1
|
Bayram Y, Karaca E, Coban Akdemir Z, Yilmaz EO, Tayfun GA, Aydin H, Torun D, Bozdogan ST, Gezdirici A, Isikay S, Atik MM, Gambin T, Harel T, El-Hattab AW, Charng WL, Pehlivan D, Jhangiani SN, Muzny DM, Karaman A, Celik T, Yuregir OO, Yildirim T, Bayhan IA, Boerwinkle E, Gibbs RA, Elcioglu N, Tuysuz B, Lupski JR. Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin. J Clin Invest 2016; 126:762-78. [PMID: 26752647 DOI: 10.1172/jci84457] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Arthrogryposis, defined as congenital joint contractures in 2 or more body areas, is a clinical sign rather than a specific disease diagnosis. To date, more than 400 different disorders have been described that present with arthrogryposis, and variants of more than 220 genes have been associated with these disorders; however, the underlying molecular etiology remains unknown in the considerable majority of these cases. METHODS We performed whole exome sequencing (WES) of 52 patients with clinical presentation of arthrogryposis from 48 different families. RESULTS Affected individuals from 17 families (35.4%) had variants in known arthrogryposis-associated genes, including homozygous variants of cholinergic γ nicotinic receptor (CHRNG, 6 subjects) and endothelin converting enzyme-like 1 (ECEL1, 4 subjects). Deleterious variants in candidate arthrogryposis-causing genes (fibrillin 3 [FBN3], myosin IXA [MYO9A], and pleckstrin and Sec7 domain containing 3 [PSD3]) were identified in 3 families (6.2%). Moreover, in 8 families with a homozygous mutation in an arthrogryposis-associated gene, we identified a second locus with either a homozygous or compound heterozygous variant in a candidate gene (myosin binding protein C, fast type [MYBPC2] and vacuolar protein sorting 8 [VPS8], 2 families, 4.2%) or in another disease-associated genes (6 families, 12.5%), indicating a potential mutational burden contributing to disease expression. CONCLUSION In 58.3% of families, the arthrogryposis manifestation could be explained by a molecular diagnosis; however, the molecular etiology in subjects from 20 families remained unsolved by WES. Only 5 of these 20 unrelated subjects had a clinical presentation consistent with amyoplasia; a phenotype not thought to be of genetic origin. Our results indicate that increased use of genome-wide technologies will provide opportunities to better understand genetic models for diseases and molecular mechanisms of genetically heterogeneous disorders, such as arthrogryposis. FUNDING This work was supported in part by US National Human Genome Research Institute (NHGRI)/National Heart, Lung, and Blood Institute (NHLBI) grant U54HG006542 to the Baylor-Hopkins Center for Mendelian Genomics, and US National Institute of Neurological Disorders and Stroke (NINDS) grant R01NS058529 to J.R. Lupski.
Collapse
|
2
|
Papadopulos A, Tomatis VM, Kasula R, Meunier FA. The cortical acto-Myosin network: from diffusion barrier to functional gateway in the transport of neurosecretory vesicles to the plasma membrane. Front Endocrinol (Lausanne) 2013; 4:153. [PMID: 24155741 PMCID: PMC3800816 DOI: 10.3389/fendo.2013.00153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/05/2013] [Indexed: 01/14/2023] Open
Abstract
Dysregulation of regulated exocytosis is linked to an array of pathological conditions, including neurodegenerative disorders, asthma, and diabetes. Understanding the molecular mechanisms underpinning neuroexocytosis including the processes that allow neurosecretory vesicles to access and fuse with the plasma membrane and to recycle post-fusion, is therefore critical to the design of future therapeutic drugs that will efficiently tackle these diseases. Despite considerable efforts to determine the principles of vesicular fusion, the mechanisms controlling the approach of vesicles to the plasma membrane in order to undergo tethering, docking, priming, and fusion remain poorly understood. All these steps involve the cortical actin network, a dense mesh of actin filaments localized beneath the plasma membrane. Recent work overturned the long-held belief that the cortical actin network only plays a passive constraining role in neuroexocytosis functioning as a physical barrier that partly breaks down upon entry of Ca(2+) to allow secretory vesicles to reach the plasma membrane. A multitude of new roles for the cortical actin network in regulated exocytosis have now emerged and point to highly dynamic novel functions of key myosin molecular motors. Myosins are not only believed to help bring about dynamic changes in the actin cytoskeleton, tethering and guiding vesicles to their fusion sites, but they also regulate the size and duration of the fusion pore, thereby directly contributing to the release of neurotransmitters and hormones. Here we discuss the functions of the cortical actin network, myosins, and their effectors in controlling the processes that lead to tethering, directed transport, docking, and fusion of exocytotic vesicles in regulated exocytosis.
