1
|
Batel A, Stilgenbauer M, Spyridonov IM, Weltje L. Assessing plasmatic transport inhibitors of thyroid hormone in mammals in the Xenopus Eleutheroembryonic Thyroid Assay (XETA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63360-63373. [PMID: 39485658 DOI: 10.1007/s11356-024-35418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
The Xenopus Eleutheroembryonic Thyroid Assay (XETA, OECD TG 248) was established as an alternative to the Amphibian Metamorphosis Assay (AMA, OECD TG 231) for the analysis of (anti-)thyroid activity of chemicals. The XETA is a New Approach Method (NAM) since the embryonic life stages used in the assay are not yet feeding independently, which renders the assay to be considered a non-animal test under many national laws. Physiologically, the used embryos are not fully developed yet, and thus there are limitations to the XETA for detecting certain mechanisms along the hypothalamic-pituitary-thyroid (HPT) axis. However, the plasmatic transport inhibition of thyroid hormone should physiologically be detectable in the XETA but has not yet been sufficiently investigated. Here, we tested three substances that are known, amongst others, to inhibit thyroid hormone transport by competitive binding to transthyretin in mammalian studies, namely pentachlorophenol (PCP), tetrabromo bisphenol A (TBBPA), and mefenamic acid. Following the test guideline, X. laevis eleutheroembryos of Nieuwkoop-Faber stage 45 were exposed for 72 h at 21 °C in 6-well plates to different concentrations of the test substances. For PCP and TBBPA, the XETA showed a decrease in fluorescence intensity, which would be expected for thyroid hormone transport inhibition amongst other, similar modes of action, while for the lower potency substance mefenamic acid, a trend was visible, but no statistically significant inhibition was detected. Overall, the results indicate that in the XETA, the plasmatic transport inhibition of thyroid hormone should be detectable alongside other inhibitory modes of action on the HPT axis.
Collapse
Affiliation(s)
- Annika Batel
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117, Limburgerhof, Germany.
| | - Melissa Stilgenbauer
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117, Limburgerhof, Germany
| | - Inka Marie Spyridonov
- BASF Services Europe GmbH - Global Ecotoxicology, Naglerstraße 4, 10245, Berlin, Germany
| | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117, Limburgerhof, Germany
- Division of Plant Pathology and Plant Protection, Georg-August-University Göttingen, Grisebachstraße 6, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Konno N. Simultaneous activation of genes encoding urea cycle enzymes and gluconeogenetic enzymes coincides with a corticosterone surge period before metamorphosis in Xenopus laevis. Dev Growth Differ 2023; 65:6-15. [PMID: 36527293 DOI: 10.1111/dgd.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Amphibian tadpoles are postulated to excrete ammonia as nitrogen metabolites but to shift from ammonotelism to ureotelism during metamorphosis. However, it is unknown whether ureagenesis occurs or plays a functional role before metamorphosis. Here, the mRNA-expression levels of two urea cycle enzymes (carbamoyl phosphate synthetase I [CPSI] and ornithine transcarbamylase [OTC]) were measured beginning with stage-47 Xenopus tadpoles at 5 days post-fertilization (dpf), between the onset of feeding (stage 45, 4 dpf) and metamorphosis (stage 55, 32 dpf). CPSI and OTC expression levels increased significantly from stage 49 (12 dpf). Urea excretion was also detected at stage 47. A transient corticosterone surge peaking at stage 48 was previously reported, supporting the hypothesis that corticosterone can induce CPSI expression in tadpoles, as found in adult frogs and mammals. Stage-46 tadpoles were exposed to a synthetic glucocorticoid, dexamethasone (Dex, 10-500 nM) for 3 days. CPSI mRNA expression was significantly higher in tadpoles exposed to Dex than in tadpoles exposed to the vehicle control. Furthermore, glucocorticoid receptor mRNA expression increased during the pre-metamorphic period. In addition to CPSI and OTC mRNA upregulation, the expression levels of three gluconeogenic enzyme genes (glucose 6-phosphatase, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase 1) increased with the onset of urea synthesis and excretion. These results suggest that simultaneous induction of the urea cycle and gluconeogenic enzymes coincided with a corticosterone surge occurring prior to metamorphosis. These metabolic changes preceding metamorphosis may be closely related to the onset of feeding and nutrient accumulation required for metamorphosis.
Collapse
Affiliation(s)
- Norifumi Konno
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| |
Collapse
|
3
|
Zahn N, James-Zorn C, Ponferrada VG, Adams DS, Grzymkowski J, Buchholz DR, Nascone-Yoder NM, Horb M, Moody SA, Vize PD, Zorn AM. Normal Table of Xenopus development: a new graphical resource. Development 2022; 149:dev200356. [PMID: 35833709 PMCID: PMC9445888 DOI: 10.1242/dev.200356] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/17/2022] [Indexed: 12/26/2022]
Abstract
Normal tables of development are essential for studies of embryogenesis, serving as an important resource for model organisms, including the frog Xenopus laevis. Xenopus has long been used to study developmental and cell biology, and is an increasingly important model for human birth defects and disease, genomics, proteomics and toxicology. Scientists utilize Nieuwkoop and Faber's classic 'Normal Table of Xenopus laevis (Daudin)' and accompanying illustrations to enable experimental reproducibility and reuse the illustrations in new publications and teaching. However, it is no longer possible to obtain permission for these copyrighted illustrations. We present 133 new, high-quality illustrations of X. laevis development from fertilization to metamorphosis, with additional views that were not available in the original collection. All the images are available on Xenbase, the Xenopus knowledgebase (http://www.xenbase.org/entry/zahn.do), for download and reuse under an attributable, non-commercial creative commons license. Additionally, we have compiled a 'Landmarks Table' of key morphological features and marker gene expression that can be used to distinguish stages quickly and reliably (https://www.xenbase.org/entry/landmarks-table.do). This new open-access resource will facilitate Xenopus research and teaching in the decades to come.
Collapse
Affiliation(s)
| | - Christina James-Zorn
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Virgilio G. Ponferrada
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Dany S. Adams
- Lucell Diagnostics Inc, 16 Stearns Street, Cambridge, MA 02138, USA
| | - Julia Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel R. Buchholz
- Department of Biology Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Nanette M. Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - Marko Horb
- National Xenopus Resource, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, DC 20037, USA
| | - Peter D. Vize
- Xenbase, Department of Biological Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Aaron M. Zorn
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Yamauchi K. The interaction of zinc with the multi-functional plasma thyroid hormone distributor protein, transthyretin: evolutionary and cross-species comparative aspects. Biometals 2021; 34:423-437. [PMID: 33686575 DOI: 10.1007/s10534-021-00294-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/19/2021] [Indexed: 11/29/2022]
Abstract
A considerable body of evidence has been accumulated showing the interrelationship between zinc and the plasma thyroid hormone (TH) distributor protein, transthyretin (TTR). TTR is a multi-functional protein, which emerged from 5-hydroxyisourate hydrolase (HIUHase) by neo-functionalization after gene duplication during early chordate evolution. HIUHase is also a zinc-binding protein. Most biochemical and molecular biological findings have been obtained from mammalian studies. However, in the past two decades, it has become clear that fish TTR displays zinc-dependent TH binding. After a brief introduction on plasma zinc, THs and their binding proteins, this review will focus on the role of zinc in TTR functions of various vertebrates. In particular primitive fish TTR has an extremely high zinc content, with an increased number of histidine residues which are involved in TH binding. However, zinc-dependent TH binding may have been gradually lost from TTRs during higher vertebrate evolution. Although human TTR has a low zinc content, zinc plays an essential role in TTR functions other than TH binding: the stability of TTR-holo retinol binding protein 4 (holoRBP4) complex, TTR amyloidogenesis, the sequestration of amyloid β (Aβ) fibrils and cryptic proteolytic activity. The interaction of TTR with metallothioneins may be a critical step in the exertion of some of these functions. Evolutionary and physiological insights on zinc-dependent functions of TTRs are also discussed.
Collapse
Affiliation(s)
- Kiyoshi Yamauchi
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
5
|
Abstract
The endoderm is the innermost germ layer that forms the linings of the respiratory and gastrointestinal tracts, and their associated organs, during embryonic development. Xenopus embryology experiments have provided fundamental insights into how the endoderm develops in vertebrates, including the critical role of TGFβ-signaling in endoderm induction,elucidating the gene regulatory networks controlling germ layer development and the key molecular mechanisms regulating endoderm patterning and morphogenesis. With new genetic, genomic, and imaging approaches, Xenopus is now routinely used to model human disease, discover mechanisms underlying endoderm organogenesis, and inform differentiation protocols for pluripotent stem cell differentiation and regenerative medicine applications. In this chapter, we review historical and current discoveries of endoderm development in Xenopus, then provide examples of modeling human disease and congenital defects of endoderm-derived organs using Xenopus.
