1
|
Ahmadi S, Shamloo N, Taghavi N, Shalpoush S. Immunohistochemical analysis of proliferating cell nuclear antigen and minichromosome maintenance complex component 7 in benign and malignant salivary gland tumors. Dent Res J (Isfahan) 2022; 19:17. [PMID: 35308440 PMCID: PMC8927963 DOI: 10.4103/1735-3327.338780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 03/12/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Proliferation markers have been used to determine the behavior and prognosis of benign and malignant tumors; this study was aimed to compare the immunohistochemical (IHC) expression of proliferating cell nuclear antigen (PCNA) and novel marker minichromosome maintenance complex component 7 (MCM7) in common salivary gland tumors including pleomorphic adenoma (PA), mucoepidermoid carcinoma (MEC), and adenoid cystic carcinoma (AdCC), to find a possible significant correlation between benign and malignant tumors. Materials and Methods: In this cross-sectional study, a total of 90 cases, including 30 PAs, 30 MECs, and 30 AdCCs, were collected. The IHC expressions of PCNA and MCM7 were evaluated. Their expressions were compared with each other and between benign and malignant tumors. Statistical analysis was performed by Chi-square and Tukey's test. P value was considered 0.05. Results: Out of 30 cases of PA, 28 cases (93.3%) were PCNA positive and 28 cases (93.3%) were MCM7 positive. In the AdCC cases, 29 cases (96.6%) were PCNA positive and 29 cases (96.6%) were MCM7 positive. In the MEC cases, all cases (100%) were PCNA positive and 23 cases (76.6%) were MCM7 positive. The labeling index (LI) of MCM7 and PCNA was evaluated, and this index was lower in MCM7 LI than PCNA in all tumors. The MCM7 and PCNA expression showed a significant difference in PA and MEC (P < 0.001). Conclusion: PCNA expression was higher than MCM7 expression in salivary gland tumors. However, more studies are needed to evaluate the malignant activity of these tumors with group of markers such as MCM family members.
Collapse
|
2
|
Zhang J, Zhang H, Wang Y, Wang Q. MCM2-7 in Clear Cell Renal Cell Carcinoma: MCM7 Promotes Tumor Cell Proliferation. Front Oncol 2021; 11:782755. [PMID: 34993142 PMCID: PMC8724441 DOI: 10.3389/fonc.2021.782755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) accounts for 60-70% of renal cell carcinoma (RCC) cases. Finding more therapeutic targets for advanced ccRCC is an urgent mission. The minichromosome maintenance proteins 2-7 (MCM2-7) protein forms a stable heterohexamer and plays an important role in DNA replication in eukaryotic cells. In the study, we provide a comprehensive study of MCM2-7 genes expression and their potential roles in ccRCC. Methods The expression and prognosis of the MCM2-7 genes in ccRCC were analyzed using data from TCGA, GEO and ArrayExpress. MCM2-7 related genes were identified by weighted co-expression network analysis (WGCNA) and Metascape. CancerSEA and GSEA were used to analyze the function of MCM2–7 genes in ccRCC. The gene effect scores (CERES) of MCM2-7, which reflects carcinogenic or tumor suppressor, were obtained from DepMap. We used clinical and expression data of MCM2-7 from the TCGA dataset and the LASSO Cox regression analysis to develop a risk score to predict survival of patients with ccRCC. The correlations between risk score and other clinical indicators such as gender, age and stage were also analyzed. Further validation of this risk score was engaged in another cohort, E-MTAB-1980 from the ArrayExpress dataset. Results The mRNA and protein expression of MCM2-7 were increased in ccRCC compared with normal tissues. High MCM2, MCM4, MCM6 and MCM7 expression were associated with a poor prognosis of ccRCC patients. Functional enrichment analysis revealed that MCM2-7 might influence the progress of ccRCC by regulating the cell cycle. Knockdown of MCM7 can inhibit the proliferation of ccRCC cells. A two-gene risk score including MCM4 and MCM6 can predict overall survival (OS) of ccRCC patients. The risk score was successfully verified by further using Arrayexpress cohort. Conclusion We analyze MCM2-7 mRNA and protein levels in ccRCC. MCM7 is determined to promote tumor proliferation. Meanwhile, our study has determined a risk score model composed of MCM2-7 can predict the prognosis of ccRCC patients, which may help future treatment strategies.
