1
|
Liu Z, Hou P, Fang J, Shao C, Shi Y, Melino G, Peschiaroli A. Hyaluronic acid metabolism and chemotherapy resistance: recent advances and therapeutic potential. Mol Oncol 2024; 18:2087-2106. [PMID: 37953485 PMCID: PMC11467803 DOI: 10.1002/1878-0261.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix, providing essential mechanical scaffolding for cells and, at the same time, mediating essential biochemical signals required for tissue homeostasis. Many solid tumors are characterized by dysregulated HA metabolism, resulting in increased HA levels in cancer tissues. HA interacts with several cell surface receptors, such as cluster of differentiation 44 and receptor for hyaluronan-mediated motility, thus co-regulating important signaling pathways in cancer development and progression. In this review, we describe the enzymes controlling HA metabolism and its intracellular effectors emphasizing their impact on cancer chemotherapy resistance. We will also explore the current and future prospects of HA-based therapy, highlighting the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Zhanhong Liu
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Pengbo Hou
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Gerry Melino
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR)RomeItaly
| |
Collapse
|
2
|
de Paula MC, Carvalho SG, Silvestre ALP, Dos Santos AM, Meneguin AB, Chorilli M. The role of hyaluronic acid in the design and functionalization of nanoparticles for the treatment of colorectal cancer. Carbohydr Polym 2023; 320:121257. [PMID: 37659830 DOI: 10.1016/j.carbpol.2023.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Despite advances in new approaches for colorectal cancer (CRC) therapy, intravenous chemotherapy remains one of the main treatment options; however, it has limitations associated with off-target toxicity, tumor cell resistance due to molecular complexity and CRC heterogeneity, which lead to tumor recurrence and metastasis. In oncology, nanoparticle-based strategies have been designed to avoid systemic toxicity and increase drug accumulation at tumor sites. Hyaluronic acid (HA) has obtained significant attention thanks to its ability to target nanoparticles (NPs) to CRC cells through binding to cluster-determinant-44 (CD44) and hyaluronan-mediated motility (RHAMM) receptors, along with its efficient biological properties of mucoadhesion. This review proposes to discuss the state of the art in HA-based nanoparticulate systems intended for localized treatment of CRC, highlighting the importance of the mucoadhesion and active targeting provided by this polymer. In addition, an overview of CRC will be provided, emphasizing the importance of CD44 and RHAMM receptors in this type of cancer and the current challenges related to this disease, and important concepts about the physicochemical and biological properties of HA will also be addressed. Finally, this review aims to contribute to the advancement of accuracy treatment of CRC by the design of new platforms based on by HA.
Collapse
Affiliation(s)
- Mariana Carlomagno de Paula
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Suzana Gonçalves Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Aline Martins Dos Santos
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| |
Collapse
|
3
|
Gao YM, Li ZY, Zhang XJ, Zhang J, Li QF, Zhou SB. One-Pot Synthesis of Bioadhesive Double-Network Hydrogel Patch as Disposable Wound Dressing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11496-11506. [PMID: 36821340 DOI: 10.1021/acsami.2c19931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inventions of materials to achieve biocompatibility, bioadhesion, and easy manufacturing are the urgent demand for promoting wound healing in clinical treatment. Hyaluronic acid (HA) is probably the ideal candidate for current dressing materials due to its well-known biocompatibility. However, the unavoidable problem for HA dressings is their inherent low adhesiveness to wounds, which severely impairs their treatment efficacy, especially during body movement. Here, we report a one-pot facile fabrication of hybrid double-network polydopamine-HA (PDA-HA) hydrogel with significantly enhanced adhesiveness compared to the HA hydrogel. Besides the easy manufacturing and promoted effectiveness, the PDA-HA hydrogel could be vacuum-dried to form a patch, further benefitting from the convenience for storage and distribution. When applied on the wound, the PDA-HA patch quickly rehydrated by absorbing exudate and stuck tightly to the wound. The applied PDA-HA patches keep the wounds covered for more than 7 days against strenuous exercise. Thus, mouse full-thickness wounds treated with the PDA-HA patches exhibited increased healing rates, where epithelization was finished within 14 days. Moreover, the hydrogel dressing exhibited promoting effects on vascularization and cell proliferation/migration. Together with the easy manufacturing procedure, good adhesion/adaptation, and promotion of wound healing, the PDA-HA patch holds great potential for future clinical translation.
Collapse
Affiliation(s)
- Yi-Ming Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Zi-Yuan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Jie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Shuang-Bai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| |
Collapse
|
4
|
Carvalho AM, Reis RL, Pashkuleva I. Hyaluronan Receptors as Mediators and Modulators of the Tumor Microenvironment. Adv Healthc Mater 2023; 12:e2202118. [PMID: 36373221 PMCID: PMC11469756 DOI: 10.1002/adhm.202202118] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) is a dynamic and complex matter shaped by heterogenous cancer and cancer-associated cells present at the tumor site. Hyaluronan (HA) is a major TME component that plays pro-tumorigenic and carcinogenic functions. These functions are mediated by different hyaladherins expressed by cancer and tumor-associated cells triggering downstream signaling pathways that determine cell fate and contribute to TME progression toward a carcinogenic state. Here, the interaction of HA is reviewed with several cell-surface hyaladherins-CD44, RHAMM, TLR2 and 4, LYVE-1, HARE, and layilin. The signaling pathways activated by these interactions and the respective response of different cell populations within the TME, and the modulation of the TME, are discussed. Potential cancer therapies via targeting these interactions are also briefly discussed.
Collapse
Affiliation(s)
- Ana M. Carvalho
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Rui L. Reis
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Iva Pashkuleva
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| |
Collapse
|
5
|
Wang Y, Maytin EV. The Role of Hyaluronan in Skin Wound Healing. BIOLOGY OF EXTRACELLULAR MATRIX 2023:189-204. [DOI: 10.1007/978-3-031-30300-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Chen S, Shenk T, Nogalski MT. P2Y2 purinergic receptor modulates virus yield, calcium homeostasis, and cell motility in human cytomegalovirus-infected cells. Proc Natl Acad Sci U S A 2019; 116:18971-18982. [PMID: 31481624 PMCID: PMC6754545 DOI: 10.1073/pnas.1907562116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) manipulates many aspects of host cell biology to create an intracellular milieu optimally supportive of its replication and spread. Our study reveals that levels of several components of the purinergic signaling system, including the P2Y2 and P2X5 receptors, are elevated in HCMV-infected fibroblasts. Knockdown and drug treatment experiments demonstrated that P2Y2 enhances the yield of virus, whereas P2X5 reduces HCMV production. The HCMV IE1 protein induces P2Y2 expression; and P2Y2-mediated signaling is important for efficient HCMV gene expression, DNA synthesis, and the production of infectious HCMV progeny. P2Y2 cooperates with the viral UL37x1 protein to regulate cystolic Ca2+ levels. P2Y2 also regulates PI3K/Akt signaling and infected cell motility. Thus, P2Y2 functions at multiple points within the viral replication cycle to support the efficient production of HCMV progeny, and it may facilitate in vivo viral spread through its role in cell migration.