Collapse
Affiliation(s)
- Nicole A Edwards
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Aaron M Zorn
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
6
|
Corbett JL, Duncan SA. iPSC-Derived Hepatocytes as a Platform for Disease Modeling and Drug Discovery. Front Med (Lausanne) 2019; 6:265. [PMID: 31803747 PMCID: PMC6873655 DOI: 10.3389/fmed.2019.00265] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
The liver is one of the largest organs in the body and is responsible for a diverse repertoire of metabolic processes. Such processes include the secretion of serum proteins, carbohydrate and lipid metabolism, bile acid and urea synthesis, detoxification of drugs and metabolic waste products, and vitamin and carbohydrate storage. Currently, liver disease is one of the most prevalent causes of mortality in the USA with congenital liver defects contributing to a significant proportion of these deaths. Historically the study of liver disease has been hampered by a shortage of organ donors, the subsequent scarcity of healthy tissue, and the failure of animal models to fully recapitulate human liver function. In vitro culture of hepatocytes has also proven difficult because primary hepatocytes rapidly de-differentiate in culture. Recent advances in stem cell technology have facilitated the generation of induced pluripotent stem cells (iPSCs) from various somatic cell types from patients. Such cells can be differentiated to a liver cell fate, essentially providing a limitless supply of cells with hepatocyte characteristics that can mimic the pathophysiology of liver disease. Furthermore, development of the CRISPR-Cas9 system, as well as advancement of miniaturized differentiation platforms has facilitated the development of high throughput models for the investigation of hepatocyte differentiation and drug discovery. In this review, we will explore the latest advances in iPSC-based disease modeling and drug screening platforms and examine how this technology is being used to identify new pharmacological interventions, and to advance our understanding of liver development and mechanisms of disease. We will cover how iPSC technology is being used to develop predictive models for rare diseases and how information gained from large in vitro screening experiments can be used to directly inform clinical investigation.
Collapse
Affiliation(s)
| | - Stephen A. Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
7
|
Stewart ME, Donahue KM, Wilke EG, Shifley ET. LOC496300 is expressed in the endoderm of developing Xenopus laevis embryos. MICROPUBLICATION BIOLOGY 2019; 2019:10.17912/micropub.biology.000150. [PMID: 32550462 PMCID: PMC7252394 DOI: 10.17912/micropub.biology.000150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Emily T Shifley
- Northern Kentucky University; Highland Heights, KY,
Correspondence to: Emily T Shifley ()
| |
Collapse
|
8
|
Saide K, Sherwood V, Wheeler GN. Paracetamol-induced liver injury modelled in Xenopus laevis embryos. Toxicol Lett 2019; 302:83-91. [DOI: 10.1016/j.toxlet.2018.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 01/25/2023]
|
9
|
Womble M, Amin NM, Nascone-Yoder N. The left-right asymmetry of liver lobation is generated by Pitx2c-mediated asymmetries in the hepatic diverticulum. Dev Biol 2018; 439:80-91. [PMID: 29709601 PMCID: PMC5988353 DOI: 10.1016/j.ydbio.2018.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/26/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
Abstract
Internal organs exhibit left-right asymmetric sizes, shapes and anatomical positions, but how these different lateralities develop is poorly understood. Here we use the experimentally tractable Xenopus model to uncover the morphogenetic events that drive the left-right asymmetrical lobation of the liver. On the right side of the early hepatic diverticulum, endoderm cells become columnar and apically constricted, forming an expanded epithelial surface and, ultimately, an enlarged right liver lobe. In contrast, the cells on the left side become rounder, and rearrange into a compact, stratified architecture that produces a smaller left lobe. Side-specific gain- and loss-of-function studies reveal that asymmetric expression of the left-right determinant Pitx2c elicits distinct epithelial morphogenesis events in the left side of the diverticulum. Surprisingly, the cellular events induced by Pitx2c during liver development are opposite those induced in other digestive organs, suggesting divergent cellular mechanisms underlie the formation of different lateralities.
Collapse
Affiliation(s)
- Mandy Womble
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA
| | - Nirav M Amin
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA.
| |
Collapse
|
10
|
Higashiyama H, Uemura M, Igarashi H, Kurohmaru M, Kanai-Azuma M, Kanai Y. Anatomy and development of the extrahepatic biliary system in mouse and rat: a perspective on the evolutionary loss of the gallbladder. J Anat 2017; 232:134-145. [PMID: 29023691 DOI: 10.1111/joa.12707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 12/13/2022] Open
Abstract
The gallbladder is the hepatobiliary organ for storing and secreting bile fluid, and is a synapomorphy of extant vertebrates. However, this organ has been frequently lost in several lineages of birds and mammals, including rodents. Although it is known as the traditional problem, the differences in development between animals with and without gallbladders are not well understood. To address this research gap, we compared the anatomy and development of the hepatobiliary systems in mice (gallbladder is present) and rats (gallbladder is absent). Anatomically, almost all parts of the hepatobiliary system of rats are topographically the same as those of mice, but rats have lost the gallbladder and cystic duct completely. During morphogenesis, the gallbladder-cystic duct domain (Gb-Cd domain) and its primordium, the biliary bud, do not develop in the rat. In the early stages, SOX17, a master regulator of gallbladder formation, is positive in the murine biliary bud epithelium, as seen in other vertebrates with a gallbladder, but there is no SOX17-positive domain in the rat hepatobiliary primordia. These findings suggest that the evolutionary loss of the Gb-Cd domain should be translated simply as the absence of a biliary bud at an early stage, which may correlate with alterations in regulatory genes, such as Sox17, in the rat. A SOX17-positive biliary bud is clearly definable as a developmental module that may be involved in the frequent loss of gallbladder in mammals.
Collapse
Affiliation(s)
| | - Mami Uemura
- Laboratory of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan.,Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hitomi Igarashi
- Laboratory of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | | | - Masami Kanai-Azuma
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoshiakira Kanai
- Laboratory of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Gao Y, Cao Q, Lu L, Zhang X, Zhang Z, Dong X, Jia W, Cao Y. Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. Dev Dyn 2015. [PMID: 26198170 DOI: 10.1002/dvdy.24310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Kruppel-like factors (Klfs) are a family of transcription factors consisting of 17 members in mammals, Klf1-Klf17, which are involved in fundamental cellular physiological procedures, such as cell proliferation, differentiation, and apoptosis. However, their functions in embryonic development have been poorly understood. Our previous study has demonstrated that the pluripotency factor Klf4 participates in germ layer formation and axis patterning of Xenopus embryos by means of the regulation of key developmental signals. In the present study, we further investigated comprehensively the expression and functions of the klf family genes, klf2, klf5, klf6, klf7, klf8, klf11, klf15, and klf17, during the embryogenesis of Xenopus laevis. RESULTS Spatio-temporal expression analyses demonstrate that these genes are transcribed both maternally and zygotically in Xenopus embryos, and during organogenesis and tissue differentiation, they are localized to a variety of placodes and tissues. Gain and loss of function studies manifest that Klf factors play different roles in germ layer formation and body axis patterning. Moreover, each Klf factor exhibits distinct regulatory effects on the expression of genes that are essential for germ layer formation and body axis patterning. CONCLUSIONS These results suggest that Klf factors are involved in the fine-tuning of these genes during early embryogenesis.
Collapse
Affiliation(s)
- Yan Gao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Qing Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Lei Lu
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Xuena Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Zan Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Xiaohua Dong
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Wenshuang Jia
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Ying Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| |
Collapse
|
12
|
Amin NM, Greco TM, Kuchenbrod LM, Rigney MM, Chung MI, Wallingford JB, Cristea IM, Conlon FL. Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT). Development 2014; 141:962-73. [PMID: 24496632 DOI: 10.1242/dev.098327] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proper dissection of the molecular mechanisms governing the specification and differentiation of specific cell types requires isolation of pure cell populations from heterogeneous tissues and whole organisms. Here, we describe a method for purification of nuclei from defined cell or tissue types in vertebrate embryos using INTACT (isolation of nuclei tagged in specific cell types). This method, previously developed in plants, flies and worms, utilizes in vivo tagging of the nuclear envelope with biotin and the subsequent affinity purification of the labeled nuclei. In this study we successfully purified nuclei of cardiac and skeletal muscle from Xenopus using this strategy. We went on to demonstrate the utility of this approach by coupling the INTACT approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic methodologies to profile proteins expressed in the nuclei of developing hearts. From these studies we have identified the Xenopus orthologs of 12 human proteins encoded by genes, which when mutated in human lead to congenital heart disease. Thus, by combining these technologies we are able to identify tissue-specific proteins that are expressed and required for normal vertebrate organ development.