Collapse
Affiliation(s)
- Junneng Zhang
- Laboratory Medicine Department, The Fifth Hospital of Xiamen, Xiamen, China
- *Correspondence: Junneng Zhang, ; Qingshui Wang,
| | - Huanzong Zhang
- Laboratory Medicine Department, The Fifth Hospital of Xiamen, Xiamen, China
| | - Yinghui Wang
- Laboratory Medicine Department, The Fifth Hospital of Xiamen, Xiamen, China
| | - Qingshui Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Junneng Zhang, ; Qingshui Wang,
| |
Collapse
|
3
|
Li HT, Wei B, Li ZQ, Wang X, Jia WX, Xu YZ, Liu JY, Shao MN, Chen SX, Mo NF, Zhao D, Zuo WP, Qin J, Li P, Zhang QL, Yang XL. Diagnostic and prognostic value of MCM3 and its interacting proteins in hepatocellular carcinoma. Oncol Lett 2020; 20:308. [PMID: 33093917 PMCID: PMC7573876 DOI: 10.3892/ol.2020.12171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Aberrant DNA replication is one of the driving forces behind oncogenesis. Furthermore, minichromosome maintenance complex component 3 (MCM3) serves an essential role in DNA replication. Therefore, in the present study, the diagnostic and prognostic value of MCM3 and its interacting proteins in hepatocellular carcinoma (HCC) were investigated. By utilizing The Cancer Genome Atlas (TCGA) database, global MCM3 mRNA levels were assessed in HCC and normal liver tissues. Its effects were further analyzed by reverse transcription-quantitative PCR (RT-qPCR), western blotting and immunohistochemistry in 78 paired HCC and adjacent tissues. Functional and pathway enrichment analyses were performed using the Search Tool for the Retrieval of Interacting Genes database. The expression levels of proteins that interact with MCM3 were also analyzed using the TCGA database and RT-qPCR. Finally, algorithms combining receiver operating characteristic (ROC) curves were constructed using binary logistic regression using the TCGA results. Increased MCM3 mRNA expression with high α-fetoprotein levels and advanced Edmondson-Steiner grade were found to be characteristic of HCC. Survival analysis revealed that high MCM3 expression was associated with poor outcomes in patients with HCC. In addition, MCM3 protein expression was associated with increased tumor invasion in HCC tissues. MCM3 and its interacting proteins were found to be primarily involved in DNA replication, cell cycle and a number of binding processes. Algorithms combining ROCs of MCM3 and its interacting proteins were found to have improved HCC diagnosis ability compared with MCM3 and other individual diagnostic markers. In conclusion, MCM3 appears to be a promising diagnostic biomarker for HCC. Additionally, the present study provides a basis for the multi-gene diagnosis of HCC using MCM3.
Collapse
Affiliation(s)
- Hong-Tao Li
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Bing Wei
- College of International Education, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Zhou-Quan Li
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wen-Xian Jia
- College of Pharmacy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yan-Zhen Xu
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Jia-Yi Liu
- Department of Pathology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Meng-Nan Shao
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Sui-Xia Chen
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Nan-Fang Mo
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Dong Zhao
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Wen-Pu Zuo
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Qin
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ping Li
- Department of Pathology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qin-Le Zhang
- Genetic and Metabolic Central Laboratory, The Maternal and Children Health Hospital of Guangxi, Nanning, Guangxi 530005, P.R. China
| | - Xiao-Li Yang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| |
Collapse
|
4
|
Tavakolian S, Goudarzi H, Faghihloo E. Cyclin-dependent kinases and CDK inhibitors in virus-associated cancers. Infect Agent Cancer 2020; 15:27. [PMID: 32377232 PMCID: PMC7195796 DOI: 10.1186/s13027-020-00295-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
The role of several risk factors, such as pollution, consumption of alcohol, age, sex and obesity in cancer progression is undeniable. Human malignancies are mainly characterized by deregulation of cyclin-dependent kinases (CDK) and cyclin inhibitor kinases (CIK) activities. Viruses express some onco-proteins which could interfere with CDK and CIKs function, and induce some signals to replicate their genome into host's cells. By reviewing some studies about the function of CDK and CIKs in cells infected with oncoviruses, such as HPV, HTLV, HERV, EBV, KSHV, HBV and HCV, we reviewed the mechanisms of different onco-proteins which could deregulate the cell cycle proteins.