Collapse
Affiliation(s)
- Saisai Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014
| | - Maciej T Nogalski
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014
| |
Collapse
|
7
|
Fernández S, Córdoba M. Hyaluronic acid-induced capacitation involves protein kinase C and tyrosine kinase activity modulation with a lower oxidative metabolism in cryopreserved bull sperm. Theriogenology 2018; 122:68-73. [DOI: 10.1016/j.theriogenology.2018.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
|
8
|
Markasz L, Savani RC, Sedin G, Sindelar R. The receptor for hyaluronan-mediated motility (RHAMM) expression in neonatal bronchiolar epithelium correlates negatively with lung air content. Early Hum Dev 2018; 127:58-68. [PMID: 30312861 DOI: 10.1016/j.earlhumdev.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/21/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Hyaluronan (HA) and the receptor for hyaluronan-mediated motility (RHAMM) may play an important role in lung development. We examined the expression of HA content and RHAMM during postnatal lung development by analyzing human lung specimens from newborn infants with a variety of lung diseases at different gestational (GA) and postnatal (PNA) ages. MATERIALS AND METHODS Ninety-four patients were evaluated. Immunohistochemical RHAMM expression was studied with digital image analysis, followed by hierarchical cluster analysis of both these data and clinical data to define subgroups. The air content of the lung was determined by computerized analysis. HA content was estimated by radiometric assay. RESULTS Cluster analysis defined six distinct patient groups (Group 1-2: 34-41 weeks GA; Group 3-5: 23-27 weeks GA; Group 6: mixed population). Group 1-5 showed individual patterns in RHAMM expression and HA content (Group 1: high RHAMM/low HA; Group 2: low RHAMM/low HA; Group 3: low RHAMM/low HA; Group 4: low RHAMM/high HA; Group 5: high RHAMM/high HA). HA content decreased with increasing PNA independently of GA. Negative correlation was observed between air content and RHAMM expression in the bronchiolar epithelium irrespective of clustered groups. Lung hypoplasia appeared in two distinctive groups, with significant differences in lung development and RHAMM expression. CONCLUSIONS RHAMM expression may show dynamic changes during pathological processes in the neonatal lung. The distribution of RHAMM in the lung tissue is heterogeneous with a predominance to the bronchiolar epithelium. We found a negative correlation between lung air content and RHAMM expression in bronchiolar epithelium.
Collapse
Affiliation(s)
- Laszlo Markasz
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden..
| | - Rashmin C Savani
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Gunnar Sedin
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Abstract
Over 50 years after its first description, Bronchopulmonary Dysplasia (BPD) remains a devastating pulmonary complication in preterm infants with respiratory failure and develops in 30-50% of infants less than 1000-gram birth weight. It is thought to involve ventilator- and oxygen-induced damage to an immature lung that results in an inflammatory response and ends in aberrant lung development with dysregulated angiogenesis and alveolarization. Significant morbidity and mortality are associated with this most common chronic lung disease of childhood. Thus, any therapies that decrease the incidence or severity of this condition would have significant impact on morbidity, mortality, human costs, and healthcare expenditure. It is clear that an inflammatory response and the elaboration of growth factors and cytokines are associated with the development of BPD. Numerous approaches to control the inflammatory process leading to the development of BPD have been attempted. This review will examine the anti-inflammatory approaches that are established or hold promise for the prevention or treatment of BPD.
Collapse
Affiliation(s)
- Rashmin C Savani
- Center for Pulmonary & Vascular Biology, Division of Neonatal-Perinatal Medicine, The Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063, USA.
| |
Collapse
|
10
|
Cui Z, Liao J, Cheong N, Longoria C, Cao G, DeLisser HM, Savani RC. The Receptor for Hyaluronan-Mediated Motility (CD168) promotes inflammation and fibrosis after acute lung injury. Matrix Biol 2018; 78-79:255-271. [PMID: 30098420 PMCID: PMC6368477 DOI: 10.1016/j.matbio.2018.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/09/2018] [Accepted: 08/04/2018] [Indexed: 12/15/2022]
Abstract
Acute lung injury results in early inflammation and respiratory distress, and later fibrosis. The glycosaminoglycan hyaluronan (HA) and the Receptor for Hyaluronan-Mediated Motility (RHAMM, CD168) have been implicated in the response to acute lung injury. We hypothesized that, compared to wild type (WT) mice, RHAMM knockout (KO) mice would be protected from, whereas mice with macrophage-specific transgenic overexpression of RHAMM (TG) would have worse inflammation, respiratory distress and fibrosis after intratracheal (IT) bleomycin. Compared to WT mice, 10 days after IT bleomycin, RHAMM KO mice had less weight loss, less increase in respiratory rate, and fewer CD45+ cells in the lung. At day 28, compared to injured WT animals, injured RHAMM KO mice had lower M1 macrophage content, as well as decreased fibrosis as determined by trichrome staining, Ashcroft scores and lung HPO content. Four lines of transgenic mice with selective overexpression of RHAMM in macrophages were generated using the Scavenger Receptor A promoter driving a myc-tagged full length RHAMM cDNA. Baseline expression of RHAMM and CD44 was the same in WT and TG mice. By flow cytometry, TG bone marrow-derived macrophages (BMDM) had increased cell surface RHAMM and myc, but equal CD44 expression. TG BMDM also had 2-fold increases in both chemotaxis to HA and proliferation in fetal bovine serum. In TG mice, increased inflammation after thioglycollate-induced peritonitis was restricted to macrophages and not neutrophils. For lung injury studies, non-transgenic mice given bleomycin had respiratory distress with increased respiratory rates from day 7 to 21. However, TG mice had higher respiratory rates from 4 days after bleomycin and continued to increase respiratory rates up to day 21. At 21 days after IT bleomycin, TG mice had increased lung macrophage accumulation. Lavage HA concentrations were 6-fold higher in injured WT mice, but 30-fold higher in injured TG mice. At 21 days after IT bleomycin, WT mice had developed fibrosis, but TG mice showed exaggerated fibrosis with increased Ashcroft scores and HPO content. We conclude that RHAMM is a critical component of the inflammatory response, respiratory distress and fibrosis after acute lung injury. We speculate that RHAMM is a potential therapeutic target to limit the consequences of acute lung injury.
