1
|
Plk4 Is a Novel Substrate of Protein Phosphatase 5. Int J Mol Sci 2023; 24:ijms24032033. [PMID: 36768356 PMCID: PMC9917060 DOI: 10.3390/ijms24032033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The conserved Ser/Thr protein phosphatase 5 (PP5) is involved in the regulation of key cellular processes, including DNA damage repair and cell division in eukaryotes. As a co-chaperone of Hsp90, PP5 has been shown to modulate the maturation and activity of numerous oncogenic kinases. Here, we identify a novel substrate of PP5, the Polo-like kinase 4 (Plk4), which is the master regulator of centriole duplication in animal cells. We show that PP5 specifically interacts with Plk4, and is able to dephosphorylate the kinase in vitro and in vivo, which affects the interaction of Plk4 with its partner proteins. In addition, we provide evidence that PP5 and Plk4 co-localize to the centrosomes in Drosophila embryos and cultured cells. We demonstrate that PP5 is not essential; the null mutant flies are viable without a severe mitotic phenotype; however, its loss significantly reduces the fertility of the animals. Our results suggest that PP5 is a novel regulator of the Plk4 kinase in Drosophila.
Collapse
|
2
|
Early Drosophila Oogenesis: A Tale of Centriolar Asymmetry. Cells 2021; 10:cells10081997. [PMID: 34440763 PMCID: PMC8391878 DOI: 10.3390/cells10081997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Among the morphological processes that characterize the early stages of Drosophila oogenesis, the dynamic of the centrioles deserves particular attention. We re-examined the architecture and the distribution of the centrioles within the germarium and early stages of the vitellarium. We found that most of the germ cell centrioles diverge from the canonical model and display notable variations in size. Moreover, duplication events were frequently observed within the germarium in the absence of DNA replication. Finally, we report the presence of an unusually long centriole that is first detected in the cystoblast and is always associated with the developing oocyte. This centriole is directly inherited after the asymmetric division of the germline stem cells and persists during the process of oocyte selection, thus already representing a marker for oocyte identification at the beginning of its formation and during the ensuing developmental stages.
Collapse
|
3
|
The Microtubule Cytoskeleton during the Early Drosophila Spermiogenesis. Cells 2020; 9:cells9122684. [PMID: 33327573 PMCID: PMC7765066 DOI: 10.3390/cells9122684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/29/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022] Open
Abstract
Sperm elongation and nuclear shaping in Drosophila largely depends on the microtubule cytoskeleton that in early spermatids has centrosomal and non-centrosomal origins. We report here an additional γ-tubulin focus localized on the anterior pole of the nucleus in correspondence of the apical end of the perinuclear microtubules that run within the dense complex. The perinuclear microtubules are nucleated by the pericentriolar material, or centriole adjunct, that surrounds the basal body and are retained to play a major role in nuclear shaping. However, we found that both the perinuclear microtubules and the dense complex are present in spermatids lacking centrioles. Therefore, the basal body or the centriole adjunct seem to be dispensable for the organization and assembly of these structures. These observations shed light on a novel localization of γ-tubulin and open a new scenario on the distribution of the microtubules and the organization of the dense complex during early Drosophila spermiogenesis.
