mainil-Varlet P, Martin I. Expansion on specific substrates regulates the phenotype and differentiation capacity of human articular chondrocytes. J Cell Biochem 2006; 98:1140-9. [PMID: 16514667 DOI: 10.1002/jcb.20754] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, we investigated if monolayer expansion of adult human articular chondrocytes (AHAC) on specific substrates regulates cell phenotype and post-expansion multilineage differentiation ability. AHAC isolated from cartilage biopsies of five donors were expanded on plastic dishes (PL), on dishes coated with collagen type II (COL), or on slides coated with a ceramic material (Osteologic, OS). The phenotype of expanded chondrocytes was assessed by flow cytometry and real-time RT-PCR. Cells were then cultured in previously established conditions promoting differentiation toward the chondrogenic or osteogenic lineage. AHAC differentiation was assessed histologically, biochemically, and by real-time RT-PCR. As compared to PL-expanded AHAC, those expanded on COL did not exhibit major phenotypic changes, whereas OS-expanded cells expressed (i) higher bone sialoprotein (BSP) (22.6-fold) and lower collagen type II (9.3-fold) mRNA levels, and (ii) lower CD26, CD90 and CD140 surface protein levels (1.4-11.1-fold). Following chondrogenic differentiation, COL-expanded AHAC expressed higher mRNA levels of collagen type II (2.3-fold) and formed tissues with higher glycosaminoglycan (GAG) contents (1.7-fold), whereas OS-expanded cells expressed 16.5-fold lower collagen type II and generated pellets with 2.0-fold lower GAG contents. Following osteogenic differentiation, OS-expanded cells expressed higher levels of BSP (3.9-fold) and collagen type I (2.8-fold) mRNA. In summary, AHAC expansion on COL or OS modulated the de-differentiated cell phenotype and improved the cell differentiation capacity respectively toward the chondrogenic or osteogenic lineage. Phenotypic changes induced by AHAC expansion on specific substrates may mimic pathophysiological events occurring at different stages of osteoarthritis and may be relevant for the engineering of osteochondral tissues.
Collapse
Affiliation(s)
- Andrea Barbero
- Departments of Surgery and of Research, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | |
Collapse
|
31
|
Betsholtz C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 2005; 15:215-28. [PMID: 15207813 DOI: 10.1016/j.cytogfr.2004.03.005] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic analyses in mice have contributed significantly to the understanding of the physiological functions of platelet-derived growth factors (PDGFs) and their receptors. Phenotypic analyses of gene knockouts of PDGF-A, PDGF-B, PDGF alpha-receptors (PDGFRalpha) and beta-receptors (PDGFRbeta) have shown that these ligands and receptors play major roles during embryonic development. Conditional and subtle mutations in the same genes and analysis of chimeric mice have provided additional information about the roles of these genes in postnatal development. Transgenic over-expression studies have also demonstrated that PDGF ligands are capable of inducing pathological cell proliferation in a number of different organs. The present review summarizes these findings and discusses their implications for mammalian development and disease.
Collapse
Affiliation(s)
- Christer Betsholtz
- Department of Medical Biochemistry, University of Göteborg, P.O. Box 440, SE 405 30 Göteborg, Sweden.
| |
Collapse
|
32
|
Betsholtz C. Biology of platelet-derived growth factors in development. ACTA ACUST UNITED AC 2004; 69:272-85. [PMID: 14745969 DOI: 10.1002/bdrc.10030] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Platelet-derived growth factor (PDGF) was one of the first growth factors to be characterized, and the PDGF family of ligand and receptors has remained an archetype system for studies of the mechanisms of action of growth factors and receptor tyrosine kinases for more than two decades. The small size of the family has also facilitated genetic studies and, in particular, manipulations of the mouse PDGF and PDGF receptor genes have given important insights into the role of this family during mammalian development. These studies have shown that discrete populations of mesenchymal and neuroectodermal progenitor cells depend on PDGF signaling for their growth and distribution within developing organs. Other studies suggest that the same, or similar, cells may be targeted by exaggerated PDGF signaling in a number of pathological processes, including different types of cancer. The present review summarizes current views on the roles of PDGFs in developmental processes, and discusses the critical importance of the amount, spatial distribution, and bioavailability of the PDGF proteins for acquisition of the correct number and location of target cells.
Collapse
|
33
|
Abstract
Recent advances in genetic manipulation have greatly expanded our understanding of cellular responses to platelet-derived growth factors (PDGFs) during animal development. In addition to driving mesenchymal proliferation, PDGFs have been shown to direct the migration, differentiation and function of a variety of specialized mesenchymal and migratory cell types, both during development and in the adult animal. Furthermore, the availability of genomic sequence data has facilitated the identification of novel PDGF and PDGF receptor (PDGFR) family members in C. elegans, Drosophila, Xenopus, zebrafish and mouse. Early data from these different systems suggest that some functions of PDGFs have been evolutionarily conserved.