Collapse
Affiliation(s)
- Zheng Cui
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jie Liao
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naeun Cheong
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher Longoria
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaoyuan Cao
- Perelmen Center for Advanced Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Horace M DeLisser
- Perelmen Center for Advanced Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Rashmin C Savani
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Nagy N, Kuipers HF, Marshall PL, Wang E, Kaber G, Bollyky PL. Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol 2018; 78-79:292-313. [PMID: 29625181 DOI: 10.1016/j.matbio.2018.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/10/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
The tissue microenvironment contributes to local immunity and to the pathogenesis of autoimmune diseases - a diverse set of conditions characterized by sterile inflammation, immunity against self-antigens, and destruction of tissues. However, the specific factors within the tissue microenvironment that contribute to local immune dysregulation in autoimmunity are poorly understood. One particular tissue component implicated in multiple autoimmune diseases is hyaluronan (HA), an extracellular matrix (ECM) polymer. HA is abundant in settings of chronic inflammation and contributes to lymphocyte activation, polarization, and migration. Here, we first describe what is known about the size, amount, and distribution of HA at sites of autoimmunity and in associated lymphoid structures in type 1 diabetes, multiple sclerosis, and rheumatoid arthritis. Next, we examine the recent literature on HA and its impact on adaptive immunity, particularly in regards to the biology of lymphocytes and Foxp3+ regulatory T-cells (Treg), a T-cell subset that maintains immune tolerance in healthy individuals. We propose that HA accumulation at sites of chronic inflammation creates a permissive environment for autoimmunity, characterized by CD44-mediated inhibition of Treg expansion. Finally, we address potential tools and strategies for targeting HA and its receptor CD44 in chronic inflammation and autoimmunity.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther Wang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
12
|
Ferrer VP, Moura Neto V, Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 2018; 66:1542-1565. [DOI: 10.1002/glia.23309] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rolf Mentlein
- Department of Anatomy; University of Kiel; Kiel Germany
| |
Collapse
|
13
|
Fernández S, Córdoba M. A membrane-associated adenylate cyclase modulates lactate dehydrogenase and creatine kinase activities required for bull sperm capacitation induced by hyaluronic acid. Anim Reprod Sci 2017; 179:80-87. [DOI: 10.1016/j.anireprosci.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 02/07/2023]
|
14
|
Tsepilov RN, Beloded AV. Hyaluronic Acid--an "Old" Molecule with "New" Functions: Biosynthesis and Depolymerization of Hyaluronic Acid in Bacteria and Vertebrate Tissues Including during Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2016; 80:1093-108. [PMID: 26555463 DOI: 10.1134/s0006297915090011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyaluronic acid is an evolutionarily ancient molecule commonly found in vertebrate tissues and capsules of some bacteria. Here we review modern data regarding structure, properties, and biological functions of hyaluronic acid in mammals and Streptococcus spp. bacteria. Various aspects of biogenesis and degradation of hyaluronic acid are discussed, biosynthesis and degradation metabolic pathways for glycosaminoglycan together with involved enzymes are described, and vertebrate and bacterial hyaluronan synthase genes are characterized. Special attention is given to the mechanisms underlying the biological action of hyaluronic acid as well as the interaction between polysaccharide and various proteins. In addition, all known signaling pathways involving hyaluronic acid are outlined. Impaired hyaluronic acid metabolism, changes in biopolymer molecular weight, hyaluronidase activity, and enzyme isoforms often accompany carcinogenesis. The interaction between cells and hyaluronic acid from extracellular matrix that may be important during malignant change is discussed. An expected role for high molecular weight hyaluronic acid in resistance of naked mole rat to oncologic diseases and the protective role of hyaluronic acid in bacteria are discussed.
Collapse
Affiliation(s)
- R N Tsepilov
- Gamaleya Research Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow, 123098, Russia.
| | | |
Collapse
|
15
|
Aya KL, Stern R. Hyaluronan in wound healing: rediscovering a major player. Wound Repair Regen 2015; 22:579-93. [PMID: 25039417 DOI: 10.1111/wrr.12214] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 07/11/2014] [Indexed: 12/12/2022]
Abstract
Wound healing involves a series of carefully modulated steps, from initial injury and blood clot to the final reconstituted tissue or scar. A dynamic reciprocity exists throughout between the wound, blood elements, extracellular matrix, and cells that participate in healing. Multiple cytokines and signal transduction pathways regulate these reactions. A major component throughout most of the process is hyaluronan, a straight-chain carbohydrate extracellular matrix polymer. Hyaluronan occurs in multiple forms, chain length being the only distinguishing characteristic between them. Levels of hyaluronan in its high-molecular-weight form are prominent in the earliest stages of wound repair. Progressively more fragmented forms occur in a manner not previously appreciated. We outline here steps in the wound healing cascade in which hyaluronan participates, as well as providing a review of its metabolism. Although described by necessity in a series of quantum steps, the healing process is constituted by a smooth continuum of overlapping reactions. The prevalence of hyaluronan in the wound (initially termed "hexosamine-containing mucopolysaccharide"), particularly in its early stages, was pointed out over half a century ago by the Harvard surgeon J. Engelbert Dunphy. It appears we are now returning to where we started.
Collapse
Affiliation(s)
- Kessiena L Aya
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, New York, New York
| | | |
Collapse
|
16
|
Cai S, Alhowyan AAB, Yang Q, Forrest WCM, Shnayder Y, Forrest ML. Cellular uptake and internalization of hyaluronan-based doxorubicin and cisplatin conjugates. J Drug Target 2014; 22:648-57. [PMID: 24892741 DOI: 10.3109/1061186x.2014.921924] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Hyaluronan (HA) is a ligand for the CD44 receptor which is crucial to cancer cell proliferation and metastasis. High levels of CD44 expression in many cancers have encouraged the development of HA-based carriers for anti-cancer therapeutics. PURPOSE The objective of this study was to determine whether HA conjugation of anticancer drugs impacts CD44-specific HA-drug uptake and disposition by human head and neck cancer cells. METHODS The internalization and cellular disposition of hyaluronan-doxorubicin (HA-DOX), hyaluronan-cisplatin (HA-Pt), and hyaluronan-cyanine7 (HA-Cy7) conjugates were investigated by inhibiting endocytosis pathways, and by inhibiting the CD44-mediated internalization pathways that are known to mediate hyaluronan uptake in vitro. RESULTS Cellular internalization of HA was regulated by CD44 receptors. In mouse xenografts, HA conjugation significantly enhanced tumor cell uptake compared to unconjugated drugs. DISCUSSION The results suggested that the main mechanism of HA-based conjugate uptake may be active transport via CD44 in conjunction with a clathrin-dependent endocytic pathway. Other HA receptors, hyaluronan-mediated motility receptor (RHAMM) and lymphatic vessel endothelial hyaluronan receptor (LYVE-1), did not play a significant role in conjugate uptake. CONCLUSIONS HA conjugation significantly increased CD44-mediated drug uptake and extended the residence time of drugs in tumor cells.