Collapse
|
4
|
Rocco DA, Garcia ASG, Scudeler EL, Dos Santos DC, Nóbrega RH, Paluzzi JPV. Glycoprotein Hormone Receptor Knockdown Leads to Reduced Reproductive Success in Male Aedes aegypti. Front Physiol 2019; 10:266. [PMID: 30941056 PMCID: PMC6433794 DOI: 10.3389/fphys.2019.00266] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Glycoprotein hormone receptors mediate a diverse range of physiological functions in vertebrate and invertebrate organisms. The heterodimeric glycoprotein hormone GPA2/GPB5 and its receptor LGR1, constitute a recently discovered invertebrate neuroendocrine signaling system that remains to be functionally characterized. We previously reported that LGR1 is expressed in the testes of adult Aedes aegypti mosquitoes, where its immunoreactivity is particularly regionalized. Here, we show that LGR1 immunoreactivity is associated with the centriole adjunct of spermatids and is observed transiently during spermatogenesis in mosquitoes, where it may act to mediate the regulation of flagellar development. RNA interference to downregulate LGR1 expression was accomplished by feeding mosquito larvae with bacteria that produced LGR1-specific dsRNA, which led to defects in spermatozoa, characterized with shortened flagella. LGR1 knockdown mosquitoes also retained ∼60% less spermatozoa in reproductive organs and demonstrated reduced fertility compared to controls. To date, the endocrine regulation of spermatogenesis in mosquitoes remains an understudied research area. The distribution of LGR1 and detrimental effects of its knockdown on spermatogenesis in A. aegypti indicates that this heterodimeric glycoprotein hormone signaling system contributes significantly to the regulation of male reproductive biology in this important disease-vector.
Collapse
Affiliation(s)
- David A Rocco
- Department of Biology, York University, Toronto, ON, Canada
| | - Ana S G Garcia
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Elton L Scudeler
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Daniela C Dos Santos
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.,Electron Microscopy Center, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Rafael H Nóbrega
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | | |
Collapse
|
5
|
Abstract
The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm-egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Raphaëlle Dubruille
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Béatrice Horard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
6
|
The centriole adjunct of insects: Need to update the definition. Tissue Cell 2016; 48:104-13. [DOI: 10.1016/j.tice.2016.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 12/31/2022]
|
7
|
Avidor-Reiss T, Khire A, Fishman EL, Jo KH. Atypical centrioles during sexual reproduction. Front Cell Dev Biol 2015; 3:21. [PMID: 25883936 PMCID: PMC4381714 DOI: 10.3389/fcell.2015.00021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/13/2015] [Indexed: 01/30/2023] Open
Abstract
Centrioles are conserved, self-replicating, microtubule-based, 9-fold symmetric subcellular organelles that are essential for proper cell division and function. Most cells have two centrioles and maintaining this number of centrioles is important for animal development and physiology. However, how animals gain their first two centrioles during reproduction is only partially understood. It is well established that in most animals, the centrioles are contributed to the zygote by the sperm. However, in humans and many animals, the sperm centrioles are modified in their structure and protein composition, or they appear to be missing altogether. In these animals, the origin of the first centrioles is not clear. Here, we review various hypotheses on how centrioles are gained during reproduction and describe specialized functions of the zygotic centrioles. In particular, we discuss a new and atypical centriole found in sperm and zygote, called the proximal centriole-like structure (PCL). We also discuss another type of atypical centriole, the "zombie" centriole, which is degenerated but functional. Together, the presence of centrioles, PCL, and zombie centrioles suggests a universal mechanism of centriole inheritance among animals and new causes of infertility. Since the atypical centrioles of sperm and zygote share similar functions with typical centrioles in somatic cells, they can provide unmatched insight into centriole biology.
Collapse
|
8
|
Riparbelli MG, Giordano R, Ueyama M, Callaini G. Wolbachia-mediated male killing is associated with defective chromatin remodeling. PLoS One 2012; 7:e30045. [PMID: 22291901 PMCID: PMC3264553 DOI: 10.1371/journal.pone.0030045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/08/2011] [Indexed: 11/19/2022] Open
Abstract
Male killing, induced by different bacterial taxa of maternally inherited microorganisms, resulting in highly distorted female-biased sex-ratios, is a common phenomenon among arthropods. Some strains of the endosymbiont bacteria Wolbachia have been shown to induce this phenotype in particular insect hosts. High altitude populations of Drosophila bifasciata infected with Wolbachia show selective male killing during embryonic development. However, since this was first reported, circa 60 years ago, the interaction between Wolbachia and its host has remained unclear. Herein we show that D. bifasciata male embryos display defective chromatin remodeling, improper chromatid segregation and chromosome bridging, as well as abnormal mitotic spindles and gradual loss of their centrosomes. These defects occur at different times in the early development of male embryos leading to death during early nuclear division cycles or large defective areas of the cellular blastoderm, culminating in abnormal embryos that die before eclosion. We propose that Wolbachia affects the development of male embryos by specifically targeting male chromatin remodeling and thus disturbing mitotic spindle assembly and chromosome behavior. These are the first observations that demonstrate fundamental aspects of the cytological mechanism of male killing and represent a solid base for further molecular studies of this phenomenon.
