1
|
Kambe Y, Kawano Y, Sasaki M, Koga M, Fujita N, Kameda T. Enhanced Biodegradation of Silk Fibroin Hydrogel for Preventing Postoperative Adhesion. ACS Biomater Sci Eng 2024; 10:7441-7450. [PMID: 39496577 DOI: 10.1021/acsbiomaterials.4c01805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
An absorbable adhesion barrier is a medical device that prevents postoperative adhesion and matches its biodegradation time with the regeneration period of its target tissues, which is important for antiadhesion effects. Physical hydrogels of Bombyx mori silk fibroin (SF) proteins are degradable in vivo. However, their biodegradation time is too long to exert antiadhesion effects. To shorten the biodegradation time of the SF hydrogels, we decreased the molecular weight (MW) of the SF proteins by alkaline treatment and prepared low-MW (LMW) SF hydrogels. The hydrogels contained less β-sheet crystalline and more amorphous structures than conventional, high-MW (HMW) SF hydrogels. Because of the potential loosened SF molecular structures in the hydrogel networks, the LMW SF hydrogels showed enhanced biodegradation (i.e., shorter in vitro enzymatic biodegradation time and faster in vivo biodegradation rate) as well as a lower affinity for plasma proteins and fibroblasts, which are involved in postoperative adhesion formation. An antiadhesion test using a rat abdominal adhesion model demonstrated that the LMW SF hydrogel applied to the abraded cecum was almost completely degraded within two weeks postimplantation, with a significantly lower adhesion severity score than that in the untreated model rat group. Conversely, the HMW SF hydrogel remained between the cecum and abdominal wall, with the same adhesion severity as that of the untreated model rat group. Therefore, we concluded that the antiadhesion effects of SF hydrogels were induced by enhanced biodegradation. The results of this study indicate the potential of LMW SF hydrogels as absorbable adhesion barriers.
Collapse
Affiliation(s)
- Yusuke Kambe
- Silk Materials Research Group, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yusuke Kawano
- Department of Orthopaedic Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Makoto Sasaki
- Charlie Lab Inc., 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Maito Koga
- Silk Materials Research Group, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Tsunenori Kameda
- Silk Materials Research Group, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
2
|
Almonte L, Fernandez M, Cortés-Ossa JD, Blesio P, Juan-Bordera L, Sabater C, Cortajarena AL, Calvo MR. Thickness Determination and Control in Protein-Based Biomaterial Thin Films. ACS APPLIED BIO MATERIALS 2024; 7:5719-5727. [PMID: 39008810 PMCID: PMC11337159 DOI: 10.1021/acsabm.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Controlling the thickness and uniformity of biomaterial films is crucial for their application in various fields including sensing and bioelectronics. In this work, we investigated film assemblies of an engineered repeat protein─specifically, the consensus tetratricopeptide repeat (CTPR) protein ─a system with unique robustness and tunability. We propose the use of microreflectance spectroscopy and apparent color inspection for the quick assessment of the thickness and uniformity of protein-based biomaterial films deposited on oxidized silicon substrates. Initially, we characterized the thickness of large, uniform, spin-coated protein films and compared the values obtained from microreflectance spectroscopy with those obtained from other typical methods, such as ellipsometry and atomic force microscopy. The excellent agreement between the results obtained from the different techniques validates the effectiveness of microreflectance as a fast, noninvasive, and affordable technique for determining the thickness of biomaterial films. Subsequently, we applied microreflectance spectroscopy to determine the thickness of drop-casted CTPR-based films prepared from small protein solution volumes, which present a smaller surface area and are less uniform compared to spin-coated samples. Additionally, we demonstrate the utility of apparent color inspection as a tool for assessing film uniformity. Finally, based on these results, we provide a calibration of film thickness as a function of the protein length and concentration for both spin-coated and drop-casted films, serving as a guide for the preparation of CTPR films with a specific thickness. Our results demonstrate the remarkable reproducibility of the CTPR film assembly, enabling the simple preparation of biomaterial films with precise thickness.
Collapse
Affiliation(s)
- Lisa Almonte
- Departamento
de Física Aplicada, Universidad de
Alicante, 03690 Alicante, Spain
- Instituto
Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, 03690 Alicante, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Maxence Fernandez
- Centre
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Juan David Cortés-Ossa
- Departamento
de Física Aplicada, Universidad de
Alicante, 03690 Alicante, Spain
- Instituto
Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, 03690 Alicante, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Paolo Blesio
- Centre
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Lucía Juan-Bordera
- Departamento
de Física Aplicada, Universidad de
Alicante, 03690 Alicante, Spain
- Instituto
Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, 03690 Alicante, Spain
| | - Carlos Sabater
- Departamento
de Física Aplicada, Universidad de
Alicante, 03690 Alicante, Spain
- Instituto
Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, 03690 Alicante, Spain
| | - Aitziber L. Cortajarena
- Centre
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - M. Reyes Calvo
- Departamento
de Física Aplicada, Universidad de
Alicante, 03690 Alicante, Spain
- Instituto
Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, 03690 Alicante, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| |
Collapse
|
3
|
Nattich-Rak M, Sadowska M, Adamczyk Z, Basinska T, Mickiewicz D, Gadzinowski M. Deposition of Human-Serum-Albumin-Functionalized Spheroidal Particles on Abiotic Surfaces: Reference Kinetic Results for Bioparticles. Molecules 2024; 29:3405. [PMID: 39064983 PMCID: PMC11279952 DOI: 10.3390/molecules29143405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Human serum albumin (HSA) corona formation on polymer microparticles of a spheroidal shape was studied using dynamic light scattering and Laser Doppler Velocimetry (LDV). Physicochemical characteristics of the albumin comprising the zeta potential and the isoelectric point were determined as a function of pH for various ionic strengths. Analogous characteristics of the polymer particles were analyzed. The adsorption of albumin on the particles was in situ monitored by LDV. The stability of the HSA-functionalized particle suspensions under various pHs and their electrokinetic properties were also determined. The deposition kinetics of the particles on mica, silica and gold sensors were investigated by optical microscopy, AFM and quartz microbalance (QCM) under diffusion and flow conditions. The obtained results were interpreted in terms of the random sequential adsorption model that allowed to estimate the range of applicability of QCM for determining the deposition kinetics of viruses and bacteria at abiotic surfaces.
Collapse
Affiliation(s)
- Małgorzata Nattich-Rak
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland;
| | - Marta Sadowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland;
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland;
| | - Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, 90-363 Lodz, Poland; (T.B.); (D.M.); (M.G.)
| | - Damian Mickiewicz
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, 90-363 Lodz, Poland; (T.B.); (D.M.); (M.G.)
| | - Mariusz Gadzinowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, 90-363 Lodz, Poland; (T.B.); (D.M.); (M.G.)
| |
Collapse
|
4
|
Perrino C, Lee S, Spencer ND. Quantitative Comparison of the Hydration Capacity of Surface-Bound Dextran and Polyethylene Glycol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14130-14140. [PMID: 38922294 PMCID: PMC11238585 DOI: 10.1021/acs.langmuir.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
We have quantified and compared the hydration capacity (i.e., capability to incorporate water molecules) of the two surface-bound hydrophilic polymer chains, dextran (dex) and poly(ethylene glycol) (PEG), in the form of poly(l-lysine)-graft-dextran (PLL-g-dex) and poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG), respectively. The copolymers were attached to a negatively charged silica-titania surface through the electrostatic interaction between the PLL backbone and the surface in neutral aqueous media. While the molecular weights of PLL and PEG were fixed, that of dex and the grafting density of PEG or dex on the PLL were varied. The hydration capacity of the polymer chains was quantified through the combined experimental approach of optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation monitoring (QCM-D) to yield a value for areal solvation (Ψ), i.e., mass of associated solvent molecules within the polymer chains per unit substrate area. For the two series of copolymers with comparable stretched chain lengths of hydrophilic polymers, namely, PLL(20)-g-PEG(5) and PLL(20)-g-dex(10), the Ψ values gradually increased as the initial grafting density on the PLL backbone increased or as g decreased. However, the rate of increase in Ψ was higher for PEG than dextran chains, which was attributed to higher stiffness of the dextran chains. More importantly, the number of water molecules per hydrophilic group was clearly higher for PEG chains. Given that the -CH2CH2O- units that make up the PEG chains form a cage-like structure with 2-3 water molecules, these "strongly bound" water molecules can account for the slightly more favorable behavior of PEG compared to dextran in both aqueous lubrication and antifouling behavior of the copolymers.
Collapse
Affiliation(s)
- Chiara Perrino
- Laboratory
for Surface Science and Technology, Department of Materials, Vladimir-Prelog-Weg
5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Seunghwan Lee
- Laboratory
for Surface Science and Technology, Department of Materials, Vladimir-Prelog-Weg
5, ETH Zurich, CH-8093 Zurich, Switzerland
- Institute
of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT Leeds, U.K.
| | - Nicholas D. Spencer
- Laboratory
for Surface Science and Technology, Department of Materials, Vladimir-Prelog-Weg
5, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
5
|
Nattich-Rak M, Kosior D, Morga M, Adamczyk Z. Kinetics of Human Serum Albumin Adsorption on Polycation Functionalized Silica. Biomolecules 2024; 14:531. [PMID: 38785938 PMCID: PMC11117822 DOI: 10.3390/biom14050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The adsorption kinetics of human serum albumin (HSA) on bare and poly-L-arginine (PARG)-modified silica substrates were investigated using reflectometry and atomic force microscopy (AFM). Measurements were carried out at various pHs, flow rates and albumin concentrations in the 10 and 150 mM NaCl solutions. The mass transfer rate constants and the maximum protein coverages were determined for the bare silica at pH 4.0 and theoretically interpreted in terms of the hybrid random sequential adsorption model. These results were used as reference data for the analysis of adsorption kinetics at larger pHs. It was shown that the adsorption on bare silica rapidly decreased with pH and became negligible at pH 7.4. The albumin adsorption on PARG-functionalized silica showed an opposite trend, i.e., it was negligible at pH 4 and attained maximum values at pH 7.4 and 150 mM NaCl, the conditions corresponding to the blood serum environment. These results were interpreted as the evidence of a significant role of electrostatic interactions in the albumin adsorption on the bare and PARG-modified silica. It was also argued that our results can serve as useful reference data enabling a proper interpretation of protein adsorption on substrates functionalized by polyelectrolytes.