Collapse
Affiliation(s)
- Shuang Cai
- Department of Pharmaceutical Chemistry, University of Kansas , Lawrence, KS , USA
| | | | | | | | | | | |
Collapse
|
17
|
Kouvidi K, Berdiaki A, Nikitovic D, Katonis P, Afratis N, Hascall VC, Karamanos NK, Tzanakakis GN. Role of receptor for hyaluronic acid-mediated motility (RHAMM) in low molecular weight hyaluronan (LMWHA)-mediated fibrosarcoma cell adhesion. J Biol Chem 2011; 286:38509-38520. [PMID: 21914806 DOI: 10.1074/jbc.m111.275875] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hyaluronan (HA) modulates key cancer cell functions through interaction with its CD44 and receptor for hyaluronic acid-mediated motility (RHAMM) receptors. HA was recently found to regulate the migration of fibrosarcoma cells in a manner specifically dependent on its size. Here, we investigated the effect of HA/RHAMM signaling on the ability of HT1080 fibrosarcoma cells to adhere onto fibronectin. Low molecular weight HA (LMWHA) significantly increased (p ≤ 0.01) the adhesion capacity of HT1080 cells, which high molecular weight HA inhibited. The ability of HT1080 RHAMM-deficient cells, but not of CD44-deficient ones, to adhere was significantly decreased (p ≤ 0.001) as compared with control cells. Importantly, the effect of LMWHA on HT1080 cell adhesion was completely attenuated in RHAMM-deficient cells. In contrast, adhesion of RHAMM-deficient cells was not sensitive to high molecular weight HA treatment, which identifies RHAMM as a specific conduit of the LMWHA effect. Western blot and real time-PCR analyses indicated that LMWHA significantly increased RHAMM transcript (p ≤ 0.05) and protein isoform levels (53%, 95 kDa; 37%, 73 kDa) in fibrosarcoma cells. Moreover, Western blot analyses showed that LMWHA in a RHAMM-dependent manner enhanced basal and adhesion-dependent ERK1/2 and focal adhesion kinase (FAK) phosphorylation in HT1080 cells. Utilization of a specific ERK1/2 inhibitor completely inhibited (p ≤ 0.001) LMWHA-dependent adhesion, suggesting that ERK1/2 is a downstream effector of LMWHA/RHAMM signaling. Likewise, the utilization of the specific ERK1 inhibitor resulted in a strong down-regulation of FAK activation in HT1080 cells, which identifies ERK1/2 as a FAK upstream activator. In conclusion, our results suggest that RHAMM/HA interaction regulates fibrosarcoma cell adhesion via the activation of FAK and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Katerina Kouvidi
- Department of Histology-Embryology, University of Crete, Heraklion 71003, Greece
| | - Aikaterini Berdiaki
- Department of Histology-Embryology, University of Crete, Heraklion 71003, Greece
| | - Dragana Nikitovic
- Department of Histology-Embryology, University of Crete, Heraklion 71003, Greece
| | - Pavlos Katonis
- Department of Orthopaedics, Medical School, University of Crete, Heraklion 71003, Greece
| | - Nikos Afratis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Vincent C Hascall
- Cleveland Clinic, Biomedical Engineering ND-20, Cleveland, Ohio 44195
| | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - George N Tzanakakis
- Department of Histology-Embryology, University of Crete, Heraklion 71003, Greece.
| |
Collapse
|
18
|
Vercruysse KP. Hyaluronan: a Simple Molecule with Complex Character. RENEWABLE RESOURCES FOR FUNCTIONAL POLYMERS AND BIOMATERIALS 2011:261-291. [DOI: 10.1039/9781849733519-00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
This review aims to summarize the properties and applications of hyaluronan, a naturally-occurring, anionic polysaccharide. It provides an overview of its physic chemical properties, biosynthesis and biodegradation. It includes a discussion of the principal hyaluronan-binding proteins studied thus far. The existence of such proteins underscores the importance of this polysaccharide in cell-biological processes like cancer, inflammation or wound healing and these properties are discussed. Finally, this review summarizes some of the applications of hyaluronan in medicine, biotechnology and cosmetics.
Collapse
Affiliation(s)
- Koen P. Vercruysse
- Tennessee State University Chemistry Department, 3500 John A. Merritt Blvd, Nashville, TN 37209 USA
| |
Collapse
|
19
|
Silverman-Gavrila R, Silverman-Gavrila L, Hou G, Zhang M, Charlton M, Bendeck MP. Rear polarization of the microtubule-organizing center in neointimal smooth muscle cells depends on PKCα, ARPC5, and RHAMM. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:895-910. [PMID: 21281821 DOI: 10.1016/j.ajpath.2010.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 09/13/2010] [Accepted: 10/05/2010] [Indexed: 01/01/2023]
Abstract
Directed migration of smooth muscle cells (SMCs) from the media to the intima in arteries occurs during atherosclerotic plaque formation and during restenosis after angioplasty or stent application. The polarized orientation of the microtubule-organizing center (MTOC) is a key determinant of this process, and we therefore investigated factors that regulate MTOC polarity in vascular SMCs. SMCs migrating in vivo from the medial to the intimal layer of the rat carotid artery following balloon catheter injury were rear polarized, with the MTOC located posterior of the nucleus. In tissue culture, migrating neointimal cells maintained rear polarization, whereas medial cells were front polarized. Using phosphoproteomic screening and mass spectrometry, we identified ARPC5 and RHAMM as protein kinase C (PKC)-phosphorylated proteins associated with rear polarization of the MTOC in neointimal SMCs. RNA silencing of ARPC5 and RHAMM, PKC inhibition, and transfection with a mutated nonphosphorylatable ARPC5 showed that these proteins regulate rear polarization by organizing the actin and microtubule cytoskeletons in neointimal SMCs. Both ARPC5 and RHAMM, in addition to PKC, were required for migration of neointimal SMCs.