Collapse
Affiliation(s)
| | - Rosanna Giordano
- Illinois Natural History Survey, Institute of Natural Resource Sustainability, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Morio Ueyama
- Laboratory of Cell Biology, Department of Bioinformatics, Soka University, Hachioji, Tokyo, Japan
| | - Giuliano Callaini
- Department of Evolutionary Biology, University of Siena, Siena, Italy
- * E-mail:
| |
Collapse
|
9
|
Riparbelli MG, Callaini G. Detachment of the basal body from the sperm tail is not required to organize functional centrosomes during Drosophila embryogenesis. Cytoskeleton (Hoboken) 2010; 67:251-8. [PMID: 20198700 DOI: 10.1002/cm.20440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The formation of the zygotic spindle at fertilization requires in most animals the central contribution of the sperm-inherited basal body that recruits maternal cytoplasmic components to assemble a functional centrosome. Although as a general rule the entire sperm enters the egg during fertilization, the fate of the sperm basal body during further development is not clear. We have found that the sperm centriole remains linked to the apical end of the sperm tail through early development and is able to duplicate and recruit maternal components to assemble functional centrosomes. The basal body, therefore, needs not to be detached from the sperm tail to perform its centriole function during organization of the centrosome. By cellularization and early gastrulation the sperm centriole has lost both these capabilities. The persistence of the sperm axoneme and its close association with its centriole during development presents a paradox. If the sperm centriole is a true basal body, then the widespread idea that cells with a primary cilium must resorb the axoneme and transform the basal body into a centriole to enable proper mitosis will have to be re-examined.
Collapse
|
10
|
Debec A, Sullivan W, Bettencourt-Dias M. Centrioles: active players or passengers during mitosis? Cell Mol Life Sci 2010; 67:2173-94. [PMID: 20300952 PMCID: PMC2883084 DOI: 10.1007/s00018-010-0323-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 12/31/2022]
Abstract
Centrioles are cylinders made of nine microtubule (MT) triplets present in many eukaryotes. Early studies, where centrosomes were seen at the poles of the mitotic spindle led to their coining as "the organ for cell division". However, a variety of subsequent observational and functional studies showed that centrosomes might not always be essential for mitosis. Here we review the arguments in this debate. We describe the centriole structure and its distribution in the eukaryotic tree of life and clarify its role in the organization of the centrosome and cilia, with an historical perspective. An important aspect of the debate addressed in this review is how centrioles are inherited and the role of the spindle in this process. In particular, germline inheritance of centrosomes, such as their de novo formation in parthenogenetic species, poses many interesting questions. We finish by discussing the most likely functions of centrioles and laying out new research avenues.
Collapse
Affiliation(s)
- Alain Debec
- Polarity and Morphogenesis Group, Jacques Monod Institute, University Paris Diderot, UPMC Univ Paris 6, Bâtiment Buffon, 15 rue Hélène Brion, 75205, Paris Cedex 13, France.
