1
|
Lathram WA, Neff RJ, Zalla AN, Brien JD, Subramanian V, Radka CD. Dissecting the biophysical mechanisms of oleate hydratase association with membranes. Front Mol Biosci 2025; 11:1504373. [PMID: 39845901 PMCID: PMC11751051 DOI: 10.3389/fmolb.2024.1504373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from Staphylococcus aureus, and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions. Using fluorescence correlation spectroscopy (FCS), we examined the effects of membrane curvature and lipid availability on OhyA binding to phosphatidylglycerol unilamellar vesicles. Our results reveal that OhyA preferentially binds to vesicles with moderate curvature, while the presence of substrate fatty acids slightly enhanced the overall interaction despite reducing the binding affinity by 3- to 4-fold. Complementary phosphorus-31 (31P) NMR spectroscopy further demonstrated two distinct binding modes: a fast-exchange interaction at lower protein concentrations and a longer lasting interaction at higher protein concentrations, likely reflecting cooperative oligomerization. These findings highlight the reversible, non-stoichiometric nature of OhyA•membrane interactions, with dynamic binding behaviors influenced by protein concentration and lipid environment. This research provides new insights into the dynamic behavior of OhyA on bacterial membranes, highlighting that initial interactions are driven by lipid-mediated protein binding, while sustained interactions are primarily governed by the protein:lipid molar ratio rather than the formation of new, specific lipid-protein interactions. These findings advance our understanding of the biophysical principles underlying OhyA's role in bacterial membrane function and virulence.
Collapse
Affiliation(s)
- William A. Lathram
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | - Robert J. Neff
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | - Ashley N. Zalla
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | - James D. Brien
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | | | - Christopher D. Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
2
|
Casler JC, Johnson N, Krahn AH, Pantazopoulou A, Day KJ, Glick BS. Clathrin adaptors mediate two sequential pathways of intra-Golgi recycling. J Cell Biol 2022; 221:212747. [PMID: 34739034 PMCID: PMC8576872 DOI: 10.1083/jcb.202103199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The pathways of membrane traffic within the Golgi apparatus are not fully known. This question was addressed using the yeast Saccharomyces cerevisiae, in which the maturation of individual Golgi cisternae can be visualized. We recently proposed that the AP-1 clathrin adaptor mediates intra-Golgi recycling late in the process of cisternal maturation. Here, we demonstrate that AP-1 cooperates with the Ent5 clathrin adaptor to recycle a set of Golgi transmembrane proteins, including some that were previously thought to pass through endosomes. This recycling can be detected by removing AP-1 and Ent5, thereby diverting the AP-1/Ent5-dependent Golgi proteins into an alternative recycling loop that involves traffic to the plasma membrane followed by endocytosis. Unexpectedly, various AP-1/Ent5-dependent Golgi proteins show either intermediate or late kinetics of residence in maturing cisternae. We infer that the AP-1/Ent5 pair mediates two sequential intra-Golgi recycling pathways that define two classes of Golgi proteins. This insight can explain the polarized distribution of transmembrane proteins in the Golgi.
Collapse
Affiliation(s)
- Jason C Casler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Natalie Johnson
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Adam H Krahn
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Areti Pantazopoulou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| |
Collapse
|
3
|
Monje-Galvan V, Voth GA. Binding mechanism of the matrix domain of HIV-1 gag on lipid membranes. eLife 2020; 9:58621. [PMID: 32808928 PMCID: PMC7476761 DOI: 10.7554/elife.58621] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Specific protein-lipid interactions are critical for viral assembly. We present a molecular dynamics simulation study on the binding mechanism of the membrane targeting domain of HIV-1 Gag protein. The matrix (MA) domain drives Gag onto the plasma membrane through electrostatic interactions at its highly-basic-region (HBR), located near the myristoylated (Myr) N-terminus of the protein. Our study suggests Myr insertion is involved in the sorting of membrane lipids around the protein-binding site to prepare it for viral assembly. Our realistic membrane models confirm interactions with PIP2 and PS lipids are highly favored around the HBR and are strong enough to keep the protein bound even without Myr insertion. We characterized Myr insertion events from microsecond trajectories and examined the membrane response upon initial membrane targeting by MA. Insertion events only occur with one of the membrane models, showing a combination of surface charge and internal membrane structure modulate this process.
Collapse
Affiliation(s)
- Viviana Monje-Galvan
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, United States
| |
Collapse
|
4
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
5
|
Raza S, Alvisi G, Shahin F, Husain U, Rabbani M, Yaqub T, Anjum AA, Sheikh AA, Nawaz M, Ali MA. Role of Rab GTPases in HSV-1 infection: Molecular understanding of viral maturation and egress. Microb Pathog 2018; 118:146-153. [PMID: 29551438 DOI: 10.1016/j.micpath.2018.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Most enveloped viruses exploit complex cellular pathways for assembly and egress from the host cell, and the large DNA virus Herpes simplex virus 1 (HSV-1) makes no exception, hijacking several cellular transport pathways for its glycoprotein trafficking and maturation, as well as for viral morphogenesis and egress according to the envelopment, de-envelopment and re-envelopment model. Importantly Rab GTPases, widely distributed master regulators of intracellular membrane trafficking pathways, have recently being tightly implicated in such process. Indeed, siRNA-mediated genetic ablation of specific Rab proteins differently affected HSV-1 production, suggesting a complex role of different Rab proteins in HSV-1 life cycle. In this review, we discuss how different Rabs can regulate HSV-1 assembly/egress and the potential therapeutic applications of such findings for the management of HSV-1 infections.
Collapse
Affiliation(s)
- Sohail Raza
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan.
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, 35121, Italy
| | - Farzana Shahin
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Urooj Husain
- Postgraduate Medical Institute Lahore 54000, Pakistan
| | - Masood Rabbani
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Tahir Yaqub
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Aftab Ahmad Anjum
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Ali Ahmad Sheikh
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Muhammad Nawaz
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Muhammad Asad Ali
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| |
Collapse
|
6
|
Molecular Insights into the Roles of Rab Proteins in Intracellular Dynamics and Neurodegenerative Diseases. Neuromolecular Med 2018; 20:18-36. [PMID: 29423895 DOI: 10.1007/s12017-018-8479-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/27/2018] [Indexed: 02/01/2023]
Abstract
In eukaryotes, the cellular functions are segregated to membrane-bound organelles. This inherently requires sorting of metabolites to membrane-limited locations. Sorting the metabolites from ribosomes to various organelles along the intracellular trafficking pathways involves several integral cellular processes, including an energy-dependent step, in which the sorting of metabolites between organelles is catalyzed by membrane-anchoring protein Rab-GTPases (Rab). They contribute to relaying the switching of the secretory proteins between hydrophobic and hydrophilic environments. The intracellular trafficking routes include exocytic and endocytic pathways. In these pathways, numerous Rab-GTPases are participating in discrete shuttling of cargoes. Long-distance trafficking of cargoes is essential for neuronal functions, and Rabs are critical for these functions, including the transport of membranes and essential proteins for the development of axons and neurites. Rabs are also the key players in exocytosis of neurotransmitters and recycling of neurotransmitter receptors. Thus, Rabs are critical for maintaining neuronal communication, as well as for normal cellular physiology. Therefore, cellular defects of Rab components involved in neural functions, which severely affect normal brain functions, can produce neurological complications, including several neurodegenerative diseases. In this review, we provide a comprehensive overview of the current understanding of the molecular signaling pathways of Rab proteins and the impact of their defects on different neurodegenerative diseases. The insights gathered into the dynamics of Rabs that are described in this review provide new avenues for developing effective treatments for neurodegenerative diseases-associated with Rab defects.