Collapse
|
20
|
Kreger ST, Voytik-Harbin SL. Hyaluronan concentration within a 3D collagen matrix modulates matrix viscoelasticity, but not fibroblast response. Matrix Biol 2009; 28:336-46. [PMID: 19442729 DOI: 10.1016/j.matbio.2009.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 05/05/2009] [Indexed: 01/14/2023]
Abstract
The use of 3D extracellular matrix (ECM) microenvironments to deliver growth-inductive signals for tissue repair and regeneration requires an understanding of the mechanisms of cell-ECM signaling. Recently, hyaluronic acid (HA) has been incorporated in collagen matrices in an attempt to recreate tissue specific microenvironments. However, it is not clear how HA alters biophysical properties (e.g. fibril microstructure and mechanical behavior) of collagen matrices or what impact these properties have on cell behavior. The present study determined the effects of varying high molecular weight HA concentration on 1) the assembly kinetics, fibril microstructure, and viscoelastic properties of 3D type I collagen matrices and 2) the response of human dermal fibroblasts, in terms of morphology, F-actin organization, contraction, and proliferation within the matrices. Results showed increasing HA concentration up to 1 mg/ml (HA:collagen ratio of 1:2) did not significantly alter fibril microstructure, but did significantly alter viscoelastic properties, specifically decreasing shear storage modulus and increasing compressive resistance. Interestingly, varied HA concentration did not significantly affect any of the measured fibroblast behaviors. These results show that HA-induced effects on collagen matrix viscoelastic properties result primarily from modulation of the interstitial fluid with no significant change to the fibril microstructure. Furthermore, the resulting biophysical changes to the matrix are not sufficient to modulate the cell-ECM mechanical force balance or proliferation of resident fibroblasts. These results provide new insight into the mechanisms by which cells sense and respond to microenvironmental cues and the use of HA in collagen-based biomaterials for tissue engineering.
Collapse
Affiliation(s)
- S T Kreger
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907-2032, USA
| | | |
Collapse
|
21
|
Deocaris CC, Kaul SC, Wadhwa R. From proliferative to neurological role of an hsp70 stress chaperone, mortalin. Biogerontology 2008; 9:391-403. [PMID: 18770009 DOI: 10.1007/s10522-008-9174-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 08/18/2008] [Indexed: 12/21/2022]
Abstract
Although the brain makes up approximately 2% of a person's body weight, it consumes more than 15% of total cardiac output and has a per capita caloric requirement of 10 times more than the rest of the body. Such continuous metabolic demand that supports the generation of action potentials in neuronal cells relies on the mitochondria, the main organelle for power generation. The phenomenon of mitochondrial biogenesis, although has long been a neglected theme in neurobiology, can be regarded as critical to brain physiology. The present review emphasizes the role of a key molecular player of mitochondrial biogenesis, the mortalin/mthsp70. Brain mortalin is discussed in relation to its aptitude to impact on mitochondrial function and homeostasis, to its interfacing energy metabolic functions with synaptic plasticity, and to its modulation of brain aging via the cellular senescence pathways. Recently, this chaperone has been implicated in Alzheimer's (AD) and Parkinson's (PD) diseases, with proteomic studies consistently identifying oxidatively-damaged mortalin as potential biomarker. Hence, it is possible that mitochondrial dysfunction coincides with the collapse in the mitochondrial chaperone network that aim not only to import, sort and maintain integrity of protein components within the mitochondria, but also to act as buffer to the molecular heterogeneity of damaged and aging mitochondrial proteins within a ROS-rich microenvironment. Inversely, it may also seem that vulnerability to mitochondrial dysfunction could be precipitated by malevolent (anti-chaperone) gain-of-function of a 'sick mortalin'.
Collapse
Affiliation(s)
- Custer C Deocaris
- Institute of Health and Sports Science, University of Tsukuba, Ibaraki, 305-8574, Japan
| | | | | |
Collapse
|
22
|
Lamontagne CA, Grandbois M. PKC-induced stiffening of hyaluronan/CD44 linkage; local force measurements on glioma cells. Exp Cell Res 2007; 314:227-36. [PMID: 17698062 DOI: 10.1016/j.yexcr.2007.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/03/2007] [Accepted: 07/03/2007] [Indexed: 11/25/2022]
Abstract
Interaction of cells with hyaluronan (HA) rich extracellular matrix involves the membrane receptor CD44. HA-CD44 interactions are particularly important in the development of glioma pathogenesis for its implication in tumor cells spreading. Highly motile states rely on the spaciotemporal regulation of HA-CD44 interactions occurring in specific cytoskeletal-supported membrane organization such as microvilli or the leading edge observed in migrating cell. We used AFM-based force measurement to probe the HA-CD44 interaction at localized regions at the surface of living glioma cells expressing high level of the CD44 standard isoform. We show that unstimulated cells interact with HA over their entire surfaces and are highly deformable when force is exerted on individual HA molecules bound to membrane CD44 receptors. Conversely, in PKC-activated cells the probed interactions are concentrated at the leading edge of the cells with reduced membrane deformability. Taken together, our results show that PKC-enhanced motility in glioma cells is associated with a redistribution of CD44 receptors at the leading edges concomitant with a stiffer anchoring of CD44 to the cell surface involving the actin cytoskeleton.
Collapse
|
23
|
Hamilton SR, Fard SF, Paiwand FF, Tolg C, Veiseh M, Wang C, McCarthy JB, Bissell MJ, Koropatnick J, Turley EA. The hyaluronan receptors CD44 and Rhamm (CD168) form complexes with ERK1,2 that sustain high basal motility in breast cancer cells. J Biol Chem 2007; 282:16667-80. [PMID: 17392272 PMCID: PMC2949353 DOI: 10.1074/jbc.m702078200] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CD44 is an integral hyaluronan receptor that can promote or inhibit motogenic signaling in tumor cells. Rhamm is a nonintegral cell surface hyaluronan receptor (CD168) and intracellular protein that promotes cell motility in culture. Here we describe an autocrine mechanism utilizing cell surface Rhamm-CD44 interactions to sustain rapid basal motility in invasive breast cancer cell lines that requires endogenous hyaluronan synthesis and the formation of Rhamm-CD44-ERK1,2 complexes. Motile/invasive MDA-MB-231 and Ras-MCF10A cells produce more endogenous hyaluronan, cell surface CD44 and Rhamm, an oncogenic Rhamm isoform, and exhibit more elevated basal activation of ERK1,2 than less invasive MCF7 and MCF10A breast cancer cells. Furthermore, CD44, Rhamm, and ERK1,2 uniquely co-immunoprecipitate and co-localize in MDA-MB-231 and Ras-MCF10A cells. Combinations of anti-CD44, anti-Rhamm antibodies, and a MEK1 inhibitor (PD098059) had less-than-additive blocking effects, suggesting the action of all three proteins on a common motogenic signaling pathway. Collectively, these results show that cell surface Rhamm and CD44 act together in a hyaluronan-dependent autocrine mechanism to coordinate sustained signaling through ERK1,2, leading to high basal motility of invasive breast cancer cells. Therefore, an effect of CD44 on tumor cell motility may depend in part on its ability to partner with additional proteins, such as cell surface Rhamm.