Collapse
Affiliation(s)
| | - Dominik Kosior
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (M.N.-R.); (M.M.)
| | | | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (M.N.-R.); (M.M.)
| |
Collapse
|
6
|
Boehm RD, Skoog SA, Diaz-Diestra DM, Goering PL, Dair BJ. Influence of titanium nanoscale surface roughness on fibrinogen and albumin protein adsorption kinetics and platelet responses. J Biomed Mater Res A 2024; 112:373-389. [PMID: 37902409 DOI: 10.1002/jbm.a.37635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Biomaterials with nanoscale topography have been increasingly investigated for medical device applications to improve tissue-material interactions. This study assessed the impact of nanoengineered titanium surface domain sizes on early biological responses that can significantly affect tissue interactions. Nanostructured titanium coatings with distinct nanoscale surface roughness were deposited on quartz crystal microbalance with dissipation (QCM-D) sensors by physical vapor deposition. Physico-chemical characterization was conducted to assess nanoscale surface roughness, nano-topographical morphology, wettability, and atomic composition. The results demonstrated increased projected surface area and hydrophilicity with increasing nanoscale surface roughness. The adsorption properties of albumin and fibrinogen, two major plasma proteins that readily encounter implanted surfaces, on the nanostructured surfaces were measured using QCM-D. Significant differences in the amounts and viscoelastic properties of adsorbed proteins were observed, dependent on the surface roughness, protein type, protein concentration, and protein binding affinity. The impact of protein adsorption on subsequent biological responses was also examined using qualitative and quantitative in vitro evaluation of human platelet adhesion, aggregation, and activation. Qualitative platelet morphology assessment indicated increased platelet activation/aggregation on titanium surfaces with increased roughness. These data suggest that nanoscale differences in titanium surface roughness influence biological responses that may affect implant integration.
Collapse
Affiliation(s)
- Ryan D Boehm
- Division of Biology, Chemistry, and Materials Science; Office of Science and Engineering Laboratories; Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shelby A Skoog
- Division of Biology, Chemistry, and Materials Science; Office of Science and Engineering Laboratories; Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Daysi M Diaz-Diestra
- Division of Biology, Chemistry, and Materials Science; Office of Science and Engineering Laboratories; Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Peter L Goering
- Division of Biology, Chemistry, and Materials Science; Office of Science and Engineering Laboratories; Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Benita J Dair
- Division of Biology, Chemistry, and Materials Science; Office of Science and Engineering Laboratories; Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
7
|
Bauer RA, Qiu M, Schillo-Armstrong MC, Snider MT, Yang Z, Zhou Y, Verweij H. Ultra-Stable Inorganic Mesoporous Membranes for Water Purification. MEMBRANES 2024; 14:34. [PMID: 38392661 PMCID: PMC10890243 DOI: 10.3390/membranes14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Thin, supported inorganic mesoporous membranes are used for the removal of salts, small molecules (PFAS, dyes, and polyanions) and particulate species (oil droplets) from aqueous sources with high flux and selectivity. Nanofiltration membranes can reject simple salts with 80-100% selectivity through a space charge mechanism. Rejection by size selectivity can be near 100% since the membranes can have a very narrow size distribution. Mesoporous membranes have received particular interest due to their (potential) stability under operational conditions and during defouling operations. More recently, membranes with extreme stability became interesting with the advent of in situ fouling mitigation by means of ultrasound emitted from within the membrane structure. For this reason, we explored the stability of available and new membranes with accelerated lifetime tests in aqueous solutions at various temperatures and pH values. Of the available ceria, titania, and magnetite membranes, none were actually stable under all test conditions. In earlier work, it was established that mesoporous alumina membranes have very poor stability. A new nanofiltration membrane was made of cubic zirconia membranes that exhibited near-perfect stability. A new ultrafiltration membrane was made of amorphous silica that was fully stable in ultrapure water at 80 °C. This work provides details of membrane synthesis, stability characterization and data and their interpretation.
Collapse
Affiliation(s)
- Ralph A Bauer
- Global Research and Development Inc., 539 Industrial Mile Road, Columbus, OH 43228, USA
| | - Minghui Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | | | - Matthew T Snider
- Carbon-Carbon Advanced Technologies, 4704 Eden Road, Arlington, TX 76001, USA
| | - Zi Yang
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH 43210, USA
| | - Yi Zhou
- Quantumscape, 1730 Technology Drive, San Jose, CA 95110, USA
| | - Hendrik Verweij
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Zhao B, Dong Y, Shen X, He W, Jin H, Lili yao, Zheng SW, Zan X, Liu J. Construction of multifunctional coating with cationic amino acid-coupled peptides for osseointegration of implants. Mater Today Bio 2023; 23:100848. [PMID: 38033370 PMCID: PMC10682118 DOI: 10.1016/j.mtbio.2023.100848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Osseointegration is an important indicator of implant success. This process can be improved by coating modified bioactive molecules with multiple functions on the surface of implants. Herein, a simple multifunctional coating that could effectively improve osseointegration was prepared through layer-by-layer self-assembly of cationic amino acids and tannic acid (TA), a negatively charged molecule. Osteogenic growth peptide (OGP) and the arginine-glycine-aspartic acid (RGD) functional polypeptides were coupled with Lys6 (K6), the two polypeptides then self-assembled with TA layer by layer to form a composite film, (TA-OGP@RGD)n. The surface morphology and biomechanical properties of the coating were analyzed in gas and liquid phases, and the deposition process and kinetics of the two peptides onto TA were monitored using a quartz crystal microbalance. In addition, the feeding consistency and adsorption ratios of the two peptides were explored by using fluorescence visualization and quantification. The (TA-OGP@RGD)n composite membrane mediated the early migration and adhesion of cells and significantly promoted osteogenic differentiation and mineralization of the extracellular matrix in vitro. Additionally, the bifunctional peptide exhibited excellent osteogenesis and osseointegration owing to the synergistic effect of the OGP and RGD peptides in vivo. Simultaneously, the (TA-OGP@RGD)n membrane regulated the balance of reactive oxygen species in the cell growth environment, thereby influencing the complex biological process of osseointegration. Thus, the results of this study provide a novel perspective for constructing multifunctional coatings for implants and has considerable application potential in orthopedics and dentistry.
Collapse
Affiliation(s)
- Bingyang Zhao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yilong Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, China
| | - Xinkun Shen
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, China
| | - Wei He
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hairu Jin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lili yao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sheng wu Zheng
- Wenzhou Celecare Medical Instruments Co.,Ltd, Wenzhou, 325000, China
| | - Xingjie Zan
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Jiming Liu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
9
|
Adamczyk Z, Sadowska M, Nattich-Rak M. Quantifying Nanoparticle Layer Topography: Theoretical Modeling and Atomic Force Microscopy Investigations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15067-15077. [PMID: 37824293 PMCID: PMC10601541 DOI: 10.1021/acs.langmuir.3c02024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Indexed: 10/14/2023]
Abstract
A comprehensive method consisting of theoretical modeling and experimental atomic force microscopy (AFM) measurements was developed for the quantitative analysis of nanoparticle layer topography. Analytical results were derived for particles of various shapes such as cylinders (rods), disks, ellipsoids, hemispheres (caps), etc. It was shown that for all particles, their root-mean-square (rms) parameter exhibited a maximum at the coverage about 0.5, whereas the skewness was a monotonically decreasing function of the coverage. This enabled a facile determination of the particle coverage in the layer, even if the shape and size were not known. The validity of the analytical results was confirmed by computer modeling and experimental data acquired by AFM measurements for polymer nanoparticle deposition on mica and silica. The topographical analysis developed in this work can be exploited for a quantitative characterization of self-assembled layers of nano- and bioparticles, e.g., carbon nanotubes, silica and noble metal particles, DNA fragments, proteins, vesicles, viruses, and bacteria at solid surfaces. The acquired results also enabled a proper calibration, in particular the determination of the measurement precision, of various electron and scanning probe microscopies, such as AFM.
Collapse
Affiliation(s)
- Zbigniew Adamczyk
- Jerzy Haber Institute of
Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Marta Sadowska
- Jerzy Haber Institute of
Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Małgorzata Nattich-Rak
- Jerzy Haber Institute of
Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
10
|
Yeh PY, Chen JY, Shen MY, Che TF, Lim SC, Wang J, Tsai WS, Frank CW, Huang CJ, Chang YC. Liposome-tethered supported lipid bilayer platform for capture and release of heterogeneous populations of circulating tumor cells. J Mater Chem B 2023; 11:8159-8169. [PMID: 37313622 DOI: 10.1039/d3tb00547j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Because of scarcity, vulnerability, and heterogeneity in the population of circulating tumor cells (CTCs), the CTC isolation system relying on immunoaffinity interaction exhibits inconsistent efficiencies for all types of cancers and even CTCs with different phenotypes in individuals. Moreover, releasing viable CTCs from an isolation system is of importance for molecular analysis and drug screening in precision medicine, which remains a challenge for current systems. In this work, a new CTC isolation microfluidic platform was developed and contains a coating of the antibody-conjugated liposome-tethered-supported lipid bilayer in a developed chaotic-mixing microfluidic system, referred to as the "LIPO-SLB" platform. The biocompatible, soft, laterally fluidic, and antifouling properties of the LIPO-SLB platform offer high CTC capture efficiency, viability, and selectivity. We successfully demonstrated the capability of the LIPO-SLB platform to recapitulate different cancer cell lines with different antigen expression levels. In addition, the captured CTCs in the LIPO-SLB platform can be detached by air foam to destabilize the physically assembled bilayer structures due to a large water/air interfacial area and strong surface tension. More importantly, the LIPO-SLB platform was constructed and used for the verification of clinical samples from 161 patients with different primary cancer types. The mean values of both single CTCs and CTC clusters correlated well with the cancer stages. Moreover, a considerable number of CTCs were isolated from patients' blood samples in the early/localized stages. The clinical validation demonstrated the enormous potential of the universal LIPO-SLB platform as a tool for prognostic and predictive purposes in precision medicine.