Collapse
|
7
|
Thomas FA, Visco I, Petrášek Z, Heinemann F, Schwille P. Introducing a fluorescence-based standard to quantify protein partitioning into membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2932-41. [PMID: 26342678 DOI: 10.1016/j.bbamem.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022]
Abstract
The affinity of peripheral membrane proteins for a lipid bilayer can be described using the partition coefficient (KP). Although several methods to determine KP are known, all possess limitations. To address some of these issues, we developed both: a versatile method based on single molecule detection and fluorescence imaging for determining KP, and a simple measurement standard employing hexahistidine-tagged enhanced green fluorescent protein (eGFP-His6) and free standing membranes of giant unilamellar vesicles (GUVs) functionalized with NTA(Ni) lipids as binding sites. To ensure intrinsic control, our method features two measurement modes. In the single molecule mode, fluorescence correlation spectroscopy (FCS) is applied to quantify free and membrane associated protein concentrations at equilibrium and calculate KP. In the imaging mode, confocal fluorescence images of GUVs are recorded and analyzed with semi-automated software to extract protein mean concentrations used to derive KP. Both modes were compared by determining the affinity of our standard, resulting in equivalent KP values. As observed in other systems, eGFP-His6 affinity for membranes containing increasing amounts of NTA(Ni) lipids rises in a stronger-than-linear fashion. We compared our dual approach with a FCS-based assay that uses large unilamellar vesicles (LUVs), which however fails to capture the stronger-than-linear trend for our NTA(Ni)-His6 standard. Hence, we determined the KP of the MARCKS effector domain with our FCS approach on GUVs, whose results are consistent with previously published data using LUVs. We finally provide a practical manual on how to measure KP and understand it in terms of molecules per lipid surface.
Collapse
Affiliation(s)
- Franziska A Thomas
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Ilaria Visco
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Zdeněk Petrášek
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Fabian Heinemann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
8
|
Lamprakis C, Stocker A, Cascella M. Mechanisms of recognition and binding of α-TTP to the plasma membrane by multi-scale molecular dynamics simulations. Front Mol Biosci 2015; 2:36. [PMID: 26191529 PMCID: PMC4487086 DOI: 10.3389/fmolb.2015.00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022] Open
Abstract
We used multiple sets of simulations both at the atomistic and coarse-grained level of resolution to investigate interaction and binding of α-tochoperol transfer protein (α-TTP) to phosphatidylinositol phosphate lipids (PIPs). Our calculations indicate that enrichment of membranes with such lipids facilitate membrane anchoring. Atomistic models suggest that PIP can be incorporated into the binding cavity of α-TTP and therefore confirm that such protein can work as lipid exchanger between the endosome and the plasma membrane. Comparison of the atomistic models of the α-TTP-PIPs complex with membrane-bound α-TTP revealed different roles for the various basic residues composing the basic patch that is key for the protein/ligand interaction. Such residues are of critical importance as several point mutations at their position lead to severe forms of ataxia with vitamin E deficiency (AVED) phenotypes. Specifically, R221 is main residue responsible for the stabilization of the complex. R68 and R192 exchange strong interactions in the protein or in the membrane complex only, suggesting that the two residues alternate contact formation, thus facilitating lipid flipping from the membrane into the protein cavity during the lipid exchange process. Finally, R59 shows weaker interactions with PIPs anyway with a clear preference for specific phosphorylation positions, hinting a role in early membrane selectivity for the protein. Altogether, our simulations reveal significant aspects at the atomistic scale of interactions of α-TTP with the plasma membrane and with PIP, providing clarifications on the mechanism of intracellular vitamin E trafficking and helping establishing the role of key residue for the functionality of α-TTP.
Collapse
Affiliation(s)
- Christos Lamprakis
- Department of Chemistry and Biochemistry, University of BernBern, Switzerland
| | - Achim Stocker
- Department of Chemistry and Biochemistry, University of BernBern, Switzerland
| | - Michele Cascella
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of OsloOslo, Norway
| |
Collapse
|
9
|
Niyogi S, Jimenez V, Girard-Dias W, de Souza W, Miranda K, Docampo R. Rab32 is essential for maintaining functional acidocalcisomes, and for growth and infectivity of Trypanosoma cruzi. J Cell Sci 2015; 128:2363-73. [PMID: 25964650 DOI: 10.1242/jcs.169466] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/30/2015] [Indexed: 02/01/2023] Open
Abstract
The contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease, collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress; it also has a role in cell shrinking after hyperosmotic stress. Here, we report that, in addition to its role in osmoregulation, the CVC of T. cruzi has a role in the biogenesis of acidocalcisomes. Expression of dominant-negative mutants of the CVC-located small GTPase Rab32 (TcCLB.506289.80) results in lower numbers of less-electron-dense acidocalcisomes, lower content of polyphosphate, lower capacity for acidocalcisome acidification and Ca(2+) uptake that is driven by the vacuolar proton pyrophosphatase and the Ca(2+)-ATPase, respectively, as well as less-infective parasites, revealing the role of this organelle in parasite infectivity. By using fluorescence, electron microscopy and electron tomography analyses, we provide further evidence of the active contact of acidocalcisomes with the CVC, indicating an active exchange of proteins between the two organelles.
Collapse
Affiliation(s)
- Sayantanee Niyogi
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Veronica Jimenez
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Wendell Girard-Dias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Xerém, Rio de Janeiro 25250-020, Brazil
| | - Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Xerém, Rio de Janeiro 25250-020, Brazil
| | - Roberto Docampo
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Abstract
This review discusses how kinetic proofreading by Rab GTPases provides a speed-dating mechanism defining the identity of membrane domains in vesicle trafficking. Rab GTPases are highly conserved components of vesicle trafficking pathways that help to ensure the fusion of a vesicle with a specific target organelle membrane. Specific regulatory pathways promote kinetic proofreading of membrane surfaces by Rab GTPases, and permit accumulation of active Rabs only at the required sites. Emerging evidence indicates that Rab activation and inactivation are under complex feedback control, suggesting that ultrasensitivity and bistability, principles established for other cellular regulatory networks, may also apply to Rab regulation. Such systems can promote the rapid membrane accumulation and removal of Rabs to create time-limited membrane domains with a unique composition, and can explain how Rabs define the identity of vesicle and organelle membranes.
Collapse
Affiliation(s)
- Francis A Barr
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England, UK.
| |
Collapse
|
11
|
Tarafder AK, Wasmeier C, Figueiredo AC, Booth AEG, Orihara A, Ramalho JS, Hume AN, Seabra MC. Rab27a targeting to melanosomes requires nucleotide exchange but not effector binding. Traffic 2011; 12:1056-66. [PMID: 21554507 PMCID: PMC3509405 DOI: 10.1111/j.1600-0854.2011.01216.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/07/2011] [Accepted: 05/04/2011] [Indexed: 11/30/2022]
Abstract
Rab GTPases are important determinants of organelle identity and regulators of vesicular transport pathways. Consequently, each Rab occupies a highly specific subcellular localization. However, the precise mechanisms governing Rab targeting remain unclear. Guanine nucleotide exchange factors (GEFs), putative membrane-resident targeting factors and effector binding have all been implicated as critical regulators of Rab targeting. Here, we address these issues using Rab27a targeting to melanosomes as a model system. Rab27a regulates motility of lysosome-related organelles and secretory granules. Its effectors have been characterized extensively, and we have identified Rab3GEP as the non-redundant Rab27a GEF in melanocytes (Figueiredo AC et al. Rab3GEP is the non-redundant guanine nucleotide exchange factor for Rab27a in melanocytes. J Biol Chem 2008;283:23209-23216). Using Rab27a mutants that show impaired binding to representatives of all four Rab27a effector subgroups, we present evidence that effector binding is not essential for targeting of Rab27a to melanosomes. In contrast, we observed that knockdown of Rab3GEP resulted in mis-targeting of Rab27a, suggesting that Rab3GEP activity is required for correct targeting of Rab27a. However, the identification of Rab27a mutants that undergo efficient GDP/GTP exchange in the presence of Rab3GEP in vitro but are mis-targeted in a cellular context indicates that nucleotide loading is not the sole determinant of subcellular targeting of Rab27a. Our data support a model in which exchange activity, but not effector binding, represents one essential factor that contributes to membrane targeting of Rab proteins.
