1
|
Goissis MD, Bradshaw B, Posfai E, Rossant J. Influence of FGF4 and BMP4 on FGFR2 dynamics during the segregation of epiblast and primitive endoderm cells in the pre-implantation mouse embryo. PLoS One 2023; 18:e0279515. [PMID: 37471320 PMCID: PMC10358967 DOI: 10.1371/journal.pone.0279515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/21/2023] [Indexed: 07/22/2023] Open
Abstract
Specification of the epiblast (EPI) and primitive endoderm (PE) in the mouse embryo involves fibroblast growth factor (FGF) signaling through the RAS/MAP kinase pathway. FGFR1 and FGFR2 are thought to mediate this signaling in the inner cell mass (ICM) of the mouse blastocyst and BMP signaling can also influence PE specification. In this study, we further explored the dynamics of FGFR2 expression through an enhanced green fluorescent protein (eGFP) reporter mouse line (FGFR2-eGFP). We observed that FGFR2-eGFP is present in the late 8-cell stage; however, it is absent or reduced in the ICM of early blastocysts. We then statistically correlated eGFP expression with PE and EPI markers GATA6 and NANOG, respectively. We detected that eGFP is weakly correlated with GATA6 in early blastocysts, but this correlation quickly increases as the blastocyst develops. The correlation between eGFP and NANOG decreases throughout blastocyst development. Treatment with FGF from the morula stage onwards did not affect FGFR2-eGFP presence in the ICM of early blastocysts; however, late blastocysts presented FGFR2-eGFP in all cells of the ICM. BMP treatment positively influenced FGFR2-eGFP expression and reduced the number of NANOG-positive cells in late blastocysts. In conclusion, FGFR2 is not strongly associated with PE precursors in the early blastocyst, but it is highly correlated with PE cells as blastocyst development progresses, consistent with the proposed role for FGFR2 in maintenance rather than initiating the PE lineage.
Collapse
Affiliation(s)
- Marcelo D. Goissis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Bradshaw
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eszter Posfai
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Krawczyk K, Wilczak K, Szczepańska K, Maleszewski M, Suwińska A. Paracrine interactions through FGFR1 and FGFR2 receptors regulate the development of preimplantation mouse chimaeric embryo. Open Biol 2022; 12:220193. [PMID: 36382369 PMCID: PMC9667143 DOI: 10.1098/rsob.220193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The preimplantation mammalian embryo has the potential to self-organize, allowing the formation of a correctly patterned embryo despite experimental perturbation. To better understand the mechanisms controlling the developmental plasticity of the early mouse embryo, we used chimaeras composed of an embryonic day (E)3.5 or E4.5 inner cell mass (ICM) and cleaving 8-cell embryo. We revealed that the restricted potential of the ICM can be compensated for by uncommitted 8-cell embryo-derived blastomeres, thus leading to the formation of a normal chimaeric blastocyst that can undergo full development. However, whether such chimaeras maintain developmental competence depends on the presence or specific orientation of the polarized primitive endoderm layer in the ICM component. We also demonstrated that downregulated FGFR1 and FGFR2 expression in 8-cell embryos disturbs intercellular interactions between both components and results in an inverse proportion of primitive endoderm and epiblast within the resulting ICM and abnormal embryo development. This finding suggests that FGF signalling is a key part of the regulatory mechanism that assigns cells to a given lineage and ensures the proper composition of the blastocyst, which is a prerequisite for its successful implantation in the uterus and for further development.
Collapse
Affiliation(s)
- Katarzyna Krawczyk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Wilczak
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Szczepańska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Marek Maleszewski
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Aneta Suwińska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
3
|
Gindi N, Grossman H, Bar-Joseph H, Miller I, Nemerovsky L, Hadas R, Nevo N, Galiani D, Dekel N, Shalgi R. Fyn and argonaute 2 participate in maternal-mRNA degradation during mouse oocyte maturation. Cell Cycle 2022; 21:792-804. [PMID: 35104175 PMCID: PMC8973342 DOI: 10.1080/15384101.2022.2031427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fertilization triggers physiological degradation of maternal-mRNAs, which are then replaced by embryonic transcripts. Ample evidence suggests that Argonaut 2 (AGO2) is a possible post-fertilization regulator of maternal-mRNAs degradation; but its role in degradation of maternal-mRNAs during oocyte maturation remains obscure. Fyn, a member of the Src family kinases (SFKs), and an essential factor in oocyte maturation, was reported to inhibit AGO2 activity in oligodendrocytes. Our aim was to examine the role of Fyn and AGO2 in degradation of maternal-mRNAs during oocyte maturation by either suppressing their activity with SU6656 - an SFKs inhibitor; or by microinjecting DN-Fyn RNA for suppression of Fyn and BCl-137 for suppression of AGO2. Batches of fifteen mouse oocytes or embryos were analyzed by qPCR to measure the expression level of nine maternal-mRNAs that were selected for their known role in oocyte growth, maturation and early embryogenesis. We found that Fyn/SFKs are involved in maintaining the stability of at least four pre-transcribed mRNAs in oocytes at the germinal vesicle (GV) stage, whereas AGO2 had no role at this stage. During in-vivo oocyte maturation, eight maternal-mRNAs were significantly degraded. Inhibition of AGO2 prevented the degreadation of at least five maternal-mRNAs, whereas inhibition of Fyn/SFK prevented degradation of at least five Fyn maternal-mRNAs and two SFKs maternal-mRNAs; pointing at their role in promoting the physiological degradation which occurs during in-vivo oocyte maturation. Our findings imply the involvement of Fyn/SFKs in stabilization of maternal-mRNA at the GV stage and the involvement of Fyn, SFKs and AGO2 in degradation of maternal mRNAs during oocyte maturation.
Collapse
Affiliation(s)
- Natalie Gindi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-AvivIsrael
| | - Hadas Grossman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-AvivIsrael
| | - Hadas Bar-Joseph
- The Unit for Tmcr, Sackler Faculty of Medicine, Tel-Aviv University, Tel-AvivIsrael
| | - Irit Miller
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-AvivIsrael
| | - Luba Nemerovsky
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-AvivIsrael
| | - Ron Hadas
- Department of Biological Regulation, Weizmann Institute of Science, RehovotIsrael
| | - Nava Nevo
- Department of Biological Regulation, Weizmann Institute of Science, RehovotIsrael
| | - Dalia Galiani
- Department of Biological Regulation, Weizmann Institute of Science, RehovotIsrael
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute of Science, RehovotIsrael
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-AvivIsrael,CONTACT Ruth Shalgi Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv69978, Israel
| |
Collapse
|
4
|
Induction of Rosette-to-Lumen stage embryoids using reprogramming paradigms in ESCs. Nat Commun 2021; 12:7322. [PMID: 34916498 PMCID: PMC8677818 DOI: 10.1038/s41467-021-27586-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023] Open
Abstract
Blastocyst-derived stem cell lines were shown to self-organize into embryo-like structures in 3D cell culture environments. Here, we provide evidence that embryo-like structures can be generated solely based on transcription factor-mediated reprogramming of embryonic stem cells in a simple 3D co-culture system. Embryonic stem cells in these cultures self-organize into elongated, compartmentalized embryo-like structures reflecting aspects of the inner regions of the early post-implantation embryo. Single-cell RNA-sequencing reveals transcriptional profiles resembling epiblast, primitive-/visceral endoderm, and extraembryonic ectoderm of early murine embryos around E4.5-E5.5. In this stem cell-based embryo model, progression from rosette formation to lumenogenesis accompanied by progression from naïve- to primed pluripotency was observed within Epi-like cells. Additionally, lineage specification of primordial germ cells and distal/anterior visceral endoderm-like cells was observed in epiblast- or visceral endoderm-like compartments, respectively. The system presented in this study allows for fast and reproducible generation of embryo-like structures, providing an additional tool to study aspects of early embryogenesis.