Collapse
Affiliation(s)
- Nirav M Amin
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Uemura M, Ozawa A, Nagata T, Kurasawa K, Tsunekawa N, Nobuhisa I, Taga T, Hara K, Kudo A, Kawakami H, Saijoh Y, Kurohmaru M, Kanai-Azuma M, Kanai Y. Sox17 haploinsufficiency results in perinatal biliary atresia and hepatitis in C57BL/6 background mice. Development 2013; 140:639-48. [PMID: 23293295 DOI: 10.1242/dev.086702] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Congenital biliary atresia is an incurable disease of newborn infants, of unknown genetic causes, that results in congenital deformation of the gallbladder and biliary duct system. Here, we show that during mouse organogenesis, insufficient SOX17 expression in the gallbladder and bile duct epithelia results in congenital biliary atresia and subsequent acute 'embryonic hepatitis', leading to perinatal death in ~95% of the Sox17 heterozygote neonates in C57BL/6 (B6) background mice. During gallbladder and bile duct development, Sox17 was expressed at the distal edge of the gallbladder primordium. In the Sox17(+/-) B6 embryos, gallbladder epithelia were hypoplastic, and some were detached from the luminal wall, leading to bile duct stenosis or atresia. The shredding of the gallbladder epithelia is probably caused by cell-autonomous defects in proliferation and maintenance of the Sox17(+/-) gallbladder/bile duct epithelia. Our results suggest that Sox17 plays a dosage-dependent function in the morphogenesis and maturation of gallbladder and bile duct epithelia during the late-organogenic stages, highlighting a novel entry point to the understanding of the etiology and pathogenesis of human congenital biliary atresia.
Collapse
Affiliation(s)
- Mami Uemura
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Langlois VS, Martyniuk CJ. Genome wide analysis of Silurana (Xenopus) tropicalis development reveals dynamic expression using network enrichment analysis. Mech Dev 2013; 130:304-22. [PMID: 23295496 DOI: 10.1016/j.mod.2012.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/30/2012] [Accepted: 12/17/2012] [Indexed: 11/28/2022]
Abstract
Development involves precise timing of gene expression and coordinated pathways for organogenesis and morphogenesis. Functional and sub-network enrichment analysis provides an integrated approach for identifying networks underlying development. The objectives of this study were to characterize early gene regulatory networks over Silurana tropicalis development from NF stage 2 to 46 using a custom Agilent 4×44K microarray. There were >8000 unique gene probes that were differentially expressed between Nieuwkoop-Faber (NF) stage 2 and stage 16, and >2000 gene probes differentially expressed between NF 34 and 46. Gene ontology revealed that genes involved in nucleosome assembly, cell division, pattern specification, neurotransmission, and general metabolism were increasingly regulated throughout development, consistent with active development. Sub-network enrichment analysis revealed that processes such as membrane hyperpolarisation, retinoic acid, cholesterol, and dopamine metabolic gene networks were activated/inhibited over time. This study identifies RNA transcripts that are potentially maternally inherited in an anuran species, provides evidence that the expression of genes involved in retinoic acid receptor signaling may increase prior to those involved in thyroid receptor signaling, and characterizes novel gene expression networks preceding organogenesis which increases understanding of the spatiotemporal embryonic development in frogs.
Collapse
Affiliation(s)
- Valérie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada K7K 7B4.
| | | |
Collapse
|
15
|
Bertolesi GE, Iannattone S, Johnston J, Zaremberg V, McFarlane S. Identification and expression analysis of GPAT family genes during early development of Xenopus laevis. Gene Expr Patterns 2012; 12:219-27. [PMID: 22564474 DOI: 10.1016/j.gep.2012.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/27/2012] [Accepted: 04/10/2012] [Indexed: 11/27/2022]
Abstract
Production of lysophosphatidic acid (LPA) is the first step in the de novo pathway for glycerolipid biosynthesis, which is mainly catalyzed by the glycerol-3-phosphate acyltransferases (GPATs; EC2.3.1.15). DHAPAT (EC2.3.1.42) also contributes in a minor way, using dihydroxyacetone phosphate as substrate. Final products and intermediates of the glycerolipid synthesis pathway are the main structural components of cellular membranes, and provide signalling molecules that regulate diverse biological processes, including cell proliferation, differentiation and growth. Here we identified the four orthologs of the mammalian GPATs (1-4) and DHAPAT in Xenopus, including a novel, short variant of GPAT2, and analyzed their expression pattern during embryonic development. Xenopus GPAT1/2 localized to mitochondria, while GPAT3/4 associated with the endoplasmic reticulum. All are similarly expressed in the early embryonic nervous system. A more tissue specific pattern emerges during organogenesis, including liver expression for GPAT1/4, and testis expression for GPAT2. All acyltransferases were expressed in kidney, though GPAT3 was excluded from the pronephric ducts. Our results suggest important roles of GPATs and DHAPAT during early organogenesis.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
16
|
Shin D, Weidinger G, Moon RT, Stainier DYR. Intrinsic and extrinsic modifiers of the regulative capacity of the developing liver. Mech Dev 2012; 128:525-35. [PMID: 22313811 DOI: 10.1016/j.mod.2012.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
Abstract
Zebrafish wnt2bb mutants initially fail to form a liver, but surprisingly the liver eventually forms in a majority of these embryos which then develop into fertile adults. This unexpected result raised the possibility that identifying the mechanisms of liver formation in wnt2bb mutants could provide insights into the poorly understood yet general principle of regulative development, a process by which some cells can change fate in order to compensate for a deficiency. Here, we identify two factors that underlie the regulative capacity of endodermal tissues: an intrinsic factor, Sox32, a transcription factor of the SoxF subfamily, and an extrinsic factor, Fgf10a. sox32 is expressed in the extrahepatic duct primordium which is not affected in wnt2bb mutants. Blocking Sox32 function prevented liver formation in most wnt2bb mutants. fgf10a, which is expressed in the mesenchyme surrounding non-hepatic endodermal cells, negatively impacts the regulative capacity of endodermal tissues. In Wnt/β-catenin signaling deficient embryos, in which the liver completely fails to form, the repression of Fgf10a function allowed liver formation. Altogether, these studies reveal that there is more than one way to form a liver, and provide molecular insights into the phenomenon of tissue plasticity.
Collapse
Affiliation(s)
- Donghun Shin
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Institute for Regeneration Medicine, Diabetes Center and Liver Center, University of California, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
17
|
Wang JH, Deimling SJ, D'Alessandro NE, Zhao L, Possmayer F, Drysdale TA. Retinoic acid is a key regulatory switch determining the difference between lung and thyroid fates in Xenopus laevis. BMC DEVELOPMENTAL BIOLOGY 2011; 11:75. [PMID: 22185339 PMCID: PMC3268113 DOI: 10.1186/1471-213x-11-75] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/20/2011] [Indexed: 11/10/2022]
Abstract
Background The lung and thyroid are derived from the anterior endoderm. Retinoic acid and Fgf signalling are known to be essential for development of the lung in mouse but little is known on how the lung and thyroid are specified in Xenopus. Results If either retinoic acid or Fgf signalling is inhibited, there is no differentiation of the lung as assayed by expression of sftpb. There is no change in expression of thyroid gland markers when retinoic acid signalling is blocked after gastrulation and when Fgf signalling is inhibited there is a short window of time where pax2 expression is inhibited but expression of other markers is unaffected. If exogenous retinoic acid is given to the embryo between embryonic stages 20 and 26, the presumptive thyroid expresses sftpb and sftpc, specific markers of lung differentiation and expression of key thyroid transcription factors is lost. When the presumptive thyroid is transplanted into the posterior embryo, it also expresses sftpb, although pax2 expression is not blocked. Conclusions After gastrulation, retinoic acid is required for lung but not thyroid differentiation in Xenopus while Fgf signalling is needed for lung but only for early expression of pax2 in the thyroid. Exposure to retinoic acid can cause the presumptive thyroid to switch to a lung developmental program.
