1
|
Harahsheh EY, Moxley LE, Al-Amin M, Sabrowsky S, Deniz A, Osundiji M. 20 years of ROBO3-related horizontal gaze palsy with progressive scoliosis: a mini-review. Neurogenetics 2025; 26:30. [PMID: 39960500 DOI: 10.1007/s10048-025-00811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/06/2025] [Indexed: 05/09/2025]
Abstract
ROBO3 is a member of the Roundabout (ROBO) gene family of evolutionarily conserved guidance receptors, which plays crucial roles in axon crossing of the CNS midline. In 2004, pathogenic variants in ROBO3 were first linked to Horizontal Gaze Palsy with Progressive Scoliosis type 1 [HGPPS1 (OMIM # 607313)], an autosomal recessive disorder that is characterized by failure of the corticospinal and somatosensory axon tracts to decussate in the medulla. Hitherto, over 60 ROBO3 pathogenic (or likely pathogenic) variants associated with HGPPS1 have been described in almost 100 patients. With the 20-year milestone, this minireview underscores the growing opportunities to improve the current understanding of the spectrum of HGPPS1 phenotype and ROBO3 genotypes. The increasing need for translational studies that can pave the way for improved clinical management of ROBO3-related disorders is also highlighted.
Collapse
Affiliation(s)
- Ehab Y Harahsheh
- Department of Neurology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Lauren E Moxley
- Department of Clinical Genomics, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Matu Al-Amin
- Department of Clinical Genomics, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Sonia Sabrowsky
- Department of Clinical Genomics, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Adnan Deniz
- Department of Pediatrics, Division of Child Neurology, Kocaeli Universitesi, Kocaeli, Turkey
| | - Mayowa Osundiji
- Department of Clinical Genomics, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
2
|
Zebrafish Slit2 and Slit3 Act Together to Regulate Retinal Axon Crossing at the Midline. J Dev Biol 2022; 10:jdb10040041. [PMID: 36278546 PMCID: PMC9590056 DOI: 10.3390/jdb10040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Slit-Robo signaling regulates midline crossing of commissural axons in different systems. In zebrafish, all retinofugal axons cross at the optic chiasm to innervate the contralateral tectum. Here, the mutant for the Robo2 receptor presents severe axon guidance defects, which were not completely reproduced in a Slit2 ligand null mutant. Since slit3 is also expressed around this area at the stage of axon crossing, we decided to analyze the possibility that it collaborates with Slit2 in this process. We found that the disruption of slit3 expression by sgRNA-Cas9 injection caused similar, albeit slightly milder, defects than those of the slit2 mutant, while the same treatment in the slit2−/−mz background caused much more severe defects, comparable to those observed in robo2 mutants. Tracking analysis of in vivo time-lapse experiments indicated differential but complementary functions of these secreted factors in the correction of axon turn errors around the optic chiasm. Interestingly, RT-qPCR analysis showed a mild increase in slit2 expression in slit3-deficient embryos, but not the opposite. Our observations support the previously proposed “repulsive channel” model for Slit-Robo action at the optic chiasm, with both Slits acting in different manners, most probably relating to their different spatial expression patterns.
Collapse
|
3
|
Barak R, Yom-Tov G, Guez-Haddad J, Gasri-Plotnitsky L, Maimon R, Cohen-Berkman M, McCarthy AA, Perlson E, Henis-Korenblit S, Isupov MN, Opatowsky Y. Structural Principles in Robo Activation and Auto-inhibition. Cell 2019; 177:272-285.e16. [PMID: 30853216 DOI: 10.1016/j.cell.2019.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/06/2018] [Accepted: 02/06/2019] [Indexed: 01/28/2023]
Abstract
Proper brain function requires high-precision neuronal expansion and wiring, processes controlled by the transmembrane Roundabout (Robo) receptor family and their Slit ligands. Despite their great importance, the molecular mechanism by which Robos' switch from "off" to "on" states remains unclear. Here, we report a 3.6 Å crystal structure of the intact human Robo2 ectodomain (domains D1-8). We demonstrate that Robo cis dimerization via D4 is conserved through hRobo1, 2, and 3 and the C. elegans homolog SAX-3 and is essential for SAX-3 function in vivo. The structure reveals two levels of auto-inhibition that prevent premature activation: (1) cis blocking of the D4 dimerization interface and (2) trans interactions between opposing Robo receptors that fasten the D4-blocked conformation. Complementary experiments in mouse primary neurons and C. elegans support the auto-inhibition model. These results suggest that Slit stimulation primarily drives the release of Robo auto-inhibition required for dimerization and activation.
Collapse
Affiliation(s)
- Reut Barak
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Galit Yom-Tov
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Julia Guez-Haddad
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | | | - Roy Maimon
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Moran Cohen-Berkman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | | | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | - Yarden Opatowsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel.
| |
Collapse
|
4
|
Friocourt F, Kozulin P, Belle M, Suárez R, Di‐Poï N, Richards LJ, Giacobini P, Chédotal A. Shared and differential features of Robo3 expression pattern in amniotes. J Comp Neurol 2019; 527:2009-2029. [DOI: 10.1002/cne.24648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | - Peter Kozulin
- The Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Morgane Belle
- Sorbonne Université, INSERM, CNRS Institut de la Vision Paris France
| | - Rodrigo Suárez
- The Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Nicolas Di‐Poï
- Research Program in Developmental Biology, Institute of Biotechnology University of Helsinki Helsinki Finland
| | - Linda J. Richards
- The Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
- The School of Biomedical Sciences The University of Queensland Brisbane Queensland Australia
| | - Paolo Giacobini
- University of Lille, UMR‐S 1172, Centre de Recherche Jean‐Pierre AUBERT Lille France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain INSERM, UMR‐S 1172 Lille France
- FHU 1,000 Days for Health School of Medicine Lille France
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS Institut de la Vision Paris France
| |
Collapse
|
5
|
Wu MF, Chuang CY, Lin P, Chen WT, Su SE, Liao CY, Jan MS, Chang JT. Lung Tumorigenesis Alters the Expression of Slit2-exon15 Splicing Variants in Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11020166. [PMID: 30717252 PMCID: PMC6406468 DOI: 10.3390/cancers11020166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 12/02/2022] Open
Abstract
Slit2 expression is downregulated in various cancers, including lung cancer. We identified two Slit2 splicing variants at exon15—Slit2-WT and Slit2-ΔE15. In the RT-PCR analyses, the Slit2-WT isoform was predominantly expressed in all the lung cancer specimens and in their normal lung counterparts, whereas Slit2-ΔE15 was equivalently or predominantly expressed in 41% of the pneumothorax specimens. A kRasG12D transgenic mice system was used to study the effects of tumorigenesis on the expressions of the Slit2-exon15 isoforms. The results revealed that a kRasG12D-induced lung tumor increased the Slit2-WT/Slit2-ΔE15 ratio and total Slit2 expression level. However, the lung tumors generated via a tail vein injection of lung cancer cells decreased the Slit2-WT/Slit2-ΔE15 ratio and total Slit2 expression level. Interestingly, the lipopolysaccharide (LPS)-induced lung inflammation also decreased the Slit2-WT/Slit2-ΔE15 ratio. Since Slit2 functions as an anti-inflammatory factor, the expression of Slit2 increases in kRasG12D lungs, which indicates that Slit2 suppresses immunity during tumorigenesis. However, an injection of lung cancer cells via the tail vein and the LPS-induced lung inflammation both decreased the Slit2 expression. The increased Slit2 in the tumor microenvironment was mostly Slit2-WT, which lacks growth inhibitory activity. Thus, the results of our study suggested that the upregulation of Slit2-WT, but not Slit2-ΔE15, in a cancer microenvironment is an important factor in suppressing immunity while not interfering with cancer growth.
Collapse
Affiliation(s)
- Ming-Fang Wu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
- Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Cheng-Yen Chuang
- Division of Thoracic Surgery, Taichung Veterans General Hospital, Taichung 40705 Taiwan.