Collapse
|
5
|
Shparberg RA, Glover HJ, Morris MB. Modeling Mammalian Commitment to the Neural Lineage Using Embryos and Embryonic Stem Cells. Front Physiol 2019; 10:705. [PMID: 31354503 PMCID: PMC6637848 DOI: 10.3389/fphys.2019.00705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Early mammalian embryogenesis relies on a large range of cellular and molecular mechanisms to guide cell fate. In this highly complex interacting system, molecular circuitry tightly controls emergent properties, including cell differentiation, proliferation, morphology, migration, and communication. These molecular circuits include those responsible for the control of gene and protein expression, as well as metabolism and epigenetics. Due to the complexity of this circuitry and the relative inaccessibility of the mammalian embryo in utero, mammalian neural commitment remains one of the most challenging and poorly understood areas of developmental biology. In order to generate the nervous system, the embryo first produces two pluripotent populations, the inner cell mass and then the primitive ectoderm. The latter is the cellular substrate for gastrulation from which the three multipotent germ layers form. The germ layer definitive ectoderm, in turn, is the substrate for multipotent neurectoderm (neural plate and neural tube) formation, representing the first morphological signs of nervous system development. Subsequent patterning of the neural tube is then responsible for the formation of most of the central and peripheral nervous systems. While a large number of studies have assessed how a competent neurectoderm produces mature neural cells, less is known about the molecular signatures of definitive ectoderm and neurectoderm and the key molecular mechanisms driving their formation. Using pluripotent stem cells as a model, we will discuss the current understanding of how the pluripotent inner cell mass transitions to pluripotent primitive ectoderm and sequentially to the multipotent definitive ectoderm and neurectoderm. We will focus on the integration of cell signaling, gene activation, and epigenetic control that govern these developmental steps, and provide insight into the novel growth factor-like role that specific amino acids, such as L-proline, play in this process.
Collapse
Affiliation(s)
| | | | - Michael B. Morris
- Embryonic Stem Cell Laboratory, Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Menchero S, Rollan I, Lopez-Izquierdo A, Andreu MJ, Sainz de Aja J, Kang M, Adan J, Benedito R, Rayon T, Hadjantonakis AK, Manzanares M. Transitions in cell potency during early mouse development are driven by Notch. eLife 2019; 8:42930. [PMID: 30958266 PMCID: PMC6486152 DOI: 10.7554/elife.42930] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/07/2019] [Indexed: 12/11/2022] Open
Abstract
The Notch signalling pathway plays fundamental roles in diverse developmental processes in metazoans, where it is important in driving cell fate and directing differentiation of various cell types. However, we still have limited knowledge about the role of Notch in early preimplantation stages of mammalian development, or how it interacts with other signalling pathways active at these stages such as Hippo. By using genetic and pharmacological tools in vivo, together with image analysis of single embryos and pluripotent cell culture, we have found that Notch is active from the 4-cell stage. Transcriptomic analysis in single morula identified novel Notch targets, such as early naïve pluripotency markers or transcriptional repressors such as TLE4. Our results reveal a previously undescribed role for Notch in driving transitions during the gradual loss of potency that takes place in the early mouse embryo prior to the first lineage decisions. We start life as a single cell, which immediately begins to divide to form an embryo that will eventually contain all the different kinds of cells found in the adult body. During the first few rounds of cell division, embryonic cells can become any type of adult cells, but also form the placenta, the organ that sustains the embryo while in the womb. As cells keep on dividing, they lose this ability, called potency, and they take on more specific and inflexible roles. The first choice embryonic cells must make is whether to become part of the placenta or part of the future body. These types of decisions are controlled by molecular cascades known as signalling pathways, which relay information from the cells surface to its control centre. There, specific genes get turned on or off in response to an outside signal. Previous research showed that two signalling pathways, Hippo and Notch, help separate placenta cells from those that will form the rest of the body. However, it was not known whether the two pathways worked independently, or if they were overlapping. Menchero et al. therefore wanted to find out when exactly the Notch pathway started to be active, and examine how it helped cells to either become the placenta or part of the future body. Experiments with developing mouse embryos showed that the Notch pathway was activated after the very first two cell divisions, when the embryo consists of only four cells. Genetic manipulations combined with drug treatments that changed the activity of the Notch pathway confirmed that Notch and Hippo acted independently at this stage. Further, larger-scale analysis of gene activity in these embryos also revealed that Notch signalling was working in a previously unknown way: it turned off the genes that maintain potency, pushing the cells to become more specialised. Ultimately, identifying this new mode of action for the Notch pathway in the early embryo may help to understand how the signalling cascade acts in other types of processes. This knowledge could be useful, for example, to push embryonic cells grown in the laboratory towards a desired fate.
Collapse
Affiliation(s)
- Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Isabel Rollan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Maria Jose Andreu
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Julio Sainz de Aja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Minjung Kang
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Javier Adan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
7
|
Our First Choice: Cellular and Genetic Underpinnings of Trophectoderm Identity and Differentiation in the Mammalian Embryo. Curr Top Dev Biol 2018; 128:59-80. [DOI: 10.1016/bs.ctdb.2017.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Durruthy-Durruthy J, Wossidlo M, Pai S, Takahashi Y, Kang G, Omberg L, Chen B, Nakauchi H, Reijo Pera R, Sebastiano V. Spatiotemporal Reconstruction of the Human Blastocyst by Single-Cell Gene-Expression Analysis Informs Induction of Naive Pluripotency. Dev Cell 2017; 38:100-15. [PMID: 27404362 DOI: 10.1016/j.devcel.2016.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 05/25/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
Abstract
Human preimplantation embryo development involves complex cellular and molecular events that lead to the establishment of three cell lineages in the blastocyst: trophectoderm, primitive endoderm, and epiblast. Owing to limited resources of biological specimens, our understanding of how the earliest lineage commitments are regulated remains narrow. Here, we examined gene expression in 241 individual cells from early and late human blastocysts to delineate dynamic gene-expression changes. We distinguished all three lineages and further developed a 3D model of the inner cell mass and trophectoderm in which individual cells were mapped into distinct expression domains. We identified in silico precursors of the epiblast and primitive endoderm lineages and revealed a role for MCRS1, TET1, and THAP11 in epiblast formation and their ability to induce naive pluripotency in vitro. Our results highlight the potential of single-cell gene-expression analysis in human preimplantation development to instruct human stem cell biology.
Collapse
Affiliation(s)
- Jens Durruthy-Durruthy
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mark Wossidlo
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sunil Pai
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA
| | - Yusuke Takahashi
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Gugene Kang
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA
| | | | - Bertha Chen
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Renee Reijo Pera
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Molotkov A, Mazot P, Brewer JR, Cinalli RM, Soriano P. Distinct Requirements for FGFR1 and FGFR2 in Primitive Endoderm Development and Exit from Pluripotency. Dev Cell 2017; 41:511-526.e4. [PMID: 28552557 DOI: 10.1016/j.devcel.2017.05.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 03/13/2017] [Accepted: 04/30/2017] [Indexed: 12/23/2022]
Abstract
Activation of the FGF signaling pathway during preimplantation development of the mouse embryo is known to be essential for differentiation of the inner cell mass and the formation of the primitive endoderm (PrE). We now show using fluorescent reporter knockin lines that Fgfr1 is expressed in all cell populations of the blastocyst, while Fgfr2 expression becomes restricted to extraembryonic lineages, including the PrE. We further show that loss of both receptors prevents the development of the PrE and demonstrate that FGFR1 plays a more prominent role in this process than FGFR2. Finally, we document an essential role for FGFRs in embryonic stem cell (ESC) differentiation, with FGFR1 again having a greater influence than FGFR2 in ESC exit from the pluripotent state. Collectively, these results identify mechanisms through which FGF signaling regulates inner cell mass lineage restriction and cell commitment during preimplantation development.
Collapse
Affiliation(s)
- Andrei Molotkov
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre Mazot
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - J Richard Brewer
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ryan M Cinalli
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
10
|
Menchero S, Rayon T, Andreu MJ, Manzanares M. Signaling pathways in mammalian preimplantation development: Linking cellular phenotypes to lineage decisions. Dev Dyn 2016; 246:245-261. [DOI: 10.1002/dvdy.24471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Maria Jose Andreu
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| |
Collapse
|
11
|
Garg V, Morgani S, Hadjantonakis AK. Capturing Identity and Fate Ex Vivo: Stem Cells from the Mouse Blastocyst. Curr Top Dev Biol 2016; 120:361-400. [PMID: 27475857 DOI: 10.1016/bs.ctdb.2016.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During mouse preimplantation development, three molecularly, morphologically, and spatially distinct lineages are formed, the embryonic epiblast, the extraembryonic primitive endoderm, and the trophectoderm. Stem cell lines representing each of these lineages have now been derived and can be indefinitely maintained and expanded in culture, providing an unlimited source of material to study the interplay of tissue-specific transcription factors and signaling pathways involved in these fundamental cell fate decisions. Here we outline our current understanding of the derivation, maintenance, and properties of these in vitro stem cell models representing the preimplantation embryonic lineages.