Collapse
Affiliation(s)
- Shaian Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
|
6
|
Schvartz D, Couté Y, Sanchez JC. Quantitative proteomics reveals the link between minichromosome maintenance complex and glucose-induced proliferation of rat pancreatic INS-1E β-cells. J Proteomics 2014; 108:163-70. [DOI: 10.1016/j.jprot.2014.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022]
|
7
|
Ashkavandi ZJ, Najvani AD, Tadbir AA, Pardis S, Ranjbar MA, Ashraf MJ. MCM3 as a novel diagnostic marker in benign and malignant salivary gland tumors. Asian Pac J Cancer Prev 2014; 14:3479-82. [PMID: 23886132 DOI: 10.7314/apjcp.2013.14.6.3479] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proliferation markers widely have been used to diagnose and determine the behaviour and prognosis of benign and malignant tumours. Minichromosome maintenance 3 (MCM3) is a novel proliferation marker. The aim of this study was to evaluate and compare MCM3 with Ki-67 in diagnosis of salivary gland tumours. MATERIALS AND METHODS In this retrospective study, immunohistochemical expression of MCM3 and Ki-67 was evaluated in 15 pleomorphic adenomas (PA), 17 mucoepidermoid carcinomas (MEC) and 18 adenoid cystic carcinomas (ADCC) . Labeling indices (LIs) for the two markers were calculated and compared. RESULTS MCM3 and Ki-67 LIs were significantly higher in MEC and ADCC compared to PA. The LI of MCM3 was significantly higher than that of Ki-67 in MEC and PA. There was no significant difference between the two markers in ADCC. A cut-off point of 8% with 74.3% sensitivity and 93.3% specificity for MCM3 was obtained to discern between benign and malignant tumors. CONCLUSIONS These results suggest that MCM3 might be a useful proliferation marker for differential diagnosis and recognition of clinical behavior of salivary gland tumors.
Collapse
Affiliation(s)
- Zohreh Jaafari Ashkavandi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | |
Collapse
|
8
|
Copeland NA, Sercombe HE, Ainscough JFX, Coverley D. Ciz1 cooperates with cyclin-A-CDK2 to activate mammalian DNA replication in vitro. J Cell Sci 2010; 123:1108-15. [PMID: 20215406 DOI: 10.1242/jcs.059345] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Initiation of mammalian DNA replication can be reconstituted from isolated G1-phase nuclei and cell extracts, supplemented with cyclin-dependent protein kinases (CDKs). Under these conditions, cyclin E supports pre-replication complex assembly, whereas cyclin-A-associated kinase acts later to terminate assembly and activate DNA replication. The mechanism by which these events are coordinated is unknown. Here, we show that the replication factor Ciz1 interacts with cyclins E and A sequentially through distinct cyclin-binding motifs. Cyclin A displaces cyclin E from Ciz1 in a manner that is dependent on functional domains that are essential for its role in DNA replication. Furthermore, in cell-free assays, recombinant cyclin-A-CDK2 complexes and recombinant Ciz1 cooperate to promote initiation of DNA replication in late G1-phase nuclei. In addition, Ciz1 supports immobilization of cyclin A in isolated nuclei and depletion of Ciz1 by RNAi impairs immobilization, suggesting that Ciz1 promotes initiation by helping to target the kinase to a specific subnuclear compartment. We propose that Ciz1 acts to coordinate the functions of cyclins E and A in the nucleus, by delivering cyclin-A-associated kinase to sites that are specified by cyclin E, helping to ensure that they execute their functions in the same place and in the correct order.
Collapse
Affiliation(s)
- Nikki A Copeland
- Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | | | | | | |
Collapse
|
9
|
Abstract
Regulation of the repair of DNA double-strand breaks by homologous recombination is extremely important for both cell viability and the maintenance of genomic integrity. Modulation of double-strand break repair in the yeast Saccharomyces cerevisiae involves controlling the recruitment of one of the central recombination proteins, Rad52, to sites of DNA lesions. The Rad52 protein, which plays a role in strand exchange and the annealing of single strand DNA, is positively regulated upon entry into S phase, repressed during the intra-S phase checkpoint, and undergoes posttranslational modification events such as phosphorylation and sumoylation. These processes all contribute to the timing of Rad52 recruitment, its stability and function. Here, we summarize the regulatory events affecting the Rad52 protein and discuss how this regulation impacts DNA repair and cell survival.