Collapse
Affiliation(s)
- Abul K Tarafder
- Molecular Medicine, National Heart and Lung Institute (NHLI), Imperial College LondonLondon SW7 2AZ, UK
| | - Christina Wasmeier
- Molecular Medicine, National Heart and Lung Institute (NHLI), Imperial College LondonLondon SW7 2AZ, UK
| | - Ana C Figueiredo
- Molecular Medicine, National Heart and Lung Institute (NHLI), Imperial College LondonLondon SW7 2AZ, UK
| | - Antonia E G Booth
- Molecular Medicine, National Heart and Lung Institute (NHLI), Imperial College LondonLondon SW7 2AZ, UK
| | - Asumi Orihara
- Molecular Medicine, National Heart and Lung Institute (NHLI), Imperial College LondonLondon SW7 2AZ, UK
| | - Jose S Ramalho
- CEDOC, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa1169-056 Lisboa, Portugal
| | - Alistair N Hume
- Molecular Medicine, National Heart and Lung Institute (NHLI), Imperial College LondonLondon SW7 2AZ, UK
| | - Miguel C Seabra
- Molecular Medicine, National Heart and Lung Institute (NHLI), Imperial College LondonLondon SW7 2AZ, UK
- CEDOC, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa1169-056 Lisboa, Portugal
- Instituto Gulbenkian de CienciaOeiras, Portugal
| |
Collapse
|
12
|
Chamberlain MD, Oberg JC, Furber LA, Poland SF, Hawrysh AD, Knafelc SM, McBride HM, Anderson DH. Deregulation of Rab5 and Rab4 proteins in p85R274A-expressing cells alters PDGFR trafficking. Cell Signal 2010; 22:1562-75. [PMID: 20570729 DOI: 10.1016/j.cellsig.2010.05.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/27/2010] [Accepted: 05/30/2010] [Indexed: 01/30/2023]
Abstract
Activated receptor tyrosine kinases recruit many signaling proteins to activate downstream cell proliferation and survival pathways, including phosphatidylinositol 3-kinase (PI3K) consisting of a p85 regulatory protein and a p110 catalytic protein. We have recently shown the p85alpha protein also has in vitro GTPase activating protein (GAP) activity towards Rab5 and Rab4, small GTPases that regulate vesicle trafficking events for activated receptors. Expression of a GAP-defective mutant, p85R274A, resulted in sustained levels of activated platelet-derived growth factor receptors (PDGFRs) and enhanced downstream signaling. In this report we have characterized Rab5- and Rab4-mediated PDGFR trafficking in cells expressing wild type p85 and GAP-defective mutant p85R274A. Wild type p85 overexpressing cells had slower PDGFR trafficking consistent with enhanced GAP activity deactivating Rab5 and Rab4 to block their vesicle trafficking functions. Mutant p85R274A expression increased the internalization rate of PDGFRs, a Rab5-dependent process, without preventing PDGFR ubiquitination. Immunofluorescence studies further demonstrated that p85R274A-expressing cells showed Rab5 accumulation at intracellular locations. Pull-down and FRAP (fluorescence recovery after photobleaching) experiments indicate this is likely membrane-associated Rab5-GTP, sustained due to decreased p85 GAP activity for the p85R274A mutant. These cells also had substantial amounts of activated PDGFRs in Rab4-positive recycling endosomes, a compartment that usually contains primarily deactivated/dephosphorylated receptors. Our results suggest that the PDGFR-associated GAP activity of p85 regulates both Rab5 and Rab4 functions in cells to influence the movement of activated PDGFR through endosomal compartments. Disruption of this regulation by p85R274A expression impacts PDGFR phosphorylation/dephosphorylation, degradation kinetics and downstream signaling by altering the time receptors spend in specific intracellular endosomal compartments. These results demonstrate that the p85alpha protein is an important regulator of Rab-mediated PDGFR trafficking, which significantly impacts receptor signaling and degradation.
Collapse
Affiliation(s)
- M Dean Chamberlain
- Cancer Research Unit, Research Division, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 4H4
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Toward a model for Arf GTPases as regulators of traffic at the Golgi. FEBS Lett 2009; 583:3872-9. [PMID: 19879269 DOI: 10.1016/j.febslet.2009.10.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 10/25/2009] [Accepted: 10/26/2009] [Indexed: 12/19/2022]
Abstract
In this review, I summarize the likely roles played by ADP-ribosylation factor (Arf) proteins in the regulation of membrane traffic at the Golgi, from the perspective of the GTPase. The most glaring limitations to the development of a coherent molecular model are highlighted; including incomplete information on the initiation of Arf activation, identification of the "accessory proteins" required for carrier maturation and scission, and those required for directed traffic and fusion at the destination membrane. Though incomplete, the molecular model of carrier biogenesis has developed rapidly in recent years and promises richness in understanding this essential process.
Collapse
|
14
|
Figueiredo AC, Wasmeier C, Tarafder AK, Ramalho JS, Baron RA, Seabra MC. Rab3GEP is the non-redundant guanine nucleotide exchange factor for Rab27a in melanocytes. J Biol Chem 2008; 283:23209-16. [PMID: 18559336 PMCID: PMC2516999 DOI: 10.1074/jbc.m804134200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Rab GTPases regulate discrete steps in vesicular transport pathways. Rabs require activation by specific guanine nucleotide exchange factors (GEFs) that stimulate the exchange of GDP for GTP. Rab27a controls motility and regulated exocytosis of secretory granules and related organelles. In melanocytes, Rab27a regulates peripheral transport of mature melanosomes by recruiting melanophilin and myosin Va. Here, we studied the activation of Rab27a in melanocytes. We identify Rab3GEP, previously isolated as a GEF for Rab3a, as the non-redundant Rab27a GEF. Similar to Rab27a-deficient ashen melanocytes, Rab3GEP-depleted cells show both clustering of melanosomes in the perinuclear area and loss of the Rab27a effector Mlph. Consistent with a role as an activator, levels of Rab27a-GTP are decreased in cells lacking Rab3GEP. Recombinant Rab3GEP exhibits guanine nucleotide exchange activity against Rab27a and Rab27b in vitro, in addition to its previously documented activity against Rab3. Our results indicate promiscuity in Rab GEF action and suggest that members of related but functionally distinct Rab subfamilies can be controlled by common activators.
Collapse
Affiliation(s)
- Ana C Figueiredo
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Wang F, Zhang H, Zhang X, Wang Y, Ren F, Zhang X, Zhai Y, Chang Z. Varp interacts with Rab38 and functions as its potential effector. Biochem Biophys Res Commun 2008; 372:162-7. [PMID: 18477474 DOI: 10.1016/j.bbrc.2008.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 05/02/2008] [Indexed: 12/22/2022]
Abstract
Varp, a novel protein containing a VPS9 domain and ankyrin repeats, can function as a guanine nucleotide exchange factor (GEF) of Rab21. We previously reported that Varp plays an important role in the regulation of endosome dynamics. To further investigate the function of Varp, a yeast two-hybrid screen was performed and Rab38 was identified as a Varp-associated protein. We demonstrate that Varp physically interacts with Rab38, and preferentially binds to the active GTP-bound form of Rab38 both in vitro and in vivo. Furthermore, Varp was shown to be recruited to Rab38-positive organelles in an ankyrin-repeat 1 (ANK1)-dependent manner. Our data demonstrate that Varp is a potential effector of Rab38. Together with our previous study, we propose Varp serves as both an effector and a GEF by interacting with different Rabs in mammalian cells.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory of Beijing, College of Life Science, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Huizing M, Helip-Wooley A, Westbroek W, Gunay-Aygun M, Gahl WA. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu Rev Genomics Hum Genet 2008; 9:359-86. [PMID: 18544035 PMCID: PMC2755194 DOI: 10.1146/annurev.genom.9.081307.164303] [Citation(s) in RCA: 291] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lysosome-related organelles (LROs) are a heterogeneous group of vesicles that share various features with lysosomes, but are distinct in function, morphology, and composition. The biogenesis of LROs employs a common machinery, and genetic defects in this machinery can affect all LROs or only an individual LRO, resulting in a variety of clinical features. In this review, we discuss the main components of LRO biogenesis. We also summarize the function, composition, and resident cell types of the major LROs. Finally, we describe the clinical characteristics of the major human LRO disorders.
Collapse
Affiliation(s)
- Marjan Huizing
- Cell Biology of Metabolic Disorders Unit, National Institutes of Health, Bethesda, Maryland 20892
| | - Amanda Helip-Wooley
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Wendy Westbroek
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Meral Gunay-Aygun
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - William A. Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
17
|
Yoshimura SI, Haas AK, Barr FA. Analysis of Rab GTPase and GTPase-activating protein function at primary cilia. Methods Enzymol 2008; 439:353-64. [PMID: 18374177 DOI: 10.1016/s0076-6879(07)00426-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Primary cilia are sensory structures on the cell surface whose formation requires tight integration of microtubules and polarized membrane trafficking events. Rabs are GTP-binding proteins of the Ras superfamily that control directed membrane trafficking by regulating membrane-membrane and membrane-cytoskeleton interactions. This chapter describes cell biological and biochemical methods for the analysis of Rab function and Rab GTPase-activating proteins during primary cilia formation.