Collapse
Affiliation(s)
- Sara R. Hamilton
- London Regional Cancer Program, London Health Sciences Centre/The University of Western Ontario (London, ON Canada)
| | - Shireen F. Fard
- London Regional Cancer Program, London Health Sciences Centre/The University of Western Ontario (London, ON Canada)
| | - Frouz F. Paiwand
- Department of Cardiovascular Research, Hospital for Sick Children (Toronto, ON, Canada)
| | - Cornelia Tolg
- London Regional Cancer Program, London Health Sciences Centre/The University of Western Ontario (London, ON Canada)
| | - Mandana Veiseh
- Division of Life Sciences, Lawrence Berkeley National Laboratories, Berkeley CA
| | - Chao Wang
- Department of Cardiovascular Research, Hospital for Sick Children (Toronto, ON, Canada)
| | - James B. McCarthy
- Department of Laboratory Medicine and Pathology and University of Minnesota Comprehensive Cancer Center (Minneapolis, MN, USA)
| | - Mina J. Bissell
- Division of Life Sciences, Lawrence Berkeley National Laboratories, Berkeley CA
| | - James Koropatnick
- London Regional Cancer Program, London Health Sciences Centre/The University of Western Ontario (London, ON Canada)
| | - Eva A. Turley
- London Regional Cancer Program, London Health Sciences Centre/The University of Western Ontario (London, ON Canada)
- Address correspondence to: London Regional Cancer Program, Cancer Research Laboratories, Room A4-931, 790 Commissioners Road E, London ON, Canada N6A 4L6, Tel. 519 685-8600 ext. 53677; Fax: 519 685-8616;
| |
Collapse
|
24
|
Tolg C, Hamilton SR, Nakrieko KA, Kooshesh F, Walton P, McCarthy JB, Bissell MJ, Turley EA. Rhamm-/- fibroblasts are defective in CD44-mediated ERK1,2 motogenic signaling, leading to defective skin wound repair. ACTA ACUST UNITED AC 2006; 175:1017-28. [PMID: 17158951 PMCID: PMC2064710 DOI: 10.1083/jcb.200511027] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rhamm (receptor for hyaluronan-mediated motility) is an hyaluronan binding protein with limited expression in normal tissues and high expression in advanced cancers. To understand its physiological functions and identify the molecular mechanisms underlying these functions, we created mice with a genetic deletion of Rhamm. We show that Rhamm−/− fibroblasts fail to resurface scratch wounds >3 mm or invade hyaluronan-supplemented collagen gels in culture. We identify a requirement for Rhamm in the localization of CD44 to the cell surface, formation of CD44–ERK1,2 (extracellular-regulated kinase 1,2) complexes, and activation/subcellular targeting of ERK1,2 to the cell nucleus. We also show that cell surface Rhamm, restricted to the extracellular compartment by linking recombinant protein to beads, and expression of mutant active mitogen-activated kinase kinase 1 (Mek1) are sufficient to rescue aberrant signaling through CD44–ERK1,2 complexes in Rh−/− fibroblasts. ERK1,2 activation and fibroblast migration/differentiation is also defective during repair of Rh−/− excisional skin wounds and results in aberrant granulation tissue in vivo. These results identify Rhamm as an essential regulator of CD44–ERK1,2 fibroblast motogenic signaling required for wound repair.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, London, Ontario N6A 4L6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ducale AE, Ward SI, Dechert T, Yager DR. Regulation of hyaluronan synthase-2 expression in human intestinal mesenchymal cells: mechanisms of interleukin-1beta-mediated induction. Am J Physiol Gastrointest Liver Physiol 2005; 289:G462-70. [PMID: 15677552 DOI: 10.1152/ajpgi.00494.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Elevated levels of hyaluronan are associated with numerous inflammatory diseases including inflammatory bowel disease. The purpose of this study was to determine whether a cause and effect relationship might exist among proinflammatory cytokines, IL-1beta, TNF-alpha, IFN-gamma, or transforming growth factor-beta (TGF-beta) and hyaluronan expression in human JDMC and, if so, to identify possible mechanisms involved in the induction of hyaluronan expression. TGF-beta, TNF-alpha, and IFN-gamma had little or no effect on hyaluronan production by these cells. Treatment with IL-1beta induced an approximate 30-fold increase in the levels of hyaluronan in the medium of human jejunum-derived mesenchymal cells. Ribonuclease protection analysis revealed that steady-state transcript levels for hyaluronan synthase (HAS)2 were present at very low levels in untreated cells but increased as much as 18-fold in the presence of IL-1beta. HAS3 transcript levels were also increased slightly by exposure of these cells to IL-1beta. Expression of HAS1 transcripts was not detected under any condition in these cells. IL-1beta induction of hyaluronan expression was inhibited in cells transfected with short interfering RNA corresponding to HAS2 transcripts. Inhibitors of the p38 and ERK1/2 mitogen-activated pathways but not JNK/SAPK blocked the IL-1beta-mediated induction of hyaluronan expression and the increase in HAS2 transcript expression. These results suggest that IL-1beta induction of HAS2 expression involves multiple signaling pathways that act in concert, thus leading to an increase in expression of hyaluronan by jejunum-derived mesenchymal cells.
Collapse
Affiliation(s)
- Ashley E Ducale
- Dept. of Surgery, Virginia Commonwealth Univ., PO Box 980117, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
26
|
Masters KS, Shah DN, Leinwand LA, Anseth KS. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials 2005; 26:2517-25. [PMID: 15585254 DOI: 10.1016/j.biomaterials.2004.07.018] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 07/07/2004] [Indexed: 11/22/2022]
Abstract
Hyaluronic acid (HA), a major component of the cardiac jelly during heart morphogenesis, is a polysaccharide that upon modification can be photopolymerized into hydrogels. Previous work in our lab has found that photopolymerizable HA hydrogels are suitable scaffolds for the culture and proliferation of valvular interstitial cells (VICs), the most prevalent cell type in native heart valves. The physical properties of HA gels are easily modified through alteration in material crosslink density or by copolymerizing with other reactive macromolecules. Degradation products of HA gels and the starting macromers significantly increased VIC proliferation when added to cell cultures. With low molecular weight HA (<6700 Da) exhibiting greatest stimulation of VIC proliferation. Low molecular weight HA degradation products added to VIC cultures also resulted in a four-fold increase in total matrix production and a two-fold increase in elastin production over untreated controls. VIC internalization of HA, as shown by cellular uptake of fluorescently labeled HA, likely activates signaling cascades resulting in the biological responses seen here. Lastly, VICs encapsulated within HA hydrogels remained viable, and significant elastin production was observed after 6 weeks of culture. This work shows promise for the creation of a tissue-engineered heart valve utilizing the synergistic relationship between hyaluronic acid and VICs.