Collapse
Affiliation(s)
- Jean H Wang
- Children's Health Research Institute, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Chang C, Hu M, Zhu Z, Lo LJ, Chen J, Peng J. liver-enriched gene 1a and 1b encode novel secretory proteins essential for normal liver development in zebrafish. PLoS One 2011; 6:e22910. [PMID: 21857963 PMCID: PMC3153479 DOI: 10.1371/journal.pone.0022910] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/01/2011] [Indexed: 12/15/2022] Open
Abstract
liver-enriched gene 1 (leg1) is a liver-enriched gene in zebrafish and encodes a novel protein. Our preliminary data suggested that Leg1 is probably involved in early liver development. However, no detailed characterization of Leg1 has been reported thus far. We undertook both bioinformatic and experimental approaches to study leg1 gene structure and its role in early liver development. We found that Leg1 identifies a new conserved protein superfamily featured by the presence of domain of unknown function 781 (DUF781). There are two copies of leg1 in zebrafish, namely leg1a and leg1b. Both leg1a and leg1b are expressed in the larvae and adult liver with leg1a being the predominant form. Knockdown of Leg1a or Leg1b by their respective morpholinos specifically targeting their 5′-UTR each resulted in a small liver phenotype, demonstrating that both Leg1a and Leg1b are important for early liver development. Meanwhile, we found that injection of leg1-ATGMO, a morpholino which can simultaneously block the translation of Leg1a and Leg1b, caused not only a small liver phenotype but hypoplastic exocrine pancreas and intestinal tube as well. Further examination of leg1-ATGMO morphants with early endoderm markers and early hepatic markers revealed that although depletion of total Leg1 does not alter the hepatic and pancreatic fate of the endoderm cells, it leads to cell cycle arrest that results in growth retardation of liver, exocrine pancreas and intestine. Finally, we proved that Leg1 is a secretory protein. This intrigued us to propose that Leg1 might act as a novel secreted regulator that is essential for liver and other digestive organ development in zebrafish.
Collapse
Affiliation(s)
- Changqing Chang
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Minjie Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhihui Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Jan Lo
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
19
|
Lade AG, Monga SPS. Beta-catenin signaling in hepatic development and progenitors: which way does the WNT blow? Dev Dyn 2010; 240:486-500. [PMID: 21337461 DOI: 10.1002/dvdy.22522] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2010] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved signaling cascade that plays key roles in development and adult tissue homeostasis and is aberrantly activated in many tumors. Over a decade of work in mouse, chick, xenopus, and zebrafish models has uncovered multiple functions of this pathway in hepatic pathophysiology. Specifically, beta-catenin, the central component of the canonical Wnt pathway, is implicated in the regulation of liver regeneration, development, and carcinogenesis. Wnt-independent activation of beta-catenin by receptor tyrosine kinases has also been observed in the liver. In liver development across various species, through regulation of cell proliferation, differentiation, and maturation, beta-catenin directs foregut endoderm specification, hepatic specification of the foregut, and hepatic morphogenesis. Its role has also been defined in adult hepatic progenitors or oval cells especially in their expansion and differentiation. Thus, beta-catenin undergoes tight temporal regulation to exhibit pleiotropic effects during hepatic development and in hepatic progenitor biology.
Collapse
|
20
|
Noël ES, Reis MD, Arain Z, Ober EA. Analysis of the Albumin/alpha-Fetoprotein/Afamin/Group specific component gene family in the context of zebrafish liver differentiation. Gene Expr Patterns 2010; 10:237-43. [PMID: 20471496 DOI: 10.1016/j.gep.2010.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 05/07/2010] [Accepted: 05/07/2010] [Indexed: 01/04/2023]
Abstract
Members of the Albumin/alpha-Fetoprotein/Afamin/Group specific component (Alb/Afp/Afm/Gc) multi-gene family perform physiological functions essential for body homeostasis and are among the earliest genes to be expressed in the fetal liver in mammals. A comprehensive search of the zebrafish genome has led to the isolation of a single member of this gene family, exhibiting close homology to group specific component (gc; also described as vitamin D binding protein (dbp)). Our phylogenetic analyses did not uncover albumin in the genome, indicating its likely absence in zebrafish, whereas the absence of afp and afm is in agreement with previous findings that both genes arose at a later stage of vertebrate evolution. gc mRNA expression is initiated weakly around 55 hours post fertilisation (hpf) in the developing liver, and increases until it reaches a continuously high level from about 72 hpf onwards. Investigation of gc mRNA in hdac1 mutants revealed a severe delay of expression, indicating a defect in progression of hepatic differentiation. This provides further evidence for Hdac1 regulating the precise timely execution of hepatic gene expression programmes. Conversely, onset of gc expression was unaltered in cloche mutant embryos, which lack hepatic vasculature, suggesting that this particular step of hepatic differentiation occurs independently from endothelial cells. Our studies identify gc as the likely only member of the Alb/Afp/Afm/Gc gene family in zebrafish, providing important insights into the evolution of this multi-gene family in vertebrates. Furthermore, the identification of gc adds a valuable temporal marker for investigating progressive hepatic differentiation in zebrafish.
Collapse
Affiliation(s)
- Emily S Noël
- MRC National Institute for Medical Research, Division of Developmental Biology, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
21
|
De Marco N, Iannone L, Carotenuto R, Biffo S, Vitale A, Campanella C. p27BBP/eIF6 acts as an anti-apoptotic factor upstream of Bcl-2 during Xenopus laevis development. Cell Death Differ 2009; 17:360-72. [DOI: 10.1038/cdd.2009.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Yamauchi K, Ishihara A. Evolutionary changes to transthyretin: developmentally regulated and tissue-specific gene expression. FEBS J 2009; 276:5357-66. [DOI: 10.1111/j.1742-4658.2009.07245.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Hayata T, Blitz IL, Iwata N, Cho KWY. Identification of embryonic pancreatic genes using Xenopus DNA microarrays. Dev Dyn 2009; 238:1455-66. [PMID: 19191222 DOI: 10.1002/dvdy.21868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The pancreas is both an exocrine and endocrine endodermal organ involved in digestion and glucose homeostasis. During embryogenesis, the anlagen of the pancreas arise from dorsal and ventral evaginations of the foregut that later fuse to form a single organ. To better understand the molecular genetics of early pancreas development, we sought to isolate markers that are uniquely expressed in this tissue. Microarray analysis was performed comparing dissected pancreatic buds, liver buds, and the stomach region of tadpole stage Xenopus embryos. A total of 912 genes were found to be differentially expressed between these organs during early stages of organogenesis. K-means clustering analysis predicted 120 of these genes to be specifically enriched in the pancreas. Of these, we report on the novel expression patterns of 24 genes. Our analyses implicate the involvement of previously unsuspected signaling pathways during early pancreas development. Developmental Dynamics 238:1455-1466, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Tadayoshi Hayata
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | | | | | | |
Collapse
|
24
|
Woodland HR, Zorn AM. The core endodermal gene network of vertebrates: combining developmental precision with evolutionary flexibility. Bioessays 2008; 30:757-65. [PMID: 18623060 DOI: 10.1002/bies.20785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Embryonic development combines paradoxical properties: it has great precision, it is usually conducted at breakneck speed and it is flexible on relatively short evolutionary time scales, particularly at early stages. While these features appear mutually exclusive, we consider how they may be reconciled by the properties of key early regulatory networks. We illustrate these ideas with the network that controls development of endoderm progenitors. We argue that this network enables precision because of its intrinsic stability, self propagation and dependence on signalling. The network enables high developmental speed because it is rapidly established by maternal inputs at multiple points. In turn these properties confer flexibility on an evolutionary time scale because they can be initiated in many ways, while buffering essential progenitor cell populations against changes in their embryonic environment on both evolutionary and developmental time scales. Although stable, these networks must be capable of rapid dissolution as cell differentiation progresses. While we focus on the core early endodermal network of vertebrates, we argue that these properties are likely to be general in early embryonic stem cell populations, such as mammalian ES cells.
Collapse
Affiliation(s)
- Hugh R Woodland
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | |
Collapse
|
25
|
Spagnoli FM, Brivanlou AH. The Gata5 target, TGIF2, defines the pancreatic region by modulating BMP signals within the endoderm. Development 2007; 135:451-61. [PMID: 18094028 DOI: 10.1242/dev.008458] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mechanisms underlying regional specification of distinct organ precursors within the endoderm, including the liver and pancreas, are still poorly understood. This is particularly true for stages between endoderm formation and the initiation of organogenesis. In this report, we have investigated these intermediate steps downstream of the early endodermal factor Gata5, which progressively lead to the induction of pancreatic fate. We have identified TGIF2 as a novel Gata5 target and demonstrate its function in the establishment of the pancreatic region within dorsal endoderm in Xenopus. TGIF2 acts primarily by restricting BMP signaling in the endoderm to allow pancreatic formation. Consistently, we found that blocking BMP signaling by independent means also perturbs the establishment of pancreatic identity in the endoderm. Previous findings demonstrated a crucial role for BMP signaling in determining dorsal/ventral fates in ectoderm and mesoderm. Our results now extend this trend to the endoderm and identify TGIF2 as the molecular link between dorsoventral patterning of the endoderm and pancreatic specification.