Collapse
|
18
|
Matheson LA, Suri SS, Hanton SL, Chatre L, Brandizzi F. Correct targeting of plant ARF GTPases relies on distinct protein domains. Traffic 2008; 9:103-20. [PMID: 17988226 DOI: 10.1111/j.1600-0854.2007.00671.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Indispensable membrane trafficking events depend on the activity of conserved small guanosine triphosphatases (GTPases), anchored to individual organelle membranes. In plant cells, it is currently unknown how these proteins reach their correct target membranes and interact with their effectors. To address these important biological questions, we studied two members of the ADP ribosylation factor (ARF) GTPase family, ARF1 and ARFB, which are membrane anchored through the same N-terminal myristoyl group but to different target membranes. Specifically, we investigated how ARF1 is targeted to the Golgi and post-Golgi structures, whereas ARFB accumulates at the plasma membrane. While the subcellular localization of ARFB appears to depend on multiple domains including the C-terminal half of the GTPase, the correct targeting of ARF1 is dependent on two domains: an N-terminal ARF1 domain that is necessary for the targeting of the GTPase to membranes and a core domain carrying a conserved MxxE motif that influences the relative distribution of ARF1 between the Golgi and post-Golgi compartments. We also established that the N-terminal ARF1 domain alone was insufficient to maintain an interaction with membranes and that correct targeting is a protein-specific property that depends on the status of the GTP switch. Finally, an ARF1-ARFB chimera containing only the first 18 amino acids from ARF1 was shown to compete with ARF1 membrane binding loci. Although this chimera exhibited GTPase activity in vitro, it was unable to recruit coatomer, a known ARF1 effector, onto Golgi membranes. Our results suggest that the targeting of ARF GTPases to the correct membranes may not only depend on interactions with effectors but also relies on distinct protein domains and further binding partners on the Golgi surface.
Collapse
Affiliation(s)
- Loren A Matheson
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | | | | | | | | |
Collapse
|
19
|
Haas AK, Yoshimura SI, Stephens DJ, Preisinger C, Fuchs E, Barr FA. Analysis of GTPase-activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells. J Cell Sci 2007; 120:2997-3010. [PMID: 17684057 DOI: 10.1242/jcs.014225] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rab GTPases control vesicle movement and tethering membrane events in membrane trafficking. We used the 38 human Rab GTPase activating proteins (GAPs) to identify which of the 60 Rabs encoded in the human genome function at the Golgi complex. Surprisingly, this screen identified only two GAPs, RN-tre and TBC1D20, disrupting both Golgi organization and protein transport. RN-tre is the GAP for Rab43, and controls retrograde transport into the Golgi from the endocytic pathway. TBC1D20 is the ER-localized GAP for Rab1, and is the only GAP blocking the delivery of secretory cargo from the ER to the cell surface. Strikingly, its expression causes the loss of the Golgi complex, highlighting the importance of Rab1 for Golgi biogenesis. These effects can be antagonized by reticulon, a binding partner for TBC1D20 in the ER. Together, these findings indicate that Rab1 and Rab43 are key Rabs required for the biogenesis and maintenance of a functional Golgi structure, and suggest that other Rabs acting at the Golgi complex are likely to be functionally redundant.
Collapse
Affiliation(s)
- Alexander K Haas
- Cancer Research Centre, University of Liverpool, 200 London Road, Liverpool, L9 3AT, UK
| | | | | | | | | | | |
Collapse
|
20
|
Fuchs E, Haas AK, Spooner RA, Yoshimura SI, Lord JM, Barr FA. Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways. ACTA ACUST UNITED AC 2007; 177:1133-43. [PMID: 17562788 PMCID: PMC2064371 DOI: 10.1083/jcb.200612068] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rab family guanosine triphosphatases (GTPases) together with their regulators define specific pathways of membrane traffic within eukaryotic cells. In this study, we have investigated which Rab GTPase-activating proteins (GAPs) can interfere with the trafficking of Shiga toxin from the cell surface to the Golgi apparatus and studied transport of the epidermal growth factor (EGF) from the cell surface to endosomes. This screen identifies 6 (EVI5, RN-tre/USP6NL, TBC1D10A–C, and TBC1D17) of 39 predicted human Rab GAPs as specific regulators of Shiga toxin but not EGF uptake. We show that Rab43 is the target of RN-tre and is required for Shiga toxin uptake. In contrast, RabGAP-5, a Rab5 GAP, was unique among the GAPs tested and reduced the uptake of EGF but not Shiga toxin. These results suggest that Shiga toxin trafficking to the Golgi is a multistep process controlled by several Rab GAPs and their target Rabs and that this process is discrete from ligand-induced EGF receptor trafficking.
Collapse
Affiliation(s)
- Evelyn Fuchs
- Department of Cell Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Cai H, Reinisch K, Ferro-Novick S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 2007; 12:671-82. [PMID: 17488620 DOI: 10.1016/j.devcel.2007.04.005] [Citation(s) in RCA: 523] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tethering factors have been shown to interact with Rabs and SNAREs and, more recently, with coat proteins. Coat proteins are required for cargo selection and membrane deformation to bud a transport vesicle from a donor compartment. It was once thought that a vesicle must uncoat before it recognizes its target membrane. However, recent findings have revealed a role for the coat in directing a vesicle to its correct intracellular destination. In this review we will discuss the literature that links coat proteins to vesicle targeting events.
Collapse
Affiliation(s)
- Huaqing Cai
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | |
Collapse
|
22
|
Monetta P, Slavin I, Romero N, Alvarez C. Rab1b interacts with GBF1 and modulates both ARF1 dynamics and COPI association. Mol Biol Cell 2007; 18:2400-10. [PMID: 17429068 PMCID: PMC1924811 DOI: 10.1091/mbc.e06-11-1005] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Assembly of the cytosolic coat protein I (COPI) complex at the ER-Golgi interface is directed by the ADP ribosylation factor1 (Arf1) and its guanine nucleotide exchange factor (GBF1). Rab1b GTPase modulates COPI recruitment, but the molecular mechanism underlying this action remains unclear. Our data reveal that in vivo expression of the GTP-restricted Rab1b mutant (Rab1Q67L) increased the association of GBF1 and COPI to peripheral structures localized at the ER exit sites (ERES) interface. Active Rab1b also stabilized Arf1 on Golgi membranes. Furthermore, we characterized GBF1 as a new Rab1b effector, and showed that its N-terminal domain was involved in this interaction. Rab1b small interfering RNA oligonucleotide assays suggested that Rab1b was required for GBF1 membrane association. To further understand how Rab1b functions in ER-to-Golgi transport, we analyzed GFP-Rab1b dynamics in HeLa cells. Time-lapse microscopy indicated that the majority of the Rab1b-labeled punctuated structures are relatively short-lived with limited-range movements. FRAP of Golgi GFP-Rab1bwt showed rapid recovery (t(1/2) 120 s) with minimal dependence on microtubules. Our data support a model where Rab1b-GTP induces GBF1 recruitment at the ERES interface and at the Golgi complex where it is required for COPII/COPI exchange or COPI vesicle formation, respectively.
Collapse
Affiliation(s)
- Pablo Monetta
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | | | | | | |
Collapse
|
23
|
Li X, Kaloyanova D, van Eijk M, Eerland R, van der Goot G, Oorschot V, Klumperman J, Lottspeich F, Starkuviene V, Wieland FT, Helms JB. Involvement of a Golgi-resident GPI-anchored protein in maintenance of the Golgi structure. Mol Biol Cell 2007; 18:1261-71. [PMID: 17251550 PMCID: PMC1838991 DOI: 10.1091/mbc.e06-03-0236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 12/22/2006] [Accepted: 01/12/2007] [Indexed: 01/08/2023] Open
Abstract
The Golgi apparatus consists of a series of flattened cisternal membranes that are aligned in parallel to form stacks. Cytosolic-oriented Golgi-associated proteins have been identified that may coordinate or maintain the Golgi architecture. Here, we describe a novel GPI-anchored protein, Golgi-resident GPI-anchored protein (GREG) that has a brefeldin A-sensitive Golgi localization. GREG resides in the Golgi lumen as a cis-oriented homodimer, due to strong interactions between coiled-coil regions in the C termini. Dimerization of GREG as well as its Golgi localization depends on a unique tandem repeat sequence within the coiled-coil region. RNA-mediated interference of GREG expression or expression of GREG mutants reveals an essential role for GREG in maintenance of the Golgi integrity. Under these conditions, secretion of the vesicular stomatitis virus glycoprotein protein as a marker for protein transport along the secretory pathway is inhibited, suggesting a loss of Golgi function as well. These results imply the involvement of a luminal protein in Golgi structure and function.