Collapse
Affiliation(s)
- Andreas Papadopulos
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Vanesa M. Tomatis
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Ravikiran Kasula
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Frederic A. Meunier
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
- *Correspondence: Frederic A. Meunier, Queensland Brain Institute, The University of Queensland, St Lucia Campus, QBI Building #79, St Lucia, QLD 4072, Australia e-mail:
| |
Collapse
|
3
|
Abstract
The myosin family of actin filament-based molecular motors consists of at least 20 structurally and functionally distinct classes. The human genome contains nearly 40 myosin genes, encoding 12 of these classes. Myosins have been implicated in a variety of intracellular functions, including cell migration and adhesion; intracellular transport and localization of organelles and macromolecules; signal transduction; and tumor suppression. In this review, recent insights into the remarkable diversity in the mechanochemical and functional properties associated with this family of molecular motors are discussed.
Collapse
Affiliation(s)
- Mira Krendel
- Department of Molecular Biology, Yale University, New Haven, CN, USA.
| | | |
Collapse
|
4
|
Wang Z, Pesacreta TC. A subclass of myosin XI is associated with mitochondria, plastids, and the molecular chaperone subunit TCP-1? in maize. ACTA ACUST UNITED AC 2004; 57:218-32. [PMID: 14752806 DOI: 10.1002/cm.10168] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role and regulation of specific plant myosins in cyclosis is not well understood. In the present report, an affinity-purified antibody generated against a conserved tail region of some class XI plant myosin isoforms was used for biochemical and immunofluorescence studies of Zea mays. Myosin XI co-localized with plastids and mitochondria but not with nuclei, the Golgi apparatus, endoplasmic reticulum, or peroxisomes. This suggests that myosin XI is involved in the motility of specific organelles. Myosin XI was more than 50% co-localized with tailless complex polypeptide-1alpha (TCP-1alpha) in tissue sections of mature tissues located more than 1.0 mm from the apex, and the two proteins co-eluted from gel filtration and ion exchange columns. On Western blots, TCP-1alpha isoforms showed a developmental shift from the youngest 5.0 mm of the root to more mature regions that were more than 10.0 mm from the apex. This developmental shift coincided with a higher percentage of myosin XI /TCP-1alpha co-localization, and faster degradation of myosin XI by serine protease. Our results suggest that class XI plant myosin requires TCP-1alpha for regulating folding or providing protection against denaturation.
Collapse
Affiliation(s)
- Zhengyuan Wang
- Biology Department, University of Louisiana, Lafayette 70504, USA
| | | |
Collapse
|
5
|
Oksvold MP, Skarpen E, Widerberg J, Huitfeldt HS. Fluorescent histochemical techniques for analysis of intracellular signaling. J Histochem Cytochem 2002; 50:289-303. [PMID: 11850432 DOI: 10.1177/002215540205000301] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intracellular signaling relies on the orchestrated cooperation of signaling proteins and modules, their intracellular localization, and membrane trafficking. Recently, a repertoire of fluorescence-based techniques, which significantly increases our potential for detailed studies of the involved mechanisms, has been introduced. Microscopic techniques with increased resolution have been combined with improved techniques for detection of signaling proteins. Transfections of fluorescently tagged proteins have allowed in vivo microscopy of their trafficking and interactions with other proteins and intracellular structures. We present an overview of general signaling principles and a description of techniques based on fluorescent microscopy suited for studies of signaling mechanisms.