Collapse
|
10
|
de Morgan A, Brodsky L, Ronin Y, Nevo E, Korol A, Kashi Y. Genome-wide analysis of DNA turnover and gene expression in stationary-phase Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2010; 156:1758-1771. [PMID: 20167621 DOI: 10.1099/mic.0.035519-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exponential-phase yeast cells readily enter stationary phase when transferred to fresh, carbon-deficient medium, and can remain fully viable for up to several months. It is known that stationary-phase prokaryotic cells may still synthesize substantial amounts of DNA. Although the basis of this phenomenon remains unclear, this DNA synthesis may be the result of DNA maintenance and repair, recombination, and stress-induced transposition of mobile elements, which may occur in the absence of DNA replication. To the best of our knowledge, the existence of DNA turnover in stationary-phase unicellular eukaryotes remains largely unstudied. By performing cDNA-spotted (i.e. ORF) microarray analysis of stationary cultures of a haploid Saccharomyces cerevisiae strain, we demonstrated on a genomic scale the localization of a DNA-turnover marker [5-bromo-2'-deoxyuridine (BrdU); an analogue of thymidine], indicative of DNA synthesis in discrete, multiple sites across the genome. Exponential-phase cells on the other hand, exhibited a uniform, total genomic DNA synthesis pattern, possibly the result of DNA replication. Interestingly, BrdU-labelled sites exhibited a significant overlap with highly expressed features. We also found that the distribution among chromosomes of BrdU-labelled and expressed features deviates from random distribution; this was also observed for the overlapping set. Ty1 retrotransposon genes were also found to be labelled with BrdU, evidence for transposition during stationary phase; however, they were not significantly expressed. We discuss the relevance and possible connection of these results to DNA repair, mutation and related phenomena in higher eukaryotes.
Collapse
Affiliation(s)
- A de Morgan
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - L Brodsky
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Y Ronin
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - E Nevo
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - A Korol
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Y Kashi
- Department of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa 30200, Israel
| |
Collapse
|
11
|
Lee YS, Ha SA, Kim HJ, Shin SM, Kim HK, Kim S, Kang CS, Lee KY, Hong OK, Lee SH, Kwon HS, Cha BY, Kim JW. Minichromosome maintenance protein 3 is a candidate proliferation marker in papillary thyroid carcinoma. Exp Mol Pathol 2009; 88:138-42. [PMID: 19818763 DOI: 10.1016/j.yexmp.2009.09.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 09/21/2009] [Accepted: 09/26/2009] [Indexed: 11/28/2022]
Abstract
The proliferative capacity of tumor cells is a characteristic feature in the whole growing tumors. Many pathologists and clinicians have used the estimation of cell proliferation for prognostic information. Minichromosome maintenance protein 3 (MCM3) is known to have a role on the initiation and regulation of DNA replication during cell cycle. The aim of this study was to evaluate the potential applicability of one of the MCM proteins, MCM3, as a proliferation marker in papillary thyroid carcinoma (PTC) with correlation to clinicopathological parameters. We performed the immunohistochemical analysis for MCM3 and Ki-67 in 60 cases of PTC and Western blot analysis for MCM3 expression in 6 PTCs and normal thyroid tissues. The comparison of MCM3 labeling index (LI) to tumor size (P=0.031) and extrathyroidal extension (P=0.037) was statistically significant while that of Ki-67 LI to them was not. Moreover, a significant association was not observed between MCM3 and Ki-67, but the MCM3 LI was considerably higher. Western blot analyses revealed that the MCM3 protein expression levels were overexpressed in all PTCs. On the contrary, the levels of MCM3 were very low or absent in all normal thyroid tissues. Our results indicate that MCM3 may be a more reliable proliferation marker than Ki-67 in accessing the growth of tumor and evaluating tumor aggressiveness of PTC.