Collapse
Affiliation(s)
- Xueyi Li
- *Biochemie-Zentrum Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Dora Kaloyanova
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Martin van Eijk
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Ruud Eerland
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Gisou van der Goot
- Institut des Maladies Infectieuses, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Viola Oorschot
- Department of Cell Biology, University Medical Center and Institute for Biomembranes, 3584 CX Utrecht, The Netherlands
| | - Judith Klumperman
- Department of Cell Biology, University Medical Center and Institute for Biomembranes, 3584 CX Utrecht, The Netherlands
| | | | - Vytaute Starkuviene
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Felix T. Wieland
- *Biochemie-Zentrum Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - J. Bernd Helms
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
- *Biochemie-Zentrum Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Wasmeier C, Romao M, Plowright L, Bennett DC, Raposo G, Seabra MC. Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J Cell Biol 2006; 175:271-81. [PMID: 17043139 PMCID: PMC2064568 DOI: 10.1083/jcb.200606050] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/19/2006] [Indexed: 01/06/2023] Open
Abstract
A mutation in the small GTPase Rab38 gives rise to the mouse coat color phenotype "chocolate" (cht), implicating Rab38 in the regulation of melanogenesis. However, its role remains poorly characterized. We report that cht Rab38(G19V) is inactive and that the nearly normal pigmentation in cht melanocytes results from functional compensation by the closely related Rab32. In cht cells treated with Rab32-specific small interfering RNA, a dramatic loss of pigmentation is observed. In addition to mature melanosomes, Rab38 and Rab32 localize to perinuclear vesicles carrying tyrosinase and tyrosinase-related protein 1, consistent with a role in the intracellular sorting of these proteins. In Rab38/Rab32-deficient cells, tyrosinase appears to be mistargeted and degraded after exit from the trans-Golgi network (TGN). This suggests that Rab38 and Rab32 regulate a critical step in the trafficking of melanogenic enzymes, in particular, tyrosinase, from the TGN to melanosomes. This work identifies a key role for the Rab38/Rab32 subfamily of Rab proteins in the biogenesis of melanosomes and potentially other lysosome-related organelles.
Collapse
Affiliation(s)
- Christina Wasmeier
- Molecular and Cellular Medicine, Division of Biomedical Sciences, Imperial College London, London SW7 2AZ, England, UK
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Pioneering biochemical studies have long forged the concept that the mitochondria are the 'energy powerhouse of the cell'. These studies, combined with the unique evolutionary origin of the mitochondria, led the way to decades of research focusing on the organelle as an essential, yet independent, functional component of the cell. Recently, however, our conceptual view of this isolated organelle has been profoundly altered with the discovery that mitochondria function within an integrated reticulum that is continually remodeled by both fusion and fission events. The identification of a number of proteins that regulate these activities is beginning to provide mechanistic details of mitochondrial membrane remodeling. However, the broader question remains regarding the underlying purpose of mitochondrial dynamics and the translation of these morphological transitions into altered functional output. One hypothesis has been that mitochondrial respiration and metabolism may be spatially and temporally regulated by the architecture and positioning of the organelle. Recent evidence supports and expands this idea by demonstrating that mitochondria are an integral part of multiple cell signaling cascades. Interestingly, proteins such as GTPases, kinases and phosphatases are involved in bi-directional communication between the mitochondrial reticulum and the rest of the cell. These proteins link mitochondrial function and dynamics to the regulation of metabolism, cell-cycle control, development, antiviral responses and cell death. In this review we will highlight the emerging evidence that provides molecular definition to mitochondria as a central platform in the execution of diverse cellular events.
Collapse
|
26
|
Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 2006; 103:11821-7. [PMID: 16882731 PMCID: PMC1567661 DOI: 10.1073/pnas.0601617103] [Citation(s) in RCA: 797] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rab proteins constitute the largest branch of the Ras GTPase superfamily. Rabs use the guanine nucleotide-dependent switch mechanism common to the superfamily to regulate each of the four major steps in membrane traffic: vesicle budding, vesicle delivery, vesicle tethering, and fusion of the vesicle membrane with that of the target compartment. These different tasks are carried out by a diverse collection of effector molecules that bind to specific Rabs in their GTP-bound state. Recent advances have not only greatly extended the number of known Rab effectors, but have also begun to define the mechanisms underlying their distinct functions. By binding to the guanine nucleotide exchange proteins that activate the Rabs certain effectors act to establish positive feedback loops that help to define and maintain tightly localized domains of activated Rab proteins, which then serve to recruit other effector molecules. Additionally, Rab cascades and Rab conversions appear to confer directionality to membrane traffic and couple each stage of traffic with the next along the pathway.
Collapse
Affiliation(s)
- Bianka L. Grosshans
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Darinel Ortiz
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Peter Novick
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Stefano G, Renna L, Hanton SL, Chatre L, Haas TA, Brandizzi F. ARL1 plays a role in the binding of the GRIP domain of a peripheral matrix protein to the Golgi apparatus in plant cells. PLANT MOLECULAR BIOLOGY 2006; 61:431-49. [PMID: 16830178 DOI: 10.1007/s11103-006-0022-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/02/2006] [Indexed: 05/10/2023]
Abstract
ARF GTPases play a central role in regulating membrane dynamics and protein transport in eukaryotic cells. ARF-like (ARL) proteins are close relatives of the ARF regulators of vesicular transport, but their function in plant cells is poorly characterized. Here, by means of live cell imaging and site-directed mutagenesis, we have investigated the cellular function of the plant GTPase ARL1. We provide direct evidence for a role of this ARL family member in the association of a plant golgin with the plant Golgi apparatus. Our data reveal the existence of key residues within the conserved GRIP-domain of the golgin and within the GTPase ARL1 that are central to ARL1-GRIP interaction. Mutations of these residues abolish the interaction of GRIP with the GTP-bound ARL1 and induce a redistribution of GRIP into the cytosol. This indicates that the localization of GRIP to the Golgi apparatus is strongly influenced by the interaction of GRIP with Golgi-localized ARL1. Our results assign a cellular role to a member of the Arabidopsis ARL family in the plant secretory pathway and propose mechanisms for localization of peripheral golgins to the plant Golgi apparatus.
Collapse
Affiliation(s)
- Giovanni Stefano
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, S7N 5E2, SK, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Szabadkai G, Simoni AM, Bianchi K, De Stefani D, Leo S, Wieckowski MR, Rizzuto R. Mitochondrial dynamics and Ca2+ signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1763:442-9. [PMID: 16750865 DOI: 10.1016/j.bbamcr.2006.04.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/28/2006] [Accepted: 04/04/2006] [Indexed: 11/18/2022]
Abstract
Recent data shed light on two novel aspects of the mitochondria-Ca2+ liaison. First, it was extensively investigated how Ca2+ handling is controlled by mitochondrial shape, and positioning; a playground also of cell death and survival regulation. On the other hand, significant progress has been made to explore how intra- and near-mitochondrial Ca2+ signals modify mitochondrial morphology and cellular distribution. Here, we shortly summarize these advances and provide a model of Ca2+-mitochondria interactions.