Collapse
Affiliation(s)
- Po-Ying Yeh
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jia-Yang Chen
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Mo-Yuan Shen
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ting-Fang Che
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
| | - Syer Choon Lim
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
| | - Jocelyn Wang
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Wen-Sy Tsai
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University, Linkou, Taoyuan, Taiwan
| | - Curtis W Frank
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chun-Jen Huang
- Department of Chemical & Materials Engineering, and NCU-Covestro Research Center, National Central University, Jhong-Li, Taoyuan 320, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Huang J, Qiu Y, Lücke F, Su J, Grundmeier G, Keller A. Multiprotein Adsorption from Human Serum at Gold and Oxidized Iron Surfaces Studied by Atomic Force Microscopy and Polarization-Modulation Infrared Reflection Absorption Spectroscopy. Molecules 2023; 28:6060. [PMID: 37630312 PMCID: PMC10459451 DOI: 10.3390/molecules28166060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Multiprotein adsorption from complex body fluids represents a highly important and complicated phenomenon in medicine. In this work, multiprotein adsorption from diluted human serum at gold and oxidized iron surfaces is investigated at different serum concentrations and pH values. Adsorption-induced changes in surface topography and the total amount of adsorbed proteins are quantified by atomic force microscopy (AFM) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS), respectively. For both surfaces, stronger protein adsorption is observed at pH 6 compared to pH 7 and pH 8. PM-IRRAS furthermore provides some qualitative insights into the pH-dependent alterations in the composition of the adsorbed multiprotein films. Changes in the amide II/amide I band area ratio and in particular side-chain IR absorption suggest that the increased adsorption at pH 6 is accompanied by a change in protein film composition. Presumably, this is mostly driven by the adsorption of human serum albumin, which at pH 6 adsorbs more readily and thereby replaces other proteins with lower surface affinities in the resulting multiprotein film.
Collapse
Affiliation(s)
| | | | | | | | | | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (J.H.); (Y.Q.); (F.L.); (J.S.); (G.G.)
| |
Collapse
|
12
|
Özdabak Sert A, Bittrich E, Uhlmann P, Kok FN, Kılıç A. Monitoring Cell Adhesion on Polycaprolactone-Chitosan Films with Varying Blend Ratios by Quartz Crystal Microbalance with Dissipation. ACS OMEGA 2023; 8:17017-17027. [PMID: 37214735 PMCID: PMC10193393 DOI: 10.1021/acsomega.3c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A detailed understanding of the cell adhesion on polymeric surfaces is required to improve the performance of biomaterials. Quartz crystal microbalance with dissipation (QCM-D) as a surface-sensitive technique has the advantage of label-free and real-time monitoring of the cell-polymer interface, providing distinct signal patterns for cell-polymer interactions. In this study, QCM-D was used to monitor human fetal osteoblastic (hFOB) cell adhesion onto polycaprolactone (PCL) and chitosan (CH) homopolymer films as well as their blend films (75:25 and 25:75). Complementary cell culture assays were performed to verify the findings of QCM-D. The thin polymer films were successfully prepared by spin-coating, and relevant properties, i.e., surface morphology, ζ-potential, wettability, film swelling, and fibrinogen adsorption, were characterized. The adsorbed amount of fibrinogen decreased with an increasing percentage of chitosan in the films, which predominantly showed an inverse correlation with surface hydrophilicity. Similarly, the initial cell sedimentation after 1 h resulted in lesser cell deposition as the chitosan ratio increased in the film. Furthermore, the QCM-D signal patterns, which were measured on the homopolymer and blend films during the first 18 h of cell adhesion, also showed an influence of the different interfacial properties. Cells fully spread on pure PCL films and had elongated morphologies as monitored by fluorescence microscopy and scanning electron microscopy (SEM). Corresponding QCM-D signals showed the highest frequency drop and the highest dissipation. Blend films supported cell adhesion but with lower dissipation values than for the PCL film. This could be the result of a higher rigidity of the cell-blend interface because the cells do not pass to the next stages of spreading after secretion of their extracellular matrix (ECM) proteins. Variations in the QCM-D data, which were obtained at the blend films, could be attributed to differences in the morphology of the films. Pure chitosan films showed limited cell adhesion accompanied by low frequency drop and low dissipation.
Collapse
Affiliation(s)
- Ayşe
Buse Özdabak Sert
- Department
of Molecular Biology and Genetics, Istanbul
Technical University, 34469 Istanbul, Turkey
| | - Eva Bittrich
- Leibniz-Institut
für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut
für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Fatma Nese Kok
- Department
of Molecular Biology and Genetics, Istanbul
Technical University, 34469 Istanbul, Turkey
| | - Abdulhalim Kılıç
- Department
of Molecular Biology and Genetics, Istanbul
Technical University, 34469 Istanbul, Turkey
| |
Collapse
|
13
|
Welle A, Rabel K, Schwotzer M, Kohal RJ, Steinberg T, Altmann B. Identification of Zirconia Particle Uptake in Human Osteoblasts by ToF-SIMS Analysis and Particle-Size Effects on Cell Metabolism. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4272. [PMID: 36500895 PMCID: PMC9736599 DOI: 10.3390/nano12234272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
As the use of zirconia-based nano-ceramics is rising in dentistry, the examination of possible biological effects caused by released nanoparticles on oral target tissues, such as bone, is gaining importance. The aim of this investigation was to identify a possible internalization of differently sized zirconia nanoparticles (ZrNP) into human osteoblasts applying Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), and to examine whether ZrNP exposure affected the metabolic activity of the cells. Since ToF-SIMS has a low probing depth (about 5 nm), visualizing the ZrNP required the controlled erosion of the sample by oxygen bombardment. This procedure removed organic matter, uncovering the internalized ZrNP and leaving the hard particles practically unaffected. It was demonstrated that osteoblasts internalized ZrNP within 24 h in a size-dependent manner. Regarding the cellular metabolic activity, metabolization of alamarBlue by osteoblasts revealed a size- and time-dependent unfavorable effect of ZrNP, with the smallest ZrNP exerting the most pronounced effect. These findings point to different uptake efficiencies of the differently sized ZrNP by human osteoblasts. Furthermore, it was proven that ToF-SIMS is a powerful technique for the detection of zirconia-based nano/microparticles that can be applied for the cell-based validation of clinically relevant materials at the nano/micro scale.
Collapse
Affiliation(s)
- Alexander Welle
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Kerstin Rabel
- Department of Prosthetic Dentistry, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Matthias Schwotzer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Ralf Joachim Kohal
- Department of Prosthetic Dentistry, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Brigitte Altmann
- Department of Prosthetic Dentistry, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| |
Collapse
|
14
|
Nattich-Rak M, Sadowska M, Motyczyńska M, Adamczyk Z. Mimicking Pseudo-Virion Interactions with Abiotic Surfaces: Deposition of Polymer Nanoparticles with Albumin Corona. Biomolecules 2022; 12:1658. [PMID: 36359008 PMCID: PMC9687657 DOI: 10.3390/biom12111658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 10/14/2023] Open
Abstract
Adsorption of human serum albumin (HSA) molecules on negatively charged polystyrene microparticles was studied using the dynamic light scattering, the electrophoretic and the solution depletion methods involving atomic force microscopy. Initially, the physicochemical characteristics of the albumin comprising the hydrodynamic diameter, the zeta potential and the isoelectric point were determined as a function of pH. Analogous characteristics of the polymer particles were acquired, including their size and zeta potential. The formation of albumin corona on the particles was investigated in situ by electrophoretic mobility measurements. The size, stability and electrokinetic properties of the particles with the corona were also determined. The particle diameter was equal to 125 nm, which coincides with the size of the SARS-CoV-2 virion. The isoelectric point of the particles appeared at a pH of 5. The deposition kinetics of the particles was determined by atomic force microscopy (AFM) under diffusion and by quartz microbalance (QCM) under flow conditions. It was shown that the deposition rate at a gold sensor abruptly vanished with pH following the decrease in the zeta potential of the particles. It is postulated that the acquired results can be used as useful reference systems mimicking virus adsorption on abiotic surfaces.
Collapse
Affiliation(s)
- Małgorzata Nattich-Rak
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Marta Sadowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Maja Motyczyńska
- The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| |
Collapse
|
15
|
Au A, Ho M, Wheeler AR, Yip CM. Monitoring non-specific adsorption at solid-liquid interfaces by supercritical angle fluorescence microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:113707. [PMID: 36461515 DOI: 10.1063/5.0111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Supercritical angle fluorescence (SAF) microscopy is a novel imaging tool based on the use of distance-dependent fluorophore emission patterns to provide accurate locations of fluorophores relative to a surface. This technique has been extensively used to construct accurate cellular images and to detect surface phenomena in a static environment. However, the capability of SAF microscopy in monitoring dynamic surface phenomena and changes in millisecond intervals is underexplored in the literature. Here, we report on a hardware add-on for a conventional inverted microscope coupled with a post-processing Python module that extends the capability of SAF microscopy to monitor dynamic surface adsorption in sub-second intervals, thereby greatly expanding the potential of this tool to study surface interactions, such as surface fouling and competitive surface adhesion. The Python module enables researchers to automatically extract SAF profiles from each image. We first assessed the performance of the system by probing the specific binding of biotin-fluorescein conjugates to a neutravidin-coated cover glass in the presence of non-binding fluorescein. The SAF emission was observed to increase with the quantity of bound fluorophore on the cover glass. However, a high concentration of unbound fluorophore also contributed to overall SAF emission, leading to over-estimation in surface-bound fluorescence. To expand the applications of SAF in monitoring surface phenomena, we monitored the non-specific surface adsorption of BSA and non-ionic surfactants on a Teflon-AF surface. Solution mixtures of bovine serum albumin (BSA) and nine Pluronic/Tetronic surfactants were exposed to a Teflon-AF surface. No significant BSA adsorption was observed in all BSA-surfactant solution mixtures with negligible SAF intensity. Finally, we monitored the adsorption dynamics of BSA onto the Teflon-AF surface and observed rapid BSA adsorption on Teflon-AF surface within 10 s of addition. The adsorption rate constant (ka) and half-life of BSA adsorption on Teflon-AF were determined to be 0.419 ± 0.004 s-1 and 1.65 ± 0.016 s, respectively, using a pseudo-first-order adsorption equation.