Collapse
Affiliation(s)
- Renée V Hoch
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
34
|
Endo Y, Osumi N, Wakamatsu Y. Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development 2002; 129:863-73. [PMID: 11861470 DOI: 10.1242/dev.129.4.863] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural crest is induced at the junction of epidermal ectoderm and neural plate by the mutual interaction of these tissues. In previous studies, BMP4 has been shown to pattern the ectodermal tissues, and BMP4 can induce neural crest cells from the neural plate. In this study, we show that epidermally expressed Delta1, which encodes a Notch ligand, is required for the activation and/or maintenance of Bmp4 expression in this tissue, and is thus indirectly required for neural crest induction by BMP4 at the epidermis-neural plate boundary. Notch activation in the epidermis additionally inhibits neural crest formation in this tissue, so that neural crest generation by BMP4 is restricted to the junction.
Collapse
Affiliation(s)
- Yukinori Endo
- Department of Developmental Neurobiology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | | | | |
Collapse
|
35
|
Yin M, Pacifici M. Vascular regression is required for mesenchymal condensation and chondrogenesis in the developing limb. Dev Dyn 2001; 222:522-33. [PMID: 11747085 DOI: 10.1002/dvdy.1212] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Vascular regression occurs during limb mesenchymal cell condensation and chondrogenesis, but it is unclear whether it is required for these processes or is a secondary phenomenon without major regulatory roles. To address this issue, beads presoaked with the potent angiogenic factor vascular endothelial growth factor (VEGF) were implanted in the vicinity of the prospective digit 2 in early chick embryo wing buds and the effects on angiogenesis and digit development were determined over time. We found that VEGF treatment caused a marked local increase in blood vessel number and density. Strikingly, this was accompanied by inhibition of digit 2 development as revealed by lack of expression of chondrogenic transcription factor Sox9 and absence of Alcian blue staining. Vascular distribution and skeletal development in adjacent areas remained largely unaffected. Inhibition of digit formation and excess vascularization were both reversible upon further embryonic growth and dissipation of VEGF activity. When supernumerary digits were induced at the anterior limb margin by retinoic acid treatment, their development was also preceded by vascular regression; interestingly, cotreatment with VEGF inhibited supernumerary digit development as well. Direct exposure of limb mesenchymal cells in micromass cultures to VEGF caused no obvious effects on condensation and chondrogenesis, indicating that VEGF effects are not due to direct action on skeletal cells. Our results are the first to provide evidence that vascular regression is required for mesenchymal condensation and chondrogenesis. A model of how patterning mechanisms and vascular regression may intersect and orchestrate limb skeletogenesis is proposed.
Collapse
Affiliation(s)
- M Yin
- Department of Anatomy and Histology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania 19104-6003, USA.
| | | |
Collapse
|
36
|
Horiuchi H, Inoue T, Furusawa S, Matsuda H. Characterization and expression of three forms of cDNA encoding chicken platelet-derived growth factor-A chain. Gene 2001; 272:181-90. [PMID: 11470524 DOI: 10.1016/s0378-1119(01)00542-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Platelet-derived growth factor (PDGF) affects cell proliferation and differentiation during mammalian embryogenesis. In a number of avian species, PDGF-alpha receptors and PDGF-A chain (PDGF-A) are present during chicken limb and lens development. However, little is understood about the chicken PDGF-A gene. The present study identified short form type 1 (S1), long form (L) and short form type 2 (S2) cDNA clones encoding chicken PDGF-A chain (PDGF-A). These clones were isolated from a chicken hepatoma cell line (LMH) mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR) and cDNA library cloning. Genomic sequencing and Southern blotting revealed that these forms were generated by alternative splicing. The mRNAs of S1 and L contained two transcription start sites on one exon. At the amino acid level, the mature protein encoded by the L clone showed 90 and 85% homology with the processed coding regions of the long form of human and Xenopus PDGF-A, respectively. The putative mature peptides of all forms of chicken PDGF-A encompassed the eight cysteine residues conserved in all known forms of PDGF. We examined the expression of the three forms in chicken tissues and cells using RT-PCR. Expression of these forms varied among tissues and cells. Levels of PDGF mRNAs were very low in chicken thrombocytes, which are analogous to mammalian platelets. However, the level of PDGF-A chain mRNA expression in chicken thrombocytes peaked 4 h after exposure to type 1 collagen or thrombin, and then decreased gradually with continued incubation. These results suggest that chicken PDGF in thrombocytes plays an important role in the vascular system and in healing damaged tissue.
Collapse
Affiliation(s)
- H Horiuchi
- Department of Immunobiology, Faculty of Applied Biological Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan.
| | | | | | | |
Collapse
|