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan 35053, Taiwan.
| | - Wei-Ting Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Shang-Er Su
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Chen-Yi Liao
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Ming-Shiou Jan
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Jinghua Tsai Chang
- Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| |
Collapse
|
6
|
Friocourt F, Chédotal A. The Robo3 receptor, a key player in the development, evolution, and function of commissural systems. Dev Neurobiol 2017; 77:876-890. [DOI: 10.1002/dneu.22478] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 12/15/2022]
Affiliation(s)
- François Friocourt
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision; 17 Rue Moreau Paris 75012 France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision; 17 Rue Moreau Paris 75012 France
| |
Collapse
|
7
|
Wu MF, Liao CY, Wang LY, Chang JT. The role of Slit-Robo signaling in the regulation of tissue barriers. Tissue Barriers 2017; 5:e1331155. [PMID: 28598714 PMCID: PMC5501134 DOI: 10.1080/21688370.2017.1331155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 01/12/2023] Open
Abstract
The role of Slit/Robo signaling has extended from initial axon repulsion in the developing nervous system to organ morphogenesis, cancer development and angiogenesis. Slit/Robo signaling regulates similar pathways within these processes. Slit/Robo ensures the homeostasis of the dynamic interaction between cell-cell and cell-matrix interactions. The dysregulation of Slit/Robo signaling damages the tissue barrier, resulting in developmental abnormalities or disease. Here, we summarize how Slit/Robo controls kidney morphogenesis and describe the dual roles of Slit/Robo signaling in the regulation of tumorigenesis and angiogenesis.
Collapse
Affiliation(s)
- Ming-Fang Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
- Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - Chen-Yi Liao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
| | - Ling-Yi Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
| | - Jinghua Tsai Chang
- Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C.
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
8
|
Topoisomerases interlink genetic network underlying autism. Int J Dev Neurosci 2015; 47:361-8. [PMID: 26456455 DOI: 10.1016/j.ijdevneu.2015.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/20/2015] [Accepted: 07/12/2015] [Indexed: 12/31/2022] Open
Abstract
DNA topoisomerases belong to the group of proteins that play an important role in the organizational dynamics of the human genome. Their enzymatic activity solves topological strain rising from DNA supercoiling occurring during transcription. DNA topoisomerases are especially important for transcription of genes involved in neurodevelopment. Disruption of topoisomerase activity in animal models resulted in impaired neurodevelopment and changed brain architecture. Recent research revealed that topoisomerases induced expression of the same group of genes as those associated with autism. Transcriptional inhibition of neuronal genes during critical stages of brain development may be responsible for pathology of neurodevelopmental disorders such as autism. In this review we aim to outline the role of topoisomerase in neurodevelopment and its possible linkage to neuropathology of autism.
Collapse
|
9
|
Yu J, Zhang X, Kuzontkoski PM, Jiang S, Zhu W, Li DY, Groopman JE. Slit2N and Robo4 regulate lymphangiogenesis through the VEGF-C/VEGFR-3 pathway. Cell Commun Signal 2014; 12:25. [PMID: 24708522 PMCID: PMC4122147 DOI: 10.1186/1478-811x-12-25] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
Background Signaling through vascular endothelial growth factor C (VEGF–C) and
VEGF receptor 3 (VEGFR-3) plays a central role in lymphangiogenesis and the
metastasis of several cancers via the lymphatics. Recently, the Slit2/Robo4
pathway has been recognized as a modulator of vascular permeability and
integrity. Signaling via the Robo receptor inhibits VEGF-mediated effects;
however, its effects on lymphatic endothelial cell function have not been
well characterized. Results We found that pretreatment with Slit2N, an active fragment of Slit2,
inhibited VEGF-C-mediated lung-derived lymphatic endothelial cell (L-LEC)
proliferation, migration, and in vitro tube formation. Slit2N
induced the internalization of VEGFR-3, which blocked its activation, and
inhibited the activation of the PI3K/Akt pathway by VEGF-C in L-LECs.
Moreover, we found that inhibition of VEGF-C-induced effects by Slit2N was
Robo4-dependent. Conclusion These results indicate that Slit2N/Robo4 modulates several key cellular
functions, which contribute to lymphangiogenesis, and identify this
ligand-receptor pair as a potential therapeutic target to inhibit lymphatic
metastasis of VEGF-C-overexpressing cancers and manage lymphatic
dysfunctions characterized by VEGF-C/VEGFR-3 activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jerome E Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Beck AP, Watt RM, Bonner J. Dissection and lateral mounting of zebrafish embryos: analysis of spinal cord development. J Vis Exp 2014:e50703. [PMID: 24637734 PMCID: PMC4140612 DOI: 10.3791/50703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The zebrafish spinal cord is an effective investigative model for nervous system research for several reasons. First, genetic, transgenic and gene knockdown approaches can be utilized to examine the molecular mechanisms underlying nervous system development. Second, large clutches of developmentally synchronized embryos provide large experimental sample sizes. Third, the optical clarity of the zebrafish embryo permits researchers to visualize progenitor, glial, and neuronal populations. Although zebrafish embryos are transparent, specimen thickness can impede effective microscopic visualization. One reason for this is the tandem development of the spinal cord and overlying somite tissue. Another reason is the large yolk ball, which is still present during periods of early neurogenesis. In this article, we demonstrate microdissection and removal of the yolk in fixed embryos, which allows microscopic visualization while preserving surrounding somite tissue. We also demonstrate semipermanent mounting of zebrafish embryos. This permits observation of neurodevelopment in the dorso-ventral and anterior-posterior axes, as it preserves the three-dimensionality of the tissue.
Collapse
|
11
|
Bonner J, Letko M, Nikolaus OB, Krug L, Cooper A, Chadwick B, Conklin P, Lim A, Chien CB, Dorsky RI. Midline crossing is not required for subsequent pathfinding decisions in commissural neurons. Neural Dev 2012; 7:18. [PMID: 22672767 PMCID: PMC3507651 DOI: 10.1186/1749-8104-7-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/03/2012] [Indexed: 11/16/2022] Open
Abstract
Background Growth cone navigation across the vertebrate midline is critical in the establishment of nervous system connectivity. While midline crossing is achieved through coordinated signaling of attractive and repulsive cues, this has never been demonstrated at the single cell level. Further, though growth cone responsiveness to guidance cues changes after crossing the midline, it is unclear whether midline crossing itself is required for subsequent guidance decisions in vivo. In the zebrafish, spinal commissures are initially formed by a pioneer neuron called CoPA (Commissural Primary Ascending). Unlike in other vertebrate models, CoPA navigates the midline alone, allowing for single-cell analysis of axon guidance mechanisms. Results We provide evidence that CoPA expresses the known axon guidance receptors dcc, robo3 and robo2. Using loss of function mutants and gene knockdown, we show that the functions of these genes are evolutionarily conserved in teleosts and that they are used consecutively by CoPA neurons. We also reveal novel roles for robo2 and robo3 in maintaining commissure structure. When midline crossing is prevented in robo3 mutants and dcc gene knockdown, ipsilaterally projecting neurons respond to postcrossing guidance cues. Furthermore, DCC inhibits Robo2 function before midline crossing to allow a midline approach and crossing. Conclusions Our results demonstrate that midline crossing is not required for subsequent guidance decisions by pioneer axons and that this is due, in part, to DCC inhibition of Robo2 function prior to midline crossing.
Collapse
Affiliation(s)
- Jennifer Bonner
- Biology Department, Skidmore College, Saratoga Springs, NY 12866, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu X, Lu Y, Zhang Y, Li Y, Zhou J, Yuan Y, Gao X, Su Z, He C. Slit2 regulates the dispersal of oligodendrocyte precursor cells via Fyn/RhoA signaling. J Biol Chem 2012; 287:17503-17516. [PMID: 22433866 PMCID: PMC3366791 DOI: 10.1074/jbc.m111.317610] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/15/2012] [Indexed: 11/06/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a unique type of glia that are responsible for the myelination of the central nervous system. OPC migration is important for myelin formation during central nervous system development and repair. However, the precise extracellular and intracellular mechanisms that regulate OPC migration remain elusive. Slits were reported to regulate neurodevelopmental processes such as migration, adhesion, axon guidance, and elongation through binding to roundabout receptors (Robos). However, the potential roles of Slits/Robos in oligodendrocytes remain unknown. In this study, Slit2 was found to be involved in regulating the dispersal of OPCs through the association between Robo1 and Fyn. Initially, we examined the expression of Robos in OPCs both in vitro and in vivo. Subsequently, the Boyden chamber assay showed that Slit2 could inhibit OPC migration. RoboN, a specific inhibitor of Robos, could significantly attenuate this effect. The effects were confirmed through the explant migration assay. Furthermore, treating OPCs with Slit2 protein deactivated Fyn and increased the level of activated RhoA-GTP. Finally, Fyn was found to form complexes with Robo1, but this association was decreased after Slit2 stimulation. Thus, we demonstrate for the first time that Slit2 regulates the dispersal of oligodendrocyte precursor cells through Fyn and RhoA signaling.