| | | | | |
Collapse
|
11
|
Varmark H, Llamazares S, Rebollo E, Lange B, Reina J, Schwarz H, Gonzalez C. Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila. Curr Biol 2007; 17:1735-45. [PMID: 17935995 DOI: 10.1016/j.cub.2007.09.031] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/31/2007] [Accepted: 09/12/2007] [Indexed: 11/17/2022]
Abstract
BACKGROUND Centrosomes, the major organizers of the microtubule network in most animal cells, are composed of centrioles embedded in a web of pericentriolar material (PCM). Recruitment and stabilization of PCM on the centrosome is a centriole-dependent function. Compared to the considerable number of PCM proteins known, the molecular characterization of centrioles is still very limited. Only a few centriolar proteins have been identified so far in Drosophila, most related to centriole duplication. RESULTS We have cloned asterless (asl) and found that it encodes a 120 kD highly coiled-coil protein that is a constitutive pancentriolar and basal body component. Loss of asl function impedes the stabilization/maintenance of PCM at the centrosome. In embryos deficient for Asl, development is arrested right after fertilization. Asl shares significant homology with Cep 152, a protein described as a component of the human centrosome for which no functional data is yet available. CONCLUSIONS The cloning of asl offers new insight into the molecular composition of Drosophila centrioles and a possible model for the role of its human homolog. In addition, the phenotype of asl-deficient flies reveals that a functional centrosome is required for Drosophila embryo development.
Collapse
Affiliation(s)
- Hanne Varmark
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, Meyerhofstrasse, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Pai CY, Lei EP, Ghosh D, Corces VG. The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol Cell 2005; 16:737-48. [PMID: 15574329 DOI: 10.1016/j.molcel.2004.11.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 09/03/2004] [Accepted: 09/22/2004] [Indexed: 01/27/2023]
Abstract
Chromatin insulators, or boundary elements, affect promoter-enhancer interactions and buffer transgenes from position effects. The gypsy insulator of Drosophila is bound by a protein complex with two characterized components, the zinc finger protein Suppressor of Hairy-wing [Su(Hw)] and Mod(mdg4)2.2, which is one of the multiple spliced variants encoded by the modifier of mdg4 [mod(mdg4)] gene. A genetic screen for dominant enhancers of the mod(mdg4) phenotype identified the Centrosomal Protein 190 (CP190) as an essential constituent of the gypsy insulator. The function of the centrosome is not affected in CP190 mutants whereas gypsy insulator activity is impaired. CP190 associates physically with both Su(Hw) and Mod(mdg4)2.2 and colocalizes with both proteins on polytene chromosomes. CP190 does not interact directly with insulator sequences present in the gypsy retrotransposon but binds to a previously characterized endogenous insulator, and it is necessary for the formation of insulator bodies. The results suggest that endogenous gypsy insulators contain binding sites for CP190, which is essential for insulator function, and may or may not contain binding sites for Su(Hw) and Mod(mdg4)2.2.
Collapse
Affiliation(s)
- Chi-Yun Pai
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Animal spermatids and primary oocytes initially have typical centrosomes comprising pairs of centrioles and pericentriolar fibrous centrosomal proteins. These somatic cell-like centrosomes are partially or completely degenerated during gametogenesis. Centrosome reduction during spermiogenesis comprises attenuation of microtubule nucleation function, loss of pericentriolar material, and centriole degeneration. Centrosome reduction during oogenesis is due to complete degeneration of centrioles, which leads to dispersal of the pericentriolar centrosomal proteins, loss of replicating capacity of the spindle poles, and switching to acentrosomal mode of spindle organization. Oocyte centrosome reduction plays an important role in preventing parthenogenetic embryogenesis and balancing centrosome number in the embryonic cells.
Collapse
|
14
|
Twomey C, Wattam SL, Pillai MR, Rapley J, Baxter JE, Fry AM. Nek2B stimulates zygotic centrosome assembly in Xenopus laevis in a kinase-independent manner. Dev Biol 2004; 265:384-98. [PMID: 14732400 DOI: 10.1016/j.ydbio.2003.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pronuclear migration and formation of the first mitotic spindle depend upon assembly of a functional zygotic centrosome. For most animals, this involves both paternal and maternal contributions as sperm basal bodies are converted into centrosomes competent for microtubule nucleation through recruitment of egg proteins. Nek2B is a vertebrate NIMA-related protein kinase required for centrosome assembly, as its depletion from egg extracts delays microtubule aster formation from sperm basal bodies. Using Xenopus as a model system, we now show that protein expression of Nek2B begins during mid-oogenesis and increases further upon oocyte maturation. This is regulated, at least in part, at the level of protein translation. Nek2B protein is weakly phosphorylated in mitotic egg extracts but its recruitment to the sperm basal body, which occurs independently of its kinase activity, stimulates its phosphorylation, possibly through sequestration from a phosphatase present in mitotic egg cytoplasm. Importantly, although Nek2B is not required to organize acentrosomal microtubule asters, we show that addition of either active or kinase-dead recombinant Nek2B can restore centrosome assembly in a dose-dependent manner to a depleted extract. These results support a model in which maternal Nek2B acts to promote assembly of a functional zygotic centrosome in a kinase-independent manner.