Collapse
Affiliation(s)
- Morten P Oksvold
- Center for Cellular Stress Responses, Institute of Pathology, University of Oslo, Oslo, Norway.
| | | | | | | |
Collapse
|
6
|
Geissler H, Ullmann R, Soldati T. The tail domain of myosin M catalyses nucleotide exchange on Rac1 GTPases and can induce actin-driven surface protrusions. Traffic 2000; 1:399-410. [PMID: 11208126 DOI: 10.1034/j.1600-0854.2000.010505.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Members of the myosin superfamily play crucial roles in cellular processes including management of the cortical cytoskeleton, organelle transport and signal transduction. GTPases of the Rho family act as key control elements in the reorganization of the actin cytoskeleton in response to growth factors, and other functions such as membrane trafficking, transcriptional regulation, growth control and development. Here, we describe a novel unconventional myosin from Dictyostelium discoideum, MyoM. Primary sequence analysis revealed that it has the appearance of a natural chimera between a myosin motor domain and a guanine nucleotide exchange factor (GEF) domain for Rho GTPases. The functionality of both domains was established. Binding of the motor domain to F-actin was ATP-dependent and potentially regulated by phosphorylation. The GEF domain displayed selective activity on Rac1-related GTPases. Overexpression, rather than absence of MyoM, affected the cell morphology and viability. Particularly in response to hypo-osmotic stress, cells overexpressing the MyoM tail domain extended massive actin-driven protrusions. The GEF was enriched at the tip of growing protuberances, probably through its pleckstrin homology domain. MyoM is the first unconventional myosin containing an active Rac-GEF domain, suggesting a role at the interface of Rac-mediated signal transduction and remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- H Geissler
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
7
|
Reichelt S, Knight AE, Hodge TP, Baluska F, Samaj J, Volkmann D, Kendrick-Jones J. Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:555-67. [PMID: 10504577 DOI: 10.1046/j.1365-313x.1999.00553.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Myosins are a large superfamily of motor proteins which, in association with actin, are involved in intra- cellular motile processes. In addition to the conventional myosins involved in muscle contractility, there is, in animal cells, a wide range of unconventional myosins implicated in membrane-associated processes, such as vesicle transport and membrane dynamics. In plant cells, however, very little is known about myosins. We have raised an antibody to the recombinant tail region of Arabidopsis thaliana myosin 1 (a class VIII myosin) and used it in immunofluorescence and EM studies on root cells from cress and maize. The plant myosin VIII is found to be concentrated at newly formed cross walls at the stage in which the phragmoplast cytoskeleton has depolymerized and the new cell plate is beginning to mature. These walls are rich in plasmodesmata and we show that they are the regions where the longitudinal actin cables appear to attach. Myosin VIII appears to be localized in these plasmodesmata and we suggest that this protein is involved in maturation of the cell plate and the re-establishment of cytoplasmic actin cables at sites of intercellular communication.
Collapse
Affiliation(s)
- S Reichelt
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Lott JS, Wilde JI, Carne A, Evans N, Findlay JB. The ordered visual transduction complex of the squid photoreceptor membrane. Mol Neurobiol 1999; 20:61-80. [PMID: 10595873 DOI: 10.1007/bf02741365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The study of visual transduction has given invaluable insight into the mechanisms of signal transduction by heptahelical receptors that act via guanine nucleotide binding proteins (G-proteins). However, the cyclic-GMP second messenger system seen in vertebrate photoreceptor cells is not widely used in other cell types. In contrast, the retina of higher invertebrates, such as squid, offers an equally accessible transduction system, which uses the widespread second messenger chemistry of an increase in cytosolic calcium caused by the production of inositol-(1,4,5)-trisphosphate (InsP3) by the enzyme phospholipase C, and which may be a model for store-operated calcium influx. In this article, we highlight some key aspects of invertebrate visual transduction as elucidated from the combination of biochemical techniques applied to cephalopods, genetic techniques applied to flies, and electrophysiology applied to the horseshoe crab. We discuss the importance and applicability of ideas drawn from these model systems to the understanding of some general processes in signal transduction, such as the integration of the cytoskeleton into the signal transduction process and the possible modes of regulation of store-operated calcium influx.