Collapse
Affiliation(s)
- Xiujie Liu
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yan Lu
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yong Zhang
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuanyuan Li
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jiazhen Zhou
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiaofei Gao
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhida Su
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
13
|
Slit1b-Robo3 signaling and N-cadherin regulate apical process retraction in developing retinal ganglion cells. J Neurosci 2012; 32:223-8. [PMID: 22219284 DOI: 10.1523/jneurosci.2596-11.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
When neurons exit the cell cycle after their terminal mitosis, they detach from the apical surface of the neuroepithelium. Despite the fact that this detachment is crucial for further neurogenesis and neuronal migration, the underlying mechanisms are still not understood. Here, taking advantage of the genetics and imaging possibilities of the zebrafish retina as a model system, we show by knockdown experiments that the guidance molecule Slit1b and its receptor Robo3 are required for apical retraction of retinal ganglion cells (RGCs). In contrast, N-cadherin seems to be responsible for maintenance of apical attachment, as expression of dominant-negative N-cadherin causes RGCs to lose apical attachments prematurely and rescues retraction in slit1b morphants. These results suggest that Slit-Robo signaling downregulates N-cadherin activity to allow apical retraction in newly generated RGCs.
Collapse
|
14
|
Abstract
The Slit family of secreted proteins and their transmembrane receptor, Robo, were originally identified in the nervous system where they function as axon guidance cues and branching factors during development. Since their discovery, a great number of additional roles have been attributed to Slit/Robo signaling, including regulating the critical processes of cell proliferation and cell motility in a variety of cell and tissue types. These processes are often deregulated during cancer progression, allowing tumor cells to bypass safeguarding mechanisms in the cell and the environment in order to grow and escape to new tissues. In the past decade, it has been shown that the expression of Slit and Robo is altered in a wide variety of cancer types, identifying them as potential therapeutic targets. Further, studies have demonstrated dual roles for Slits and Robos in cancer, acting as both oncogenes and tumor suppressors. This bifunctionality is also observed in their roles as axon guidance cues in the developing nervous system, where they both attract and repel neuronal migration. The fact that this signaling axis can have opposite functions depending on the cellular circumstance make its actions challenging to define. Here, we summarize our current understanding of the dual roles that Slit/Robo signaling play in development, epithelial tumor progression, and tumor angiogenesis.
Collapse
Affiliation(s)
- Mimmi S. Ballard
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| |
Collapse
|
15
|
Hocking JC, Hehr CL, Bertolesi GE, Wu JY, McFarlane S. Distinct roles for Robo2 in the regulation of axon and dendrite growth by retinal ganglion cells. Mech Dev 2009; 127:36-48. [PMID: 19961927 DOI: 10.1016/j.mod.2009.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 11/18/2009] [Accepted: 11/27/2009] [Indexed: 11/28/2022]
Abstract
Guidance factors act on the tip of a growing axon to direct it to its target. What role these molecules play, however, in the control of the dendrites that extend from that axon's cell body is poorly understood. Slits, through their Robo receptors, guide many types of axons, including those of retinal ganglion cells (RGCs). Here we assess and contrast the role of Slit/Robo signalling in the growth and guidance of the axon and dendrites extended by RGCs in Xenopus laevis. As Xenopus RGCs extend dendrites, they express robo2 and robo3, while slit1 and slit2 are expressed in RGCs and in the adjacent inner nuclear layer. Interestingly, our functional data with antisense knockdown and dominant negative forms of Robo2 (dnRobo2) and Robo3 (dnRobo3) indicate that Slit/Robo signalling has no role in RGC dendrite guidance, and instead is necessary to stimulate dendrite branching, primarily via Robo2. Our in vitro culture data argue that Slits are the ligands involved. In contrast, both dnRobo2 and dnRobo3 inhibited the extension of axons and caused the misrouting of some axons. Based on these data, we propose that Robo signalling can have distinct functions in the axon and dendrites of the same cell, and that the specific combinations of Robo receptors could underlie these differences. Slit acts via Robo2 in dendrites as a branching/growth factor but not in guidance, while Robo2 and Robo3 function in concert in axons to mediate axonal interactions and respond to Slits as guidance factors. These data underscore the likelihood that a limited number of extrinsic factors regulate the distinct morphologies of axons and dendrites.
Collapse
|
16
|
Burgess HA, Johnson SL, Granato M. Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. GENES, BRAIN, AND BEHAVIOR 2009; 8:500-11. [PMID: 19496826 PMCID: PMC2752477 DOI: 10.1111/j.1601-183x.2009.00499.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Roundabout (Robo) family of receptors and their Slit ligands play well-established roles in axonal guidance, including in humans where horizontal gaze palsy with progressive scoliosis (HGPPS) is caused by mutations in the robo3 gene. Although significant progress has been made toward understanding the mechanism by which Robo receptors establish commissural projections in the central nervous system, less is known about how these projections contribute to neural circuits mediating behavior. In this study, we report cloning of the zebrafish behavioral mutant twitch twice and show that twitch twice encodes robo3. We show that in mutant hindbrains the axons of an identified pair of neurons, the Mauthner cells, fail to cross the midline. The Mauthner neurons are essential for the startle response, and in twitch twice/robo3 mutants misguidance of the Mauthner axons results in a unidirectional startle response. Moreover, we show that twitch twice mutants exhibit normal visual acuity but display defects in horizontal eye movements, suggesting a specific and critical role for twitch twice/robo3 in sensory-guided behavior.
Collapse
Affiliation(s)
- Harold A. Burgess
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104−6058
| | - Stephen L. Johnson
- Department of Genetics, Box 9232, Washington University Medical School, St. Louis, MO 63110
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104−6058
| |
Collapse
|
17
|
Huang L, Yu W, Li X, Niu L, Li K, Li J. Robo1/robo4: different expression patterns in retinal development. Exp Eye Res 2009; 88:583-8. [PMID: 19084519 DOI: 10.1016/j.exer.2008.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/29/2008] [Accepted: 11/13/2008] [Indexed: 01/30/2023]
Abstract
Two members of the roundabout (Robo) family, Robo1 and Robo4, serve as neuronal guidance receptors. During neurogenesis, Robo1 and Robo4 participate in axonal guidance by mediating a repulsive signal. It has been reported that Robo4 is mainly expressed in the vasculature and that Robo1 is expressed both in neural and non-neural tissues. However, the roles of these Robo proteins in the mammalian vasculature are still unclear. In this current study, the expression patterns of Robo1 and Robo4 in the retinal vasculature were determined using C57BL/6J mice at postnatal days (P) 1, P3, P5, P7, P9, P12, P14, P17, P21 and adult mice (1month). We found that Robo4 was expressed not only in the retinal vessels but also in the retinal ganglion cell and photoreceptor layers during retinal development. Robo4 expression peaked at P3 and P9, which suggest that Robo4 may function in stabilizing the retinal vasculature. Robo1 expression was observed in the retina neuronal cells and vessels. Both Robo1 mRNA and protein expression showed a typical expression pattern, which related to Robo1's roles in the different stages of retinal vascular development in the murine retina. Robo1 displayed high expression levels at P1 (correlated with superficial vascular plexus formation) and P7 (correlated with deep vascular plexus formation). The high levels of Robo1 during these two well-defined phases of retinal capillary plexus formation indicate that Robo1 is likely to play a part in retinal neovascularization.