Collapse
Affiliation(s)
- V Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - S Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - A-K Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.
| |
Collapse
|
12
|
Prudhomme J, Morey C. Epigenesis and plasticity of mouse trophoblast stem cells. Cell Mol Life Sci 2016; 73:757-74. [PMID: 26542801 PMCID: PMC11108370 DOI: 10.1007/s00018-015-2086-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/27/2015] [Indexed: 12/28/2022]
Abstract
The critical role of the placenta in supporting a healthy pregnancy is mostly ensured by the extraembryonic trophoblast lineage that acts as the interface between the maternal and the foetal compartments. The diverse trophoblast cell subtypes that form the placenta originate from a single layer of stem cells that emerge from the embryo when the earliest cell fate decisions are occurring. Recent studies show that these trophoblast stem cells exhibit extensive plasticity as they are capable of differentiating down multiple pathways and are easily converted into embryonic stem cells in vitro. In this review, we discuss current knowledge of the mechanisms and control of the epigenesis of mouse trophoblast stem cells through a comparison with the corresponding mechanisms in pluripotent embryonic stem cells. To illustrate some of the more striking manifestations of the epigenetic plasticity of mouse trophoblast stem cells, we discuss them within the context of two paradigms of epigenetic regulation of gene expression: the imprinted gene expression of specific loci and the process of X-chromosome inactivation.
Collapse
Affiliation(s)
- Julie Prudhomme
- Laboratoire de Génétique Moléculaire Murine, Institut Pasteur, 75015, Paris, France
| | - Céline Morey
- CNRS, UMR7216 Epigenetics and Cell Fate, 75013, Paris, France.
| |
Collapse
|
13
|
Kalkan T, Smith A. Mapping the route from naive pluripotency to lineage specification. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0540. [PMID: 25349449 PMCID: PMC4216463 DOI: 10.1098/rstb.2013.0540] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the mouse blastocyst, epiblast cells are newly formed shortly before implantation. They possess a unique developmental plasticity, termed naive pluripotency. For development to proceed, this naive state must be subsumed by multi-lineage differentiation within 72 h following implantation. In vitro differentiation of naive embryonic stem cells (ESCs) cultured in controlled conditions provides a tractable system to dissect and understand the process of exit from naive pluripotency and entry into lineage specification. Exploitation of this system in recent large-scale RNAi and mutagenesis screens has uncovered multiple new factors and modules that drive or facilitate progression out of the naive state. Notably, these studies show that the transcription factor network that governs the naive state is rapidly dismantled prior to upregulation of lineage specification markers, creating an intermediate state that we term formative pluripotency. Here, we summarize these findings and propose a road map for state transitions in ESC differentiation that reflects the orderly dynamics of epiblast progression in the embryo.
Collapse
Affiliation(s)
- Tüzer Kalkan
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
14
|
Hayakawa K, Himeno E, Tanaka S, Kunath T. Isolation and Manipulation of Mouse Trophoblast Stem Cells. ACTA ACUST UNITED AC 2015; 32:1E.4.1-1E.4.32. [DOI: 10.1002/9780470151808.sc01e04s32] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Koji Hayakawa
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo Tokyo Japan
| | - Emi Himeno
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo Tokyo Japan
| | - Satoshi Tanaka
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo Tokyo Japan
| | - Tilo Kunath
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh United Kingdom
| |
Collapse
|
15
|
Kunath T, Yamanaka Y, Detmar J, MacPhee D, Caniggia I, Rossant J, Jurisicova A. Developmental differences in the expression of FGF receptors between human and mouse embryos. Placenta 2014; 35:1079-88. [DOI: 10.1016/j.placenta.2014.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/09/2014] [Accepted: 09/13/2014] [Indexed: 11/30/2022]
|
16
|
Establishment of trophoblast stem cells under defined culture conditions in mice. PLoS One 2014; 9:e107308. [PMID: 25203285 PMCID: PMC4159327 DOI: 10.1371/journal.pone.0107308] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/14/2014] [Indexed: 01/09/2023] Open
Abstract
The inner cell mass (ICM) and trophoblast cell lineages duet early embryonic development in mammals. After implantation, the ICM forms the embryo proper as well as some extraembryonic tissues, whereas the trophoectoderm (TE) exclusively forms the fetal portion of the placenta and the trophoblast giant cells. Although embryonic stem (ES) cells can be derived from ICM in cultures of mouse blastocysts in the presence of LIF and/or combinations of small-molecule chemical compounds, and the undifferentiated pluripotent state can be stably maintained without use of serum and feeder cells, defined culture conditions for derivation and maintenance of undifferentiated trophoblast stem (TS) cells have not been established. Here, we report that addition of FGF2, activin A, XAV939, and Y27632 are necessary and sufficient for derivation of TS cells from both of E3.5 blastocysts and E6.5 early postimplantation extraembryonic ectoderm. Moreover, the undifferentiated TS cell state can be stably maintained in chemically defined culture conditions. Cells derived in this manner expressed TS cell marker genes, including Eomes, Elf5, Cdx2, Klf5, Cdh1, Esrrb, Sox2, and Tcfap2c; differentiated into all trophoblast subtypes (trophoblast giant cells, spongiotrophoblast, and labyrinthine trophoblast) in vitro; and exclusively contributed to trophoblast lineages in chimeric animals. This delineation of minimal requirements for derivation and self-renewal provides a defined platform for precise description and dissection of the molecular state of TS cells.
Collapse
|
17
|
Wu T, Liu Y, Wen D, Tseng Z, Tahmasian M, Zhong M, Rafii S, Stadtfeld M, Hochedlinger K, Xiao A. Histone variant H2A.X deposition pattern serves as a functional epigenetic mark for distinguishing the developmental potentials of iPSCs. Cell Stem Cell 2014; 15:281-294. [PMID: 25192463 DOI: 10.1016/j.stem.2014.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/27/2014] [Accepted: 06/05/2014] [Indexed: 01/05/2023]
Abstract
For future application of induced pluripotent stem cell (iPSC) technology, the ability to assess the overall quality of iPSC clones will be an important issue. Here we show that the histone variant H2A.X is a functional marker that can distinguish the developmental potentials of mouse iPSC lines. We found that H2A.X is specifically targeted to and negatively regulates extraembryonic lineage gene expression in embryonic stem cells (ESCs) and prevents trophectoderm lineage differentiation. ESC-specific H2A.X deposition patterns are faithfully recapitulated in iPSCs that support the development of "all-iPS" animals via tetraploid complementation, the most stringent test available of iPSC quality. In contrast, iPSCs that fail to support all-iPS embryonic development show aberrant H2A.X deposition, upregulation of extraembryonic lineage genes, and a predisposition to extraembryonic differentiation. Thus, our work has highlighted an epigenetic mechanism for maintaining cell lineage commitment in ESCs and iPSCs that can be used to distinguish the quality of iPSC lines.