Collapse
Affiliation(s)
- Kristyn S Masters
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309-0424, USA
| | | | | | | |
Collapse
|
27
|
Nedvetzki S, Gonen E, Assayag N, Reich R, Williams RO, Thurmond RL, Huang JF, Neudecker BA, Wang FS, Wang FS, Turley EA, Naor D. RHAMM, a receptor for hyaluronan-mediated motility, compensates for CD44 in inflamed CD44-knockout mice: a different interpretation of redundancy. Proc Natl Acad Sci U S A 2004; 101:18081-6. [PMID: 15596723 PMCID: PMC539795 DOI: 10.1073/pnas.0407378102] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Indexed: 11/18/2022] Open
Abstract
We report here that joint inflammation in collagen-induced arthritis is more aggravated in CD44-knockout mice than in WT mice, and we provide evidence for molecular redundancy as a causal factor. Furthermore, we show that under the inflammatory cascade, RHAMM (receptor for hyaluronan-mediated motility), a hyaluronan receptor distinct from CD44, compensates for the loss of CD44 in binding hyaluronic acid, supporting cell migration, up-regulating genes involved with inflammation (as assessed by microarrays containing 13,000 cDNA clones), and exacerbating collagen-induced arthritis. Interestingly, we further found that the compensation for loss of the CD44 gene does not occur because of enhanced expression of the redundant gene (RHAMM), but rather because the loss of CD44 allows increased accumulation of the hyaluronic acid substrate, with which both CD44 and RHAMM engage, thus enabling augmented signaling through RHAMM. This model enlightens several aspects of molecular redundancy, which is widely discussed in many scientific circles, but the processes are still ill defined.
Collapse
Affiliation(s)
- Shlomo Nedvetzki
- The Lautenberg Center for General and Tumor Immunology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Evanko SP, Parks WT, Wight TN. Intracellular hyaluronan in arterial smooth muscle cells: association with microtubules, RHAMM, and the mitotic spindle. J Histochem Cytochem 2004; 52:1525-35. [PMID: 15557208 DOI: 10.1369/jhc.4a6356.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although considered a pericellular matrix component, hyaluronan was recently localized in the cytoplasm and nucleus of proliferating cells, supporting earlier reports that hyaluronan was present in locations such as the nucleus, rough endoplasmic reticulum, and caveolae. This suggests that it can play roles both inside and outside the cell. Hyaluronan metabolism is coupled to mitosis and cell motility, but it is not clear if intracellular hyaluronan associates with cytoskeletal elements or plays a structural role. Here we report the distribution of intracellular hyaluronan, microtubules, and RHAMM in arterial smooth muscle cells in vitro. The general distribution of intracellular hyaluronan more closely resembled microtubule staining rather than actin filaments. Hyaluronan was abundant in the perinuclear microtubule-rich areas and was present in lysosomes, other vesicular structures, and the nucleolus. Partially fragmented fluorescein-hyaluronan was preferentially translocated to the perinuclear area compared with high-molecular-weight hyaluronan. In the mitotic spindle, hyaluronan colocalized with tubulin and with the hyaladherin RHAMM, a cell surface receptor and microtubule-associated protein that interacts with dynein and maintains spindle pole stability. Internalized fluorescein-hyaluronan was also seen at the spindle. Following telophase, an abundance of hyaluronan near the midbody microtubules at the cleavage furrow was also noted. In permeabilized cells, fluorescein-hyaluronan bound to RHAMM-associated microtubules. These findings suggest novel functions for hyaluronan in cellular physiology.
Collapse
Affiliation(s)
- Stephen P Evanko
- Hope Heart Program-Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101-2795, USA.
| | | | | |
Collapse
|
29
|
Nagano O, Saya H. Mechanism and biological significance of CD44 cleavage. Cancer Sci 2004; 95:930-5. [PMID: 15596040 PMCID: PMC11159127 DOI: 10.1111/j.1349-7006.2004.tb03179.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/18/2004] [Accepted: 10/18/2004] [Indexed: 12/13/2022] Open
Abstract
There are multiple steps in the metastasis of cancer cells. Tumor cells must first detach from the tumor mass and invade the surrounding extracellular matrix (ECM). In this step, cell surface adhesion molecules play an important role in the interaction between the cells and their microenvironments. CD44 is an adhesion molecule that interacts with hyaluronic acid (HA) and is implicated in a wide variety of physiological and pathological processes. Recently, proteolytic cleavages of CD44 have been emerging as key regulatory events for the CD44 dependent cell-matrix interaction and signaling pathway. CD44 undergoes sequential proteolytic cleavages in the ectodomain and intramembranous domain, resulting in the release of a CD44 intracellular domain (ICD) fragment. The ectodomain cleavage of CD44 is triggered by multiple stimulations and contributes to the regulation of cell attachment to and migration on HA matrix. The ectodomain cleavage subsequently induces the intramembranous cleavage, which is mediated by presenilin (PS)-dependent gamma -secretase. The intramembranous cleavage generates CD44ICD, which acts as a signal transduction molecule; it is translocated to the nucleus and activates transcription. An understanding of the underlying mechanism of these cleavages of CD44 could provide novel therapeutic targets for cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Osamu Nagano
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | |
Collapse
|
30
|
TÖLG CORNELIA, HAMILTON SARAR, TURLEY EVAA. The Role of the Hyaluronan Receptor RHAMM in Wound Repair and Tumorigenesis. CHEMISTRY AND BIOLOGY OF HYALURONAN 2004:125-151. [DOI: 10.1016/b978-008044382-9/50037-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Leir SH, Holgate ST, Lackie PM. Inflammatory cytokines can enhance CD44-mediated airway epithelial cell adhesion independently of CD44 expression. Am J Physiol Lung Cell Mol Physiol 2003; 285:L1305-11. [PMID: 12909589 DOI: 10.1152/ajplung.00255.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In airways, the cell surface molecule CD44 is upregulated on bronchial epithelial cells in areas of damage. We have shown that a blocking standard CD44 (CD44s) antibody caused a 77% (+/- 19%) inhibition of cell migration at 3 h after mechanical damage and decreased epithelial cell repair of cells grown on cell culture filter inserts. With the use of primary human bronchial epithelial cells and the bronchial epithelial cell line 16HBE 14o-, a CD44s antibody inhibited >95% (P < 0.01) of cell binding to hyaluronic acid (HA). The cytokines TNF-alpha, IFN-gamma, IL-1 beta, and IL-4 stimulated a 2- to 3.5-fold increase in CD44-dependent cell binding to HA. IFN-gamma treatment did not increase CD44 expression as assessed by flow cytometry, although phorbol myristate acetate treatment did. This indicates that IFN-gamma-induced cell binding to HA did not require increased CD44 expression. These data indicate that CD44 is important for bronchial epithelial cell binding to HA and that cytokines known to be expressed in inflammation can increase HA binding independently of the level of CD44 expression.