Collapse
Affiliation(s)
- Aaron Au
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Man Ho
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Aaron R Wheeler
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Christopher M Yip
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
16
|
Hemocompatibility challenge of membrane oxygenator for artificial lung technology. Acta Biomater 2022; 152:19-46. [PMID: 36089235 DOI: 10.1016/j.actbio.2022.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
Abstract
The artificial lung (AL) technology is one of the membrane-based artificial organs that partly augments lung functions, i.e. blood oxygenation and CO2 removal. It is generally employed as an extracorporeal membrane oxygenation (ECMO) device to treat acute and chronic lung-failure patients, and the recent outbreak of the COVID-19 pandemic has re-emphasized the importance of this technology. The principal component in AL is the polymeric membrane oxygenator that facilitates the O2/CO2 exchange with the blood. Despite the considerable improvement in anti-thrombogenic biomaterials in other applications (e.g., stents), AL research has not advanced at the same rate. This is partly because AL research requires interdisciplinary knowledge in biomaterials and membrane technology. Some of the promising biomaterials with reasonable hemocompatibility - such as emerging fluoropolymers of extremely low surface energy - must first be fabricated into membranes to exhibit effective gas exchange performance. As AL membranes must also demonstrate high hemocompatibility in tandem, it is essential to test the membranes using in-vitro hemocompatibility experiments before in-vivo test. Hence, it is vital to have a reliable in-vitro experimental protocol that can be reasonably correlated with the in-vivo results. However, current in-vitro AL studies are unsystematic to allow a consistent comparison with in-vivo results. More specifically, current literature on AL biomaterial in-vitro hemocompatibility data are not quantitatively comparable due to the use of unstandardized and unreliable protocols. Such a wide gap has been the main bottleneck in the improvement of AL research, preventing promising biomaterials from reaching clinical trials. This review summarizes the current state-of-the-art and status of AL technology from membrane researcher perspectives. Particularly, most of the reported in-vitro experiments to assess AL membrane hemocompatibility are compiled and critically compared to suggest the most reliable method suitable for AL biomaterial research. Also, a brief review of current approaches to improve AL hemocompatibility is summarized. STATEMENT OF SIGNIFICANCE: The importance of Artificial Lung (AL) technology has been re-emphasized in the time of the COVID-19 pandemic. The utmost bottleneck in the current AL technology is the poor hemocompatibility of the polymer membrane used for O2/CO2 gas exchange, limiting its use in the long-term. Unfortunately, most of the in-vitro AL experiments are unsystematic, irreproducible, and unreliable. There are no standardized in-vitro hemocompatibility characterization protocols for quantitative comparison between AL biomaterials. In this review, we tackled this bottleneck by compiling the scattered in-vitro data and suggesting the most suitable experimental protocol to obtain reliable and comparable hemocompatibility results. To the best of our knowledge, this is the first review paper focusing on the hemocompatibility challenge of AL technology.
Collapse
|
17
|
Song C, Ma Z, Li C, Zhang H, Zhu Z, Wang J. Application of Heat-Enhancement for Improving the Sensitivity of Quartz Crystal Microbalance. BIOSENSORS 2022; 12:bios12080643. [PMID: 36005039 PMCID: PMC9406230 DOI: 10.3390/bios12080643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
The use of quartz crystal microbalance in trace mass detection is restricted by unsatisfactory sensitivity, especially in damping media, due to the worsening of the quality factor of the damping resonator. The enhancement of the sensor performance could be realized by increasing the innate resonant frequency of quartz oscillators. Herein, increased working temperature of QCM systems was proved to bring an enhancement of the original resonant frequency. In addition, the measurement of ion osmotic pressure, single layer formation and single nucleotide polymorphism (SNP) at different temperatures demonstrated that an increased working temperature could enhance the sensitivity and accuracy, suggesting a potential application in a series of trace detections.
Collapse
Affiliation(s)
- Chenglong Song
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhihao Ma
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chenglong Li
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiqiang Zhu
- Department of Medical Science and Technology, Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China
- Correspondence: (Z.Z.); (J.W.)
| | - Jie Wang
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (Z.Z.); (J.W.)
| |
Collapse
|
18
|
Huellemeier HA, Eren NM, Payne TD, Schultz ZD, Heldman DR. Monitoring and Characterization of Milk Fouling on Stainless Steel Using a High-Pressure High-Temperature Quartz Crystal Microbalance with Dissipation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9466-9480. [PMID: 35899940 DOI: 10.1021/acs.langmuir.2c00419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fouling at interfaces deteriorates the efficiency and hygiene of processes within numerous industrial sectors, including the oil and gas, biomedical device, and food industries. In the food industry, the fouling of a complex food matrix to a heated stainless steel surface reduces production efficiency by increasing heating resistance, pumping requirements, and the frequency of cleaning operations. In this work, quartz crystal microbalance with dissipation (QCM-D) was used to study the interface formed by the fouling of milk on a stainless steel surface at different flow rates and protein concentrations at high temperatures (135 °C). Subsequently, the QCM-D response was recorded during the cleaning of the foulant. Two phases of fouling were identified. During phase-1, the fouling rate was dependent on the flow rate, while the fouling rate during phase-2 was dependent on the flow rate and protein concentration. During cleaning, foulants deposited at the higher flow rate swelled more than those deposited at the lower flow rate. The composition of the fouling deposits consisted of both protein and mineral species. Two crystalline phases of calcium phosphate, β-tricalcium phosphate and hydroxyapatite, were identified at both flow rates. Stratification in topography was observed across the surface of the QCM-D sensor with a brittle and cracked structure for deposits formed at 0.2 mL/min and a smooth and close-packed structure for deposits formed at 0.1 mL/min. These stratifications in the composition and topography were correlated to differences in the reaction time and flow dynamics at different flow rates. This high-temperature application of QCM-D to complex food systems illuminates the initial interaction between proteins and minerals and a stainless steel surface, which might otherwise be undetectable in low-temperature applications of QCM-D or at larger bench and industrial scales. The methods and results presented here have implications for optimizing processing scenarios that limit fouling formation while also enhancing removal during cleaning.
Collapse
Affiliation(s)
- Holly A Huellemeier
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, Ohio 43210, United States
| | - Necla M Eren
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, Ohio 43210, United States
- Abbott Nutrition Research and Development, Abbott Laboratories, Columbus, Ohio 43219, United States
| | - Taylor D Payne
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Dennis R Heldman
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, Ohio 43210, United States
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Correira JM, Handali PR, Webb LJ. Characterizing Protein-Surface and Protein-Nanoparticle Conjugates: Activity, Binding, and Structure. J Chem Phys 2022; 157:090902. [DOI: 10.1063/5.0101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many sensors and catalysts composed of proteins immobilized on inorganic materials have been reported over the past few decades. Despite some examples of functional protein-surface and protein-nanoparticle conjugates, thorough characterization of the biological-abiological interface at the heart of these materials and devices is often overlooked in lieu of demonstrating acceptable system performance. This has resulted in a focus on generating functioning protein-based devices without a concerted effort to develop reliable tools necessary to measure the fundamental properties of the bio-abio interface such as surface concentration, biomolecular structure, and activity. In this Perspective we discuss current methods used to characterize these critical properties of devices that operate by integrating a protein into both flat surfaces and nanoparticle materials. We highlight the advantages and drawbacks of each method as they relate to understanding the function of the protein-surface interface, and explore the manner in which an informed understanding of this complex interaction leads directly to the advancement of protein-based materials and technology.
Collapse
Affiliation(s)
| | - Paul R Handali
- The University of Texas at Austin, United States of America
| | - Lauren J. Webb
- Chemistry, The University of Texas at Austin Department of Chemistry, United States of America
| |
Collapse
|
20
|
Bonet NF, Cava DG, Vélez M. Quartz crystal microbalance and atomic force microscopy to characterize mimetic systems based on supported lipids bilayer. Front Mol Biosci 2022; 9:935376. [PMID: 35992275 PMCID: PMC9382308 DOI: 10.3389/fmolb.2022.935376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Quartz Crystal Microbalance (QCM) with dissipation and Atomic Force Microscopy (AFM) are two characterization techniques that allow describing processes taking place at solid-liquid interfaces. Both are label-free and, when used in combination, provide kinetic, thermodynamic and structural information at the nanometer scale of events taking place at surfaces. Here we describe the basic operation principles of both techniques, addressing a non-specialized audience, and provide some examples of their use for describing biological events taking place at supported lipid bilayers (SLBs). The aim is to illustrate current strengths and limitations of the techniques and to show their potential as biophysical characterization techniques.
Collapse
|
21
|
In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Abstract
Single-cell proteomics is a promising field to provide direct yet comprehensive molecular insights into cellular functions without averaging effects. Here, we address a grand technical challenge impeding the maturation of single-cell proteomics─protein adsorption loss (PAL). Even though widely known, there is currently no quantitation on how profoundly and selectively PAL has affected single-cell proteomics. Therefore, the mitigations to this challenge have been generic, and their efficacy was only evaluated by the size of the resolved proteome with no specificity on individual proteins. We use the existing knowledge of PAL, protein expression, and the typical surface area used in single-cell proteomics to discuss the severity of protein loss. We also summarize the current solutions to this challenge and briefly review the available methods to characterize the physical and chemical properties of protein surface adsorption. By citing successful strategies in single-cell genomics for measurement errors in individual transcripts, we pinpoint the urgency to benchmark PAL at the proteome scale with individual protein resolution. Finally, orthogonal single-cell proteomic techniques that have the potential to cross validate PAL are proposed. We hope these efforts can promote the fruition of single-cell proteomics in the near future.