Collapse
Affiliation(s)
- J S Lott
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
9
|
Gorman SW, Haider NB, Grieshammer U, Swiderski RE, Kim E, Welch JW, Searby C, Leng S, Carmi R, Sheffield VC, Duhl DM. The cloning and developmental expression of unconventional myosin IXA (MYO9A) a gene in the Bardet-Biedl syndrome (BBS4) region at chromosome 15q22-q23. Genomics 1999; 59:150-60. [PMID: 10409426 DOI: 10.1006/geno.1999.5867] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bardet-Biedl Syndrome (BBS) is a heterogeneous, autosomal recessive disorder characterized by mental retardation, obesity, retinitis pigmentosa, syndactyly and/or polydactyly, short stature, and hypogenitalism and is caused by mutations at a number of distinct loci. Using a positional cloning approach for identifying the BBS4 (chromosome 15) gene, we identified and cloned an unconventional myosin gene, myosin IXA (HGMW-approved symbol MYO9A). Since mutations in unconventional myosins are known to cause several human diseases, and since mutations of unconventional myosin VIIa cause retinal degeneration, we evaluated myosin IXA as a candidate for BBS. We exploited PCR-based techniques to clone a 8473-nt cDNA for myosin IXA. A 7644-bp open reading frame predicts a protein with all the hallmarks of class IX unconventional myosins. Human Northern blot analysis and in situ hybridization of mouse embryos reveal that myosin IXA is expressed in many tissues consistent with BBS. Intron/exon boundaries were identified, and myosin IXA DNA and RNA from BBS4 patients were evaluated for mutation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Chromosomes, Human, Pair 15/genetics
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA Mutational Analysis
- Embryo, Mammalian/metabolism
- Embryonic and Fetal Development
- Exons
- Female
- Gene Expression Regulation, Developmental
- Genes/genetics
- Humans
- In Situ Hybridization
- Introns
- Laurence-Moon Syndrome/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muridae
- Myosins/genetics
- Polymorphism, Single-Stranded Conformational
- RNA/genetics
- RNA/metabolism
- Retina/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- S W Gorman
- Chiron Corporation, 4560 Horton Street, Emeryville, California 94608, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Soldati T, Geissler H, Schwarz EC. How many is enough? Exploring the myosin repertoire in the model eukaryote Dictyostelium discoideum. Cell Biochem Biophys 1999; 30:389-411. [PMID: 10403058 DOI: 10.1007/bf02738121] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The cytoplasm of eukaryotic cells is a very complex milieu and unraveling how its unique cytoarchitecture is achieved and maintained is a central theme in modern cell biology. It is crucial to understand how organelles and macro-complexes of RNA and/or proteins are transported to and/or maintained at their specific cellular locations. The importance of filamentous-actin-directed myosin-powered cargo transport was only recently realized, and after an initial explosion in the identification of new molecules, the field is now concentrating on their functional dissection. Direct connections of myosins to a variety of cellular tasks are now slowly emerging, such as in cytokinesis, phagocytosis, endocytosis, polarized secretion and exocytosis, axonal transport, etc. Unconventional myosins have been identified in a wide variety of organisms, making the presence of actin and myosins a hallmark of eukaryotism. The genome of S. cerevisiae encodes only five myosins, whereas a mammalian cell has the capacity to express between two and three dozen myosins. Why is it so crucial to arrive at this final census? The main questions that we would like to discuss are the following. How many distinct myosin-powered functions are carried out in a typical higher eukaryote? Or, in other words, what is the minimal set of myosins essential to accomplish the multitude of tasks related to motility and intracellular dynamics in a multicellular organism? And also, as a corollary, what is the degree of functional redundancy inside a given myosin class? In that respect, the choice of a model organism suitable for such an investigation is more crucial than ever. Here we argue that Dictyostelium discoideum is affirming its position as an ideal system of intermediate complexity to study myosin-powered trafficking and is or will soon become the second eukaryote for which complete knowledge of the whole repertoire of myosins is available.
Collapse
Affiliation(s)
- T Soldati
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | | | | |
Collapse
|
11
|
Schwarz EC, Geissler H, Soldati T. A potentially exhaustive screening strategy reveals two novel divergent myosins in Dictyostelium. Cell Biochem Biophys 1999; 30:413-35. [PMID: 10403059 DOI: 10.1007/bf02738122] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In recent years, the myosin superfamily has kept expanding at an explosive rate, but the understanding of their complex functions has been lagging. Therefore, Dictyostelium discoideum, a genetically and biochemically tractable eukaryotic amoeba, appears as a powerful model organism to investigate the involvement of the actomyosin cytoskeleton in a variety of cellular tasks. Because of the relatively high degree of functional redundancy, such studies would be greatly facilitated by the prior knowledge of the whole myosin repertoire in this organism. Here, we present a strategy based on PCR amplification using degenerate primers and followed by negative hybridization screening which led to the potentially exhaustive identification of members of the myosin family in D. discoideum. Two novel myosins were identified and their genetic loci mapped by hybridization to an ordered YAC library. Preliminary inspection of myoK and myoM sequences revealed that, despite carrying most of the hallmarks of myosin motors, both molecules harbor features surprisingly divergent from most known myosins.