Collapse
Affiliation(s)
- Youn Soo Lee
- Department of Hospital Pathology, Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Barlow JH, Rothstein R. Rad52 recruitment is DNA replication independent and regulated by Cdc28 and the Mec1 kinase. EMBO J 2009; 28:1121-30. [PMID: 19262568 DOI: 10.1038/emboj.2009.43] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 01/19/2009] [Indexed: 11/09/2022] Open
Abstract
Recruitment of the homologous recombination machinery to sites of double-strand breaks is a cell cycle-regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B-type cyclin/CDK1 activity. Induction of the intra-S-phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU-treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra-S-phase checkpoint. We propose that B-type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.
Collapse
Affiliation(s)
- Jacqueline H Barlow
- Department of Genetics & Development, Columbia University Medical Center, New York, NY 10032-2704, USA
| | | |
Collapse
|
13
|
Conejo-García A, Núñez MC, Marchal JA, Rodríguez-Serrano F, Aránega A, Gallo MA, Espinosa A, Campos JM. Regiospecific microwave-assisted synthesis and cytotoxic activity against human breast cancer cells of (RS)-6-substituted-7- or 9-(2,3-dihydro-5H-1,4-benzodioxepin-3-yl)-7H- or -9H-purines. Eur J Med Chem 2008; 43:1742-8. [DOI: 10.1016/j.ejmech.2007.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/22/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
|
14
|
Conejo-García A, Gallo MA, Espinosa A, Campos JM. Latest advances on regiospecific microwave-assisted synthesis of novel purine derivatives as antitumor agents. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.2.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
GREGORY TRYAN. Coincidence, coevolution, or causation? DNA content, cellsize, and the C-value enigma. Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.2000.tb00059.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Davies CR, Morris JS, Griffiths MR, Page MJ, Pitt A, Stein T, Gusterson BA. Proteomic analysis of the mouse mammary gland is a powerful tool to identify novel proteins that are differentially expressed during mammary development. Proteomics 2007; 6:5694-704. [PMID: 17022101 DOI: 10.1002/pmic.200600202] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
After lactation, the mouse mammary gland undergoes apoptosis and tissue remodelling as the gland reverts to its prepregnant state. This complex change was investigated using 2-DE. An integrated database was produced from lactation and involution proteomes. Forty-four molecular cluster indexes (MCIs) that showed altered expression from lactation to involution were selected for MS analysis. Of these, 32 gave protein annotations, 18 of which were unequivocal proteins. Selected proteins were then studied across all of development, including pregnancy, using data integrated from another proteome database. Two proteins, the RNA polymerase B transcription factor 3 (BTF3) and the minichromosome maintenance protein 3 (MCM3), although initially selected on the basis of the lactation/involution criteria, had expression profiles that indicated an additional role in mammary development and were further analysed. BTF3, a transcription factor previously not described in the mammary gland, was up-regulated strongly in pregnancy, indicating an involvement in alveolar growth. MCM3's expression was greatest in pregnancy and late involution, decreasing through lactation. Immunohistochemistry localised MCM3 to the mammary epithelium, where a greater proportion of cells stained than for the proliferation marker Ki67. MCM3 expression during lactation may identify cells that are licensed to repopulate the gland during cell loss in lactation and following involution.