Collapse
Affiliation(s)
- Tao Wu
- Yale Stem Cell Center and Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yifei Liu
- Yale Stem Cell Center and Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Duancheng Wen
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zito Tseng
- Yale Stem Cell Center and Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Martik Tahmasian
- Yale Stem Cell Center and Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mei Zhong
- Yale Stem Cell Center and Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shahin Rafii
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthias Stadtfeld
- Massachusetts General Hospital Cancer Center, Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Medicine, Harvard University, Boston, MA 02114, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Cancer Center, Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Medicine, Harvard University, Boston, MA 02114, USA
| | - Andrew Xiao
- Yale Stem Cell Center and Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
18
|
Geng X, Guo L, Zeng W, Ma L, Ou X, Luo C, Quan S, Li H. Effects of sphingosine-1-phosphate on gene expression of two cell mouse embryos induced by C2-Ceramide. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2014. [DOI: 10.1016/j.mefs.2013.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
19
|
Chen Q, Zhang Y, Elad D, Jaffa AJ, Cao Y, Ye X, Duan E. Navigating the site for embryo implantation: Biomechanical and molecular regulation of intrauterine embryo distribution. Mol Aspects Med 2013; 34:1024-42. [DOI: 10.1016/j.mam.2012.07.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/31/2012] [Indexed: 01/03/2023]
|
20
|
de Ruijter-Villani M, van Boxtel PRM, Stout TAE. Fibroblast growth factor-2 expression in the preimplantation equine conceptus and endometrium of pregnant and cyclic mares. Theriogenology 2013; 80:979-89. [PMID: 24035195 DOI: 10.1016/j.theriogenology.2013.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 12/18/2022]
Abstract
Uterine-derived growth factors and cytokines play essential roles in regulating preimplantation conceptus development. In several species, fibroblast growth factor-2 (FGF2) promotes embryogenesis, trophoblast cell migration, and adhesion. This study investigated mRNA expression for FGF2, its receptors (FGFR1-4), the activating factor FGF binding protein (FGF-BP) in equine endometrium and trophectoderm during early pregnancy and the estrous cycle, and localized FGF2 protein in both endometrium and conceptus tissues. FGF2, FGFRs1-4, and FGFBP mRNAs were expressed in endometrium throughout the estrous cycle and early pregnancy, and in days 14 to 28 conceptus membranes. FGF2 transcription was higher during estrus than on days 7 or 14 of diestrus, suggesting estrogen dependency. Endometrial expression of FGF2 mRNA and protein increased as pregnancy progressed from days 21 and day 28; FGF2 protein was localized predominantly in the luminal and glandular epithelium. FGF2 mRNA was detectable in trophectoderm from as early as day 14, and transcription and translation increased in day 21 and 28 allantochorion. FGF2 protein was localized mainly in the trophectoderm up to day 21 but was present in both trophectoderm and endoderm of day 28 allantochorion. FGFR1 mRNA was down-regulated in the endometrium at day 7 of diestrus but increased again by day 14. Gene expression for all of the FGFR2 splice variants, including FGFR2IIIc, was up-regulated during estrus. During early pregnancy, endometrial FGFR1 expression decreased, whereas FGFR2IIIc expression did not change. Conceptus mRNA expression for all FGFRs increased as pregnancy progressed. FGFBP expression remained unchanged in endometrium, but increased in the conceptus between days 14 and 28, suggesting a role in regulating FGF2 activity in the developing conceptus. We conclude that during weeks 3 and 4 of pregnancy, the equine endometrial epithelium produces FGF2, which may play a role in trophoblast development and adhesion.
Collapse
MESH Headings
- Animals
- Blastocyst/metabolism
- Cell Adhesion
- Embryo Implantation
- Embryonic Development
- Endometrium/metabolism
- Estrous Cycle/metabolism
- Female
- Fibroblast Growth Factor 2/metabolism
- Horses/embryology
- Immunohistochemistry
- Pregnancy
- Pregnancy, Animal/metabolism
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
Collapse
Affiliation(s)
- Marta de Ruijter-Villani
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584 CM Utrecht, The Netherlands.
| | | | | |
Collapse
|
21
|
Abstract
During mammalian preimplantation development, the fertilised egg gives rise to a group of pluripotent embryonic cells, the epiblast, and to the extraembryonic lineages that support the development of the foetus during subsequent phases of development. This preimplantation period not only accommodates the first cell fate decisions in a mammal's life but also the transition from a totipotent cell, the zygote, capable of producing any cell type in the animal, to cells with a restricted developmental potential. The cellular and molecular mechanisms governing the balance between developmental potential and lineage specification have intrigued developmental biologists for decades. The preimplantation mouse embryo offers an invaluable system to study cell differentiation as well as the emergence and maintenance of pluripotency in the embryo. Here we review the most recent findings on the mechanisms controlling these early cell fate decisions. The model that emerges from the current evidence indicates that cell differentiation in the preimplantation embryo depends on cellular interaction and intercellular communication. This strategy underlies the plasticity of the early mouse embryo and ensures the correct specification of the first mammalian cell lineages.
Collapse
Affiliation(s)
- Néstor Saiz
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
22
|
Ozawa M, Yang QE, Ealy AD. The expression of fibroblast growth factor receptors during early bovine conceptus development and pharmacological analysis of their actions on trophoblast growth in vitro. Reproduction 2013; 145:191-201. [DOI: 10.1530/rep-12-0220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The overall aim of this work was to examine the expression profiles for fibroblast growth factor receptors (FGFRs) and describe their biological importance during bovine pre- and peri-implantation conceptus development. FGFR1 and FGFR2 mRNAs were detected at 1-, 2-, 8-cell, morula and blastocyst stages whereas FGFR3 and FGFR4 mRNAs were detected after the 8-cell stage but not earlier. The abundance of FGFR1, FGFR3, and FGFR4 mRNAs increased at the morula and blastocyst stages. Immunofluorescence microscopy detected FGFR2 and FGFR4 exclusively in trophoblast cells whereas FGFR1 and FGFR3 were detected in both trophoblast cells and inner cell mass in blastocysts. Neither transcripts for FGF10 nor its receptor (FGFR2b) were temporally related to interferon τ (IFNT) transcript profile during peri- and postimplantation bovine conceptus development. A series of studies used a chemical inhibitor of FGFR kinase function (PD173074) to examine FGFR activation requirements during bovine embryo development. Exposing embryos to the inhibitor (1 μM) beginning on day 5 post-fertilization did not alter the percentage of embryos that developed into blastocysts or blastocyst cell numbers. The inhibitor did not alter the abundance of CDX2 mRNA but decreased (P<0.05) the relative abundance of IFNT mRNA in blastocysts. Exposing blastocysts to the inhibitor from days 8 to 11 post-fertilization reduced (P<0.05) the percentage of blastocysts that formed outgrowths after transfer to Matrigel-coated plates. In conclusion, each FGFR was detected in bovine embryos, and FGFR activation is needed to maximize IFNT expression and permit outgrowth formation.
Collapse
|
23
|
Chen YH, Yu J. Ectopic expression of Fgf3 leads to aberrant lineage segregation in the mouse parthenote preimplantation embryos. Dev Dyn 2012; 241:1651-64. [PMID: 22930543 DOI: 10.1002/dvdy.23851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parthenogenetic mammalian embryos were reported to die in utero no later than the 25-somite stage due to abnormal development of both embryonic and extraembryonic lineages. Interestingly, it has been shown that parthenogenetic ICM cells tend to differentiate more into primitive endoderm cells and less into epiblast and ES cells. Hence we are interested in studying the molecular mechanisms underlying lineage defects of parthenotes. RESULTS We found that parthenote inner cell masses (ICMs) contained decreased numbers of Sox2(+) /Nanog(+) epiblast cells but increased numbers of Gata4(+) primitive endoderm cells, indicating an unusual lineage segregation. We demonstrate for the first time that the increased Gata4 level in parthenotes may be explained by the strong up-regulation of Fgf3 and Fgfr2 phosphorylation. Inhibition of Fgfr2 activation by SU5402 in parthenotes restored normal Nanog and Gata4 levels without affecting Fgf3, indicating that Fgf3 is upstream of Fgfr2 activation. In parthenote trophectoderm, we detected normal Cdx2 but ectopic Gata4 expression and reduced Elf5 and Tbr2(Eomes) levels. CONCLUSIONS Taken together, our work provides for the first time the insight into the molecular mechanisms of the developmental defects of parthenogenetic embryos in both the trophectoderm and ICM.
Collapse
Affiliation(s)
- Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | | |
Collapse
|
24
|
|
25
|
Keramari M, Razavi J, Ingman KA, Patsch C, Edenhofer F, Ward CM, Kimber SJ. Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS One 2010; 5:e13952. [PMID: 21103067 PMCID: PMC2980489 DOI: 10.1371/journal.pone.0013952] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/06/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In preimplantation mammalian development the transcription factor Sox2 (SRY-related HMG-box gene 2) forms a complex with Oct4 and functions in maintenance of self-renewal of the pluripotent inner cell mass (ICM). Previously it was shown that Sox2-/- embryos die soon after implantation. However, maternal Sox2 transcripts may mask an earlier phenotype. We investigated whether Sox2 is involved in controlling cell fate decisions at an earlier stage. METHODS AND FINDINGS We addressed the question of an earlier role for Sox2 using RNAi, which removes both maternal and embryonic Sox2 mRNA present during the preimplantation period. By depleting both maternal and embryonic Sox2 mRNA at the 2-cell stage and monitoring embryo development in vitro we show that, in the absence of Sox2, embryos arrest at the morula stage and fail to form trophectoderm (TE) or cavitate. Following knock-down of Sox2 via three different short interfering RNA (siRNA) constructs in 2-cell stage mouse embryos, we have shown that the majority of embryos (76%) arrest at the morula stage or slightly earlier and only 18.7-21% form blastocysts compared to 76.2-83% in control groups. In Sox2 siRNA-treated embryos expression of pluripotency associated markers Oct4 and Nanog remained unaffected, whereas TE associated markers Tead4, Yap, Cdx2, Eomes, Fgfr2, as well as Fgf4, were downregulated in the absence of Sox2. Apoptosis was also increased in Sox2 knock-down embryos. Rescue experiments using cell-permeant Sox2 protein resulted in increased blastocyst formation from 18.7% to 62.6% and restoration of Sox2, Oct4, Cdx2 and Yap protein levels in the rescued Sox2-siRNA blastocysts. CONCLUSION AND SIGNIFICANCE We conclude that the first essential function of Sox2 in the preimplantation mouse embryo is to facilitate establishment of the trophectoderm lineage. Our findings provide a novel insight into the first differentiation event within the preimplantation embryo, namely the segregation of the ICM and TE lineages.