Collapse
Affiliation(s)
- E C Schwarz
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | | | | |
Collapse
|
12
|
Clow PA, McNally JG. In vivo observations of myosin II dynamics support a role in rear retraction. Mol Biol Cell 1999; 10:1309-23. [PMID: 10233146 PMCID: PMC25267 DOI: 10.1091/mbc.10.5.1309] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1998] [Accepted: 02/08/1999] [Indexed: 11/11/2022] Open
Abstract
To investigate myosin II function in cell movement within a cell mass, we imaged green fluorescent protein-myosin heavy chain (GFP-MHC) cells moving within the tight mound of Dictyostelium discoideum. In the posterior cortex of cells undergoing rotational motion around the center of the mound, GFP-MHC cyclically formed a "C," which converted to a spot as the cell retracted its rear. Consistent with an important role for myosin in rotation, cells failed to rotate when they lacked the myosin II heavy chain (MHC-) or when they contained predominantly monomeric myosin II (3xAsp). In cells lacking the myosin II regulatory light chain (RLC-), rotation was impaired and eventually ceased. These rotational defects reflect a mechanical problem in the 3xAsp and RLC- cells, because these mutants exhibited proper rotational guidance cues. MHC- cells exhibited disorganized and erratic rotational guidance cues, suggesting a requirement for the MHC in organizing these signals. However, the MHC- cells also exhibited mechanical defects in rotation, because they still moved aberrantly when seeded into wild-type mounds with proper rotational guidance cues. The mechanical defects in rotation may be mediated by the C-to-spot, because RLC- cells exhibited a defective C-to-spot, including a slower C-to-spot transition, consistent with this mutant's slower rotational velocity.
Collapse
Affiliation(s)
- P A Clow
- Department of Biology and Institute for Biomedical Computing, Washington University, Box 1229, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
13
|
Zorn E, Hercend T. A natural cytotoxic T cell response in a spontaneously regressing human melanoma targets a neoantigen resulting from a somatic point mutation. Eur J Immunol 1999; 29:592-601. [PMID: 10064075 DOI: 10.1002/(sici)1521-4141(199902)29:02<592::aid-immu592>3.0.co;2-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have studied a case of human primary melanoma displaying the classical signs of a spontaneous regression in order to characterize potentially efficient anti-tumor T cell responses. In a previous series of experiments a unique TCR Vbeta16+ T cell was shown to be highly expanded at the tumor site. The corresponding clone was isolated in vitro and found to be a CD8+ cytotoxic T lymphocyte with a strong and selective cytolytic activity against the autologous tumor cell line. Here, we demonstrate that this predominant Vbeta16+ tumor-infiltrating lymphocyte recognizes a peptide encoded by a novel unconventional myosin class I gene. This peptide includes a mutation due to a single nucleotide substitution. The resulting Glu-->Lys replacement at position 911 of the coding sequence is critical to generate the recognized T cell epitope. These experiments demonstrate the existence of a natural tumor-specific cytolytic T cell response in a primary regressing human melanoma lesion.
Collapse
Affiliation(s)
- E Zorn
- Unité INSERM U267, Hôpital Paul Brousse, Villejuif, France.
| | | |
Collapse
|
14
|
Abstract
The actin cytoskeleton is a highly dynamic network composed of actin polymers and a large variety of associated proteins. The main functions of the actin cytoskeleton are to mediate cell motility and cell shape changes during the cell cycle and in response to extracellular stimuli, to organize the cytoplasm, and to generate mechanical forces within the cell. The reshaping and functions of the actin cytoskeleton are regulated by signaling pathways. Here we broadly review the actin cytoskeleton and the signaling pathways that regulate it. We place heavy emphasis on the yeast actin cytoskeleton.