Collapse
Affiliation(s)
- Bingyun Sun
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Sharwan Kumar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
23
|
Recombinant factor VIII protein aggregation and adsorption at the liquid-solid interface. J Colloid Interface Sci 2022; 628:820-828. [DOI: 10.1016/j.jcis.2022.07.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
|
24
|
Hashimoto K, Morisawa Y, Tortora M, Rossi B, Ozaki Y, Sato H. Attenuated Total Reflection Far-Ultraviolet (ATR-FUV) Spectroscopy is a Sensitive Tool for Investigation of Protein Adsorption. APPLIED SPECTROSCOPY 2022; 76:793-800. [PMID: 35081773 DOI: 10.1177/00037028211070835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Attenuated total reflection far-ultraviolet (ATR-FUV) spectra in the 145-250 nm region were studied for four kinds of proteins (two α-helix-rich proteins: bovine serum albumin (BSA) and lysozyme and two β-sheet rich proteins: concanavalin A and γ-globulin) in different solutions (pure water and phosphate buffered saline, or PBS) with different concentrations. All the spectra show a band at 191 nm due to the π-π* transition of amide bonds of the proteins. The wavelength of the band does not change with their second structures, suggesting that the corresponding electronic transition mode is localized and polarized in the direction that is not affected by the difference in the peptide folding. The intensity of the 191 nm band differs with the concentration of salt in the solution, suggesting that the band intensity reflects the adsorption density of a protein on the internal reflection element (IRE) made of a sapphire glass prism. According to the intensity changes of the band at 191 nm, it is revealed that the properties in adsorption are different from one protein to another. It is assumed that there are two types of forces on the protein adsorption: one is that among the molecules and the other is that between a molecule and a substrate. The origin of force includes localized electrostatic polarity and affinity to water. The ions in the solvent give a marked effect on these forces, resulting in the difference in the response to adsorption density against the salt concentration in the solvent.
Collapse
Affiliation(s)
- Kosuke Hashimoto
- School of Biological and Environmental Sciences, 98311Kwansei Gakuin University, Hyogo, Japan
| | - Yusuke Morisawa
- School of Science and Engineering, Kindai University, Osaka, Japan
| | - Mariagrazia Tortora
- Area Science Park, Trieste, Italy
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | | | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, 98311Kwansei Gakuin University, Hyogo, Japan
- Toyota Physical and Chemical Research Institute, Aichi, Japan
| | - Hidetoshi Sato
- School of Biological and Environmental Sciences, 98311Kwansei Gakuin University, Hyogo, Japan
| |
Collapse
|
25
|
Chu X, Yang X, Shi Q, Dong X, Sun Y. Kinetic and molecular insight into immunoglobulin G binding to immobilized recombinant protein A of different orientations. J Chromatogr A 2022; 1671:463040. [DOI: 10.1016/j.chroma.2022.463040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
|
26
|
Correira JM, Webb LJ. Formation and Characterization of a Stable Monolayer of Active Acetylcholinesterase on Planar Gold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3501-3513. [PMID: 35276042 DOI: 10.1021/acs.langmuir.1c03399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enzyme activity is the basis for many biosensors where a catalytic event is used to detect the presence and amount of a biomolecule of interest. To create a practical point-of-care biosensor, these enzymes need to be removed from their native cellular environments and immobilized on an abiological surface to rapidly transduce a biochemical signal into an interpretable readout. This immobilization often leads to loss of activity due to unfolded, aggregated, or improperly oriented enzymes when compared to the native state. In this work, we characterize the formation and surface packing density of a stable monolayer of acetylcholinesterase (AChE) immobilized on a planar gold surface and quantify the extent of activity loss following immobilization. Using spectroscopic ellipsometry, we determined that the surface concentration of AChE on a saturated Au surface in a buffered solution was 2.77 ± 0.21 pmol cm-2. By calculating the molecular volume of hydrated AChE, corresponding to a sphere of 6.19 nm diameter, divided by the total volume at the AChE-Au interface, we obtain a surface packing density of 33.4 ± 2.5% by volume. This corresponds to 45.1 ± 3.4% of the theoretical maximum monolayer coverage, assuming hexagonal packing. The true value, however, may be larger due to unfolding of enzymes to occupy a larger volume. The enzyme activity and kinetic measurements showed a 90.6 ± 1.4% decrease in specific activity following immobilization. Finally, following storage in a buffered solution for over 100 days at both room temperature and 4 °C, approximately 80% of this enzyme activity was retained. This contrasts with the native aqueous enzyme, which loses approximately 75% of its activity within 1 day and becomes entirely inactive within 6 days.
Collapse
Affiliation(s)
- Joshua M Correira
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| | - Lauren J Webb
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
27
|
Evaluation of noble metal nanostructure-serum albumin interactions in 2D and 3D systems: Thermodynamics and possible mechanisms. Adv Colloid Interface Sci 2022; 301:102616. [PMID: 35184020 DOI: 10.1016/j.cis.2022.102616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/17/2022]
Abstract
In this review, we clearly highlight the importance of the detailed study of the interactions between noble metal colloids (nanoparticles (NPs) and nanoclusters (NCs)) with serum albumins (SAs) due to their rapidly growing presence in biomedical research. Besides the changes in the structure and optical property of SA, we demonstrate that the characteristic localized surface plasmon resonance (LSPR) feature of the colloidal noble metal NPs and the size- and structure-dependent photoluminescence (PL) property of the sub-nanometer sized NCs are also altered differently because of the interactions between them. Namely, for plasmonic NPs - SA interactions the PL quenching of SA (mainly static) is identified, while the SA cause PL enhancement of the ultra-small NCs after complexation. This review summarizes that the thermodynamic nature and the possible mechanisms of the binding processes are dependent partly on the size, morphology, and type of the noble metals, while the chemical structure as well as the charge of the stabilizing ligands have the most dominant effect on the change in optical features. In addition to the thermodynamic data and proposed binding mechanisms provided by three-dimensional spectroscopic techniques, the quantitative and real-time data of "quasi" two-dimensional sensor apparatus should also be considered to provide a comprehensive evaluation on many aspects of the particle/cluster - SA interactions.
Collapse
|
28
|
Westphalen H, Kalugin D, Abdelrasoul A. Structure, function, and adsorption of highly abundant blood proteins and its critical influence on hemodialysis patients: A critical review. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Spirk S, Palasingh C, Nypelö T. Current Opportunities and Challenges in Biopolymer Thin Film Analysis—Determination of Film Thickness. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.755446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polymer thin films with thickness below 100 nm are a fascinating class of 2D materials with commercial and research applications in many branches ranging from coatings to photoresists and insulating materials, to mention just a few uses. Biopolymers have extended the scope of polymer thin films with unique materials such as cellulose, cellulose nanocrystals, cellulose nanofibrils with tunable water uptake, crystallinity and optical properties. The key information needed in thin biopolymer film use and research is film thickness. It is often challenging to determine precisely and hence several techniques and their combinations are used. Additional challenges with hydrophilic biopolymers such as cellulose are the presence of humidity and the soft and often heterogenous structure of the films. This minireview summarizes currently used methods and techniques for biopolymer thin film thickness analysis and outlines challenges for accurate and reproducible characterization. Cellulose is chosen as the representative biopolymer.
Collapse
|
30
|
Priglinger E, Strasser J, Buchroithner B, Weber F, Wolbank S, Auer D, Grasmann E, Arzt C, Sivun D, Grillari J, Jacak J, Preiner J, Gimona M. Label-free characterization of an extracellular vesicle-based therapeutic. J Extracell Vesicles 2021; 10:e12156. [PMID: 34669269 PMCID: PMC8528092 DOI: 10.1002/jev2.12156] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/25/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Interest in mesenchymal stem cell derived extracellular vesicles (MSC-EVs) as therapeutic agents has dramatically increased over the last decade. Current approaches to the characterization and quality control of EV-based therapeutics include particle tracking techniques, Western blotting, and advanced cytometry, but standardized methods are lacking. In this study, we established and verified quartz crystal microbalance (QCM) as highly sensitive label-free immunosensing technique for characterizing clinically approved umbilical cord MSC-EVs enriched by tangential flow filtration and ultracentrifugation. Using QCM in conjunction with common characterization methods, we were able to specifically detect EVs via EV (CD9, CD63, CD81) and MSC (CD44, CD49e, CD73) markers. Furthermore, analysis of QCM dissipation versus frequency allowed us to quantitatively determine the ratio of marker-specific EVs versus non-vesicular particles (NVPs) - a parameter that cannot be obtained by any other technique so far. Additionally, we characterized the topography and elasticity of these EVs by atomic force microscopy (AFM), enabling us to distinguish between EVs and NVPs in our EV preparations. This measurement modality makes it possible to identify EV sub-fractions, discriminate between EVs and NVPs, and to characterize EV surface proteins, all with minimal sample preparation and using label-free measurement devices with low barriers of entry for labs looking to widen their spectrum of characterization techniques. Our combination of QCM with impedance measurement (QCM-I) and AFM measurements provides a robust multi-marker approach to the characterization of clinically approved EV therapeutics and opens the door to improved quality control.