Collapse
Affiliation(s)
- G Szabadkai
- Department of Experimental and Diagnostic Medicine and Interdisciplinary Center for the Study of Inflammation and ER-GenTech, University of Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Efe JA, Plattner F, Hulo N, Kressler D, Emr SD, Deloche O. Yeast Mon2p is a highly conserved protein that functions in the cytoplasm-to-vacuole transport pathway and is required for Golgi homeostasis. J Cell Sci 2006; 118:4751-64. [PMID: 16219684 DOI: 10.1242/jcs.02599] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the small Arf-like GTPases Arl1-3 are highly conserved eukaryotic proteins, they remain relatively poorly characterized. The yeast and mammalian Arl1 proteins bind to the Golgi complex, where they recruit specific structural proteins such as Golgins. Yeast Arl1p directly interacts with Mon2p/Ysl2p, a protein that displays some sequence homology to the large Sec7 guanine exchange factors (GEFs) of Arf1. Mon2p also binds the putative aminophospholipid translocase (APT) Neo1p, which performs essential function(s) in membrane trafficking. Our detailed analysis reveals that Mon2p contains six distinct amino acid regions (A to F) that are conserved in several other uncharacterized homologs in higher eukaryotes. As the conserved A, E and F domains are unique to these homologues, they represent the signature of a new protein family. To investigate the role of these domains, we made a series of N- and C-terminal deletions of Mon2p. Although fluorescence and biochemical studies showed that the B and C domains (also present in the large Sec7 GEFs) predominantly mediate interaction with Golgi/endosomal membranes, growth complementation studies revealed that the C-terminal F domain is essential for the activity of Mon2p, indicating that Mon2p might also function independently of Arl1p. We provide evidence that Mon2p is required for efficient recycling from endosomes to the late Golgi. Intriguingly, although transport of CPY to the vacuole was nearly normal in the Deltamon2 strain, we found the constitutive delivery of Aminopeptidase 1 from the cytosol to the vacuole to be almost completely blocked. Finally, we show that Mon2p exhibits genetic and physical interactions with Dop1p, a protein with a putative function in cell polarity. We propose that Mon2p is a scaffold protein with novel conserved domains, and is involved in multiple aspects of endomembrane trafficking.
Collapse
Affiliation(s)
- Jem A Efe
- Division of Biology, Department of Cellular and Molecular Medicine, and the Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0668, USA
| | | | | | | | | | | |
Collapse
|
30
|
Edeling MA, Smith C, Owen D. Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 2006; 7:32-44. [PMID: 16493411 DOI: 10.1038/nrm1786] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane sorting between secretory and endocytic organelles is predominantly controlled by small carrier vesicles or tubules that have specific protein coats on their cytoplasmic surfaces. Clathrin-clathrin-adaptor coats function in many steps of intracellular transport and are the most extensively studied of all transport-vesicle coats. In recent years, the determination of structures of clathrin assemblies by electron microscopy, of domains of clathrin and of its adaptors has improved our understanding of the molecular mechanisms of clathrin-coated-vesicle assembly and disassembly.
Collapse
Affiliation(s)
- Melissa A Edeling
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Hills Road, Cambridge, CB2 2XY, UK
| | | | | |
Collapse
|
31
|
Abstract
Eukaryotic cells have systems of internal organelles to synthesize lipids and membrane proteins, to release secreted proteins, to take up nutrients and to degrade membrane-bound and internalized molecules. Proteins and lipids move from organelle to organelle using transport vesicles. The accuracy of this traffic depends upon organelles being correctly recognized. In general, organelles are identified by the activated GTPases and specific lipid species that they display. These short-lived determinants provide organelles with an identity that is both unique and flexible. Recent studies have helped to establish how cells maintain and restrict these determinants and explain how this system is exploited by invading pathogens.
Collapse
Affiliation(s)
- Rudy Behnia
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
32
|
Haas AK, Fuchs E, Kopajtich R, Barr FA. A GTPase-activating protein controls Rab5 function in endocytic trafficking. Nat Cell Biol 2005; 7:887-93. [PMID: 16086013 DOI: 10.1038/ncb1290] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 06/28/2005] [Indexed: 11/09/2022]
Abstract
Rab-family GTPases are conserved regulators of membrane trafficking that cycle between inactive GDP-bound and activated GTP-bound states. A key determinant of Rab function is the lifetime of the GTP-bound state. As Rabs have a low intrinsic rate of GTP hydrolysis, this process is under the control of GTP-hydrolysis-activating proteins (GAPs). Due to the large number of Rabs and GAPs that are encoded by the human genome, it has proven difficult to assign specific functional relationships to these proteins. Here, we identify a Rab5-specific GAP (RabGAP-5), and show that RN-Tre (previously described as a Rab5 GAP) acts on Rab41. RabGAP-5 overexpression triggers a loss of the Rab5 effector EEA1 from endosomes and blocks endocytic trafficking. By contrast, depletion of RabGAP-5 results in increased endosome size, more endosome-associated EEA1, and disrupts the trafficking of EGF and LAMP1. RabGAP-5 therefore limits the amount of activated Rab5, and thereby regulates trafficking through endosomes.
Collapse
Affiliation(s)
- Alexander K Haas
- Max-Planck Institute of Biochemistry, Department of Cell Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
33
|
Abstract
Rab proteins are members of the superfamily of Ras-like small GTPases and are involved in several cellular processes relating to membrane trafficking and organelle mobility throughout the cell. Like other small GTPases, Rab proteins are initially synthesized as soluble proteins and for membrane attachment they require the addition of lipid moiety(ies) to specific residues of their polypeptide chain. Despite their well-documented roles in regulating cellular trafficking, Rab proteins own trafficking is still poorly understood. We still need to elucidate the molecular mechanisms of their recruitment to cellular membranes and the structural determinants for their specific cellular localization. Recent results indicate that Rab cellular targeting might be Rab-dependent, and this paper briefly reviews our current knowledge of this process.
Collapse
Affiliation(s)
- B R Ali
- Cell and Molecular Biology Section, Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | | |
Collapse
|
34
|
Abstract
Understanding how membrane lipids achieve their non-random distribution in cells is a key challenge in cell biology at present. In addition to being sorted into vesicles that can cross distances of up to one metre, there are other mechanisms that mediate the transport of lipids within a range of a few nanometres. These include transbilayer flip-flop mechanisms and transfer across narrow gaps between the endoplasmic reticulum and other organelles, with the endoplasmic reticulum functioning as a superhighway along which lipids can rapidly diffuse.
Collapse
Affiliation(s)
- Joost C M Holthuis
- Department of Membrane Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
35
|
Honda A, Al-Awar OS, Hay JC, Donaldson JG. Targeting of Arf-1 to the early Golgi by membrin, an ER-Golgi SNARE. ACTA ACUST UNITED AC 2005; 168:1039-51. [PMID: 15781476 PMCID: PMC2171843 DOI: 10.1083/jcb.200409138] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Arf and Rab family GTPases regulate membrane traffic in cells, yet little is known about how they are targeted to distinct organelles. To identify sequences in Arf-1 necessary for Golgi targeting, we examined the localization of chimeras between Arf-1 and Arf-6. Here, we identify a 16–amino acid sequence in Arf-1 that specifies Golgi targeting and contains a motif (MXXE) that is important for Arf-1 binding to membrin, an ER-Golgi SNARE protein. The MXXE motif is conserved in all Arfs known to localize to the Golgi and enables Arf-1 to localize to the early Golgi. Arf-1 lacking these 16 aa can still localize to the late Golgi where it displays a more rapid Golgi-cytosol cycle than wild-type Arf-1. These studies suggest that membrin recruits Arf-1 to the early Golgi and reveal distinct kinetic cycles for Arf-1 at early and late Golgi determined by different sets of Arf regulators and effectors.
Collapse
Affiliation(s)
- Akira Honda
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Clathrin-coated vesicles (CCVs) are responsible for the transport of proteins between various compartments of the secretory and endocytic systems. Clathrin forms a scaffold around these vesicles that is linked to membranes by clathrin adaptors. The adaptors simultaneously bind to clathrin and to transmembrane proteins and/or phospholipids and can also interact with each other and with other components of the CCV formation machinery. The result is a collection of proteins that can make multiple, moderate strength (microM Kd) interactions and thereby establish the dynamic regulatable networks to drive vesicle genesis at the correct time and place in the cell. This review focuses on the structure of clathrin adaptors and how these structures provide functional information on the mechanism of CCV formation.