Collapse
Affiliation(s)
- A Schmidt
- Department of Biochemistry, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
15
|
Soldati T, Schwarz EC, Geissler H. Unconventional myosins at the crossroad of signal transduction and cytoskeleton remodeling. PROTOPLASMA 1999; 209:28-37. [PMID: 18987792 DOI: 10.1007/bf01415698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/1998] [Accepted: 12/09/1998] [Indexed: 05/27/2023]
Abstract
The cytoplasm of eukaryotic cells is a complex milieu and unraveling how its unique cytoarchitecture is achieved and maintained is a central theme in modern cell biology. The actin cytoskeleton is essential for the maintenance of cell shape and locomotion, and also provides tracks for active intracellular transport. Myosins, the actin-dependent motor proteins form a superfamily of at least 15 structural classes and have been identified in a wide variety of organisms, making the presence of actin and myosins a hallmark feature of eukaryotes. Direct connections of myosins to a variety of cellular tasks are now emerging, such as in cytokinesis, phagocytosis, endocytosis, polarized secretion and exocytosis, axonal transport. Recent studies reveal that myosins also play an essential role in many aspects of signal transduction and neurosensation.
Collapse
Affiliation(s)
- T Soldati
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
16
|
Corcoran JP, Ferretti P. Keratin 8 and 18 expression in mesenchymal progenitor cells of regenerating limbs is associated with cell proliferation and differentiation. Dev Dyn 1997; 210:355-70. [PMID: 9415422 DOI: 10.1002/(sici)1097-0177(199712)210:4<355::aid-aja1>3.0.co;2-f] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Keratins are considered markers of epithelial differentiation. In lower vertebrates, however, immunoreactivity for keratin 8 and 18 has been reported in nonepithelial cells, particularly in mesenchymal progenitor cells of regenerating complex body structures. To confirm that such reactivity does indeed reflect keratin expression and to investigate their possible role in regeneration, we have isolated clones coding for the newt homologues of keratin 8 and 18 (NvK8 and NvK18, respectively) and studied their distribution and changes in their expression following experimental manipulations. Analysis of NvK8 and NvK18 transcripts confirms that K8 and K18 are expressed in the blastemal cells of regenerating newt limbs and that their expression is first observed 3-5 days after amputation, when the blastemal cells start to proliferate under the influence of the nerve, whose presence is essential for regeneration to proceed. In contrast, no induction of these keratins is observed following amputation of a larval limb at a stage when organogenesis is proceeding in a nerve-independent manner. To establish whether there is a causal relationship between keratin expression and cell proliferation in the adult limb blastema, we have investigated whether their expression is nerve-dependent and whether suppression of their expression in cultured blastemal cells affects cell division and differentiation. Analysis of keratins in denervated limbs demonstrates that the nerve is not necessary to induce their expression. However, treatment of cultured blastemal cells with K8 and K18 anti-sense oligonucleotides significantly decreases DNA synthesis and induces changes in cell morphology, suggesting that expression of these keratins during regeneration may be necessary for the maintenance of the undifferentiated and proliferative state of blastemal cells.
Collapse
Affiliation(s)
- J P Corcoran
- Developmental Biology Unit, Institute of Child Health, University College London, United Kingdom
| | | |
Collapse
|
17
|
Hoyt MA, Hyman AA, Bähler M. Motor proteins of the eukaryotic cytoskeleton. Proc Natl Acad Sci U S A 1997; 94:12747-8. [PMID: 9398068 PMCID: PMC34170 DOI: 10.1073/pnas.94.24.12747] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- M A Hoyt
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
18
|
Abstract
Molecular motors are protein machines whose directed movement along cytoskeletal filaments is driven by ATP hydrolysis. Eukaryotic cells contain motors that help to transport organelles to their correct cellular locations and to establish and alter cellular morphology during cell locomotion and division. The best-studied motors, myosin from skeletal muscle and conventional kinesin from brain, are remarkably similar in structure, yet have very different functions. These differences can be understood in terms of the 'duty ratio', the fraction of the time that a motor is attached to its filament. Differences in duty ratio can explain the diversity of structures, speeds and oligomerization states of members of the large kinesin, myosin and dynein families of motors.