Collapse
Affiliation(s)
- Eleni Priglinger
- AUVA Research CenterLudwig Boltzmann Institute for Experimental and Clinical TraumatologyLinz/ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Juergen Strasser
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Boris Buchroithner
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Florian Weber
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Susanne Wolbank
- AUVA Research CenterLudwig Boltzmann Institute for Experimental and Clinical TraumatologyLinz/ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Daniela Auer
- GMP UnitSpinal Cord Injury and Tissue Regeneration Center Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Research Program “Nanovesicular Therapies”Paracelsus Medical UniversitySalzburgAustria
| | - Eva Grasmann
- Transfer Center for Extracellular Vesicles Theralytic Technologies (EV‐TT)Paracelsus Medical UniversitySalzburgAustria
| | - Claudia Arzt
- Transfer Center for Extracellular Vesicles Theralytic Technologies (EV‐TT)Paracelsus Medical UniversitySalzburgAustria
| | - Dmitry Sivun
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Johannes Grillari
- AUVA Research CenterLudwig Boltzmann Institute for Experimental and Clinical TraumatologyLinz/ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Dept. of BiotechnologyBOKU – University of Natural Resources and Life SciencesInstitute of Molecular BiotechnologyViennaAustria
| | - Jaroslaw Jacak
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Johannes Preiner
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Mario Gimona
- GMP UnitSpinal Cord Injury and Tissue Regeneration Center Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Research Program “Nanovesicular Therapies”Paracelsus Medical UniversitySalzburgAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Transfer Center for Extracellular Vesicles Theralytic Technologies (EV‐TT)Paracelsus Medical UniversitySalzburgAustria
| |
Collapse
|
31
|
You F, Shi QH. Kinetic investigation of protein adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation: The implication of the chromatographic mechanism. J Chromatogr A 2021; 1654:462460. [PMID: 34438303 DOI: 10.1016/j.chroma.2021.462460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022]
Abstract
With the growing concerns of polymer-grafted ion-exchange chromatography, the importance of protein adsorption on charged polymer-grafted surfaces cannot be stressed enough. However, a full understanding in adsorption in polymer brushes is still a great challenge due to the lack of in situ characterization technique. In this work, we use quartz crystal microbalance with dissipation to in situ investigate adsorption kinetics of γ-globulin and recombinant human lactoferrin on poly(3-sulfopropyl methacrylate) (pSPM) sensors prepared via atom transfer radical polymerization. With an increase of chain length and grafting density, great increasing amounts of proteins on pSPM-grafted sensors revealed that protein underwent a transition from monolayer to multilayer adsorption. It was attributed to direct protein binding into charged brushes, in which more binding sites involved and more coupled water lost. However, such a strong binding and rigid structure of proteins limited the protein transport in pSPM brushes and "chain delivery" effect. With an increase in grafting density, moreover, denser brushes hindered adjustment in protein conformation in pSPM brushes and further exacerbated protein transport in pSPM brushes. Furthermore, the influence of buffer pH and salt concentration further validated the ion exchange characteristics of protein adsorption into pSPM brushes. The research provided a variety of in situ evidence of protein binding and conformation evolution in pSPM brushes and elucidated mechanism of protein adsorption in pSPM brushes.
Collapse
Affiliation(s)
- Fenfen You
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qing-Hong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
32
|
Adsorption of organic matter on titanium surfaces with nano- and micro-scale roughness studied with the electrochemical quartz crystal microbalance dissipation technique. Biointerphases 2021; 16:051001. [PMID: 34547900 DOI: 10.1116/6.0001233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adsorption of calf serum organic matter from a phosphate-buffered solution was studied using the electrochemical quartz crystal microbalance with additional dissipation measurements. Two types of crystal surfaces were used: one rough with micrometer-range surface features and one with roughness in the low nanometer range. The results showed that the adsorption of the organic material was about 1.5 orders of magnitude larger on the rough surface and almost independent of serum concentration in the electrolyte. The adsorption rates were found to increase with increasing serum concentration. For rough crystals, the adsorption kinetics were interpreted with the Johnson-Mehl-Avrami-Kolmogorov model, indicating an initial growth phase according to the tn-law, followed by a slower growth as the nucleation sites fill up. This study suggests that specific surface sites are critical to promote adsorption of proteins on a titanium surface.
Collapse
|
33
|
Fraile S, Briones M, Revenga-Parra M, de Lorenzo V, Lorenzo E, Martínez-García E. Engineering Tropism of Pseudomonas putida toward Target Surfaces through Ectopic Display of Recombinant Nanobodies. ACS Synth Biol 2021; 10:2049-2059. [PMID: 34337948 PMCID: PMC8397431 DOI: 10.1021/acssynbio.1c00227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/15/2022]
Abstract
Gram-negative bacteria are endowed with complex outer membrane (OM) structures that allow them to both interact with other organisms and attach to different physical structures. However, the design of reliable bacterial coatings of solid surfaces is still a considerable challenge. In this work, we report that ectopic expression of a fibrinogen-specific nanobody on the envelope of Pseudomonas putida cells enables controllable formation of a bacterial monolayer strongly bound to an antigen-coated support. To this end, either the wild type or a surface-naked derivative of P. putida was engineered to express a hybrid between the β-barrel of an intimin-type autotransporter inserted in the outer membrane and a nanobody (VHH) moiety that targets fibrinogen as its cognate interaction partner. The functionality of the thereby presented VHH and the strength of the resulting cell attachment to a solid surface covered with the cognate antigen were tested and parametrized with Quartz Crystal Microbalance technology. The results not only demonstrated the value of using bacteria with reduced OM complexity for efficient display of artificial adhesins, but also the potential of this approach to engineer specific bacterial coverings of predetermined target surfaces.
Collapse
Affiliation(s)
- Sofía Fraile
- Systems Biology Department, Centro Nacional
de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - María Briones
- Departamento de Química Analítica y Análisis
Instrumental, Universidad Autónoma
de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mónica Revenga-Parra
- Departamento de Química Analítica y Análisis
Instrumental, Universidad Autónoma
de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional
de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis
Instrumental, Universidad Autónoma
de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Esteban Martínez-García
- Systems Biology Department, Centro Nacional
de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
34
|
Roeven E, Scheres L, Smulders MM, Zuilhof H. Zwitterionic dendrimer – Polymer hybrid copolymers for self-assembling antifouling coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Saftics A, Kurunczi S, Peter B, Szekacs I, Ramsden JJ, Horvath R. Data evaluation for surface-sensitive label-free methods to obtain real-time kinetic and structural information of thin films: A practical review with related software packages. Adv Colloid Interface Sci 2021; 294:102431. [PMID: 34330074 DOI: 10.1016/j.cis.2021.102431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Interfacial layers are important in a wide range of applications in biomedicine, biosensing, analytical chemistry and the maritime industries. Given the growing number of applications, analysis of such layers and understanding their behavior is becoming crucial. Label-free surface sensitive methods are excellent for monitoring the formation kinetics, structure and its evolution of thin layers, even at the nanoscale. In this paper, we review existing and commercially available label-free techniques and demonstrate how the experimentally obtained data can be utilized to extract kinetic and structural information during and after formation, and any subsequent adsorption/desorption processes. We outline techniques, some traditional and some novel, based on the principles of optical and mechanical transduction. Our special focus is the current possibilities of combining label-free methods, which is a powerful approach to extend the range of detected and deduced parameters. We summarize the most important theoretical considerations for obtaining reliable information from measurements taking place in liquid environments and, hence, with layers in a hydrated state. A thorough treamtmaent of the various kinetic and structural quantities obtained from evaluation of the raw label-free data are provided. Such quantities include layer thickness, refractive index, optical anisotropy (and molecular orientation derived therefrom), degree of hydration, viscoelasticity, as well as association and dissociation rate constants and occupied area of subsequently adsorbed species. To demonstrate the effect of variations in model conditions on the observed data, simulations of kinetic curves at various model settings are also included. Based on our own extensive experience with optical waveguide lightmode spectroscopy (OWLS) and the quartz crystal microbalance (QCM), we have developed dedicated software packages for data analysis, which are made available to the scientific community alongside this paper.
Collapse
|
36
|
Interfacial Modeling of Fibrinogen Adsorption onto LiNbO 3 Single Crystal-Single Domain Surfaces. Int J Mol Sci 2021; 22:ijms22115946. [PMID: 34073002 PMCID: PMC8199120 DOI: 10.3390/ijms22115946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022] Open
Abstract
For the development of next-generation protein-based biosensor surfaces, it is important to understand how functional proteins, such as fibrinogen (FBG), interact with polar substrate surfaces in order to prepare highly sensitive points of medical care diagnostics. FBG, which is a fibrous protein with an extracellular matrix, has both positively and negatively charged regions on its 3-dimensional surface, which makes interpreting how it effectively binds to polarized surfaces challenging. In this study, single-crystal LiNbO3 (LNO) substrates that have surface charges were used to investigate the adsorption of FBG protruding polar fragments on the positively and negatively charged LNO surfaces. We performed a combination of experiments and multi-scale molecular modeling to understand the binding of FBG in vacuum and water-solvated surfaces of LNO. XPS measurements showed that the FBG adsorption on LNO increased with increment in solution concentration on surfaces independent of charges. Multi-scale molecular modeling employing Quantum Mechanics, Monte Carlo, and Molecular Mechanics addressed the phenomenon of FBG fragment bonding on LNO surfaces. The binding simulation validated the experimental observation using zeta potential measurements which showed presence of solvated medium influenced the adsorption phenomenon due to the negative surface potential.
Collapse
|
37
|
Ben-Miled A, Nabiyan A, Wondraczek K, Schacher FH, Wondraczek L. Controlling Growth of Poly (Triethylene Glycol Acrylate- Co-Spiropyran Acrylate) Copolymer Liquid Films on a Hydrophilic Surface by Light and Temperature. Polymers (Basel) 2021; 13:polym13101633. [PMID: 34069828 PMCID: PMC8157298 DOI: 10.3390/polym13101633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
A quartz crystal microbalance with dissipation monitoring (QCM-D) was employed for in situ investigations of the effect of temperature and light on the conformational changes of a poly (triethylene glycol acrylate-co-spiropyran acrylate) (P (TEGA-co-SPA)) copolymer containing 12-14% of spiropyran at the silica-water interface. By monitoring shifts in resonance frequency and in acoustic dissipation as a function of temperature and illumination conditions, we investigated the evolution of viscoelastic properties of the P (TEGA-co-SPA)-rich wetting layer growing on the sensor, from which we deduced the characteristic coil-to-globule transition temperature, corresponding to the lower critical solution temperature (LCST) of the PTEGA part. We show that the coil-to-globule transition of the adsorbed copolymer being exposed to visible or UV light shifts to lower LCST as compared to the bulk solution: the transition temperature determined acoustically on the surface is 4 to 8 K lower than the cloud point temperature reported by UV/VIS spectroscopy in aqueous solution. We attribute our findings to non-equilibrium effects caused by confinement of the copolymer chains on the surface. Thermal stimuli and light can be used to manipulate the film formation process and the film's conformational state, which affects its subsequent response behavior.