Collapse
Affiliation(s)
- Francesca M Spagnoli
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
26
|
Howard L, Rex M, Clements D, Woodland HR. Regulation of the Xenopus Xsox17alpha(1) promoter by co-operating VegT and Sox17 sites. Dev Biol 2007; 310:402-15. [PMID: 17719026 PMCID: PMC2098691 DOI: 10.1016/j.ydbio.2007.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 07/03/2007] [Accepted: 07/23/2007] [Indexed: 11/23/2022]
Abstract
The gene encoding the Sox F-group transcription factor Xsox17α1 is specifically expressed throughout the entire region of the Xenopus blastula fated to become endoderm, and is important in controlling endodermal development. Xsox17α1 is a direct target of the maternal endodermal determinant VegT and of Sox17 itself. We have analysed the promoter of the Xenopus laevis Xsox17α1 gene by transgenesis, and have identified two important control elements which reside about 9 kb upstream at the start of transcription. These elements individually drive transgenic endodermal expression in the blastula and gastrula. One contains functional, cooperating VegT and Sox-binding consensus sites. The Sox sites in this region are occupied in vivo. The other responds to TGF-β signals like Activin or Nodals that act through Smad2/3. We propose that these two regions co-operate in regulating the early endodermal expression of the Xsox17α1 gene.
Collapse
|
27
|
McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 2007; 134:2207-17. [PMID: 17507400 DOI: 10.1242/dev.001230] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver and pancreas are specified from the foregut endoderm through an interaction with the adjacent mesoderm. However, the earlier molecular mechanisms that establish the foregut precursors are largely unknown. In this study, we have identified a molecular pathway linking gastrula-stage endoderm patterning to organ specification. We show that in gastrula and early-somite stage Xenopus embryos, Wnt/beta-catenin activity must be repressed in the anterior endoderm to maintain foregut identity and to allow liver and pancreas development. By contrast, high beta-catenin activity in the posterior endoderm inhibits foregut fate while promoting intestinal development. Experimentally repressing beta-catenin activity in the posterior endoderm was sufficient to induce ectopic organ buds that express early liver and pancreas markers. beta-catenin acts in part by inhibiting expression of the homeobox gene hhex, which is one of the earliest foregut markers and is essential for liver and pancreas development. Promoter analysis indicates that beta-catenin represses hhex transcription indirectly via the homeodomain repressor Vent2. Later in development, beta-catenin activity has the opposite effect and enhances liver development. These results illustrate that turning Wnt signaling off and on in the correct temporal sequence is essential for organ formation, a finding that might directly impact efforts to differentiate liver and pancreas tissue from stem cells.
Collapse
Affiliation(s)
- Valérie A McLin
- Cincinnati Children's Research Foundation, Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
28
|
Park EC, Hayata T, Cho KWY, Han JK. Xenopus cDNA microarray identification of genes with endodermal organ expression. Dev Dyn 2007; 236:1633-49. [PMID: 17474120 DOI: 10.1002/dvdy.21167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The endoderm is classically defined as the innermost layer of three Metazoan germ layers. During organogenesis, the endoderm gives rise to the digestive and respiratory tracts as well as associated organs such as the liver, pancreas, and lung. At present, however, how the endoderm forms the variety of cell types of digestive and respiratory tracts as well as the budding organs is not well understood. In order to investigate the molecular basis and mechanism of organogenesis and to identify the endodermal organ-related marker genes, we carried out microarray analysis using Xenopus cDNA chips. To achieve this goal, we isolated the Xenopus gut endoderm from three different stages of Xenopus organogenesis, and separated each stage of gut endoderm into anterior and posterior regions. Competitive hybridization of cDNA between the anterior and posterior endoderm regions, to screen genes that specifically expressed in the major organs, revealed 915 candidates. We then selected 104 clones for in situ hybridization analysis. Here, we report the identification and expression patterns of the 104 Xenopus endodermal genes, which would serve as useful markers for studying endodermal organ development.
Collapse
Affiliation(s)
- Edmond Changkyun Park
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Kyungbuk, Republic of Korea
| | | | | | | |
Collapse
|
29
|
Viczian AS, Bang AG, Harris WA, Zuber ME. Expression of Xenopus laevis Lhx2 during eye development and evidence for divergent expression among vertebrates. Dev Dyn 2006; 235:1133-41. [PMID: 16470628 DOI: 10.1002/dvdy.20708] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Members of the LIM homeodomain (LIM-HD) family of proteins are double zinc-finger containing transcription factors with important functions in pattern formation and cell lineage determination. The LIM-HD family member Lhx2 is required for normal eye, liver, and central nervous system formation. Lhx2(-/-) mice lack eyes, and experiments in Xenopus predict that Lhx2 forms a regulatory network with other eye field transcription factors to specify the eye field during eye formation. Here, we describe the structure and developmental expression pattern of the Xenopus laevis homologue, XLhx2. We show that XLhx2 shares significant amino acid sequence identity with other vertebrate Lhx2 proteins and Drosophila apterous (ap). The expression patterns of XLhx2 in the early neural plate and during eye development are consistent with a role in eye field specification and retinal differentiation. Despite highly similar expression patterns in the mouse and Xenopus central nervous system, divergent expression patterns were also observed. Phylogenetic analysis confirmed the identity of the isolated cDNA as a Xenopus ortholog of Lhx2. Therefore, in spite of structural similarities, the mouse and Xenopus Lhx2 expression patterns differ, suggesting potential functional differences in these species.
Collapse
Affiliation(s)
- Andrea S Viczian
- Departments of Ophthalmology and Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
30
|
Cheng W, Guo L, Zhang Z, Soo HM, Wen C, Wu W, Peng J. HNF factors form a network to regulate liver-enriched genes in zebrafish. Dev Biol 2006; 294:482-96. [PMID: 16631158 DOI: 10.1016/j.ydbio.2006.03.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 02/23/2006] [Accepted: 03/15/2006] [Indexed: 12/20/2022]
Abstract
Defects in some of liver-enriched genes in mammals will cause liver- and/or blood-related diseases. However, due to the fact that embryogenesis happens intrauterinally in the mammals, the function of these liver-enriched genes during liver organogenesis is poorly studied. We report here the identification of 129 genuine liver-enriched genes in adult zebrafish and show that, through in situ hybridization, 69 of these genes are also enriched in the embryonic liver. External embryogenesis coupled with the well-established morpholino-mediated gene knock-down technique in zebrafish offers us a unique opportunity to study if this group of genes plays any role during liver organogenesis in the future. As an example, preliminary study using morpholino-mediated gene knock-down method revealed that a novel liver-enriched gene leg1 is crucial for the liver expansion growth. We also report the analysis of promoter regions of 51 liver-enriched genes by searching putative binding sites for Hnf1, Hnf3, Hnf4 and Hnf6, four key transcription factors enriched in the liver. We found that promoter regions of majority of liver-enriched genes contain putative binding sites for more than one HNF factors, suggesting that most of liver-enriched genes are likely co-regulated by different combination of HNF factors. This observation supports the hypothesis that these four liver-enriched transcription factors form a network in controlling the expression of liver-specific or -enriched genes in the liver.
Collapse
Affiliation(s)
- Wei Cheng
- Functional Genomics Lab, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Protesos, 138673, Singapore
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
During early stages of embryo development, the brain cavity is filled with embryonic cerebrospinal fluid (E-CSF), a complex fluid containing different protein fractions that contributes to the regulation of the survival, proliferation and neurogenesis of the neuroectodermal stem cells. Using 2-DE, protein sequencing and database searches, we identified and analyzed the proteome of the E-CSF from chick embryos (Gallus gallus). We identified 26 different gene products, including proteins related to the extracellular matrix, proteins associated with the regulation of osmotic pressure and metal transport, proteins related to cell survival, MAP kinase activators, proteins involved in the transport of retinol and vitamin D, antioxidant and antimicrobial proteins, intracellular proteins and some unknown proteins. Most of these gene products are involved in the regulation of developmental processes during embryogenesis in systems other than E-CSF. Interestingly, 14 of them are also present in adult human CSF proteome, and it has been reported that they are altered in the CSF of patients suffering neurodegenerative diseases and/or neurological disorders. Understanding these molecules and the mechanisms they control during embryonic neurogenesis is a key contribution to the general understanding of CNS development, and may also contribute to greater knowledge of these human diseases.