Collapse
Affiliation(s)
- Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
18
|
Anitha A, Nakamura K, Yamada K, Suda S, Thanseem I, Tsujii M, Iwayama Y, Hattori E, Toyota T, Miyachi T, Iwata Y, Suzuki K, Matsuzaki H, Kawai M, Sekine Y, Tsuchiya K, Sugihara GI, Ouchi Y, Sugiyama T, Koizumi K, Higashida H, Takei N, Yoshikawa T, Mori N. Genetic analyses of roundabout (ROBO) axon guidance receptors in autism. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:1019-27. [PMID: 18270976 DOI: 10.1002/ajmg.b.30697] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Autism is a pervasive developmental disorder diagnosed in early childhood. Abnormalities of serotonergic neurotransmission have been reported in autism. Serotonin transporter (SERT) modulates serotonin levels, and is a major therapeutic target in autism. Factors that regulate SERT expression might be implicated in the pathophysiology of autism. One candidate SERT regulatory protein is the roundabout axon guidance molecule, ROBO. SerT expression in Drosophila is regulated by robo; it plays a vital role in mammalian neurodevelopment also. Here, we examined the associations of ROBO3 and ROBO4 with autism, in a trio association study using DNA from 252 families recruited to AGRE. Four SNPs of ROBO3 (rs3923890, P = 0.023; rs7925879, P = 0.017; rs4606490, P = 0.033; and rs3802905, P = 0.049) and a single SNP of ROBO4 (rs6590109, P = 0.009) showed associations with autism; the A/A genotype of rs3923890 showed lower ADI-R_A scores, which reflect social interaction. Significant haplotype associations were also observed for ROBO3 and ROBO4. We further compared the mRNA expressions of ROBO1, ROBO2, ROBO3, and ROBO4 in the lymphocytes of 19 drug-naïve autistic patients and 20 age- and sex-matched controls. Expressions of ROBO1 (P = 0.018) and ROBO2 (P = 0.023) were significantly reduced in the autistic group; the possibility of using the altered expressions of ROBO as peripheral markers for autism, may be explored. In conclusion, we suggest a possible role of ROBO in the pathogenesis of autism. Abnormalities of ROBO may lead to autism either by interfering with serotonergic system, or by disrupting neurodevelopment. To the best of our knowledge, this is the first report relating ROBO with autism.
Collapse
Affiliation(s)
- A Anitha
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yoshikawa M, Mukai Y, Okada Y, Yoshioka Y, Tsunoda SI, Tsutsumi Y, Okada N, Aird WC, Doi T, Nakagawa S. Ligand-independent assembly of purified soluble magic roundabout (Robo4), a tumor-specific endothelial marker. Protein Expr Purif 2008; 61:78-82. [PMID: 18571431 DOI: 10.1016/j.pep.2008.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/01/2008] [Accepted: 05/13/2008] [Indexed: 11/18/2022]
Abstract
Magic roundabout (Robo4) is the fourth recently identified member of the roundabout receptor family. Robo4 is predominantly expressed in embryonic or tumor vascular endothelium and is considered important for vascular development and as a candidate tumor endothelial marker. Much remains unknown about the Robo4 molecule, however, such as its ligands, structure, and the details of its function. Thus, we aimed to establish an expression and purification method for obtaining soluble recombinant human Robo4 (shRobo4) and mouse Robo4 (smRobo4) for use in Robo4 characterization studies. In this work, we expressed the extracellular domain of hRobo4 and mRobo4 in mammalian 293F cells and purified them by two-step chromatography. Based on gel-filtration chromatography and Blue Native polyacrylamide gel electrophoresis, these purified proteins exist as multimers. The shRobo4 and smRobo4 we obtained will be useful in advanced studies to determine the importance of multimerization, identify the ligands, and elucidate the ligand-receptor interactions and Robo4-mediated signaling. The results of these studies will help to elucidate the role of Robo4 in angiogenesis and perhaps eventually contribute to the development of novel vessel-targeting therapies.
Collapse
Affiliation(s)
- Mai Yoshikawa
- Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Devine CA, Key B. Robo-Slit interactions regulate longitudinal axon pathfinding in the embryonic vertebrate brain. Dev Biol 2008; 313:371-83. [PMID: 18061159 DOI: 10.1016/j.ydbio.2007.10.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/01/2007] [Accepted: 10/22/2007] [Indexed: 01/11/2023]
Abstract
The early network of axons in the embryonic brain provides connectivity between functionally distinct regions of the nervous system. While many of the molecular interactions driving commissural pathway formation have been deciphered, the mechanisms underlying the development of longitudinal tracts remain unclear. We have identified here a role for the Roundabout (Robo) family of axon guidance receptors in the positioning of longitudinally projecting axons along the dorsoventral axis in the embryonic zebrafish forebrain. Using a loss-of-function approach, we established that Robo family members exhibit complementary functions in the tract of the postoptic commissure (TPOC), the major longitudinal tract in the forebrain. Robo2 acted initially to split the TPOC into discrete fascicles upon entering a broad domain of Slit1a expression in the ventrocaudal diencephalon. In contrast, Robo1 and Robo3 restricted the extent of defasciculation of the TPOC. In this way, the complementary roles of Robo family members balance levels of fasciculation and defasciculation along this trajectory. These results demonstrate a key role for Robo-Slit signaling in vertebrate longitudinal axon guidance and highlight the importance of context-specific guidance cues during navigation within complex pathways.
Collapse
Affiliation(s)
- C A Devine
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
21
|
Schmandke A, Schmandke A, Strittmatter SM. ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 2007; 13:454-69. [PMID: 17901255 PMCID: PMC2849133 DOI: 10.1177/1073858407303611] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rho-associated protein kinases (ROCKs) play key roles in mediating the control of the actin cytoskeleton by Rho family GTPases in response to extracellular signals. Such signaling pathways contribute to diverse neuronal functions from cell migration to axonal guidance to dendritic spine morphology to axonal regeneration to cell survival. In this review, the authors summarize biochemical knowledge of ROCK function and categorize neuronal ROCK-dependent signaling pathways. Further study of ROCK signal transduction mechanisms and specificities will enhance our understanding of brain development, plasticity, and repair. The ROCK pathway also provides a potential site for therapeutic intervention to promote neuronal regeneration and to limit degeneration.
Collapse
Affiliation(s)
- André Schmandke
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
22
|
Campbell DS, Stringham SA, Timm A, Xiao T, Law MY, Baier H, Nonet ML, Chien CB. Slit1a inhibits retinal ganglion cell arborization and synaptogenesis via Robo2-dependent and -independent pathways. Neuron 2007; 55:231-45. [PMID: 17640525 DOI: 10.1016/j.neuron.2007.06.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 05/30/2007] [Accepted: 06/28/2007] [Indexed: 01/20/2023]
Abstract
Upon arriving at their targets, developing axons cease pathfinding and begin instead to arborize and form synapses. To test whether CNS arborization and synaptogenesis are controlled by Slit-Robo signaling, we followed single retinal ganglion cell (RGC) arbors over time. ast (robo2) mutant and slit1a morphant arbors had more branch tips and greater arbor area and complexity compared to wild-type and concomitantly more presumptive presynaptic sites labeled with YFP-Rab3. Increased arborization in ast was phenocopied by dominant-negative Robo2 expressed in single RGCs and rescued by full-length Robo2, indicating that Robo2 acts cell-autonomously. Time-lapse imaging revealed that ast and slit1a morphant arbors stabilized earlier than wild-type, suggesting a role for Slit-Robo signaling in preventing arbor maturation. Genetic analysis showed that Slit1a acts both through Robo2 and Robo2-independent mechanisms. Unlike previous PNS studies showing that Slits promote branching, our results show that Slits inhibit arborization and synaptogenesis in the CNS.
Collapse
Affiliation(s)
- Douglas S Campbell
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Rohde LA, Heisenberg CP. Zebrafish Gastrulation: Cell Movements, Signals, and Mechanisms. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:159-92. [PMID: 17560282 DOI: 10.1016/s0074-7696(07)61004-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastrulation is a morphogenetic process that results in the formation of the embryonic germ layers. Here we detail the major cell movements that occur during zebrafish gastrulation: epiboly, internalization, and convergent extension. Although gastrulation is known to be regulated by signaling pathways such as the Wnt/planar cell polarity pathway, many questions remain about the underlying molecular and cellular mechanisms. Key factors that may play a role in gastrulation cell movements are cell adhesion and cytoskeletal rearrangement. In addition, some of the driving force for gastrulation may derive from tissue interactions such as those described between the enveloping layer and the yolk syncytial layer. Future exploration of gastrulation mechanisms relies on the development of sensitive and quantitative techniques to characterize embryonic germ-layer properties.