Collapse
Affiliation(s)
- David J Owen
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge CB2 2XY, UK.
| | | | | |
Collapse
|
37
|
Chen SH, Chen S, Tokarev AA, Liu F, Jedd G, Segev N. Ypt31/32 GTPases and their novel F-box effector protein Rcy1 regulate protein recycling. Mol Biol Cell 2005; 16:178-92. [PMID: 15537705 PMCID: PMC539162 DOI: 10.1091/mbc.e04-03-0258] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 10/07/2004] [Accepted: 10/26/2004] [Indexed: 11/11/2022] Open
Abstract
Ypt/Rab GTPases control various aspects of vesicle formation and targeting via their diverse effectors. We report a new role for these GTPases in protein recycling through a novel effector. The F-box protein Rcy1, which mediates plasma membrane recycling, is identified here as a downstream effector of the Ypt31/32 GTPase pair because it binds active GTP-bound Ypt31/32 and colocalizes with these GTPases on late Golgi and endosomes. Furthermore, Ypt31/32 regulates the polarized localization and half-life of Rcy1. This suggests that Ypt/Rabs can regulate the protein level of their effectors, in addition to the established ways by which they control their effectors. We show that like Rcy1, Ypt31/32 regulate the coupled phosphorylation and recycling of the plasma membrane v-SNARE Snc1. Moreover, Ypt31/32 and Rcy1 regulate the recycling of the furin-homolog Kex2 to the Golgi. Therefore, Ypt31/32 and Rcy1 mediate endosome-to-Golgi transport, because this is the only step shared by Snc1 and Kex2. Finally, we show that Rcy1 physically interacts with Snc1. Based on this result and because F-box proteins serve as adaptors between specific substrates and ubiquitin ligases, we propose that Ypt31/32 GTPases regulate the function of Rcy1 in the phosphorylation and/or ubiquitination of proteins that recycle through the Golgi.
Collapse
Affiliation(s)
- Shu Hui Chen
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kim YG, Sohn EJ, Seo J, Lee KJ, Lee HS, Hwang I, Whiteway M, Sacher M, Oh BH. Crystal structure of bet3 reveals a novel mechanism for Golgi localization of tethering factor TRAPP. Nat Struct Mol Biol 2004; 12:38-45. [PMID: 15608655 DOI: 10.1038/nsmb871] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 11/17/2004] [Indexed: 01/24/2023]
Abstract
Transport protein particle (TRAPP) is a large multiprotein complex involved in endoplasmic reticulum-to-Golgi and intra-Golgi traffic. TRAPP specifically and persistently resides on Golgi membranes. Neither the mechanism of the subcellular localization nor the function of any of the individual TRAPP components is known. Here, the crystal structure of mouse Bet3p (bet3), a conserved TRAPP component, reveals a dimeric structure with hydrophobic channels. The channel entrances are located on a putative membrane-interacting surface that is distinctively flat, wide and decorated with positively charged residues. Charge-inversion mutations on the flat surface of the highly conserved yeast Bet3p led to conditional lethality, incorrect localization and membrane trafficking defects. A channel-blocking mutation led to similar defects. These data delineate a molecular mechanism of Golgi-specific targeting and anchoring of Bet3p involving the charged surface and insertion of a Golgi-specific hydrophobic moiety into the channels. This essential subunit could then direct other TRAPP components to the Golgi.
Collapse
Affiliation(s)
- Yeon-Gil Kim
- Center for Biomolecular Recognition, Department of Life Science and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ali BR, Wasmeier C, Lamoreux L, Strom M, Seabra MC. Multiple regions contribute to membrane targeting of Rab GTPases. J Cell Sci 2004; 117:6401-6412. [PMID: 15561774 DOI: 10.1242/jcs.01542] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Small GTPases of the Rab family are key regulators of membrane trafficking. Each Rab shows a characteristic subcellular distribution, and may serve as an important determinant of organelle identity. The molecular mechanisms responsible for targeting Rabs to specific intracellular compartments, however, remain poorly understood. The divergent C-terminal hypervariable region was postulated to contain Rab targeting information. We generated a series of hybrid Rab proteins by exchanging the hypervariable domains of Rab1a, Rab2a, Rab5a, Rab7 and Rab27a, and analysed their subcellular localisations. We found that the various hybrid proteins retained their targeting to the parent organelle and were functionally active. We conclude that the hypervariable region does not contain a general Rab targeting signal. Furthermore, we identified other regions within the RabF and RabSF motifs that are required for specific targeting of Rab27a to secretory granules or melanosomes, and Rab5a to endosomes. We observed only partial overlap between targeting-determining regions in the Rab proteins examined, suggesting that Rab recruitment may be complex and at least partially Rab-specific. Mutations in these targeting-determining regions induced localisation to the ER, an observation that further strengthens our previous finding that ER/Golgi membranes serve as the default location for Rabs that have lost targeting information.
Collapse
Affiliation(s)
- Bassam R Ali
- Cell and Molecular Biology, Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
40
|
Reinke CA, Kozik P, Glick BS. Golgi inheritance in small buds of Saccharomyces cerevisiae is linked to endoplasmic reticulum inheritance. Proc Natl Acad Sci U S A 2004; 101:18018-23. [PMID: 15596717 PMCID: PMC539800 DOI: 10.1073/pnas.0408256102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
According to the cisternal maturation hypothesis, endoplasmic reticulum (ER)-derived membranes nucleate new Golgi cisternae. The yeast Saccharomyces cerevisiae offers a unique opportunity to test this idea because small buds contain both ER and Golgi structures early in the cell cycle. We previously predicted that mutants defective in ER inheritance also would show defects in Golgi inheritance. Surprisingly, studies of S. cerevisiae have not revealed the expected link between ER and Golgi inheritance. Here, we revisit this issue by generating mutant strains in which many of the small buds are devoid of detectable ER. These strains also show defects in the inheritance of both early and late Golgi cisternae. Strikingly, virtually all of the buds that lack ER also lack early Golgi cisternae. Our results fit with the idea that membranes exported from the ER coalesce with vesicles derived from existing Golgi compartments to generate new Golgi cisternae. This basic mechanism of Golgi inheritance may be conserved from yeast to vertebrate cells.
Collapse
Affiliation(s)
- Catherine A Reinke
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
41
|
Abstract
Weibel-Palade bodies (WPB) are the regulated secretory organelles of endothelial cells. These cigar-shaped membrane-bound structures function in both hemostasis and inflammation but their biogenesis is poorly understood. Here, we review what is currently known about their formation. The content of WPBs is dominated by the hemostatic factor von Willebrand factor (VWF), whose complex biogenesis ends in the formation of high molecular weight multimers. VWF is also organized into proteinaceous tubules which underlie the striated interior of WPBs as seen in the EM. VWF expression is necessary for formation of WPBs, and its heterologous expression can even lead to the specific recruitment of WPB membrane proteins, including the leukocyte receptor P-selectin, the tetraspanin CD63, and Rab27a. Unusually, the VWF propeptide is implicated in the biogenesis of WPBs, being essential for formation of the storage compartment. The elongation of the cigars and the formation of the tubules are determined by non-covalent interactions between pro- and mature VWF proteins. Surprisingly, high molecular weight multimers seem neither necessary nor sufficient to trigger formation of a storage compartment, and do not seem to have any role in WPB biogenesis. Von Willebrand's disease, usually caused by mutations within VWF, has provided many of the insights into the way in which VWF drives the formation of these organelles.
Collapse
Affiliation(s)
- Grégoire Michaux
- Department of Biochemistry, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
42
|
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806. [PMID: 15466940 DOI: 10.1210/er.2003-0022] [Citation(s) in RCA: 631] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
43
|
Abstract
Generating and maintaining features that distinguish one organelle from another is essential for accurate membrane traffic. Recent work has revealed that organelles express 'identity' by the local generation of activated GTP-binding proteins and lipid species. These recruiting determinants are then recognized by cytosolic proteins that facilitate the formation and delivery of vesicles at the correct compartment.
Collapse
Affiliation(s)
- Sean Munro
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
44
|
Panic B, Perisic O, Veprintsev DB, Williams RL, Munro S. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol Cell 2003; 12:863-74. [PMID: 14580338 DOI: 10.1016/s1097-2765(03)00356-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Golgins are large coiled-coil proteins that play a role in Golgi structure and vesicle traffic. The Arf-like GTPase Arl1 regulates the translocation of GRIP domain-containing golgins to Golgi membranes. We report here the 1.7 A resolution structure of human Arl1-GTP in a complex with the GRIP domain of golgin-245. The structure reveals that the GRIP domain consists of an S-shaped arrangement of three helices. The domain forms a homodimer that binds two Arl1-GTPs using two helices from each monomer. The structure is consistent with golgin-245 forming parallel coiled-coils and suggests how Arl1-GTP/GRIP complexes interact with Golgi membranes via the N termini of Arl1-GTP and the C-terminal tails of the GRIP domains. In cells, bivalent association with Arl1-GTP would increase residence time of the golgins on Golgi membranes. Despite no conservation of sequence, topology, or even helical direction, several other effectors form similar interactions with small GTPases via a pair of alpha helices, suggesting a common structural basis for effector recognition.