Collapse
Affiliation(s)
- Maria Keramari
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Janet Razavi
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Karen A. Ingman
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Christoph Patsch
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Bonn, Germany
| | - Frank Edenhofer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Bonn, Germany
| | - Christopher M. Ward
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Susan J. Kimber
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
26
|
Wu G, Gentile L, Do JT, Cantz T, Sutter J, Psathaki K, Araúzo-Bravo MJ, Ortmeier C, Schöler HR. Efficient derivation of pluripotent stem cells from siRNA-mediated Cdx2-deficient mouse embryos. Stem Cells Dev 2010; 20:485-93. [PMID: 20536317 DOI: 10.1089/scd.2010.0128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the early mammalian embryo, lineage separation of and subsequent crosstalk between the trophectoderm (TE) and inner cell mass (ICM) are required to support further development. Previous studies have shown that the homeobox transcription factor Cdx2 is required for TE differentiation and that lack of Cdx2 expression causes death of embryos at the peri-implantation stage. In this study, we effectively eliminated Cdx2 transcripts by microinjection of siRNA into embryos and evaluated the effect on efficiency of deriving embryonic stem cells (ESCs). By this approach, we successfully created nonviable embryos similar to reported knockout embryos. Accordingly, the efficiency of ESC derivation dropped from 19.1% in control blastocysts to 2% in Cdx2-deficient blastocysts, indicating loss of pluripotency in the ICM. Strikingly, when 8-cell stage embryos were cultured under ESC culture conditions before lineage separation, fully functional pluripotent stem cell lines were obtained, with efficiency even greater than that for control embryos. These results demonstrate that Cdx2 plays an essential role within the microenvironment created by the TE to support ICM pluripotency but that the ESC culture system, with mouse embryonic fibroblasts, could rescue the pluripotent cell population for efficient ESC derivation.
Collapse
Affiliation(s)
- Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sebastiano V, Dalvai M, Gentile L, Schubart K, Sutter J, Wu GM, Tapia N, Esch D, Ju JY, Hübner K, Bravo MJA, Schöler HR, Cavaleri F, Matthias P. Oct1 regulates trophoblast development during early mouse embryogenesis. Development 2010; 137:3551-60. [PMID: 20876643 DOI: 10.1242/dev.047027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oct1 (Pou2f1) is a transcription factor of the POU-homeodomain family that is unique in being ubiquitously expressed in both embryonic and adult mouse tissues. Although its expression profile suggests a crucial role in multiple regions of the developing organism, the only essential function demonstrated so far has been the regulation of cellular response to oxidative and metabolic stress. Here, we describe a loss-of-function mouse model for Oct1 that causes early embryonic lethality, with Oct1-null embryos failing to develop beyond the early streak stage. Molecular and morphological analyses of Oct1 mutant embryos revealed a failure in the establishment of a normal maternal-embryonic interface due to reduced extra-embryonic ectoderm formation and lack of the ectoplacental cone. Oct1(-/-) blastocysts display proper segregation of trophectoderm and inner cell mass lineages. However, Oct1 loss is not compatible with trophoblast stem cell derivation. Importantly, the early gastrulation defect caused by Oct1 disruption can be rescued in a tetraploid complementation assay. Oct1 is therefore primarily required for the maintenance and differentiation of the trophoblast stem cell compartment during early post-implantation development. We present evidence that Cdx2, which is expressed at high levels in trophoblast stem cells, is a direct transcriptional target of Oct1. Our data also suggest that Oct1 is required in the embryo proper from late gastrulation stages onwards.
Collapse
Affiliation(s)
- Vittorio Sebastiano
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgenstrasse, 20 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pernaute B, Cañon S, Crespo M, Fernandez-Tresguerres B, Rayon T, Manzanares M. Comparison of extraembryonic expression of Eomes and Cdx2 in pregastrulation chick and mouse embryo unveils regulatory changes along evolution. Dev Dyn 2009; 239:620-9. [DOI: 10.1002/dvdy.22176] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
|
30
|
Grigor'eva EV, Shevchenko AI, Mazurok NA, Elisaphenko EA, Zhelezova AI, Shilov AG, Dyban PA, Dyban AP, Noniashvili EM, Slobodyanyuk SY, Nesterova TB, Brockdorff N, Zakian SM. FGF4 independent derivation of trophoblast stem cells from the common vole. PLoS One 2009; 4:e7161. [PMID: 19777059 PMCID: PMC2744875 DOI: 10.1371/journal.pone.0007161] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/21/2009] [Indexed: 12/02/2022] Open
Abstract
The derivation of stable multipotent trophoblast stem (TS) cell lines from preimplantation, and early postimplantation mouse embryos has been reported previously. FGF4, and its receptor FGFR2, have been identified as embryonic signaling factors responsible for the maintenance of the undifferentiated state of multipotent TS cells. Here we report the derivation of stable TS-like cell lines from the vole M. rossiaemeridionalis, in the absence of FGF4 and heparin. Vole TS-like cells are similar to murine TS cells with respect to their morphology, transcription factor gene expression and differentiation in vitro into derivatives of the trophectoderm lineage, and with respect to their ability to invade and erode host tissues, forming haemorrhagic tumours after subcutaneous injection into nude mice. Moreover, vole TS-like cells carry an inactive paternal X chromosome, indicating that they have undergone imprinted X inactivation, which is characteristic of the trophoblast lineage. Our results indicate that an alternative signaling pathway may be responsible for the establishment and stable proliferation of vole TS-like cells.
Collapse
Affiliation(s)
- Elena V. Grigor'eva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Alexander I. Shevchenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Nina A. Mazurok
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Eugeny A. Elisaphenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Antonina I. Zhelezova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Alexander G. Shilov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Pavel A. Dyban
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - Andrey P. Dyban
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | | | - Sergey Ya. Slobodyanyuk
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | | | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| |
Collapse
|
31
|
Himeno E, Tanaka S, Kunath T. Isolation and manipulation of mouse trophoblast stem cells. ACTA ACUST UNITED AC 2008; Chapter 1:Unit 1E.4. [PMID: 18972374 DOI: 10.1002/9780470151808.sc01e04s7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The isolation of stable trophoblast stem (TS) cell lines from early mouse embryos has provided a useful cell culture model to study trophoblast development. TS cells are derived from pre-implantation blastocysts or from the extraembryonic ectoderm of early post-implantation embryos. The derivation and maintenance of mouse TS cells is dependent upon continuous fibroblast growth factor (FGF) signaling. Gene expression analysis, differentiation in culture, and chimera formation show that TS cells accurately model the mouse trophoblast lineage. This unit describes how to derive, maintain, and manipulate TS cells, including DNA transfection and chimera formation.
Collapse
Affiliation(s)
- Emi Himeno
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
32
|
Ng RK, Dean W, Dawson C, Lucifero D, Madeja Z, Reik W, Hemberger M. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol 2008; 10:1280-90. [PMID: 18836439 PMCID: PMC2635539 DOI: 10.1038/ncb1786] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 09/08/2008] [Indexed: 12/12/2022]
Abstract
Mouse ES cells can differentiate into all three germ layers of the embryo but are generally excluded from the trophoblast lineage. Here we show that ES cells deficient in DNA methylation can differentiate efficiently into trophoblast derivatives. In a genome-wide screen we identified the transcription factor Elf5 as methylated and repressed in ES cells, and hypomethylated and expressed in TS and methylation-deficient ES cells. Elf5 creates a positive-feedback loop with the TS cell determinants Cdx2 and Eomes that is restricted to the trophoblast lineage by epigenetic regulation of Elf5. Importantly, the late-acting function of Elf5 allows initial plasticity and regulation in the early blastocyst. Thus, Elf5 functions as a gatekeeper, downstream of initial lineage determination, to reinforce commitment to the trophoblast lineage or to abort this pathway in epiblast cells. This epigenetic restriction of cell lineage fate provides a molecular mechanism for Waddington's concept of canalization of developmental pathways.