Collapse
Affiliation(s)
- Laurel A Rohde
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
24
|
Kaur S, Castellone MD, Bedell VM, Konar M, Gutkind JS, Ramchandran R. Robo4 signaling in endothelial cells implies attraction guidance mechanisms. J Biol Chem 2006; 281:11347-56. [PMID: 16481322 DOI: 10.1074/jbc.m508853200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Roundabouts (robo) are cell-surface receptors that mediate repulsive signaling mechanisms at the central nervous system midline. However, robos may also mediate attraction mechanisms in the context of vascular development. Here, we have performed structure-function analysis of roundabout4 (Robo4), the predominant robo expressed in embryonic zebrafish vasculature and found by gain of function approaches in vitro that Robo4 activates Cdc42 and Rac1 Rho GTPases in endothelial cells. Indeed, complementary robo4 gene knockdown approaches in zebrafish embryos show lower amounts of active Cdc42 and Rac1 and angioblasts isolated from these knockdown embryos search actively for directionality and guidance cues. Furthermore, Robo4-expressing endothelial cells show morphology and phenotype, characteristic of Rho GTPase activation. Taken together, this study suggests that Robo4 mediates attraction-signaling mechanisms through Rho GTPases in vertebrate vascular guidance.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Adhesion
- Cell Line
- Cell Membrane/metabolism
- Cell Movement
- Cloning, Molecular
- Endothelial Cells/metabolism
- GTP Phosphohydrolases/metabolism
- Gene Expression Regulation, Developmental
- Image Processing, Computer-Assisted
- Microscopy, Confocal
- Models, Genetic
- Mutation
- Neovascularization, Physiologic
- Nucleotides/chemistry
- Phenotype
- Protein Binding
- Protein Structure, Tertiary
- Pseudopodia/metabolism
- RNA/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Signal Transduction
- Time Factors
- Transfection
- Zebrafish
- Zebrafish Proteins/metabolism
- Zebrafish Proteins/physiology
- cdc42 GTP-Binding Protein/metabolism
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, NCI, National Institutes of Health, Rockville, Maryland 20850, USA
| | | | | | | | | | | |
Collapse
|
25
|
Dalkic E, Kuscu C, Sucularli C, Aydin IT, Akcali KC, Konu O. Alternatively spliced Robo2 isoforms in zebrafish and rat. Dev Genes Evol 2006; 216:555-63. [PMID: 16625395 DOI: 10.1007/s00427-006-0070-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 03/13/2006] [Indexed: 11/27/2022]
Abstract
Robo2, a member of the robo gene family, functions as a repulsive axon guidance receptor as well as a regulator of cell migration and tissue morphogenesis in different taxa. In this study, a novel isoform of the zebrafish robo2 (robo2_tv2), which included an otherwise alternatively spliced exon (CAE), has been characterized. Robo2_tv2 is expressed differentially in most non-neuronal tissues of adult zebrafish whereas robo2_tv1 expression to a great extent is restricted to the brain and eye. In zebrafish, robo2_tv2 exhibits a very-low-level basal expression starting from 1 day post fertilization until the mid-larval stages, at which time its expression increases dramatically and could be detected throughout adulthood. Our findings demonstrate that the amino acid sequence coded by CAE of the robo2 gene is highly conserved between zebrafish and mammals, and also contains conserved motifs shared with robo1 and robo4 but not with robo3. Furthermore, we provide an account of differential transcription of the CAE homolog in various tissues of the adult rat. These results suggest that the alternatively spliced robo2 isoforms may exhibit tissue specificity.
Collapse
Affiliation(s)
- Ertugrul Dalkic
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
26
|
Challa AK, McWhorter ML, Wang C, Seeger MA, Beattie CE. Robo3 isoforms have distinct roles during zebrafish development. Mech Dev 2006; 122:1073-86. [PMID: 16129585 DOI: 10.1016/j.mod.2005.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 06/17/2005] [Indexed: 11/16/2022]
Abstract
Roundabout (Robo) receptors and their secreted ligand Slits have been shown to function in a number of developmental events both inside and outside of the nervous system. We previously cloned zebrafish robo orthologs to gain a better understanding of Robo function in vertebrates. Further characterization of one of these orthologs, robo3, has unveiled the presence of two distinct isoforms, robo3 variant 1 (robo3var1) and robo3 variant 2 (robo3var2). These two isoforms differ only in their 5'-ends with robo3var1, but not robo3var2, containing a canonical signal sequence. Despite this difference, both forms accumulate on the cell surface. Both isoforms are contributed maternally and exhibit unique and dynamic gene expression patterns during development. Functional analysis of robo3 isoforms using an antisense gene knockdown strategy suggests that Robo3var1 functions in motor axon pathfinding, whereas Robo3var2 appears to function in dorsoventral cell fate specification. This study reveals a novel function for Robo receptors in specifying ventral cell fates during vertebrate development.
Collapse
Affiliation(s)
- Anil K Challa
- Center for Molecular Neurobiology, Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
27
|
Camurri L, Mambetisaeva E, Davies D, Parnavelas J, Sundaresan V, Andrews W. Evidence for the existence of two Robo3 isoforms with divergent biochemical properties. Mol Cell Neurosci 2005; 30:485-93. [PMID: 16226035 DOI: 10.1016/j.mcn.2005.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 07/22/2005] [Accepted: 07/25/2005] [Indexed: 11/18/2022] Open
Abstract
Robo3 is a member of the roundabout (Robo) family of proteins that plays a key role in axon guidance and cell migration in the developing nervous system. Recent studies have shown that Robo3 plays a crucial role in controlling axon guidance at the midline of the CNS. Here we describe and compare two human Robo3 isoforms, Robo3A and Robo3B, which differ by the insertion of 26 amino acids at the N-terminus, and these forms appear to be evolutionary conserved. We investigated the bioactivity of these isoforms and show that they have different binding properties to Slit, and that orthologs of these forms are expressed in the mouse embryo. In addition, we show that, like other members of the Robo family, Robo3 can bind homophilically, but it is also capable of binding heterophilically to Robo1 and NCAM. We propose that these properties of Robo3 may contribute to its function at the midline of the CNS.
Collapse
Affiliation(s)
- Laura Camurri
- MRC Centre for Developmental Neurobiology, New Hunt's House, King's College, London, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
28
|
Chédotal A, Kerjan G, Moreau-Fauvarque C. The brain within the tumor: new roles for axon guidance molecules in cancers. Cell Death Differ 2005; 12:1044-56. [PMID: 16015381 DOI: 10.1038/sj.cdd.4401707] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Slits, semaphorins and netrins are three families of proteins that can attract or repel growing axons and migrating neurons in the developing nervous system of vertebrates and invertebrates. Recent studies have shown that they are widely expressed outside the nervous system and that they may play important roles in cancers. Several of the genes encoding these proteins are localized on chromosomal region associated with frequent loss-of-heterozygosity in tumors and cancer cell lines and there is also significant hypermethylation of their promoter suggesting that they may act as tumor suppressors. In addition, proteins in all these families and their receptors appear to control the vascularization of the tumors. Last, many axon guidance molecules also regulate cell migration and apoptosis in normal and tumorigenic tissues. Overall, this suggests that molecules that could mimick or block the activity of axon guidance molecules may be used as therapeutic agents for the treatment of malignancy.
Collapse
Affiliation(s)
- A Chédotal
- CNRS UMR7102, Equipe Développement Neuronal, Université Paris 6, Batiment B, Case 12, 9 Quai Saint-Bernard, 75005 Paris, France.
| | | | | |
Collapse
|
29
|
Ghenea S, Boudreau JR, Lague NP, Chin-Sang ID. The VAB-1 Eph receptor tyrosine kinase and SAX-3/Robo neuronal receptors function together during C. elegans embryonic morphogenesis. Development 2005; 132:3679-90. [PMID: 16033794 DOI: 10.1242/dev.01947] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations that affect the single C. elegans Eph receptor tyrosine kinase VAB-1 cause defects in cell movements during embryogenesis. Here, we provide genetic and molecular evidence that the VAB-1 Eph receptor functions with another neuronal receptor, SAX-3/Robo, for proper embryogenesis. Our analysis of sax-3 mutants shows that SAX-3/Robo functions with the VAB-1 Eph receptor for gastrulation cleft closure and ventral epidermal enclosure. In addition, SAX-3 functions autonomously for epidermal morphogenesis independently of VAB-1. A double-mutant combination between vab-1 and slt-1 unmasks a role for the SLT-1 ligand in embryogenesis. We provide evidence for a physical interaction between the VAB-1 tyrosine kinase domain and the juxtamembrane and CC1 region of the SAX-3/Robo receptor. Gene dosage, non-allelic non-complementation experiments and co-localization of the two receptors are consistent with a model in which these two receptors form a complex and function together during embryogenesis.