Collapse
Affiliation(s)
- Bojana Panic
- MRC Laboratory of Molecular Biology, MRC Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Hannah MJ, Hume AN, Arribas M, Williams R, Hewlett LJ, Seabra MC, Cutler DF. Weibel-Palade bodies recruit Rab27 by a content-driven, maturation-dependent mechanism that is independent of cell type. J Cell Sci 2003; 116:3939-48. [PMID: 12928333 DOI: 10.1242/jcs.00711] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identification of organelles is crucial for efficient cellular function, yet the basic underlying mechanisms by which this might occur have not been established. One group of proteins likely to be central to organelle identity is the Rab family of small GTPases. We have thus investigated Rab recruitment to membranes using endothelial cells as a model system. We report that Weibel-Palade bodies, the Von Willebrand Factor storage compartment of human umbilical vein endothelial cells, contain Rab27a. We have also found that Weibel-Palade body-like structures induced in HEK-293 cells by the expression of von Willebrand factor can recruit endogenous Rab27a. In the absence of von Willebrand Factor, Rab27a is not lysosome associated, indicating that it can distinguish between the Weibel-Palade-body-like organelle and a classical lysosome. Finally, a time course of Weibel-Palade-body formation was established using a green-fluorescent version of von Willebrand factor. Newly formed Weibel-Palade bodies lack Rab27a, which is acquired some hours after initial appearance of the cigar-shaped organelle. We conclude that a lumenal cargo protein drives the recruitment of Rab27a to the organelle membrane by a novel mechanism that is indirect, maturation-dependent and cell-type independent.
Collapse
Affiliation(s)
- Matthew J Hannah
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit, University College London, Gower St, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
van Vliet C, Thomas EC, Merino-Trigo A, Teasdale RD, Gleeson PA. Intracellular sorting and transport of proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 83:1-45. [PMID: 12757749 DOI: 10.1016/s0079-6107(03)00019-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The secretory and endocytic pathways of eukaryotic organelles consist of multiple compartments, each with a unique set of proteins and lipids. Specific transport mechanisms are required to direct molecules to defined locations and to ensure that the identity, and hence function, of individual compartments are maintained. The localisation of proteins to specific membranes is complex and involves multiple interactions. The recent dramatic advances in understanding the molecular mechanisms of membrane transport has been due to the application of a multi-disciplinary approach, integrating membrane biology, genetics, imaging, protein and lipid biochemistry and structural biology. The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes. The molecular mechanisms involved in this transport along the secretory and endocytic pathways are discussed along with the signals responsible for targeting proteins to different intracellular locations.
Collapse
Affiliation(s)
- Catherine van Vliet
- The Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Victoria 3010, Melbourne, Australia
| | | | | | | | | |
Collapse
|
47
|
Gillingham AK, Munro S. Long coiled-coil proteins and membrane traffic. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:71-85. [PMID: 12914949 DOI: 10.1016/s0167-4889(03)00088-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein transport between organelles is mediated by vesicles which must accurately dock and fuse with appropriate compartments. Over the past several years a large number of long coiled-coil proteins have been identified on the Golgi and on endosomes, mostly as auto-antigens in autoimmune disorders. Based on their restricted intracellular distributions and their predicted rod-like structure, these proteins have been proposed to play a role in tethering vesicles to target organelles prior to fusion. However, such proteins may also play a structural role, for example as components of a Golgi matrix, or as scaffolds for the assembly of other factors important for fusion. This review will examine what is known about the function of these large coiled-coil proteins in membrane traffic.
Collapse
|
48
|
Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX, Macia E, Kirchhausen T, Albanesi JP, Roth MG, Yin HL. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 2003; 114:299-310. [PMID: 12914695 DOI: 10.1016/s0092-8674(03)00603-2] [Citation(s) in RCA: 597] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phosphatidylinositol 4 phosphate [PI(4)P] is essential for secretion in yeast, but its role in mammalian cells is unclear. Current paradigms propose that PI(4)P acts primarily as a precursor to phosphatidylinositol 4,5 bisphosphate (PIP2), an important plasma membrane regulator. We found that PI(4)P is enriched in the mammalian Golgi, and used RNA interference (RNAi) of PI4KIIalpha, a Golgi resident phosphatidylinositol 4 kinase, to determine whether PI(4)P directly regulates the Golgi. PI4KIIalpha RNAi decreases Golgi PI(4)P, blocks the recruitment of clathrin adaptor AP-1 complexes to the Golgi, and inhibits AP-1-dependent functions. This AP-1 binding defect is rescued by adding back PI(4)P. In addition, purified AP-1 binds PI(4)P, and anti-PI(4)P inhibits the in vitro recruitment of cytosolic AP-1 to normal cellular membranes. We propose that PI4KIIalpha establishes the Golgi's unique lipid-defined organelle identity by generating PI(4)P-rich domains that specify the docking of the AP-1 coat machinery.
Collapse
Affiliation(s)
- Ying Jie Wang
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vasile E, Perez T, Nakamura N, Krieger M. Structural integrity of the Golgi is temperature sensitive in conditional-lethal mutants with no detectable GM130. Traffic 2003; 4:254-72. [PMID: 12694564 DOI: 10.1034/j.1600-0854.2003.00080.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
At 39.5 degrees C in the temperature-sensitive, conditional-lethal mutant ldlG, glycoprotein processing is disrupted and secretion is blocked. The ultrastructure of the Golgi apparatus in ldlG cells was examined using immunofluorescence and immunoelectron microscopy. At 34 degrees C the structure of the Golgi apparatus was normal, whereas after incubation at 39.5 degrees C for 12 h it disassembled into dispersed vesicles. These reassembled into stacks when cells were returned to 34 degrees C for 6 h. At both 34 and 39.5 degrees C, all Golgi markers examined were present at wild-type levels except GM130, which was undetectable (<5% of control). Transfection with GM130 corrected the mutant phenotypes. Although the endogenous gene encoding NSF is apparently normal in ldlG cells, all mutant phenotypes were corrected by transfection with NSF, suggesting that NSF functioned as an extragenic suppressor. These findings provide additional support for a role of GM130 in determining the properties of the Golgi apparatus and for NSF in influencing GM130 stability and function. They also suggest that, at 34 degrees C, detectable levels of GM130 are not required for normal Golgi morphology and function, but that GM130 - or a GM130-dependent protein(s) - does play a role in protecting the Golgi, and thus the cells, from stress at higher temperatures.
Collapse
Affiliation(s)
- Eliza Vasile
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
50
|
Panic B, Whyte JRC, Munro S. The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr Biol 2003; 13:405-10. [PMID: 12620189 DOI: 10.1016/s0960-9822(03)00091-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ARLs are a diverse family of GTPases that are related to ADP-ribosylation factors (ARFs), but whose function is poorly understood. There are at least ten ARLs in humans, two of which have homologs in the yeast Saccharomyces cerevisiae (ARL1/Arl1p and ARFRP1/Arl3p). The function of ARFRP1 is unknown, but mammalian ARL1 has recently been found to interact with a number of effectors including the GRIP domain that is present in a family of Golgi-localized long coiled-coil proteins. We find that in yeast, the intracellular targeting of Imh1p, the only yeast GRIP domain protein, is dependent on both Arl1p and Arl3p, but not on the ARF proteins. A recombinant form of the Imh1p GRIP domain binds to Arl1p in a GTP-dependent manner, but not to Arl3p. Yeast also contain a relative of SCOCO, a protein proposed to bind human ARL1, but this yeast protein, Slo1p, appears to bind Arl3p rather than Arl1p in vitro. However, Imh1p is not the sole effector of Arl1p since affinity chromatography of cytosol with immobilized Arl1p:GTP revealed an interaction with the GARP/VFT complex that is thought to act in the tethering of vesicles to the Golgi apparatus. Finally, we find that Arl3p is required in vivo for the targeting of Arl1p, explaining its requirement for the normal distribution of Imh1p.
Collapse
Affiliation(s)
- Bojana Panic
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | |
Collapse
|