Collapse
Affiliation(s)
- Carolina Parada
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
32
|
Blitz IL, Andelfinger G, Horb ME. Germ layers to organs: Using Xenopus to study “later” development. Semin Cell Dev Biol 2006; 17:133-45. [PMID: 16337415 DOI: 10.1016/j.semcdb.2005.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The amphibian embryo is a highly successful model system with great promise for organogenesis research. Since the late 1800s, amphibians have been employed to understand vertebrate development and since the 1950s, the African clawed frog Xenopus laevis has been the amphibian of choice. In the past two decades, Xenopus has led the way forward in, among other things, identifying transcription factors, gene regulatory networks and inter- and intracellular signaling pathways that control early development (from fertilization through gastrulation and neurulation). Perhaps the best measure of how successful Xenopus has been as a model for early mammalian development is the observation that much of the knowledge gleaned from Xenopus studies has subsequently directly translated to discoveries of similar mechanisms operating in mouse development. Despite this great success in early development, research on organogenesis in Xenopus has lagged behind the mouse. However, recent technical advances now make Xenopus amenable for studies on later development, including organogenesis. Here, we discuss why Xenopus is well suited for such research and, we believe, permits addressing questions that have been difficult to approach using other model systems. We also highlight how Xenopus researchers have already begun studying a number of major organs, pancreas, liver, kidney and heart, and suggest how Xenopus might contribute more to these areas in the near future.
Collapse
Affiliation(s)
- Ira L Blitz
- Department of Developmental and Cell Biology and the Developmental Biology Center, University of California, Irvine, CA 92697, USA, and Division of Pediatric Cardiology, Ste Justine Hospital, Montréal, QC, Canada
| | | | | |
Collapse
|
33
|
Pineda-Salgado L, Craig EJ, Blank RB, Kessler DS. Expression of Panza, an alpha2-macroglobulin, in a restricted dorsal domain of the primitive gut in Xenopus laevis. Gene Expr Patterns 2005; 6:3-10. [PMID: 16275122 PMCID: PMC1351133 DOI: 10.1016/j.modgep.2005.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 08/23/2005] [Accepted: 09/03/2005] [Indexed: 11/19/2022]
Abstract
Alpha2-macroglobulin is a major serum protein with diverse functions, including inhibition of protease activity and binding of growth factors, cytokines, and disease factors. We have cloned and characterized Panza, a new Xenopus laevis alpha2-macroglobulin. Panza has 56-60% amino acid similarity with previously identified Xenopus, mouse, rat and human alpha2-macroglobulins, indicating that Panza is a new member of the alpha2-macroglobulin family. Panza mRNA is first detected at the beginning of neurulation in the dorsal endoderm lining the primitive gut (archenteron roof). At the completion of neurulation and continuing through the late tadpole stage, Panza is restricted to a dorsal domain of the gut endoderm adjacent to the notochord and extending along the entire anterior-posterior axis. With outgrowth of the tailbud, Panza expression persists in the chordaneural hinge at the posterior end of the differentiating notochord and extends into the floor plate of the posterior neural tube. As gut coiling commences, Panza expression is initiated in the liver, and the dorsal domain of Panza expression becomes limited to the midgut and hindgut. With further gut coiling, strong Panza expression persists in the liver, but is lost from other regions of the gut. The expression of Panza in endodermal cells adjacent to the notochord points to a potential role for Panza in signal modulation and/or morphogenesis of the primitive gut.
Collapse
Affiliation(s)
- Liliam Pineda-Salgado
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Room 1110, Philadelphia, PA, 19104-6058, USA
| | - Eileen J. Craig
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Room 1110, Philadelphia, PA, 19104-6058, USA
| | - Rebecca B. Blank
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Room 1110, Philadelphia, PA, 19104-6058, USA
| | - Daniel S. Kessler
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Room 1110, Philadelphia, PA, 19104-6058, USA
- * Author for correspondence , Tel: 215-898-1478, Fax: 215-573-7601
| |
Collapse
|
34
|
Fukuda K, Kikuchi Y. Endoderm development in vertebrates: fate mapping, induction and regional specification. Dev Growth Differ 2005; 47:343-55. [PMID: 16109032 DOI: 10.1111/j.1440-169x.2005.00815.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of the vertebrate body plan begins with the differentiation of cells into three germ layers: ectoderm, mesoderm and endoderm. Cells in the endoderm give rise to the epithelial lining of the digestive tract, associated glands and respiratory system. One of the fundamental problems in developmental biology is to elucidate how these three primary germ layers are established from the homologous population of cells in the early blastomere. To address this question, ectoderm and mesoderm development have been extensively analyzed, but study of endoderm development has only begun relatively recently. In this review, we focus on the 'where', 'when' and 'how' of endoderm development in four vertebrate model organisms: the zebrafish, Xenopus, chick and mouse. We discuss the classical fate mapping of the endoderm and the more recent progress in characterizing its induction, segregation and regional specification.
Collapse
Affiliation(s)
- Kimiko Fukuda
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
35
|
Affiliation(s)
- Roong Zhao
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
36
|
Cossette SMM, Drysdale TA. Early expression of thyroid hormone receptor beta and retinoid X receptor gamma in the Xenopus embryo. Differentiation 2005; 72:239-49. [PMID: 15270780 DOI: 10.1111/j.1432-0436.2004.07205006.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of thyroid hormone in Xenopus metamorphosis is particularly well understood as it plays an essential role in that process. However, recent evidence suggests that thyroid hormone may play an earlier role in amphibian embryogenesis. We demonstrate that Xenopus thyroid hormone receptor beta (XTR beta) is expressed shortly after neural fold closure, and that its expression is localized to the developing retina. Retinoid X receptor gamma (RXR gamma), a potential dimerization partner for XTR beta, was also found to be expressed in the retina at early stages, and at later stages RXR gamma was also expressed in the liver diverticulum. Addition of either thyroid hormone or 9-cis retinoic acid, the ligands for XTR beta and RXR gamma, respectively, did not alter the expression of their receptors. However, the addition of thyroid hormone and 9-cis retinoic acid did alter rhodopsin mRNA expression. Addition of thyroid hormone generates a small expansion of the rhodopsin expression domain. When 9-cis retinoic acid or a combination of thyroid hormone and 9-cis retinoic acid was administered, there was a decrease in the expression domain of rhodopsin in the developing retina. These results provide evidence for an early role for XTR beta and RXR gamma in the developing Xenopus retina.
Collapse
Affiliation(s)
- Stephanie M M Cossette
- Children's Health Research Institute, Department of Paediatrics, University of Western Ontario, London, Ontario N6C 2V5, Canada
| | | |
Collapse
|
37
|
Lemaigre F, Zaret KS. Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr Opin Genet Dev 2005; 14:582-90. [PMID: 15380251 DOI: 10.1016/j.gde.2004.08.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The three phases of liver development that are the focus of this review are: the specification of hepatoblasts within the endoderm, the lineage split of hepatoblasts into hepatocytes and biliary cells, and the interaction of these cells with different mesodermal cell derivatives during liver morphogenesis. Advances in these areas include new genes and experimental models for studying liver development, the role of HNF6 and HNF1beta transcription factors and notch signaling in the hepatocyte-biliary cell lineage decision, the identification of genomic targets for HNF4, and HNF4's role in controlling hepatic epithelial structure and the sinusoidal organization of the liver.
Collapse
Affiliation(s)
- Frederic Lemaigre
- Hormone and Metabolic Research Unit, Institute of Cellular Pathology and Université Catholique de Louvain, Avenue Hippocrate 75/7529, B-1200 Brussels, Belgium
| | | |
Collapse
|
38
|
Ahmed N, Howard L, Woodland HR. Early endodermal expression of the Xenopus Endodermin gene is driven by regulatory sequences containing essential Sox protein-binding elements. Differentiation 2005; 72:171-84. [PMID: 15157240 DOI: 10.1111/j.1432-0436.2004.07204005.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Endodermin gene is expressed in the early endoderm and the Spemann organizer of Xenopus embryos. It has previously been shown to be a direct target of the early endodermal transcription factor Xsox17 (Clements et al., 2003, Mech Dev 120:337-348). Here we identify two adjacent control elements in the Endodermin promoter; these drive transcription of the gene in late-gastrula endoderm and contain consensus Sox-binding sites. We have analyzed one element in detail and show that it responds directly to Xsox17 and that the Sox sites are essential for endodermal expression in transgenic embryos. However, flanking regions on both sides are also essential, indicating that Xsox17 acts in concert with several DNA-binding partners.