Collapse
Affiliation(s)
- Simona Ghenea
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
30
|
Bedell VM, Yeo SY, Park KW, Chung J, Seth P, Shivalingappa V, Zhao J, Obara T, Sukhatme VP, Drummond IA, Li DY, Ramchandran R. roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci U S A 2005; 102:6373-8. [PMID: 15849270 PMCID: PMC1088354 DOI: 10.1073/pnas.0408318102] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stereotypical patterns of vascular and neuronal networks suggest that specific genetic programs tightly control path determination and, consequently, angiogenesis and axon-guidance mechanisms. Our study focuses on one member of the roundabout family of receptors, which traditionally mediate repulsion from the midline. Here, we characterize a fourth member of this family, roundabout4 (robo4), which is the predominant roundabout (robo) that is expressed in embryonic zebrafish vasculature. Gene knockdown and overexpression approaches show that robo4 is essential for coordinated symmetric and directed sprouting of intersomitic vessels and provide mechanistic insights into this process. Also, human robo4 gene functionally compensates for loss of robo4 gene function, suggesting evolutionary conservation. This article reports an endothelial-specific function for a robo gene in vertebrates in vivo.
Collapse
Affiliation(s)
- Victoria M Bedell
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, 9610 Medical Center Drive, Suite 320, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yeo SY, Miyashita T, Fricke C, Little MH, Yamada T, Kuwada JY, Huh TL, Chien CB, Okamoto H. Involvement of Islet-2 in the Slit signaling for axonal branching and defasciculation of the sensory neurons in embryonic zebrafish. Mech Dev 2005; 121:315-24. [PMID: 15110042 DOI: 10.1016/j.mod.2004.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Revised: 03/15/2004] [Accepted: 03/15/2004] [Indexed: 11/21/2022]
Abstract
In Drosophila melanogaster, Slit acts as a repulsive cue for the growth cones of the commissural axons which express a receptor for Slit, Roundabout (Robo), thus preventing the commissural axons from crossing the midline multiple times. Experiments using explant culture have shown that vertebrate Slit homologues also act repulsively for growth cone navigation and neural migration, and promote branching and elongation of sensory axons. Here, we demonstrate that overexpression of Slit2 in vivo in transgenic zebrafish embryos severely affected the behavior of the commissural reticulospinal neurons (Mauthner neurons), promoted branching of the peripheral axons of the trigeminal sensory ganglion neurons, and induced defasciculation of the medial longitudinal fascicles. In addition, Slit2 overexpression caused defasciculation and deflection of the central axons of the trigeminal sensory ganglion neurons from the hindbrain entry point. The central projection was restored by either functional repression or mutation of Robo2, supporting its role as a receptor mediating the Slit signaling in vertebrate neurons. Furthermore, we demonstrated that Islet-2, a LIM/homeodomain-type transcription factor, is essential for Slit2 to induce axonal branching of the trigeminal sensory ganglion neurons, suggesting that factors functioning downstream of Islet-2 are essential for mediating the Slit signaling for promotion of axonal branching.
Collapse
Affiliation(s)
- Sang-Yeob Yeo
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Connor RM, Allen CL, Devine CA, Claxton C, Key B. BOC, brother of CDO, is a dorsoventral axon-guidance molecule in the embryonic vertebrate brain. J Comp Neurol 2005; 485:32-42. [PMID: 15776441 DOI: 10.1002/cne.20503] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The early axon scaffolding in the embryonic vertebrate brain consists of a series of ventrally projecting axon tracts that grow into a single major longitudinal pathway connected across the midline by commissures. We have investigated the role of Brother of CDO (BOC), an immunoglobulin (Ig) superfamily member distantly related to the Roundabout (Robo) family of axon-guidance receptors, in the development of this embryonic template of axon tracts in the zebrafish brain. A zebrafish homologue of BOC was isolated and shown to be expressed predominantly in the developing neural plate and later in the neural tube and developing brain. Zebrafish boc was initially highly localized to discrete bands in the mid- and hindbrain, but, as the major brain subdivisions emerged, it became more evenly expressed along the rostrocaudal axis, particularly in dorsal regions. The function of zebrafish boc was examined by a loss-of-function approach. Analysis of embryos injected with antisense morpholinos designed against boc revealed highly selective defects in the development of dorsoventrally projecting axon tracts. Loss of boc caused ventrally projecting axons, particularly those arising from the presumptive telencephalon, to follow aberrant trajectories. These data indicate that boc is an axon-guidance molecule playing a fundamental role in pathfinding during the early patterning of the axon scaffold in the embryonic vertebrate brain.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Axons/physiology
- Brain/embryology
- Brain/metabolism
- CD57 Antigens/genetics
- CD57 Antigens/metabolism
- Cloning, Molecular/methods
- Embryo, Nonmammalian
- Embryonic Induction/drug effects
- Embryonic Induction/physiology
- Gene Expression Regulation, Developmental/physiology
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Immunoglobulin G/physiology
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Mice
- Microinjections/methods
- Microscopy, Confocal/methods
- Models, Molecular
- Morpholines/pharmacology
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/metabolism
- Neural Networks, Computer
- RNA, Complementary/metabolism
- RNA, Messenger/metabolism
- Receptors, Cell Surface/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Robin M Connor
- Brain Growth and Regeneration Laboratory, School of Biomedical Sciences, University of Queensland, Brisbane 4072, Queensland, Australia
| | | | | | | | | |
Collapse
|
33
|
Rodino-Klapac LR, Beattie CE. Zebrafish topped is required for ventral motor axon guidance. Dev Biol 2004; 273:308-20. [PMID: 15328015 DOI: 10.1016/j.ydbio.2004.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 05/27/2004] [Accepted: 06/10/2004] [Indexed: 11/21/2022]
Abstract
Zebrafish primary motor axons extend along stereotyped pathways innervating distinct regions of the developing myotome. During development, these axons make stereotyped projections to ventral and dorsal myotome regions. Caudal primary motoneurons, CaPs, pioneer axon outgrowth along ventral myotomes; whereas, middle primary motoneurons, MiPs, extend axons along dorsal myotomes. Although the development and axon outgrowth of these motoneurons has been characterized, cues that determine whether axons will grow dorsally or ventrally have not been identified. The topped mutant was previously isolated in a genetic screen designed to uncover mutations that disrupt primary motor axon guidance. CaP axons in topped mutants fail to enter the ventral myotome at the proper time, stalling at the nascent horizontal myoseptum, which demarcates dorsal from ventral axial muscle. Later developing secondary motor nerves are also delayed in entering the ventral myotome whereas all other axons examined, including dorsally projecting MiP motor axons, are unaffected in topped mutants. Genetic mosaic analysis indicates that Topped function is non-cell autonomous for motoneurons, and when wild-type cells are transplanted into topped mutant embryos, ventromedial fast muscle are the only cell type able to rescue the CaP axon defect. These data suggest that Topped functions in the ventromedial fast muscle and is essential for motor axon outgrowth into the ventral myotome.
Collapse
|
34
|
Miyashita T, Yeo SY, Hirate Y, Segawa H, Wada H, Little MH, Yamada T, Takahashi N, Okamoto H. PlexinA4 is necessary as a downstream target of Islet2 to mediate Slit signaling for promotion of sensory axon branching. Development 2004; 131:3705-15. [PMID: 15229183 DOI: 10.1242/dev.01228] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Slit is a secreted protein known to repulse the growth cones of commissural neurons. By contrast, Slit also promotes elongation and branching of axons of sensory neurons. The reason why different neurons respond to Slit in different ways is largely unknown. Islet2 is a LIM/homeodomain-type transcription factor that specifically regulates elongation and branching of the peripheral axons of the primary sensory neurons in zebrafish embryos. We found that PlexinA4, a transmembrane protein known to be a co-receptor for class III semaphorins, acts downstream of Islet2 to promote branching of the peripheral axons of the primary sensory neurons. Intriguingly, repression of PlexinA4 function by injection of the antisense morpholino oligonucleotide specific to PlexinA4 or by overexpression of the dominant-negative variant of PlexinA4 counteracted the effects of overexpression of Slit2 to induce branching of the peripheral axons of the primary sensory neurons in zebrafish embryos, suggesting involvement of PlexinA4 in the Slit signaling cascades for promotion of axonal branching of the sensory neurons. Colocalized expression of Robo, a receptor for Slit2, and PlexinA4 is observed not only in the primary sensory neurons of zebrafish embryos but also in the dendrites of the pyramidal neurons of the cortex of the mammals, and may be important for promoting the branching of either axons or dendrites in response to Slit, as opposed to the growth cone collapse.