Collapse
Affiliation(s)
- Claire R Davies
- Department of Pathology, Division of Cancer Sciences and Molecular Pathology, Glasgow, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Bhojwani M, Rudolph E, Kanitz W, Zuehlke H, Schneider F, Tomek W. Molecular Analysis of Maturation Processes by Protein and Phosphoprotein Profiling during In Vitro Maturation of Bovine Oocytes: A Proteomic Approach. CLONING AND STEM CELLS 2006; 8:259-74. [PMID: 17196091 DOI: 10.1089/clo.2006.8.259] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cellular maturation and differentiation processes are accompanied by the expression of specific proteins. Especially in oocytes, there is no reliable strict linear correlation between mRNA levels and the abundance of proteins. Furthermore, the activity of proteins is modulated by specific kinases and phosphatases which control cellular processes like cellular growth, differentiation, cell cycle and meiosis. During the meiotic maturation of oocytes, the activation of protein kinases, namely of the MPF and MAPK play a predominant role. Therefore, the present study was performed to analyze meiotic maturation at a molecular level, concerning alterations of the proteom and phosphoproteom during IVM. Using a proteomic approach by combining two-dimensional gel electrophoresis followed by selective protein and phosphoprotein staining and mass spectrometry, we identified proteins which were differentially expressed and/or phosphorylated during IVM. Furthermore, we used the MPF inhibitor butyrolactone I, to reveal new molecular effects which are potentially essential for successful maturation. The results show that approximately 550 protein spots could be visualized by the fluorescent dye Sypro ruby at any maturation stage (GV, M I, M II) investigated. From GV stage to M II, ProQ diamond staining indicate in GV 30%, in M I 50%, and in M II 45% of the spots were phosphorylated. The Identity of 40 spots could be established. These proteins belong to different families, for example, cytoskeleton, molecular chaperons, redox, energy and metabolism related proteins, nucleic acid binding proteins, cell cycle regulators, and protein kinases. Four of them were differentially expressed (alteration higher than factor 2) during IVM, namely tubulin beta-chain, cyclin E(2), protein disulfide isomerase and one of two different forms of peroxiredoxin 2. Seven proteins were differentially stained by ProQ diamond, indicating a differential phosphorylation. These are tubulin beta-chain, beta-actin, cyclin E(2), aldose reductase and UMP-synthase, protein disulfide isomerase 2, and peroxiredoxin 2. Furthermore, the results indicate that the phosphorylation of at least peroxiredoxin 2 respond to BL I treatment. This indicates that its phosphorylation is under the control of MPF or MAPK. In summary these results indicates that the reduction of cyclin Eexpression and the (partially) inactivation of peroxiredoxin 2 by phosphorylation, hence alterations in the peroxide levels which can mediate signal transduction are essential components for successful maturation.
Collapse
Affiliation(s)
- Monika Bhojwani
- Department of Reproductive Biology, Research Institute for the Biology of Farm Animals (FBN), Dummerstorf, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Ha SA, Shin SM, Namkoong H, Lee H, Cho GW, Hur SY, Kim TE, Kim JW. Cancer-Associated Expression ofMinichromosome Maintenance 3Gene in Several Human Cancers and Its Involvement in Tumorigenesis. Clin Cancer Res 2004; 10:8386-95. [PMID: 15623617 DOI: 10.1158/1078-0432.ccr-04-1029] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of our study was to identify an unique gene that shows cancer-associated expression, evaluates its potential usefulness in cancer diagnosis, and characterizes its function related to human carcinogenesis. EXPERIMENTAL DESIGN We used the differential display reverse transcription-PCR method with normal cervical, cervical cancer and metastatic tissues, and cervical cancer cell line to identify genes overexpressed in cancers. RESULTS We identified a minichromosome maintenance 3 (MCM3) gene that was overexpressed in various human cancers, including leukemia, lymphoma, and carcinomas of the uterine cervix, colon, lung, stomach, kidney and breast, and malignant melanoma. Western blot and immunohistochemical analyses also revealed that MCM3 protein was elevated in most of human cancer tissues tested. We compared the MCM3 protein expression levels in human cancers with conventional proliferation markers, Ki-67 and proliferating cell nuclear antigen. MCM3 antibody was the most specific for multiple human cancers, whereas proliferating cell nuclear antigen was relatively less effective in specificity, and Ki-67 failed to detect several human cancers. The down-regulation of MCM3 protein level was examined under serum starvation in both normal and cancer cells. Interestingly, MCM3 protein was stable in MCF-7 breast cancer cells even up to 96 hours after serum starvation, whereas it was gradually degraded in normal BJ fibroblast cells. Nude mice who received injections of HEK 293 cells stably transfected with MCM3 formed tumors in 6 weeks. CONCLUSIONS Our study indicates that determination of MCM3 expression level will facilitate the assessment of many different human malignancies in tumor diagnosis, and MCM3 is involved in multiple types of human carcino-genesis.