Collapse
Affiliation(s)
- Nadeem Ahmed
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | | |
Collapse
|
39
|
Yanai M, Tatsumi N, Endo F, Yokouchi Y. Analysis of gene expression patterns in the developing chick liver. Dev Dyn 2005; 233:1116-22. [PMID: 15895409 DOI: 10.1002/dvdy.20413] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chick embryo has been used widely for studying liver development. However, in the past 30 years, the usage has decreased markedly due to lack of appropriate marker genes for differentiation in the developing chick liver. To use the chick embryo for analyzing the molecular mechanism of liver development, we surveyed marker genes in the developing chick liver by examining the expression pattern of genes that are well-characterized in the developing mammalian liver. By whole-mount in situ hybridization, Fibrinogen-gamma (FIB) expression was first detected at stage 12, specifically in the anterior intestinal portal, and its liver-specific expression persisted in the later stages. Albumin (ALB) expression was first detected at stage 30, when the liver starts maturing. Cytokeratin 19 (CK19) was first detected at stage 37 in the ductal plate of the liver, and its expression continued in the intrahepatic bile ducts derived from the ductal plate. Hex, a transcription factor, is an additional marker of bile duct differentiation. Hence, FIB, ALB, and CK19 expression can be used to trace hepatic induction, maturation, and bile duct differentiation, respectively.
Collapse
Affiliation(s)
- Masaaki Yanai
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji, Kumamoto, Japan
| | | | | | | |
Collapse
|
40
|
Stafford D, Hornbruch A, Mueller PR, Prince VE. A conserved role for retinoid signaling in vertebrate pancreas development. Dev Genes Evol 2004; 214:432-41. [PMID: 15322880 DOI: 10.1007/s00427-004-0420-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 05/20/2004] [Indexed: 11/28/2022]
Abstract
Retinoic acid (RA) signaling plays critical roles in the regionalization of the central nervous system and mesoderm of all vertebrates that have been examined. However, to date, a role for RA in pancreas and liver development has only been demonstrated for the teleost zebrafish. Here, we demonstrate that RA signaling is required for development of the pancreas but not the liver in the amphibian Xenopus laevis and the avian quail. We disrupted RA signaling in Xenopus tadpoles, using both a pharmacological and a dominant-negative strategy. RA-deficient quail embryos were obtained from hens with a dietary deficiency in vitamin A. In both species we found that pancreas development was dependent on RA signaling. Furthermore, treatment of Xenopus tadpoles with exogenous RA led to an expansion of the pancreatic field. By contrast, liver development was not perturbed by manipulation of RA signaling. Taken together with our previous finding that RA signaling is necessary and sufficient for zebrafish pancreas development, these data support the hypothesis that a critical role for RA signaling in pancreas development is a conserved feature of the vertebrates.
Collapse
Affiliation(s)
- D Stafford
- The Committee on Developmental Biology, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
41
|
Haigo SL, Harland RM, Wallingford JB. A family of Xenopus BTB-Kelch repeat proteins related to ENC-1: new markers for early events in floorplate and placode development. Gene Expr Patterns 2003; 3:669-74. [PMID: 12972004 DOI: 10.1016/s1567-133x(03)00095-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the expression of a family of Xenopus genes encoding BTB-Kelch repeat proteins related to mouse ENC-1. Xenopus ENC-related-1 (Xencr-1) is expressed throughout the dorsal midline in dorsal endoderm, notochord, and deep neuroectoderm cells during early neurula stages. Later, Xencr-1 expression is downregulated in the notochord in an anterior-to-posterior progression but is maintained in the floorplate and dorsal endoderm. Xencr-3 is expressed strongly in several cranial placodes during the early neurula stages, placing it among the earliest molecular markers of placode precursor populations.
Collapse
Affiliation(s)
- Saori L Haigo
- Department of Molecular and Cell Biology, 401 Barker Hall #3204, University of California, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
42
|
Gurdon JB, Byrne JA, Simonsson S. Nuclear reprogramming and stem cell creation. Proc Natl Acad Sci U S A 2003; 100 Suppl 1:11819-22. [PMID: 12920185 PMCID: PMC304092 DOI: 10.1073/pnas.1834207100] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transplantation of a somatic cell nucleus to an enucleated egg results in a major reprogramming of gene expression and switch in cell fate. We review the efficiency of nuclear reprogramming by nuclear transfer. The serial transplantation of nuclei from defective first-transfer embryos and the grafting of cells from such embryos to normal host embryos greatly increases the proportion of nuclei that can be seen to have been reprogrammed. We discuss possible reasons for the early failure of most nuclear transfers from differentiated cells and describe the potential value of growing oocytes, rather than unfertilized eggs, as a source of nuclear reprogramming molecules and for the eventual identification of these molecules. Nuclear transfer provides a possible route for the creation of stem cells from adult somatic cells.
Collapse
Affiliation(s)
- J B Gurdon
- Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, United Kingdom.
| | | | | |
Collapse
|
43
|
Costa RMB, Mason J, Lee M, Amaya E, Zorn AM. Novel gene expression domains reveal early patterning of the Xenopus endoderm. Gene Expr Patterns 2003; 3:509-19. [PMID: 12915320 DOI: 10.1016/s1567-133x(03)00086-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endoderm gives rise the respiratory and digestive tract epithelia as well as associated organs such as the liver, lungs and pancreas. Investigations examining the molecular basis of embryonic endodermal patterning and organogenesis have been hampered by the lack of regionally expressed molecular markers in the early endoderm. By differentially screening an arrayed cDNA library, combined with an in situ hybridization screen we identified 13 new genes regionally expressed in the early tailbud endoderm of the Xenopus embryo. The putative proteins encoded by these cDNAs include a cell surface transporter, secreted proteins, a protease, a protease inhibitor, an RNA-binding protein, a phosphatase inhibitor and several enzymes. We find that the expression of these genes falls into one of three re-occurring domains in the tailbud embryo; (1). a ventral midgut, (2). posterior to the midgut and (3). in the dorsal endoderm beneath the notochord. Several of these genes are also regionally expressed at gastrula and neurula stages and appear to mark territories that were previously only predicted by the endoderm fate map. This indicates that there is significant positional identity in the early endoderm long before stages 28-32 when regional specification of the endoderm is thought to occur. These new genes provide valuable tools for studying endodermal patterning and organogenesis in Xenopus.
Collapse
Affiliation(s)
- Ricardo M B Costa
- Wellcome Trust/Cancer Research UK Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge, CB2 1QR, UK
| | | | | | | | | |
Collapse
|
44
|
Chen Y, Jürgens K, Hollemann T, Claussen M, Ramadori G, Pieler T. Cell-autonomous and signal-dependent expression of liver and intestine marker genes in pluripotent precursor cells from Xenopus embryos. Mech Dev 2003; 120:277-88. [PMID: 12591597 DOI: 10.1016/s0925-4773(02)00460-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early regulatory events in respect to the embryonic development of the vertebrate liver are only poorly defined. A better understanding of the gene network that mediates the formation of hepatocytes from pluripotent embryonic precursor cells may help to establish in vitro protocols for hepatocyte differentiation. Here, we describe our first attempts to make use of early embryonic explants from the amphibian Xenopus laevis in order to address these questions. We have identified several novel embryonic liver and intestine marker genes in a random expression pattern screen with cDNA libraries derived from the embryonic liver anlage and from the adult liver of Xenopus laevis. Based on their embryonic expression characteristics, these genes, together with the previously known ones, can be categorized into four different groups: the liver specific group (LS), the liver and intestine group A (LIA), the liver and intestine group B (LIB), and the intestine specific group (IS). Dissociation of endodermal explants isolated from early neurula stage embryos reveals that all genes in the LIB and IS groups are expressed in a cell-autonomous manner. In contrast, expression of genes in the LS and LIA groups requires cell-cell interactions. The regular temporal expression profile of genes in all four groups is mimicked in ectodermal explants from early embryos, reprogrammed by co-injection of VegT and beta-catenin mRNAs. FGF signaling is found to be required for the induction of liver specific marker (LS group) gene expression in the same system.