Collapse
Affiliation(s)
- J Howard
- Department of Physiology and Biophysics, University of Washington, Seattle 98195-7290, USA
| |
Collapse
|
19
|
Müller RT, Honnert U, Reinhard J, Bähler M. The rat myosin myr 5 is a GTPase-activating protein for Rho in vivo: essential role of arginine 1695. Mol Biol Cell 1997; 8:2039-53. [PMID: 9348541 PMCID: PMC25667 DOI: 10.1091/mbc.8.10.2039] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
myr 5 is an unconventional myosin (class IX) from rat that contains a Rho-family GTPase-activating protein (GAP) domain. Herein we addressed the specificity of the myr 5 GAP activity, the molecular mechanism by which GAPs activate GTP hydrolysis, the consequences of myr 5 overexpression in living cells, and its subcellular localization. The myr 5 GAP activity exhibits a high specificity for Rho. To achieve similar rates of GTPase activation for RhoA, Cdc42Hs, and Rac1, a 100-fold or 1000-fold higher concentration of recombinant myr 5 GAP domain was needed for Cdc42Hs or Rac1, respectively, as compared with RhoA. Cell lysates from Sf9 insect cells infected with recombinant baculovirus encoding myr 5 exhibited increased GAP activity for RhoA but not for Cdc42Hs or Rac1. Analysis of Rho-family GAP domain sequences for conserved arginine residues that might contribute to accelerate GTP hydrolysis revealed a single conserved arginine residue. Mutation of the corresponding arginine residue in the myr 5 GAP domain to a methionine (M1695) virtually abolished Rho-GAP activity. Expression of myr 5 in Sf9 insect cells induced the formation of numerous long thin processes containing occasional varicosities. Such morphological changes were dependent on the myr 5 Rho-GAP activity, because they were induced by expression the myr 5 tail or just the myr 5 Rho-GAP domain but not by expressing the myr 5 myosin domain. Expression of myr 5 in mammalian normal rat kidney (NRK) or HtTA-1 HeLa cells induced a loss of actin stress fibers and focal contacts with concomitant morphological changes and rounding up of the cells. Similar morphological changes were observed in HtTA-1 HeLa cells expressing just the myr 5 Rho-GAP domain but not in cells expressing myr 5 M1695. These morphological changes induced by myr 5 were inhibited by coexpression of RhoV14, which is defective in GTP hydrolysis, but not by RhoI117. myr 5 was localized in dynamic regions of the cell periphery, in the perinuclear region in the Golgi area, along stress fibers, and in the cytosol. These results demonstrate that myr 5 has in vitro and in vivo Rho-GAP activity. No evidence for a Rho effector function of the myr 5 myosin domain was obtained.
Collapse
Affiliation(s)
- R T Müller
- Friedrich-Miescher-Laboratorium in der Max-Planck Gesellschaft, Tübingen, Germany
| | | | | | | |
Collapse
|
20
|
Gavin RH. Microtubule-microfilament synergy in the cytoskeleton. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 173:207-42. [PMID: 9127954 DOI: 10.1016/s0074-7696(08)62478-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review describes examples of structural and functional synergy of the microtubule and actin filament cytoskeleton. An analysis of basal body (centriole)-associated fibrillar networks includes studies of ciliated epithelium, neurosensory epithelium, centrosomes, and ciliated protozoa. Microtubule and actin filament interactions in cell division and development are illustrated by centrosome motility, cleavage furrow positioning, centriole migration, nuclear migration, dynamics in the phragmoplast, growth cone motility, syncytial organization, and ring canals. Model systems currently used for studies on organelle transport are described in relation to mitochondrial transport in axons and vesicular transport in polarized epithelium. Evidence that both anterograde and retrograde motors are associated with one organelle is also discussed. The final section reviews proteins that bind both microtubules and actin filaments and are possible regulators of microtubule-microfilament interactions. Regulatory roles for posttranslational modifications, microtubule and microfilament dynamics, and multisubunit complexes are considered.
Collapse
Affiliation(s)
- R H Gavin
- Department of Biology, Brooklyn College, City University of New York 11210, USA
| |
Collapse
|
21
|
Affiliation(s)
- T Hasson
- Department of Biology, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|