Collapse
Affiliation(s)
- Aziz Ben-Miled
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, D-07743 Jena, Germany;
| | - Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, D-07743 Jena, Germany; (A.N.); (F.H.S.)
| | - Katrin Wondraczek
- Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745 Jena, Germany;
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, D-07743 Jena, Germany; (A.N.); (F.H.S.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Lothar Wondraczek
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, D-07743 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-9-48500
| |
Collapse
|
38
|
Liamas E, Connell SD, Zembyla M, Ettelaie R, Sarkar A. Friction between soft contacts at nanoscale on uncoated and protein-coated surfaces. NANOSCALE 2021; 13:2350-2367. [PMID: 33367416 DOI: 10.1039/d0nr06527g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The understanding of friction on soft sliding biological surfaces at the nanoscale is poorly understood as hard interfaces are frequently used as model systems. Herein, we studied the influence of elastic modulus on the frictional properties of model surfaces at the nanoscale for the first time. We prepared model silicone-based elastomer surfaces with tuneable modulus ranging from hundreds of kPa to a few MPa, similar to those found in real biological surfaces, and employed atomic force microscopy to characterize their modulus, adhesion, and surface morphology. Consequently, we used friction force microscopy to investigate nanoscale friction in hard-soft and soft-soft contacts using spherical colloidal probes covered by adsorbed protein films. Unprecedented results from this study reveal that modulus of a surface can have a significant impact on the frictional properties of protein-coated surfaces with higher deformability leading to lower contact pressure and, consequently, decreased friction. These important results pave the way forward for designing new functional surfaces for serving as models of appropriate deformability to replicate the mechanical properties of the biological structures and processes for accurate friction measurements at nanoscale.
Collapse
Affiliation(s)
- Evangelos Liamas
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK.
| | - Simon D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, UK.
| | - Morfo Zembyla
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK.
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK.
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK.
| |
Collapse
|
39
|
Bratek-Skicki A, Sadowska M, Maciejewska-Prończuk J, Adamczyk Z. Nanoparticle and Bioparticle Deposition Kinetics: Quartz Microbalance Measurements. NANOMATERIALS 2021; 11:nano11010145. [PMID: 33435619 PMCID: PMC7827609 DOI: 10.3390/nano11010145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
Controlled deposition of nanoparticles and bioparticles is necessary for their separation and purification by chromatography, filtration, food emulsion and foam stabilization, etc. Compared to numerous experimental techniques used to quantify bioparticle deposition kinetics, the quartz crystal microbalance (QCM) method is advantageous because it enables real time measurements under different transport conditions with high precision. Because of its versatility and the deceptive simplicity of measurements, this technique is used in a plethora of investigations involving nanoparticles, macroions, proteins, viruses, bacteria and cells. However, in contrast to the robustness of the measurements, theoretical interpretations of QCM measurements for a particle-like load is complicated because the primary signals (the oscillation frequency and the band width shifts) depend on the force exerted on the sensor rather than on the particle mass. Therefore, it is postulated that a proper interpretation of the QCM data requires a reliable theoretical framework furnishing reference results for well-defined systems. Providing such results is a primary motivation of this work where the kinetics of particle deposition under diffusion and flow conditions is discussed. Expressions for calculating the deposition rates and the maximum coverage are presented. Theoretical results describing the QCM response to a heterogeneous load are discussed, which enables a quantitative interpretation of experimental data obtained for nanoparticles and bioparticles comprising viruses and protein molecules.
Collapse
Affiliation(s)
- Anna Bratek-Skicki
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.S.); (Z.A.)
- Correspondence:
| | - Marta Sadowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.S.); (Z.A.)
| | - Julia Maciejewska-Prończuk
- Department of Chemical and Process Engineering, Cracow University of Technology, Warszawska 24, PL-31155 Krakow, Poland;
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.S.); (Z.A.)
| |
Collapse
|
40
|
Kopac T. Protein corona, understanding the nanoparticle-protein interactions and future perspectives: A critical review. Int J Biol Macromol 2020; 169:290-301. [PMID: 33340622 DOI: 10.1016/j.ijbiomac.2020.12.108] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022]
Abstract
Proteins are biopolymers of highly varied structures taking part in almost all processes occurring in living cells. When nanoparticles (NPs) interact with proteins in biological environments, they are surrounded by a layer of biomolecules, mainly proteins adsorbing to the surfaces. This protein rich layer formed around NPs is called the "protein corona". Consequential interactions between NPs and proteins are governed due to the characteristics of the corona. The features of NPs such as the size, surface chemistry, charge are the critical factors influencing the behavior of protein corona. Molecular properties and protein corona composition affect the cellular uptake of NPs. Understanding and analyzing protein corona formation in relation to protein-NP properties, and elucidating its biological implications play an important role in bio-related nano-research studies. Protein-NP interactions have been studied extensively for the purpose of investigating the potential use of NPs as carriers in drug delivery systems. Further study should focus on exploring the effects of various characteristic parameters, such as the particle size, modifier type, temperature, pH on protein-NP interactions, providing toxicity information of novel NPs. In this contribution, important aspects related to protein corona forming, influential factors, novel findings and future perspectives on protein-NP interactions are overviewed.
Collapse
Affiliation(s)
- Turkan Kopac
- Department of Chemistry, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Turkey; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan(1).
| |
Collapse
|
41
|
Armstrong MJ, Rodriguez JB, Dahl P, Salamon P, Hess H, Katira P. Power Law Behavior in Protein Desorption Kinetics Originating from Sequential Binding and Unbinding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13527-13534. [PMID: 33152250 DOI: 10.1021/acs.langmuir.0c02260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study of protein adsorption at the single molecule level has recently revealed that the adsorption is reversible, but with a long-tailed residence time distribution which can be approximated with a sum of exponential functions putatively related to distinct adsorption sites. Here it is proposed that the shape of the residence time distribution results from an adsorption process with sequential and reversible steps that contribute to overall binding strength resembling "zippering". In this model, the survival function of the residence time distribution of single proteins varies from an exponential distribution for a single adsorption step to a power law distribution with exponent -1/2 for a large number of adsorption steps. The adsorption of fluorescently labeled fibrinogen to glass surfaces is experimentally studied with single molecule imaging. The experimental residence time distribution can be readily fit by the proposed model. This demonstrates that the observed long residence times can arise from stepwise adsorption rather than rare but strong binding sites and provides guidance for the control of protein adsorption to biomaterials.
Collapse
Affiliation(s)
- Megan J Armstrong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Juan B Rodriguez
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Peter Dahl
- Department of Mechanical Engineering, San Diego State University, San Diego, California 98182, United States
| | - Peter Salamon
- Department of Mathematics and Statistics and Viral Information Institute, San Diego State University, San Diego, California 98182, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, California 98182, United States
| |
Collapse
|
42
|
Adamczyk Z, Sadowska M, Żeliszewska P. Applicability of QCM-D for Quantitative Measurements of Nano- and Microparticle Deposition Kinetics: Theoretical Modeling and Experiments. Anal Chem 2020; 92:15087-15095. [PMID: 32957771 PMCID: PMC7675609 DOI: 10.1021/acs.analchem.0c03115] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
A new theoretical model is formulated
for the quantitative analysis
of quartz crystal microbalance (QCM) response for heterogeneous loads
consisting of nano- and microparticles. The influence of particle
coverage and structure is described using a universal correction function
in an ab initio manner. Explicit analytical expressions
for the frequency and dissipation shifts are derived for the entire
range of particle size under the rigid contact regime. The solvent
coupling functions are also calculated to determine the dry coverage
using the QCM measurements. These expressions furnish the upper limit
of the QCM signal, which can be attained for a sensor providing perfect
adhesion of particles. Correction functions accounting for the finite
adhesion strength (soft contact regime) are also derived. The theoretical
results are confronted with QCM and atomic force microscopy measurements
of positively charged polymer particle deposition on silica sensors.
The main features of the theoretical model are confirmed, especially
the abrupt decrease in the QCM wet mass with the particle coverage
and the overtone number. The latter effect is especially pronounced
for microparticles under the soft contact regime, where the higher-number
overtones produce a negligible QCM signal. These results represent
a useful reference data for the interpretation of protein and bioparticles,
for example, virus and bacteria attachment processes to various substrates.
Collapse
Affiliation(s)
- Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Marta Sadowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Paulina Żeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
43
|
Samarentsis AG, Pantazis AK, Tsortos A, Friedt JM, Gizeli E. Hybrid Sensor Device for Simultaneous Surface Plasmon Resonance and Surface Acoustic Wave Measurements. SENSORS 2020; 20:s20216177. [PMID: 33138312 PMCID: PMC7662402 DOI: 10.3390/s20216177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
Surface plasmon resonance (SPR) and Love wave (LW) surface acoustic wave (SAW) sensors have been established as reliable biosensing technologies for label-free, real-time monitoring of biomolecular interactions. This work reports the development of a combined SPR/LW-SAW platform to facilitate simultaneous optical and acoustic measurements for the investigation of biomolecules binding on a single surface. The system’s output provides recordings of two acoustic parameters, phase and amplitude of a Love wave, synchronized with SPR readings. We present the design and manufacturing of a novel experimental set-up employing, in addition to the SPR/LW-SAW device, a 3D-printed plastic holder combined with a PDMS microfluidic cell so that the platform can be used in a flow-through mode. The system was evaluated in a systematic study of the optical and acoustic responses for different surface perturbations, i.e., rigid mass loading (Au deposition), pure viscous loading (glycerol and sucrose solutions) and protein adsorption (BSA). Our results provide the theoretical and experimental basis for future application of the combined system to other biochemical and biophysical studies.
Collapse
Affiliation(s)
- Anastasios G. Samarentsis
- Institute of Molecular Biology & Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece; (A.G.S.); (A.T.)