Collapse
Affiliation(s)
- Yonglong Chen
- Abteilung Entwicklungsbiochemie, Institut fur Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Clements D, Cameleyre I, Woodland HR. Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development. Mech Dev 2003; 120:337-48. [PMID: 12591603 DOI: 10.1016/s0925-4773(02)00450-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have used antisense morpholino oligos to establish the developmental roles of three Xsox17 proteins in Xenopus development (Xsox17alpha(1), alpha(2) and beta). We show that their synthesis can be inhibited with modest amounts of oligo. The inhibition of each individually produces defects in late midgut development. Loss of activity of the Xsox17alpha proteins additionally inhibits hindgut formation, and inhibiting Xsox17alpha(1) disrupts foregut development with variable penetrance. When all Xsox17 activity is inhibited cell movements are halted during late gastrulation and the transcription of several endodermally expressed genes is reduced. Thus the Xsox17 proteins have redundant roles in early development of the endoderm and partly distinct roles during later organogenesis.
Collapse
Affiliation(s)
- Debbie Clements
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
46
|
Abstract
BACKGROUND The liver and the pancreas arise from adjacent regions of endoderm in embryonic development. Pdx1 is a key transcription factor that is essential for the development of the pancreas and is not expressed in the liver. The aim of this study was to determine whether a gene overexpression protocol based on Pdx1 would be able to cause conversion of liver to pancreas. RESULTS We show that a modified form of Pdx1, carrying the VP16 transcriptional activation domain, can cause conversion of liver to pancreas, both in vivo and in vitro. Transgenic Xenopus tadpoles carrying the construct TTR-Xlhbox8-VP16:Elas-GFP were prepared. Xlhbox8 is the Xenopus homolog of Pdx1, the TTR (transthyretin) promoter directs expression to the liver, and the GFP is under the control of an elastase promoter and provides a real-time visible marker of pancreatic differentiation. In the transgenic tadpoles, part or all of the liver is converted to pancreas, containing both exocrine and endocrine cells, while liver differentiation products are lost from the regions converted to pancreas. The timing of events is such that the liver is differentiating by the time Xlhbox8-VP16 is expressed, so we consider this a transdifferentiation event rather than a reprogramming of embryonic development. Furthermore, this same construct will bring about transdifferentiation of human hepatocytes in culture, with formation of both exocrine and endocrine cells. CONCLUSIONS We consider that the conversion of liver to pancreas could be the basis of a new type of therapy for insulin-dependent diabetes. Although expression of the transgene is transient, once the ectopic pancreas is established, it persists thereafter.
Collapse
Affiliation(s)
- Marko E Horb
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, BA2 7AY, Bath, United Kingdom.
| | | | | | | |
Collapse
|
47
|
Field HA, Ober EA, Roeser T, Stainier DYR. Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev Biol 2003; 253:279-90. [PMID: 12645931 DOI: 10.1016/s0012-1606(02)00017-9] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite the essential functions of the digestive system, much remains to be learned about the cellular and molecular mechanisms responsible for digestive organ morphogenesis and patterning. We introduce a novel zebrafish transgenic line, the gutGFP line, that expresses GFP throughout the digestive system, and use this tool to analyze the development of the liver. Our studies reveal two phases of liver morphogenesis: budding and growth. The budding period, which can be further subdivided into three stages, starts when hepatocytes first aggregate, shortly after 24 h postfertilization (hpf), and ends with the formation of a hepatic duct at 50 hpf. The growth phase immediately follows and is responsible for a dramatic alteration of liver size and shape. We also analyze gene expression in the developing liver and find a correlation between the expression of certain transcription factor genes and the morphologically defined stages of liver budding. To further expand our understanding of budding morphogenesis, we use loss-of-function analyses to investigate factors potentially involved in this process. It had been reported that no tail mutant embryos appear to lack a liver primordium, as assessed by gata6 expression. However, analysis of gutGFP embryos lacking Ntl show that the liver is in fact present. We also find that, in these embryos, the direction of liver budding does not correlate with the direction of intestinal looping, indicating that the left/right behavior of these tissues can be uncoupled. In addition, we use the cloche mutation to analyze the role of endothelial cells in liver morphogenesis, and find that in zebrafish, unlike what has been reported in mouse, endothelial cells do not appear to be necessary for the budding of this organ.
Collapse
Affiliation(s)
- Holly A Field
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
48
|
D'Souza A, Lee M, Taverner N, Mason J, Carruthers S, Smith JC, Amaya E, Papalopulu N, Zorn AM. Molecular components of the endoderm specification pathway in Xenopus tropicalis. Dev Dyn 2003; 226:118-27. [PMID: 12508233 DOI: 10.1002/dvdy.10201] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Xenopus laevis has been instrumental in elucidating a conserved molecular pathway that regulates vertebrate endoderm specification. However, loss-of-function analysis is required to resolve the precise function of the genes involved. For such analysis, antisense oligos and possibly forward genetics are likely to be more effective in the diploid species Xenopus tropicalis than in the pseudotetraploid Xenopus laevis. Here we have isolated most of the tropicalis genes in the endoderm specification pathway, specifically, tVegT, tMixer, tMix, tBix, tGata6, tSox17alpha, tSox17beta, tFoxA1, tHex, and tCerberus, which lack the redundant copies that are found in laevis. In situ hybridization analysis has revealed identical expression patterns between the orthologous tropicalis and laevis endoderm genes, thus suggesting conserved genetic functions. Furthermore, we noted that the smaller tropicalis embryos gave better probe penetration than in laevis whole-mount in situ hybridizations-allowing us to visualize transcripts in the deep endoderm in tropicalis, which is difficult in laevis. This study illustrates how an entire genetic pathway can be quickly transferred from laevis to tropicalis due to high sequence conservation between the sister species and the large number of tropicalis-expressed sequence tags that are now available.
Collapse
Affiliation(s)
- Anjali D'Souza
- Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Richardson SJ. The evolution of transthyretin synthesis in vertebrate liver, in primitive eukaryotes and in bacteria. Clin Chem Lab Med 2002; 40:1191-9. [PMID: 12553419 DOI: 10.1515/cclm.2002.209] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thyroid hormones are evolutionarily old signal molecules, which can partition between compartments by partitioning into lipid membranes. The role of thyroid hormone distributor proteins is to ensure that sufficient thyroid hormone remains in the bloodstream. Of particular interest is the role of transthyretin, synthesised by the liver and secreted into the blood. In this review, three hypotheses are presented, suggesting the selection pressures leading to the onset of transthyretin synthesis in the liver during evolution. A thyroid hormone distribution network would be a selection advantage over a single protein performing this function. Similarly to the situation in eutherians, hepatic transthyretin synthesis in marsupials is under negative acute phase regulation. The overall three-dimensional structure of transthyretin did not change appreciably during vertebrate evolution. The region of the primary sequence which evolved most was the N-terminal region of the subunit. The N-termini of transthyretin changed from longer and more hydrophobic in reptiles/birds, to shorter and more hydrophilic in eutherians. These changes are correlated with a change in preference from binding of triiodothyronine, to binding thyroxine. As the rest of the molecule had not changed significantly during vertebrate evolution, the gene coding for transthyretin must have evolved prior to the divergence of the vertebrates from the non-vertebrates. Five open reading frames in the genomes of C. elegans (2), S. dublin, S. pombe and E. coli were identified. The protein products are predicted to form tetramers similar to transthyretins. Two possible functions of these proteins are suggested.
Collapse
Affiliation(s)
- Samantha J Richardson
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
50
|
Sánchez D, Martínez S, Lindqvist A, Akerström B, Falkenberg C. Expression of the AMBP gene transcript and its two protein products, alpha(1)-microglobulin and bikunin, in mouse embryogenesis. Mech Dev 2002; 117:293-8. [PMID: 12204273 DOI: 10.1016/s0925-4773(02)00202-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The expression pattern of the alpha(1)-microglobulin/bikunin precursor (AMBP) gene, and its two protein products were studied in mouse embryos of 8.5-15.5 days of embryonic development by in situ hybridization and immunohistochemistry. AMBP mRNA is strongly transcribed in liver parenchyma, pancreas, and intestine epithelium. Sites of weaker expression are the vessels of the umbilical cord, the developing vertebral bodies, and kidney. The alpha(1)-microglobulin and bikunin proteins are accordingly present in developing hepatocytes, pancreas, kidney, and gut. However, additional sites of protein distribution were found that do not correlate to mRNA localization: alpha(1)-microglobulin was found in myocytes and bikunin in cardiac muscle, nervous system microvasculature, and connective tissue. Both proteins were found in brain mesenchyme and meninges. Thus, a restricted expression of the AMBP mRNA in a few organs contrasts to a widespread and unique distribution of each of the two proteins.
Collapse
Affiliation(s)
- Diego Sánchez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.
| | | | | | | | | |
Collapse
|