Collapse
Affiliation(s)
- Ciara Twomey
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | | | | | | | |
Collapse
|
15
|
Sato M, Tanaka-Sato H. Fertilization, syngamy, and early embryonic development in the cricket Gryllus bimaculatus (De Geer). J Morphol 2002; 254:266-71. [PMID: 12386897 DOI: 10.1002/jmor.10033] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fertilization and early embryonic mitoses of the cricket Gryllus bimaculatus were examined by fluorescence staining of whole-mount as well as squash preparations. Egg meiosis occurs near the ventral surface of the egg, while sperm transforms into a sperm pronucleus in the cytoplasmic island on the dorsal side. After meiosis, the egg pronucleus moves across the egg toward the sperm pronucleus in the island, where union of these nuclei occurs. The first cleavage mitosis is gonomeric, as in insects such as Pyrrhocoris, Drosophila, and Bombyx. After the third cleavage the synchrony of nuclear division is lost and the dividing nuclei are distributed all over the egg by 12 h after deposition.
Collapse
Affiliation(s)
- Motoaki Sato
- Biology Laboratory, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan.
| | | |
Collapse
|
16
|
Marescalchi O, Zauli C, Scali V. Centrosome dynamics and inheritance in related sexual and parthenogenetic Bacillus (Insecta Phasmatodea). Mol Reprod Dev 2002; 63:89-95. [PMID: 12211065 DOI: 10.1002/mrd.10177] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In animals, some general features of centrosome dynamics and inheritance have been widely recognized. The most acknowledged model assigns to sperm the contribution of a centriole to the fertilized egg, which in turn provides the pericentriolar materials, including gamma-tubulin, recruiting them from the cytoplasm: the main zygote microtubule organizing center (MTOC) is thus reconstituted to organize first the spermaster and then the full first embryonic spindle. Obviously the model cannot apply to parthenogenetic systems, which actually rely on egg components alone. In stick insects of the Bacillus genus, the spindle of both somatic and germ cells is clearly anastral, therefore we have been investigating their centrosome in sexual and parthenogenetic taxa by analyzing its component dynamics and transmission through the use of monoclonal beta- and gamma-tubulin antibodies and transmission electron microscopy (TEM). It has been shown that in sexually reproducing species the spermatozoon does not contribute the centriole, so that the egg wholly provides the MTOC and the ensuing anastral spindle of the embryo: MTs appear to derive from pronuclear chromatin surroundings and no asters are observed. The parthenogenetic embryo development is the same as the sexual one if syngamy is excepted. The parthenogenetic mechanism realized by these panoistic insects appears to differ from that observed in the meroistic hymenopteran and drosophilid species, where the embryo spindle derives from asters formed in the egg cortex. In stick insects, the lack of sperm contribution to embryonic centrosome appears to be a major trait accounting for the widespread occurrence of facultative and obligate parthenogenesis within the order.