Collapse
Affiliation(s)
- Ray Kit Ng
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Wendy Dean
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Claire Dawson
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Diana Lucifero
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Zofia Madeja
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Wolf Reik
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Myriam Hemberger
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
33
|
Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, Buonanno A. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 2007; 134:3827-36. [PMID: 17913785 DOI: 10.1242/dev.010223] [Citation(s) in RCA: 412] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specification of cell lineages in mammals begins shortly after fertilization with formation of a blastocyst consisting of trophectoderm,which contributes exclusively to the placenta, and inner cell mass (ICM), from which the embryo develops. Here we report that ablation of the mouse Tead4 gene results in a preimplantation lethal phenotype, and TEAD4 is one of two highly homologous TEAD transcription factors that are expressed during zygotic gene activation in mouse 2-cell embryos. Tead4-/- embryos do not express trophectoderm-specific genes, such as Cdx2, but do express ICM-specific genes, such as Oct4 (also known as Pou5f1). Consequently, Tead4-/- morulae do not produce trophoblast stem cells,trophectoderm or blastocoel cavities, and therefore do not implant into the uterine endometrium. However, Tead4-/- embryos can produce embryonic stem cells, a derivative of ICM, and if the Tead4 allele is not disrupted until after implantation, then Tead4-/-embryos complete development. Thus, Tead4 is the earliest gene shown to be uniquely required for specification of the trophectoderm lineage.
Collapse
Affiliation(s)
- Rieko Yagi
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-2753, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Pfister S, Steiner KA, Tam PPL. Gene expression pattern and progression of embryogenesis in the immediate post-implantation period of mouse development. Gene Expr Patterns 2007; 7:558-73. [PMID: 17331809 DOI: 10.1016/j.modgep.2007.01.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/17/2007] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
During development of the mouse conceptus from implantation to the early gastrula stage, a multitude of genes encoding structural proteins, transcription factors and components of signalling pathways are expressed in the extraembryonic and embryonic tissues derived from the trophectoderm and the inner cell mass. Some genes are expressed widely in the extraembryonic ectoderm, the visceral endoderm or the epiblast, while others display more restricted expression domains in these tissues or are expressed upon the specification of the germ layers at gastrulation. Overall, the developmental changes in gene expression mirror key events of embryogenesis, and reveal the regionalization of signalling activity and the emergence of tissue patterning.
Collapse
Affiliation(s)
- Sabine Pfister
- Embryology Unit, Children's Medical Research Institute, University of Sydney, Locked Bag 23, Wentworthville, NSW 2145, Australia
| | | | | |
Collapse
|
35
|
Assou S, Anahory T, Pantesco V, Le Carrour T, Pellestor F, Klein B, Reyftmann L, Dechaud H, De Vos J, Hamamah S. The human cumulus--oocyte complex gene-expression profile. Hum Reprod 2006; 21:1705-19. [PMID: 16571642 PMCID: PMC2377388 DOI: 10.1093/humrep/del065] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes and cumulus cells. METHODS Using oligonucleotide microarrays, genome-wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF. RESULTS In addition to known genes, such as DAZL, BMP15 or GDF9, oocytes up-regulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14 and IL4 and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-to-cell signalling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A and SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, including CDC25A and SOCS7. CONCLUSION The identification of genes that were up- and down-regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumours.
Collapse
Affiliation(s)
- Said Assou
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Tal Anahory
- UFR Médecine
Université Montpellier IMontpellier,FR
| | - Véronique Pantesco
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Tanguy Le Carrour
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
| | - Franck Pellestor
- UFR Médecine
Université Montpellier IMontpellier,FR
- IGH, Institut de génétique humaine
CNRS : UPR1142institut de Génétique humaine
141 Rue de la Cardonille
34396 MONTPELLIER CEDEX 5,FR
| | - Bernard Klein
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Lionel Reyftmann
- Service de gynécologie-obstétrique et médecine de la reproduction
CHRU MontpellierHôpital Arnaud de VilleneuveUniversité Montpellier IFR
| | - Hervé Dechaud
- Service de gynécologie-obstétrique et médecine de la reproduction
CHRU MontpellierHôpital Arnaud de VilleneuveUniversité Montpellier IFR
| | - John De Vos
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- * Correspondence should be adressed to: John De Vos
| | - Samir Hamamah
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- UFR Médecine
Université Montpellier IMontpellier,FR
- * Correspondence should be adressed to: Samir Hamamah
| |
Collapse
|
36
|
Peluso JJ. N-cadherin mediated cell contact inhibits germinal vesicle breakdown in mouse oocytes maintained in vitro. Reproduction 2006; 131:429-37. [PMID: 16514186 DOI: 10.1530/rep.1.00863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of granulosa cell contact on the ability of zona-free oocytes to undergo germinal vesicle breakdown (GVBD) was assessed using a granulosa cell co-culture system. Oocytes contacted granulosa cells in a site-specific manner such that their GV was away from the granulosa cells. Also contact with granulosa cells reduced the percentage of oocytes undergoing GVBD from about 40% to 15%. GVBD was inhibited by contact with granulosa cells but not a granulosa cell-secreted product, since oocytes cultured in the same culture, that were adjacent to the granulosa cell monolayer underwent GVBD at the same rate as controls. Similarly, media collected from granulosa cell cultures did not attenuate the rate of GVBD. The ability of granulosa cell contact to inhibit GVBD was equal to that of db-cAMP. Moreover, the ability of granulosa cells to inhibit GVBD was not mimicked by spontaneously immortalized granulosa cells. This cell specificity appeared to be related to N-cadherin, since granulosa cells and oocytes express N-cadherin and a N-cadherin antibody attenuates the effect of granulosa cell contact. The mechanism through which N-cadherin mediated cell contact maintains meiotic arrest is unknown. It is possible that homophilic N-cadherin binding between the granulosa cells and oocyte acts through a junxtacrine mechanism, which in part may lead in the activation fibroblast growth factor (FGF) receptors that are expressed by the oocyte. The involvement of FGF receptors is supported by the observations that FGF and a N-cadherin peptide known to activate FGF receptors inhibit GVBD.
Collapse
Affiliation(s)
- J J Peluso
- Cell Biology and Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| |
Collapse
|
37
|
Edwards RG. Changing genetic world of IVF, stem cells and PGD. B. Polarities and gene expression in differentiating embryo cells and stem cells. Reprod Biomed Online 2006; 11:761-76. [PMID: 16417744 DOI: 10.1016/s1472-6483(10)61696-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Novel genetic techniques in the later twentieth century led to new analytical methods for assessing the growth of embryos and stem cells and improve preimplantation diagnosis. Increasing attention to the nature of polarities in mouse and human embryos revealed the existence of an animal-vegetal axis in human oocytes and embryos. Combinations of meridional and transverse cleavage divisions, the latter due to spindle rotation, determined the unequal division of ooplasm to embryonic blastomeres. Blastomeres with differing functions were accordingly formed in 4-cell embryos, including founders of inner cell mass and trophectoderm. New forms of gene analysis led to the polymerase chain reaction, while fluorescence in-situ hybridization revealed astonishingly high degrees of heteroploidy in human embryos. Developmental genetics gained immense analytical power as cDNA libraries, microarrays, transcriptomes RNAi and other methods clarified the roles of hundreds of genes in pre- and early post-implantation embryos and stem cells.