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece;
| | - Alexandros K. Pantazis
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece;
- Institute of Electronic Structure & Laser, FO.R.T.H, Vassilika Vouton, 71409 Heraklion, Greece
| | - Achilleas Tsortos
- Institute of Molecular Biology & Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece; (A.G.S.); (A.T.)
| | - Jean-Michel Friedt
- SENSeOR SAS, Time and Frequency Department, FEMTO-ST Institute, 15B Avenue des Montboucons, 25030 Besançon, France;
| | - Electra Gizeli
- Institute of Molecular Biology & Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece; (A.G.S.); (A.T.)
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece;
- Correspondence: ; Tel.: +30-2810-394373
| |
Collapse
|
44
|
Probing fibronectin adsorption on chemically defined surfaces by means of single molecule force microscopy. Sci Rep 2020; 10:15662. [PMID: 32973270 PMCID: PMC7518417 DOI: 10.1038/s41598-020-72617-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Atomic force microscope (AFM) based single molecule force spectroscopy (SMFS) and a quartz crystal microbalance (QCM) were respectively employed to probe interfacial characteristics of fibronectin fragment FNIII8–14 and full-length fibronectin (FN) on CH3–, OH–, COOH–, and NH2-terminated alkane-thiol self-assembled monolayers (SAMs). Force-distance curves acquired between hexahistidine-tagged FNIII8–14 immobilised on trisNTA-Ni2+ functionalized AFM cantilevers and the OH and COOH SAM surfaces were predominantly ‘loop-like’ (76% and 94% respectively), suggesting domain unfolding and preference for ‘end-on’ oriented binding, while those generated with NH2 and CH3 SAMs were largely ‘mixed type’ (81% and 86%, respectively) commensurate with unravelling and desorption, and ‘side-on’ binding. Time-dependent binding of FN to SAM-coated QCM crystals occurred in at least two phases: initial rapid coverage over the first 5 min; and variably diminishing adsorption thereafter (5–70 min). Loading profiles and the final hydrated surface concentrations reached (~ 950, ~ 1200, ~ 1400, ~ 1500 ng cm−2 for CH3, OH, COOH and NH2 SAMs) were consistent with: space-filling ‘side-on’ orientation and unfolding on CH3 SAM; greater numbers of FN molecules arranged ‘end-on’ on OH and especially COOH SAMs; and initial ‘side-on’ contact, followed by either (1) gradual tilting to a space-saving ‘end-on’ configuration, or (2) bi-/multi-layer adsorption on NH2 SAM.
Collapse
|
45
|
Tan JYB, Yoon BK, Ma GJ, Sut TN, Cho NJ, Jackman JA. Unraveling How Ethanol-Induced Conformational Changes Affect BSA Protein Adsorption onto Silica Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9215-9224. [PMID: 32654494 DOI: 10.1021/acs.langmuir.0c01478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein adsorption at solid-liquid interfaces is highly relevant to a wide range of applications such as biosensors, drug delivery, and pharmaceuticals. Understanding how protein conformation in bulk solution impacts adsorption behavior is fundamentally important and could also lead to the development of improved protein-based coatings. To date, relevant studies have been conducted in aqueous solutions, while it remains largely unknown how organic solvents and more specifically solvent-induced conformational changes might influence protein adsorption. Herein, using the quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) techniques, we systematically investigated the real-time adsorption behavior of bovine serum albumin (BSA) protein onto silica surfaces in different water-ethanol mixtures ranging from 0 to 60% (v/v) ethanol. The results showed that there was greater protein adsorption at higher ethanol fractions in the 10-30% range, while more complex adsorption profiles were observed in the 40-60% range. The combination of QCM-D and LSPR measurements led us to further identify specific cases in water-ethanol mixtures where washing steps caused densification of the adsorbed protein layer as opposed to typical desorption of weakly adsorbed molecules in aqueous conditions. We discuss mechanistic factors that drive these overall adsorption trends by taking into account how ethanol fraction affects BSA conformation in bulk solution. Together, our findings demonstrate that BSA proteins can adsorb onto silica surfaces across a wide range of water-ethanol mixture conditions, while specific adsorption profiles depended on the ethanol fraction in a manner closely linked to solution-phase conformational properties.
Collapse
Affiliation(s)
- Jia Ying Brenda Tan
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Bo Kyeong Yoon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Tun Naw Sut
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
46
|
Torres Jr L, Bienek DR. Use of Protein Repellents to Enhance the Antimicrobial Functionality of Quaternary Ammonium Containing Dental Materials. J Funct Biomater 2020; 11:E54. [PMID: 32752169 PMCID: PMC7565790 DOI: 10.3390/jfb11030054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022] Open
Abstract
An advancement in preventing secondary caries has been the incorporation of quaternary ammonium containing (QAC) compounds into a composite resin mixture. The permanent positive charge on the monomers allows for electrostatic-based killing of bacteria. Spontaneous adsorption of salivary proteins onto restorations dampens the antimicrobial capabilities of QAC compounds. Protein-repellent monomers can work with QAC restorations to achieve the technology's full potential. We discuss the theory behind macromolecular adsorption, direct and indirect characterization methods, and advances of protein repellent dental materials. The translation of protein adsorption to microbial colonization is covered, and the concerns and fallbacks of the state-of-the-art protein-resistant monomers are addressed. Last, we present new and exciting avenues for protein repellent monomer design that have yet to be explored in dental materials.
Collapse
Affiliation(s)
| | - Diane R. Bienek
- ADA Science & Research Institute, LLC, Innovative & Technology Research, Frederick, MD 21704, USA;
| |
Collapse
|
47
|
Correlation between protein adsorption and electrochemical corrosion behavior of niobium for bio-implant application. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Strasser J, de Jong RN, Beurskens FJ, Schuurman J, Parren PWHI, Hinterdorfer P, Preiner J. Weak Fragment Crystallizable (Fc) Domain Interactions Drive the Dynamic Assembly of IgG Oligomers upon Antigen Recognition. ACS NANO 2020; 14:2739-2750. [PMID: 31887016 DOI: 10.1021/acsnano.9b08347] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Activation of membrane receptors through clustering is a common mechanism found in various biological systems. Spatial proximity of receptors may be transduced across the membrane to initiate signaling pathways or alternatively be recognized by peripheral proteins or immune cells to trigger external effector functions. Here we show how specific immunoglobulin G (IgG) binding induces clustering of monomeric target molecules in lipid membranes through Fc-Fc interactions. We visualize and characterize the dynamic IgG oligomerization process and the molecular interactions involved using high-speed atomic force microscopy, single-molecule force spectroscopy, and quartz crystal microbalance experiments. We found that the Fc-Fc interaction strength is precisely tuned to be weak enough to prevent IgG oligomerization in solution at physiological titers, but enabling IgG oligomerization when Fabs additionally bind to their cognate surface epitopes, a mechanism that ultimately targets IgG-mediated effector functions such as classical complement activation to antigenic membranes.
Collapse
Affiliation(s)
- Jürgen Strasser
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | | | | | | | - Paul W H I Parren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Lava Therapeutics, 3584 CM Utrecht, The Netherlands
| | | | - Johannes Preiner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| |
Collapse
|
49
|
Adamczyk Z, Sadowska M. Hydrodynamic Solvent Coupling Effects in Quartz Crystal Microbalance Measurements of Nanoparticle Deposition Kinetics. Anal Chem 2020; 92:3896-3903. [PMID: 31994383 PMCID: PMC7588021 DOI: 10.1021/acs.analchem.9b05397] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Hydrodynamic
coupling effects pertinent to quartz crystal microbalance
(QCM) investigation of nanoparticle adsorption kinetics were evaluated
using atomic force microscopy and the theoretical modeling. Monodisperse
polymer particles of the size between 26 and 140 nm and the density
of 1.05 g cm–3 were used. The ζ-potential
of particles was opposite to the substrate ζ-potential that
promoted their irreversible adsorption on the silica sensor. The experimental
kinetic data were interpreted in terms of theoretical calculations
derived from the hybrid random sequential adsorption model. This allowed
us to determine the amount of hydrodynamically coupled solvent (electrolyte)
for the absolute particle coverage range up to 0.5. The coupling function
representing the ratio of the solvent to the particle volumes was
also determined and used to explicitly calculate the solvent level
in particle monolayers. It is shown that the solvent level abruptly
increases with the particle coverage attaining values comparable with
the particle size. One can expect that these results can serve as
useful reference data for the interpretation of protein adsorption
kinetics on rough surfaces where the presence of stagnant solvent
is inevitable.
Collapse
Affiliation(s)
- Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Marta Sadowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
50
|
Cometa S, Bonifacio MA, Ferreira AM, Gentile P, De Giglio E. Surface Characterization of Electro-Assisted Titanium Implants: A Multi-Technique Approach. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E705. [PMID: 32033256 PMCID: PMC7040792 DOI: 10.3390/ma13030705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
The understanding of chemical-physical, morphological, and mechanical properties of polymer coatings is a crucial preliminary step for further biological evaluation of the processes occurring on the coatings' surface. Several studies have demonstrated how surface properties play a key role in the interactions between biomolecules (e.g., proteins, cells, extracellular matrix, and biological fluids) and titanium, such as chemical composition (investigated by means of XPS, TOF-SIMS, and ATR-FTIR), morphology (SEM-EDX), roughness (AFM), thickness (Ellipsometry), wettability (CA), solution-surface interactions (QCM-D), and mechanical features (hardness, elastic modulus, adhesion, and fatigue strength). In this review, we report an overview of the main analytical and mechanical methods commonly used to characterize polymer-based coatings deposited on titanium implants by electro-assisted techniques. A description of the relevance and shortcomings of each technique is described, in order to provide suitable information for the design and characterization of advanced coatings or for the optimization of the existing ones.
Collapse
Affiliation(s)
| | - Maria A. Bonifacio
- Jaber Innovation s.r.l., 00144 Rome, Italy;
- Department of Chemistry, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Ana M. Ferreira
- School of Engineering, Newcastle University, Newcastle NE1 7RU, UK; (A.M.F.); (P.G.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle NE1 7RU, UK; (A.M.F.); (P.G.)
| | - Elvira De Giglio
- Department of Chemistry, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| |
Collapse
|