Collapse
Affiliation(s)
- Shih-Hsing Leir
- Respiratory Cell and Molecular Biology, Infection Immunity and Repair Division, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | | | | |
Collapse
|
32
|
Slevin M, Kumar S, Gaffney J. Angiogenic oligosaccharides of hyaluronan induce multiple signaling pathways affecting vascular endothelial cell mitogenic and wound healing responses. J Biol Chem 2002; 277:41046-59. [PMID: 12194965 DOI: 10.1074/jbc.m109443200] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan (HA) is a large nonsulfated glycosaminoglycan and an important regulator of angiogenesis, in particular, the growth and migration of vascular endothelial cells. We have identified some of the key intermediates responsible for induction of mitogenesis and wound recovery. Treatment of bovine aortic endothelial cells with oligosaccharides of hyaluronan (o-HA) resulted in rapid tyrosine phosphorylation and plasma membrane translocation of phospholipase Cgamma1 (PLCgamma1). Cytoplasmic loading with inhibitory antibodies to PLCgamma1, Gbeta, and Galpha(i/o/t/z) inhibited activation of extracellular-regulated kinase 1/2 (ERK1/2). Treatment with the Galpha(i/o) inhibitor, pertussis toxin, reduced o-HA-induced PLCgamma1 tyrosine phosphorylation, protein kinase C (PKC) alpha and beta1/2 membrane translocation, ERK1/2 activation, mitogenesis, and wound recovery, suggesting a mechanism for o-HA-induced angiogenesis through G-proteins, PLCgamma1, and PKC. In particular, we demonstrated a possible role for PKCalpha in mitogenesis and PKCbeta1/2 in wound recovery. Using antisense oligonucleotides and the Ras farnesylation inhibitor FTI-277, we showed that o-HA-induced bovine aortic endothelial cell proliferation, wound recovery, and ERK1/2 activation were also partially dependent on Ras activation, and that o-HA-stimulated tyrosine phosphorylation of the adapter protein Shc, as well as its association with Sos1. Binding of Src to Shc was required for its activation and for Ras-dependent activation of ERK1/2, cell proliferation, and wound recovery. Neither Src nor Ras activation was inhibited by pertussis toxin, suggesting that their activation was independent of heterotrimeric G-proteins. However, the specific Src kinase inhibitor PP2 inhibited Gbeta subunit co-precipitation with PLCgamma1, suggesting a possible role for Src in activation of PLCgamma1 and interaction between two distinct o-HA-induced signaling pathways.
Collapse
Affiliation(s)
- Mark Slevin
- Department of Biological Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK.
| | | | | |
Collapse
|
33
|
Hall CL, Wang FS, Turley E. Src-/- fibroblasts are defective in their ability to disassemble focal adhesions in response to phorbol ester/hyaluronan treatment. CELL COMMUNICATION & ADHESION 2002; 9:273-83. [PMID: 12745438 DOI: 10.1080/15419060216306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Exogenous hyaluronan promotes a rapid recruitment of Src to lamellae of mutant active H-ras transformed fibroblasts and an Src- and RHAMM (CD168)-dependent increase in random motility. These responses are accompanied by a loss of vinculin-positive lamellae focal adhesions. Nontransformed immortalized wild-type fibroblasts (WT) do not increase random motility in response to hyaluronan alone, but do increase motility in response to a combination of PMA treatment followed by hyaluronan. PMA treatment alone increases the number of lamellae/cell, percentage of cells with lamellae and number of focal adhesions/lamellae. Subsequent addition of hyaluronan does not affect the number of lamellae/cell but reduces both the number of focal adhesion/lamellae and the percentage of cells forming focal adhesion-positive lamellae. These effects are prevented by blocking RHAMM antibodies and mimicked by agonist RHAMM antibodies. Src-/- fibroblasts exhibit a limited response to PMA but do not increase motility or disassemble focal adhesions in response to a subsequent addition of HA. Rescue of Src-/- fibroblasts with either SrcA or c-Src restores response to close to WT levels. These results suggest that Src activity is uniquely required for both PMA and PMA-induced hyaluronan regulation of random motility and focal adhesion turnover.
Collapse
Affiliation(s)
- Christine L Hall
- Depts. Oncology and Biochemistry, The University of Western Ontario and London Regional Cancer Center, London, Ontario, Canada N6A 4L6
| | | | | |
Collapse
|
34
|
Lee HY, Bae GU, Jung ID, Lee JS, Kim YK, Noh SH, Stracke ML, Park CG, Lee HW, Han JW. Autotaxin promotes motility via G protein-coupled phosphoinositide 3-kinase gamma in human melanoma cells. FEBS Lett 2002; 515:137-40. [PMID: 11943209 DOI: 10.1016/s0014-5793(02)02457-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Autotaxin (ATX), an exo-nucleotide pyrophosphatase and phosphodiesterase, stimulates tumor cell motility at sub-nanomolar levels and augments invasiveness and angiogenesis. We investigated the role of G protein-coupled phosphoinositide 3-kinase gamma (PI3Kgamma) in ATX-mediated tumor cell motility stimulation. Pretreatment of human melanoma cell line A2058 with wortmannin or LY294002 inhibited ATX-induced motility. ATX increased the PI3K activity in p110gamma, but not p85, immunoprecipitates. This effect was abrogated by PI3K inhibitors or inhibited by pertussis toxin. Furthermore, stimulation of tumor cell motility by ATX was inhibited by catalytically inactive form of PI3Kgamma, strongly indicating the crucial role of PI3Kgamma for ATX-mediated motility in human melanoma cells
Collapse
Affiliation(s)
- Hoi Young Lee
- College of Medicine, Konyang University, 320-711, Nonsan, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Markku I Tammi
- Department of Anatomy, University of Kuopio, FIN-70211, Kuopio, Finland
| | | | | |
Collapse
|
36
|
Affiliation(s)
- Eva A Turley
- London Regional Cancer Center, University of Western Ontario, London N6A 4L6, Canada.
| | | | | |
Collapse
|