Collapse
|
38
|
Zhong W, Wang QT, Sun T, Wang F, Liu J, Leach R, Johnson A, Puscheck EE, Rappolee DA. FGF Ligand Family mRNA Expression Profile for Mouse Preimplantation Embryos, Early Gestation Human Placenta, and Mouse Trophoblast Stem Cells. Mol Reprod Dev 2006; 73:540-50. [PMID: 16470835 DOI: 10.1002/mrd.20417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Signaling by fibroblast growth factor (FGF) is essential is for trophoblast stem (TS) cells and preimplantation embryos. FGF4 provides essential signaling, but the expression of the complete set of 23 FGF family members has not been analyzed. Here, semi-quantitative RT-PCR and microarray analyses were used to define expression of all FGF ligand mRNA. RT-PCR was done for developmentally important FGF subfamilies, FGF10/FGF22 and FGF8/FGF17/FGF18 as well as FGF11. FGF4 and FGF18 are detected at highest levels by RT-PCR and microarrays. FGF10 was detected at low levels in both assays. FGF11 was detected at moderate levels by microarray, but not by RT-PCR. FGF17 was detected at low levels by array and moderate levels by RT-PCR. FGF8 and FGF22 were detected by RT-PCR, but not by microarrays during late cleavage divisions. FGF8, FGF5, and FGF9 were detected in the oocyte by microarray. FGF2, FGF3, and FGF7 were not detected by RT-PCR or microarrays and FGF13, FGF14, and FGF23 were not detected by microarray. Since a major role of FGF is to maintain TS cells, we tested human and mouse placental cell lines and early gestation human placenta for expression of FGF ligands. Expression in mouse TS cells was compared with preimplantation embryos, and human placental cell line expression was compared with human placenta, to infer which ligands are expressed in placental lineage vs. other cell lineages. The data suggest that human and mouse placenta share FGF18 and its high expression suggests preimplantation and early placental function.
Collapse
Affiliation(s)
- W Zhong
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Edwards RG, Hansis C. Initial differentiation of blastomeres in 4-cell human embryos and its significance for early embryogenesis and implantation. Reprod Biomed Online 2005; 11:206-18. [PMID: 16168219 DOI: 10.1016/s1472-6483(10)60960-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This brief review is devoted to the nature of early blastomere differentiation in human 4-cell embryos and its consequences for embryonic development. Precursor cells of inner cell mass, germline, and trophectoderm may be formed at this stage, the clearest evidence being available for trophectoderm. The sites of these precursor cells in the embryo could be ascertained using markers for animal and vegetal poles, observing specific cleavage planes, and assessing gene and protein expression. This opens new opportunities for studying 4-cell embryos and removing or replacing specific cells. Knowledge of the properties of individual blastomeres should help in improving assisted human reproduction, performing preimplantation genetic diagnosis, and perhaps establishing specific stem cell lines. Special attention is paid to well-characterized trophectoderm, the trophectoderm stem cell, and possible new forms of clinical application.
Collapse
Affiliation(s)
- Robert G Edwards
- Reproductive BioMedicine Online, Duck End Farm, Dry Drayton, Cambridge CB3 8DB, UK
| | | |
Collapse
|
40
|
Simmons DG, Cross JC. Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev Biol 2005; 284:12-24. [PMID: 15963972 DOI: 10.1016/j.ydbio.2005.05.010] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 05/04/2005] [Accepted: 05/06/2005] [Indexed: 01/03/2023]
Abstract
Cells of the trophoblast lineage make up the epithelial compartment of the placenta, and their rapid development is essential for the establishment and maintenance of pregnancy. A diverse array of specialized trophoblast subtypes form throughout gestation and are responsible for mediating implantation, as well as promotion of blood to the implantation site, changes in maternal physiology, and nutrient and gas exchange between the fetal and maternal blood supplies. Within the last decade, targeted mutations in mice and the study of trophoblast stem cells in vitro have contributed greatly to our understanding of trophoblast lineage development. Here, we review recent insights into the molecular pathways regulating trophoblast lineage segregation, stem cell maintenance, and subtype differentiation.
Collapse
Affiliation(s)
- David G Simmons
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive N.W., Calgary, AB, Canada T2N 4N1
| | | |
Collapse
|
41
|
Wollenhaupt K, Welter H, Brüssow KP, Einspanier R. Regulation of endometrial fibroblast growth factor 7 (FGF-7) and its receptor FGFR2IIIb in gilts after sex steroid replacements, and during the estrous cycle and early gestation. J Reprod Dev 2005; 51:509-19. [PMID: 15976484 DOI: 10.1262/jrd.17013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to characterize the effect of ovarian steroids and early gestation on the expression of fibroblast growth factor 7 (FGF-7) and its receptor (FGFR2IIIb) in the porcine endometrium. In Experiment 1, gilts were ovariectomized (OVX) on day 10 of the estrous cycle and treated thereafter with vehicle (VEH), progesterone (P4), estradiol benzoate (EB), or P4+EB. Days 12 and 20 cyclic gilts (C12 and C20) were used to determine the influence of physiologically low and high plasma estradiol and progesterone concentrations on their expression. In Experiment 2, the expression of FGF-7 and FGFR2IIIB was characterized on days 1 (G 1) and 12 (G 12) of gestation. FGF-7 and FGFR2IIIb mRNA were quantified by quantitative real-time RT-PCR, and localization of FGF-7 protein in steroid-treated and early pregnant gilts was performed by immunohistochemistry. VEH-gilts expressed both FGF-7 and FGFR2IIIB mRNA. We found a significant effect of EB, but no effects of P4 or P4+EB on the mRNA expression of FGF-7. FGFR2IIIb mRNA significantly decreased after the EB and combined P4+EB treatments, compared to P4 only substituted animals. Day 12 cyclic gilts showed significantly higher FGF-7 and FGFR2IIIb mRNA expression compared with day 20 gilts. Between day 1 and 12 of gestation, FGF-7 mRNA expression differed highly while FGFR2IIIb transcripts only varied significantly. FGF-7 protein was localized in endometrial epithelia, vascular smooth muscle, and the endothelium of different types of blood vessels. Staining was weak in VEH and P4 treated gilts, whereas it was prominent following EB and P4+EB. FGF-7 antibody strongly stained the luminal epithelium on day 12 of gestation. In summary, FGF-7 and FGFR2IIIb mRNA expression is regulated differently by exogenous ovarian steroids, assuming progesterone in connection with a specific amount of 17beta-estradiol, whereas the receptor seems to be inhibited by estradiol. Both transcripts coordinately increased during the progesterone dominated phase on day 12 both in cyclic and early pregnant gilts. We conclude that estradiol and progesterone are involved in the regulation of this ligand-receptor system, which might have an important role in preparing endometrial tissue for implantation in gilts.
Collapse
Affiliation(s)
- Karin Wollenhaupt
- Research Institute for the Biology of Farm Animals, Reproductive Biology, Dummerstorf, Germany
| | | | | | | |
Collapse
|
42
|
Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 2005; 132:2093-102. [PMID: 15788452 DOI: 10.1242/dev.01801] [Citation(s) in RCA: 862] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Blastocyst formation marks the segregation of the first two cell lineages in the mammalian preimplantation embryo: the inner cell mass (ICM) that will form the embryo proper and the trophectoderm (TE) that gives rise to the trophoblast lineage. Commitment to ICM lineage is attributed to the function of the two transcription factors, Oct4 (encoded by Pou5f1) and Nanog. However, a positive regulator of TE cell fate has not been described. The T-box protein eomesodermin (Eomes) and the caudal-type homeodomain protein Cdx2 are expressed in the TE, and both Eomes and Cdx2homozygous mutant embryos die around the time of implantation. A block in early TE differentiation occurs in Eomes mutant blastocysts. However, Eomes mutant blastocysts implant, and Cdx2 and Oct4expression are correctly restricted to the ICM TE. Blastocoel formation initiates in Cdx2 mutants but epithelial integrity is not maintained and embryos fail to implant. Loss of Cdx2 results in failure to downregulate Oct4 and Nanog in outer cells of the blastocyst and subsequent death of those cells. Thus, Cdx2 is essential for segregation of the ICM and TE lineages at the blastocyst stage by ensuring repression of Oct4 and Nanog in the TE.
Collapse
Affiliation(s)
- Dan Strumpf
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Donnison M, Beaton A, Davey HW, Broadhurst R, L'Huillier P, Pfeffer PL. Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development 2005; 132:2299-308. [PMID: 15829518 DOI: 10.1242/dev.01819] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The extraembryonic ectoderm (ExE) is essential for mammalian placental formation and survival of the embryo in utero. We have obtained a mouse model lacking the ExE, by targeted deletion of the transcription factor Elf5. Although Elf5 mutant embryos implant and form an ectoplacental cone, no trophoblast stem (TS) cells can be derived, indicating that the absence of ExE is a result of the lack of TS cell maintenance. Embryos without ExE tissue are able to form the anterior visceral endoderm but fail to undergo gastrulation, demonstrating an essential role for the ExE in embryonic patterning during a defined window of development.