Collapse
Affiliation(s)
- Toshio Miyashita
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Du Pasquier L, Zucchetti I, De Santis R. Immunoglobulin superfamily receptors in protochordates: before RAG time. Immunol Rev 2004; 198:233-48. [PMID: 15199966 DOI: 10.1111/j.0105-2896.2004.00122.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Urochordates and cephalochordates do not have an adaptive immune system involving the somatic rearrangement of their antigen receptor genes. They do not have antigen-presenting molecules of the major histocompatibility complex (MHC)-linked class I and II types. In the absence of such a system, the status of their genes reflects perhaps a primitive pre-recombination-activating gene (RAG) stage that could suggest the pathway leading to the genesis of the T-cell receptor (TCR) and antibodies. In the genome of Ciona intestinalis, genes that encode molecules with membrane receptor features have been found among many members of the immunoglobulin superfamily (Igsf). They use the domains typical of vertebrate antigen receptors and class I and II: the V, and C1-like domains. These genes belong to two families with recognizable homologs in vertebrates: the junctional adhesion molecule (JAM)/cortical thymocyte marker of Xenopus (CTX) family and the nectin family. The human homologs of these genes segregate in a single unit of four paralogous segments on chromosomes 1q, 3q, 11p, and 21q. These regions contain nowadays several genes involved in the adaptive immune system, and some related members are present in the MHC paralogs as well. They also contain receptor-like genes without homologs in Ciona but with related members in the protostome Drosophila. It looks as if in Ciona one detects what looks like the 'fossil' of one group of genes bound to duplicate and give rise to many crucial elements of the adaptive immune system. The modern homologs of these JAM, CTX, and nectins are all or almost all virus receptors, and the hypothesis is formulated that this property was taken advantage of during evolution to participate in the elaboration of either or both the somatically generated antigen-recognizing receptors and the antigen-presenting molecules.
Collapse
|
36
|
Camurri L, Mambetisaeva E, Sundaresan V. Rig-1 a new member of Robo family genes exhibits distinct pattern of expression during mouse development. Gene Expr Patterns 2004; 4:99-103. [PMID: 14678835 DOI: 10.1016/s1567-133x(03)00142-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Robo genes encode a family of proteins that are the receptors for the midline repellent Slits and play a role in axon guidance. In addition to Robo1 and Robo2, Rig-1 has been recently identified in mouse as a novel member of the Robo family of proteins. As a first step in elucidating the role of Rig-1 during vertebrate development, we characterised the expression of Rig-1 by in situ hybridisation together with Robo1 and Robo2 in the spinal cord and other tissues of the mouse embryo. Our results show that Rig-1 has a dynamic pattern of expression in the developing CNS. In the spinal cord Rig-1 shows overlapping but distinct pattern of expression with Robo1 and Robo2.
Collapse
Affiliation(s)
- Laura Camurri
- MRC Centre for Developmental Neurobiology, Molecular Neurobiology Department, 4th floor South Wing, New Hunt's House, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | | | | |
Collapse
|
37
|
Abstract
The cranial motor neurons innervate muscles that control eye, jaw, and facial movements of the vertebrate head and parasympathetic neurons that innervate certain glands and organs. These efferent neurons develop at characteristic locations in the brainstem, and their axons exit the neural tube in well-defined trajectories to innervate target tissues. This review is focused on a subset of cranial motor neurons called the branchiomotor neurons, which innervate muscles derived from the branchial (pharyngeal) arches. First, the organization of the branchiomotor pathways in zebrafish, chick, and mouse embryos will be compared, and the underlying axon guidance mechanisms will be addressed. Next, the molecular mechanisms that generate branchiomotor neurons and specify their identities will be discussed. Finally, the caudally directed or tangential migration of facial branchiomotor neurons will be examined. Given the advances in the characterization and analysis of vertebrate genomes, we can expect rapid progress in elucidating the cellular and molecular mechanisms underlying the development of these vital neuronal networks. Developmental Dynamics 229:143-161, 2004.
Collapse
Affiliation(s)
- Anand Chandrasekhar
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
38
|
Parsons L, Harris KL, Turner K, Whitington PM. Roundabout gene family functions during sensory axon guidance in the drosophila embryo are mediated by both Slit-dependent and Slit-independent mechanisms. Dev Biol 2003; 264:363-75. [PMID: 14651924 DOI: 10.1016/j.ydbio.2003.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
roundabout (robo) family genes play key roles in axon guidance in a wide variety of animals. We have investigated the roles of the robo family members, robo, robo2, and robo3, in the guidance of sensory axons in the Drosophila embryo. In robo(-/-), slit(-/-), and robo(-/+) slit(-/+) mutants, lateral cluster sensory neurons misproject to cells and axons in the nearby ventral' (v') cluster. These phenotypes, together with the normal expression pattern of Slit and Robo, suggest that Slit ligand secreted from the epidermis interacts with Robo receptors on lateral cluster sensory growth cones to limit their exploration of nearby attractive substrates. The most common sensory axon phenotype seen in robo2(-/-) mutants was misprojection of dorsal cluster sensory axons away from their normal growth substrate, the transverse connective of the trachea. slit appears to play no role in this aspect of sensory axon growth. Robo2 is expressed, not on the dorsal sensory axons, but on the transverse connective. These results suggest a novel, non-cell-autonomous mechanism for axon guidance by robo family genes: Robo2 expressed on the trachea acts as an attractant for the dorsal sensory growth cones.
Collapse
Affiliation(s)
- Linda Parsons
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
39
|
Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB, Wu JY, Urness LD, Li DY. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 2003; 261:251-67. [PMID: 12941633 DOI: 10.1016/s0012-1606(03)00258-6] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Guidance and patterning of axons are orchestrated by cell-surface receptors and ligands that provide directional cues. Interactions between the Robo receptor and Slit ligand families of proteins initiate signaling cascades that repel axonal outgrowth. Although the vascular and nervous systems grow as parallel networks, the mechanisms by which the vascular endothelial cells are guided to their appropriate positions remain obscure. We have identified a putative Robo homologue, Robo4, based on its differential expression in mutant mice with defects in vascular sprouting. In contrast to known neuronal Robo family members, the arrangement of the extracellular domains of Robo4 diverges significantly from that of all other Robo family members. Moreover, Robo4 is specifically expressed in the vascular endothelium during murine embryonic development. We show that Robo4 binds Slit and inhibits cellular migration in a heterologous expression system, analogous to the role of known Robo receptors in the nervous system. Immunoprecipitation studies indicate that Robo4 binds to Mena, a known effector of Robo-Slit signaling. Finally, we show that Robo4 is the only Robo family member expressed in primary endothelial cells and that application of Slit inhibits their migration. These data demonstrate that Robo4 is a bona fide member of the Robo family and may provide a repulsive cue to migrating endothelial cells during vascular development.
Collapse
MESH Headings
- Activin Receptors, Type I/deficiency
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/physiology
- Activin Receptors, Type II
- Amino Acid Sequence
- Animals
- Cell Line
- Cell Movement
- Chromosome Mapping
- Endothelium, Vascular/embryology
- Gene Expression Regulation, Developmental
- Humans
- In Situ Hybridization
- Intercellular Signaling Peptides and Proteins
- Ligands
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Nerve Tissue Proteins/metabolism
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Sequence Homology, Amino Acid
- Signal Transduction
- Zebrafish
- Roundabout Proteins
Collapse
Affiliation(s)
- Kye Won Park
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The ability of an animal to carry out its normal behavioral repertoire requires generation of an enormous diversity of neurons and glia. The relative simplicity of the spinal cord makes this an especially attractive part of the nervous system for addressing questions about the development of vertebrate neural specification and function. The last decade has witnessed an explosion in our understanding of spinal cord development and the functional interactions among spinal cord neurons and glia. Cellular, genetic, molecular, physiological and behavioral studies in zebrafish have all been important in providing insights into questions that remained unanswered by studies from other vertebrate model organisms. This is the case because many zebrafish spinal neurons can be individually identified and followed over time in living embryos and larvae. In this review, we discuss what is currently known about the cellular, genetic and molecular mechanisms involved in specifying distinct cell types in the zebrafish spinal cord and how these cells establish the functional circuitry that mediates particular behaviors. We start by describing the early signals and morphogenetic movements that form the nervous system, and in particular, the spinal cord. We then provide an overview of the cell types within the spinal cord and describe how they are specified and patterned. We begin ventrally with floor plate and proceed dorsally, through motoneurons and oligodendrocytes, interneurons, astrocytes and radial glia, spinal sensory neurons and neural crest. We next describe axon pathfinding of spinal neurons. Finally, we discuss the roles of particular spinal cord neurons in specific behaviors.