Collapse
|
17
|
Sampaio P, Rebollo E, Varmark H, Sunkel CE, González C. Organized microtubule arrays in gamma-tubulin-depleted Drosophila spermatocytes. Curr Biol 2001; 11:1788-93. [PMID: 11719222 DOI: 10.1016/s0960-9822(01)00561-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To assess the role of gamma-tubulin in spindle assembly in vivo, we have followed meiosis progression by immunofluorescence and time-lapse video microscopy in gammaTub23C(PI) mutant spermatocytes. We have found that centrosomes associate with large numbers of astral microtubules even though gamma-tubulin is severely depleted; bipolar meiotic spindles are never assembled; and later in meiosis, the microtubules get organized into a conical structure that is never observed in wild-type cells. Several lines of evidence suggest that these cones may be related to wild-type central spindles. First, they are assembled midway through meiosis and elongate during anaphase. Second, they are constricted during late meiosis, giving rise to a pointed end similar to those that form in each half of the wild-type spindle midzone. Third, Klp3A and Polo, two markers of the wild-type central spindle are also found around the pointed end of the mutant cones. Finally, ectopic cytokinesis furrows are often formed at the distal end of the cone. Our results suggest that microtubule polymerization or stabilization from the centrosome may be possible in a gamma-tubulin-independent manner in Drosophila spermatocytes. However, gamma-tubulin seems to be essential for spindle assembly in these cells. Finally, our results show that at least part of the central spindle and constriction-ring assembly machinery can operate on microtubule bundles that are not organized as bipolar spindles.
Collapse
Affiliation(s)
- P Sampaio
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150 Porto, Portugal
| | | | | | | | | |
Collapse
|
18
|
Abstract
Fertilization in animals is now considered to be of the "sea urchin type"; that is, haploid male and female pronuclei completely fuse shortly after sperm entry into the egg, followed by the formation of a mitotic spindle to allow cleavage mitoses to proceed. However, two other patterns of fertilization and early embryonic mitosis in some animal species are known: an Ascaris type and a gonomeric type. The gonomeric type of fertilization in insects and other arthropods is not well known and is quite different from the sea urchin and Ascaris types. In the present article, the author examines the peculiar gonomeric fertilization, using mainly the silkworm as an example.
Collapse
Affiliation(s)
- N Kawamura
- Biology Laboratory, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu 069-8501, Japan.
| |
Collapse
|
19
|
Loppin B, Berger F, Couble P. Paternal chromosome incorporation into the zygote nucleus is controlled by maternal haploid in Drosophila. Dev Biol 2001; 231:383-96. [PMID: 11237467 DOI: 10.1006/dbio.2000.0152] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
maternal haploid (mh) is a strict maternal effect mutation that causes the production of haploid gynogenetic embryos (eggs are fertilized but only maternal chromosomes participate in development). We conducted a cytological analysis of fertilization and early development in mh eggs to elucidate the mechanism of paternal chromosome elimination. In mh eggs, as in wild-type eggs, male and female pronuclei migrate and appose, the first mitotic spindle forms, and both parental sets of chromosomes congress on the metaphase plate. In contrast to control eggs, mh paternal sister chromatids fail to separate in anaphase of the first division. As a consequence the paternal chromatin stretches and forms a bridge in telophase. During the first three embryonic divisions, damaged paternal chromosomes are progressively eliminated from the spindles that organize around maternal chromosomes. A majority of mh embryos do not survive the deleterious presence of aneuploid nuclei and rapidly arrest their development. The rest of mh embryos develop as haploid gynogenetic embryos and die before hatching. The mh phenotype is highly reminiscent of the early developmental defects observed in eggs fertilized by ms(3)K81 mutant males and in eggs produced in incompatible crosses of Drosophila harboring the endosymbiont bacteria Wolbachia.
Collapse
Affiliation(s)
- B Loppin
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard-Lyon 1, 43, Boulevard du 11 novembre 1918, Villeurbanne Cedex, 69622, France.