Collapse
Affiliation(s)
- Martyn Donnison
- AgResearch Crown Research Institute, Ruakura Campus, East Street, Hamilton 2001, New Zealand
| | | | | | | | | | | |
Collapse
|
44
|
Lonai P. Fibroblast growth factor signaling and the function and assembly of basement membranes. Curr Top Dev Biol 2005; 66:37-64. [PMID: 15797451 DOI: 10.1016/s0070-2153(05)66002-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Peter Lonai
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel 76100
| |
Collapse
|
45
|
Kunath T, Strumpf D, Rossant J. Early trophoblast determination and stem cell maintenance in the mouse--a review. Placenta 2004; 25 Suppl A:S32-8. [PMID: 15033304 DOI: 10.1016/j.placenta.2004.01.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 01/03/2004] [Accepted: 01/05/2004] [Indexed: 11/18/2022]
Abstract
The first priority of a mammalian embryo is to establish an intimate relationship with its mother. This is accomplished by precocious differentiation of the trophoblast lineage, which mediates uterine implantation and initiates the process of placentation. Surprisingly little is known about the molecular mechanisms that drive trophectoderm differentiation from the equipotent blastomeres of the morula. Somewhat more is known about the maintenance of trophoblast stem cells, once this lineage has been established. The first half of this review will focus on determination of the mouse trophoblast lineage and the second half will discuss the maintenance of trophoblast stem cells.
Collapse
Affiliation(s)
- T Kunath
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada M5G 1X5.
| | | | | |
Collapse
|
46
|
Hemberger M, Zechner U. Genetic and genomic approaches to study placental development. Cytogenet Genome Res 2004; 105:257-69. [PMID: 15237215 DOI: 10.1159/000078197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 12/23/2003] [Indexed: 11/19/2022] Open
Abstract
Recent technological advances in genetic manipulation and expression profiling offer excellent opportunities to elucidate the molecular mechanisms controlling developmental processes during embryogenesis. Thus, this revolution also strongly benefits studies of the molecular genetics of placental development. Here we review the findings of several expression profiling analyses in extraembryonic tissues and assess how this work can contribute to the identification of essential components governing placental development. We further discuss the relevance of these components in the context of genetic manipulation experiments. In conclusion, the intelligent combination of genetic and genomic approaches will substantially accelerate the progress in identifying the key molecular pathways of placental development.
Collapse
Affiliation(s)
- M Hemberger
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
47
|
Roberts RM, Ezashi T, Das P. Trophoblast gene expression: transcription factors in the specification of early trophoblast. Reprod Biol Endocrinol 2004; 2:47. [PMID: 15236655 PMCID: PMC471566 DOI: 10.1186/1477-7827-2-47] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 07/05/2004] [Indexed: 01/06/2023] Open
Abstract
Azone of trophoblast specification is established when the embryo is a morula, presumably reflecting a unique combination of transcription factors in that zone of cells and the influence of various environmental cues and growth factors on them. A key first step in this process of specification is the down-regulation of Oct4, a transcription factor that acts as a negative regulator of trophoblast specification and of genes normally up-regulated as the trophectoderm first forms. The transcription factors believed to have a positive association with trophectoderm specification have been inferred primarily in two ways: by their expression patterns in embryos, ES cells and TS cells and by the consequences of gene disruption on embryonic development. Many of these transcription factors also control the expression of genes characteristically expressed in trophoblast but not in the epiblast, primitive endoderm and their derivatives. ES and TS cells from the mouse and other species are beginning to provide insights into the changes in gene expression that accompany lineage specification and the subsequent post-specification events that lead to functional trophoblast derivatives.
Collapse
Affiliation(s)
- R Michael Roberts
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Toshihiko Ezashi
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Padmalaya Das
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
48
|
Welter H, Wollenhaupt K, Einspanier R. Developmental and hormonal regulated gene expression of fibroblast growth factor 2 (FGF-2) and its receptors in porcine endometrium. J Steroid Biochem Mol Biol 2004; 88:295-304. [PMID: 15120423 DOI: 10.1016/j.jsbmb.2003.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Accepted: 12/22/2003] [Indexed: 11/25/2022]
Abstract
This study examined the mRNA levels of the fibroblast growth factor 2 (FGF-2) and two of its receptors, FGFR1IIIc and FGFR2IIIc, at days 12 and 20 of the ovarian cycle (DC 12 and DC 20), days 1 and 12 of pregnancy (DP 1 and DP 12) as well as the influence of progesterone (P) and estradiolbenzoate (EB) on their expression in the endometrium of ovariectomized (ovx) gilts by real-time PCR. Proteins of FGF-2 and FGFR1 were immunolocalized. FGF-2 and FGFR2IIIc mRNAs were always found with a 5- to 30-fold higher absolute concentration compared to FGFR1IIIc. The latter transcript significantly declined between DP 1 and DP 12, whereas FGF-2 and FGFR2IIIc showed no significant changes at that time. FGF-2 transcription was greater at DC 20 than at DC 12, but significantly most transcripts were found in ovx gilts. EB induced a significant suppression of FGF-2 mRNA, an effect which was antagonized by P and even prevented by P+EB. FGFR1IIIc mRNA was significantly increased at DC 20, that of FGFR2IIIc at DC 12 displaying a 10 times higher absolute mRNA amount. Suppression of FGFR1IIIc mRNA by P was abolished by EB while P+EB attenuated this effect. FGFR2IIIc transcripts were equally restrained by P or EB while a combination of both slightly reduced such declines. Localization of FGF-2 and FGFR1 proteins in stromal, glandular and vascular compartments was effected by sex steroids. Both proteins were strongly expressed at DP 12 but not at DP 1. Summarized, differential temporal and spatial localization of FGF-2 and FGFR1 after response to sex steroids support a complex regulation of this ligand receptor system important for proliferation and differentiation of uterine cells including angiogenic processes. While FGFR1IIIc is presumed to be promoted by estradiol FGFR2IIIc appears to be dominated by progesterone implicating different biological importance for a functional endometrium.
Collapse
Affiliation(s)
- H Welter
- Institute of Physiology, Technical University of Munich, 85350 Freising, Germany.
| | | | | |
Collapse
|
49
|
Abstract
During mammalian development, the first cell lineage diversification event occurs in the blastocyst, when the trophectoderm (TE) and the inner cell mass (ICM) become established. Part of the TE (polar) remains in contact with the ICM and differs from the mural TE (mTE) which is separated from the ICM by a cavity known as the blastocoele. The presence of filopodia connecting ICM cells with the distant mural TE cells through the blastocoelic fluid was investigated in this work. We describe two types of actin-based cell projections found in freshly dissected and in vitro cultured expanding blastocysts: abundant short filopodia projecting into the blastocoelic cavity that present a continuous undulating behavior; and long, thin traversing filopodia connecting the mural TE with the ICM. Videomicroscopy analyses revealed the presence of vesicle-like structures moving along traversing filopodia and dynamic cytoskeletal rearrangements. These observations, together with immunolocalization of the FGFR2 and the ErbB3 receptors to these cell extensions, suggest that they display signal transduction activity. We propose that traversing filopodia are employed by mitotic mTE cells to receive the required signals for cell division after they become distant to the ICM.
Collapse
Affiliation(s)
- Enrique Salas-Vidal
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62271, México
| | | |
Collapse
|
50
|
Imakawa K, Chang KT, Christenson RK. Pre-Implantation Conceptus and Maternal Uterine Communications: Molecular Events Leading to Successful Implantation. J Reprod Dev 2004; 50:155-69. [PMID: 15118242 DOI: 10.1262/jrd.50.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Implantation, a critical step for mammals in establishing pregnancy, requires successful completion of sequential events such as maternal uterine development, conceptus development and attachment, and placental formation. To reach the stage of placental formation, synchronized development of the conceptus and uterus throughout the implantation period is absolutely required. A number of factors expressed at the uterine endometrium and/or conceptus, which are associated with peri-implantation development, have been identified. In addition to a temporal and spatial expression of these factors, their roles in intra- and inter-cellular interactions make it difficult to fully understand physiological roles played during the critical period. This paper focuses on early conceptus development, maternal preparation for implantation and uterine-conceptus communication during the pre-implantation period, rather than the subsequent events such as conceptus attachment to the maternal endometrium. New aspects of pre-implantation processes are evaluated through simultaneous expressions of transcription factors as they possibly regulate the complex processes of implantation events in murine species and ruminant ungulates.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Implantation Research Group, Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| | | | | |
Collapse
|