Collapse
Affiliation(s)
- Katharine E Lewis
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA.
| | | |
Collapse
|
41
|
Abstract
First isolated in the fly and now characterised in vertebrates, the Slit proteins have emerged as pivotal components controlling the guidance of axonal growth cones and the directional migration of neuronal precursors. As well as extensive expression during development of the central nervous system (CNS), the Slit proteins exhibit a striking array of expression sites in non-neuronal tissues, including the urogenital system, limb primordia and developing eye. Zebrafish Slit has been shown to mediate mesodermal migration during gastrulation, while Drosophila slit guides the migration of mesodermal cells during myogenesis. This suggests that the actions of these secreted molecules are not simply confined to the sphere of CNS development, but rather act in a more general fashion during development and throughout the lifetime of an organism. This review focuses on the non-neuronal activities of Slit proteins, highlighting a common role for the Slit family in cellular migration.
Collapse
Affiliation(s)
- Michael Piper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
42
|
Gimnopoulos D, Becker CG, Ostendorff HP, Bach I, Schachner M, Becker T. Expression of the zebrafish recognition molecule F3/F11/contactin in a subset of differentiating neurons is regulated by cofactors associated with LIM domains. Mech Dev 2002; 119 Suppl 1:S135-41. [PMID: 14516675 DOI: 10.1016/s0925-4773(03)00106-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have identified a zebrafish homolog of the F3/F11/contactin (F3) recognition molecule. The gene shares 55% amino acid identity with F3 molecules in other vertebrates. Expression of F3 mRNA is first detectable at 16 h post-fertilization (hpf) in trigeminal and Rohon-Beard neurons. At 18-24 hpf, additional weaker expression is present in discrete cell clusters in the hindbrain, in the anterior lateral line/acoustic ganglion and in spinal motor neurons. Transcription factors of the LIM homeodomain class (LIM-HD) and their associated cofactors CLIM/NLI/Ldb (CLIM) have been implicated in the development of peripheral axons of trigeminal and Rohon-Beard neurons. We demonstrate that ectopic overexpression of a dominant-negative CLIM molecule early during zebrafish development strongly reduces expression of F3 mRNA in these neurons indicating regulation of F3 by the LIM-HD protein network. These results and the spatiotemporal correlation of F3 expression with axonal differentiation in a subset of primary neurons suggest an important role of F3 for axon growth.
Collapse
Affiliation(s)
- Dimitrios Gimnopoulos
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E. Development of the locomotor network in zebrafish. Prog Neurobiol 2002; 68:85-111. [PMID: 12450489 DOI: 10.1016/s0301-0082(02)00075-8] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The zebrafish is a leading model for studies of vertebrate development and genetics. Its embryonic motor behaviors are easy to assess (e.g. for mutagenic screens), the embryos develop rapidly (hatching as larvae at 2 days) and are transparent, permitting calcium imaging and patch clamp recording in vivo. We review primarily the recent advances in understanding the cellular basis for the development of motor activities in the developing zebrafish. The motor activities are generated largely in the spinal cord and hindbrain. In the embryo these segmented structures possess a relatively small number of repeating sets of identifiable neurons. Many types of neurons as well as the two types of muscle cells have been classified based on their morphologies. Some of the molecular signals for cellular differentiation have been identified recently and mutations affecting cell development have been isolated. Embryonic motor behaviors appear in sequence and consist of an early period of transient spontaneous coiling contractions, followed by the emergence of twitching responses to touch, and later by the ability to swim. Coiling contractions are generated by an electrically coupled network of a subset of spinal neurons whereas a chemical (glutamatergic and glycinergic) synaptic drive underlies touch responses and swimming. Swimming becomes sustained in larvae once the neuromodulatory serotonergic system develops. These results indicate many similarities between developing zebrafish and other vertebrates in the properties of the synaptic drive underlying locomotion. Therefore, the zebrafish is a useful preparation for gaining new insights into the development of the neural control of vertebrate locomotion. As the types of neurons, transmitters, receptors and channels used in the locomotor network are being defined, this opens the possibility of combining cellular neurophysiology with forward and reverse molecular genetics to understand the principles of locomotor network assembly and function.
Collapse
Affiliation(s)
- Pierre Drapeau
- McGill Centre for Research in Neuroscience and Department of Biology, McGill University, Que., Montreal, Canada.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
To address how the highly stereotyped retinotectal pathway develops in zebrafish, we used fixed-tissue and time-lapse imaging to analyze morphology and behavior of wild-type and mutant retinal growth cones. Wild-type growth cones increase in complexity and pause at the midline. Intriguingly, they make occasional ipsilateral projections and other pathfinding errors, which are always eventually corrected. In the astray/robo2 mutant, growth cones are larger and more complex than wild-type. astray axons make midline errors not seen in wild-type, as well as errors both before and after the midline. astray errors are rarely corrected. The presumed Robo ligands Slit2 and Slit3 are expressed near the pathway in patterns consistent with their mediating pathfinding through Robo2. Thus, Robo2 does not control midline crossing of retinal axons, but rather shapes their pathway, by both preventing and correcting pathfinding errors.
Collapse
Affiliation(s)
- Lara D Hutson
- Department of Neurobiology and Anatomy, University of Utah Medical Center, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
45
|
Nguyen-Ba-Charvet KT, Chédotal A. Role of Slit proteins in the vertebrate brain. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:91-8. [PMID: 11755787 DOI: 10.1016/s0928-4257(01)00084-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Diffusible chemorepellents play a major role in guiding developing axons towards their correct targets by preventing them from entering or steering them away from certain regions. Genetic studies in Drosophila revealed a novel repulsive guidance system that prevents inappropriate axons from crossing the CNS midline; this repulsive system is mediated by the Roundabout (Robo) receptors and their secreted ligand Slits. Three distinct slit genes (slit1, slit2 and slit3) and three distinct robo genes (robo1, robo2 and rig-1) have been cloned in mammals. In collagen gel co-cultures, Slit1 and Slit2 can repel and collapse olfactory axons. However, there is also some positive effect associated with Slits, as Slit2 stimulates the formation of axon collateral branches by NGF-responsive neurons of the dorsal root ganglia (DRG). Slit2 is a large ECM glycoproteins of about 200 kD, which is proteolytically processed into 140 kD N-terminal and 55-60 kD C-terminal fragments. Slit2 cleavage fragments appear to have different cell association characteristics, with the smaller C-terminal fragment being more diffusible and the larger N-terminal and uncleaved fragments being more tightly cell associated. This suggested that the different fragments might have different functional activities in vivo. We have begun to explore these questions by engineering mutant and truncated versions of hSlit2 representing the two cleavage fragments, N- and C-, and the uncleavable molecule and examining the activities of these mutants in binding and functional assays. We found that an axon's response to Slit2 is not absolute, but rather is reflective of the context in which the protein is encountered.
Collapse
Affiliation(s)
- Kim T Nguyen-Ba-Charvet
- INSERM U106, Bâtiment de Pédiatrie, Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | | |
Collapse
|
46
|
Lee JS, Ray R, Chien CB. Cloning and expression of three zebrafish roundabout homologs suggest roles in axon guidance and cell migration. Dev Dyn 2001; 221:216-30. [PMID: 11376489 DOI: 10.1002/dvdy.1136] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning and expression patterns of three novel zebrafish Roundabout homologs. The Roundabout (robo) gene encodes a transmembrane receptor that is essential for axon guidance in Drosophila and Robo family members have been implicated in cell migration. Analysis of extracellular domains and conserved cytoplasmic motifs shows that zebrafish Robo1 and Robo2 are orthologs of mammalian Robo1 and Robo2, respectively, while zebrafish Robo3 is likely to be an ortholog of mouse Rig-1. The three zebrafish robos are expressed in distinct but overlapping patterns during embryogenesis. They are highly expressed in the developing nervous system, including the olfactory system, visual system, hindbrain, cranial ganglia, spinal cord, and posterior lateral line primordium. They are also expressed in several nonneuronal tissues, including somites and fin buds. The timing and patterns of expression suggest roles for zebrafish robos in axon guidance and cell migration. Wiley-Liss, Inc.
Collapse
Affiliation(s)
- J S Lee
- Department of Neurobiology and Anatomy, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|