| | | | | |
Collapse
|
20
|
Affiliation(s)
- G Manandhar
- Oregon Regional Primate Research Center, USA
| | | | | |
Collapse
|
21
|
Riparbelli MG, Callaini G, Glover DM. Failure of pronuclear migration and repeated divisions of polar body nuclei associated with MTOC defects in polo eggs of Drosophila. J Cell Sci 2000; 113 ( Pt 18):3341-50. [PMID: 10954431 DOI: 10.1242/jcs.113.18.3341] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The meiotic spindle of Drosophila oocytes is acentriolar but develops an unusual central microtubule organising centre (MTOC) at the end of meiosis I. In polo oocytes, this common central pole for the two tandem spindles of meiosis II was poorly organised and in contrast to wild-type failed to maintain its associated Pav-KLP motor protein. Furthermore, the polar body nuclei failed to arrest at metaphase, and the four products of female meiosis all underwent repeated haploid division cycles on anastral spindles. This was linked to a failure to form the astral array of microtubules with which the polar body chromosomes are normally associated. The MTOC associated with the male pronucleus was also defective in polo eggs, and the sperm aster did not grow. Migration of the female pronucleus did not take place and so a gonomeric spindle could not form. We discuss these findings in relation to the known roles of polo like kinases in regulating the behaviour of MTOCs.
Collapse
Affiliation(s)
- M G Riparbelli
- University of Siena, Department of Evolutionary Biology, Via Mattioli 4, I-53100 Siena, Italy.
| | | | | |
Collapse
|
22
|
Loppin B, Docquier M, Bonneton F, Couble P. The maternal effect mutation sésame affects the formation of the male pronucleus in Drosophila melanogaster. Dev Biol 2000; 222:392-404. [PMID: 10837127 DOI: 10.1006/dbio.2000.9718] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After entering the oocyte and before the formation of the diploid zygote, the sperm nucleus is transformed into a male pronucleus, a process that involves a series of conserved steps in sexually reproducing animals. Notably, a major modification of the male gamete lies in the decondensation of the highly compact sperm chromatin. We present here the phenotype of sésame (ssm), a maternal effect mutation which affects the formation of the male pronucleus in Drosophila melanogaster. Homozygous ssm(185b) females produce haploid embryos which develop with only the maternally derived chromosomes. These haploid embryos die at the end of embryogenesis. Cytological analyses of the fertilization in eggs laid by ssm(185b) mutant females showed that both pronuclear migration and pronuclear apposition occurred normally. However, a dramatic alteration of the male pronucleus by which its chromatin failed to fully decondense was systematically observed. Consequently, the affected male pronucleus does not enter the first mitotic spindle, which is organized around only the maternally derived chromosomes. Immunodetection of lamina antigens indicates that a male pronuclear envelope is able to form around the partially decondensed paternal chromatin. This suggests that the maternally provided sésame(+) function is required for a late stage of sperm chromatin remodeling.
Collapse
Affiliation(s)
- B Loppin
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard-Lyon 1, 43, Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, France.
| | | | | | | |
Collapse
|
23
|
González C, Tavosanis G, Mollinari C. Centrosomes and microtubule organisation during Drosophila development. J Cell Sci 1998; 111 ( Pt 18):2697-706. [PMID: 9718363 DOI: 10.1242/jcs.111.18.2697] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Are the microtubule-organising centers of the different cell types of a metazoan interchangeable? If not, what are the differences between them? Do they play any role in the differentiation processes to which these cells are subjected? Nearly one hundred years of centrosome research has established the essential role of this organelle as the main microtubule-organising center of animal cells. But only now are we starting to unveil the answers to the challenging questions which are raised when the centrosome is studied within the context of a pluricellular organism. In this review we present some of the many examples which illustrate how centrosomes and microtubule organisation changes through development in Drosophila and discuss some of its implications.
Collapse
Affiliation(s)
- C González
- European Molecular Biology Laboratory Meyerhofstrasse 1, Germany.
| | | | | |
Collapse
|
24
|
Fitch KR, Wakimoto BT. The paternal effect gene ms(3)sneaky is required for sperm activation and the initiation of embryogenesis in Drosophila melanogaster. Dev Biol 1998; 197:270-82. [PMID: 9630751 DOI: 10.1006/dbio.1997.8852] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although a large number of maternal factors are known to be essential for fertilization or the earliest stages of embryogenesis in Drosophila melanogaster, the role of paternally supplied products is not clearly understood. Paternal effect mutations provide a means to identify factors specifically required by the sperm after its entry into the egg. Here we describe the third strict paternal effect gene to be identified in Drosophila ms(3)sneaky(snky), which defines the earliest developmental arrest phenotype so far described. Characterization of two independently isolated snky mutations showed that they affected male fertility, but not viability or female fertility. Cytological analyses showed that spermatogenesis proceeded normally in snky males. However, the snky defect was evident after sperm entry into the egg; snky sperm did not undergo nuclear decondensation, form a functional male pronucleus, or initiate mitotic divisions in the egg. Immunolocalization of tubulin and Drosophila Centrosomin, a known centrosomal component, showed that snky-inseminated eggs failed to reconstitute a microtubule-organizing center. In addition, snky sperm chromatin retained the histochemical properties of mature sperm chromatin for several hours after sperm entry, showed reduced staining with membrane-impermeant nuclear dyes, and failed to replicate. We conclude that the snky+ product is required for the initial response of the sperm to cytoplasmic cues in the egg and for the subsequent initiation of embryogenesis in Drosophila. We suggest that all of the snky defects can be explained by the failure of the sperm plasma membrane to break down after entry into the egg.
Collapse
Affiliation(s)
- K R Fitch
- Department of Genetics, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
25
|
Riparbelli MG, Stouthamer R, Dallai R, Callaini G. Microtubule organization during the early development of the parthenogenetic egg of the hymenopteran Muscidifurax uniraptor. Dev Biol 1998; 195:89-99. [PMID: 9520327 DOI: 10.1006/dbio.1997.8841] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The origin of the zygotic centrosome is an important step in developmental biology. It is generally thought that sperm at fertilization plays a central role in forming the functional centrosome which subsequently organizes the first mitotic spindle. However, this view is not applicable in the case of parthenogenetic eggs which develop without the sperm contribution. To clarify the problem of the origin of the zygotic centrosome during parthenogenetic development, we studied a hymenopteran, Muscidifurax uniraptor. Antitubulin antibody revealed that after activation several asters assembled in the egg cytoplasm. The number of asters varied in relation to the cell cycle. They became visible from anaphase of the first meiotic division and increased in number as meiosis progressed, reaching a maximum at the first mitosis. From anaphase-telophase of the first mitosis they decreased in number and were no longer found during the third mitotic division. To elucidate the nature of these asters we performed an ultrastructural study with transmission electron microscopy and immunofluorescence with antibodies against anti-gamma-tubulin and CP190. In this way we showed the presence in these asters of centrosomal components and centrioles. Our observations suggest that the cytoplasm of Muscidifurax eggs contains a pool of inactive centrosomal precursor proteins becoming able to nucleate microtubules into well-defined asters containing centrioles after activation.
Collapse
Affiliation(s)
- M G Riparbelli
- Department of Evolutionary Biology, University of Siena, Via Mattioli 4, Siena, 53100, Italy
| | | | | | | |
Collapse
|
26
|
Riparbelli MG, Callaini G. gamma-Tubulin is transiently associated with the Drosophila oocyte meiotic apparatus. Eur J Cell Biol 1998; 75:21-8. [PMID: 9523151 DOI: 10.1016/s0171-9335(98)80042-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evidence of a distinct microtubule organizing center in the meiotic apparatus of the fertilized Drosophila egg is provided by means of specific antibodies. This center contained gamma-tubulin and CP190 antigens and nucleated a transient array of radial microtubules. When the eggs were incubated with the microtubule-depolymerizing drug colchicine, gamma-tubulin became undetectable in correspondence with the meiotic chromosomes, whereas it was visible near the sperm nucleus. Since the main difference between male and female microtubule organizing centers was the presence/absence of the centrioles, we propose that these organelles were mainly involved in the spatial organization of the microtubule nucleating material.
Collapse
Affiliation(s)
- M G Riparbelli
- Department of Evolutionary Biology, University of Siena, Italy
| | | |
Collapse
|