Collapse
Affiliation(s)
- Seon-Ah Ha
- Molecular Genetic Laboratory, Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Padmanabhan V, Callas P, Philips G, Trainer TD, Beatty BG. DNA replication regulation protein Mcm7 as a marker of proliferation in prostate cancer. J Clin Pathol 2004; 57:1057-62. [PMID: 15452160 PMCID: PMC1770448 DOI: 10.1136/jcp.2004.016436] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Recent studies have shown that minichromosome maintenance (MCM) proteins (Mcm2-7) may be useful proliferation markers in dysplasia and cancer in various tissues. AIMS To investigate the use of Mcm7 as a proliferation marker in 79 lymph node negative prostate cancers and compare it with Ki-67, a commonly used cell proliferation marker. METHODS The percentage of proliferating cells (proliferation index; PI) was calculated for basal and luminal epithelial cells in benign prostate tissue, prostatic intraepithelial neoplasia (PIN), and epithelial cells in adenocarcinoma. The PI for each biomarker was correlated with the preoperative prostate specific antigen concentration, the Gleason score, surgical resection margin status, and the AJCC pT stage for each patient. RESULTS The mean PIs for Ki-67 and Mcm7 were: benign luminal epithelium 0.7 and 1.2 and benign basal epithelium 0.8 and 8.2; PIN non-basal epithelium 4.9 and 10.6 and PIN basal epithelium 0.7 and 3.1; adenocarcinoma 9.8 and 22.7, respectively. Mcm7 had a significantly higher mean PI (p<0.0001) than Ki-67 for all cell categories except benign luminal epithelial cells. Mcm7 was a better discriminatory marker of proliferation between benign epithelium, PIN, and invasive adenocarcinoma (p<0.0001) than Ki-67. The drop in Mcm7 mean basal cell PI from benign epithelium to PIN epithelium was significantly larger than for Ki-67 (p<0.0001). Mcm7 had a significantly higher PI than Ki-67 at each risk level. CONCLUSION Mcm7 may be a useful proliferation marker in prostatic neoplasia and warrants further evaluation as a complementary tool in the diagnosis of PIN and prostate carcinoma.
Collapse
Affiliation(s)
- V Padmanabhan
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
20
|
Douglas RM, Haddad GG. Genetic models in applied physiology: invited review: effect of oxygen deprivation on cell cycle activity: a profile of delay and arrest. J Appl Physiol (1985) 2003; 94:2068-83; discussion 2084. [PMID: 12679355 DOI: 10.1152/japplphysiol.01029.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the most fascinating fields that have emanated in the past few decades is developmental biology. This is not only the case from a research point of view but also from the angle of clinical care and treatment strategies. It is now well demonstrated that there are many diseases (some believe all diseases) that have their roots in embryogenesis or in early life, where nature and environment often team up to facilitate the genesis of disease. There is probably no better example to illustrate the interactions between nature and environment than in early life, as early as in the first several cell cycles. As will be apparent in this review, the cell cycle is a very regulated activity and this regulation is genetic in nature, with checkpoint proteins playing an important role in controlling the timing, the size, and the growth of daughter cells. However, it is also very clear, as will be discussed in this work, that the microenvironment of the first dividing cells is so important for the outcome of the organism. In this review, we will focus on the effect of one stress, that of hypoxia, on the young embryo and its cell division and growth. We will first review some of the cell cycle definitions and stages and then review briefly our current knowledge and its gaps in this area.
Collapse
Affiliation(s)
- R M Douglas
- Division of Respiratory Medicine, Department of Pediatrics and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
21
|
Lee K, Neigeborn L, Kaufman RJ. The unfolded protein response is required for haploid tolerance in yeast. J Biol Chem 2003; 278:11818-27. [PMID: 12560331 DOI: 10.1074/jbc.m210475200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
HAC1 encodes a transcription factor that mediates the unfolded protein response (UPR) in Saccharomyces cerevisiae. We characterized hac1Delta mutants in the sporulation-proficient SK1 genetic background and found a novel function for HAC1 in haploid tolerance. hac1Delta spore clones contain a diploid DNA content as determined by fluorescence-activated cell sorting and genetic analyses. Autodiploidization of hac1 spore clones occurred after germination; hac1 spores were born haploid, but efficiently generated diploid progeny during the subsequent mitotic division. Once the hac1 mutant acquired a diploid DNA content, no further ploidy increase was observed. Interestingly, the increase in genome content following meiosis was not a general property associated with hac1 spore clones; instead, it was restricted to an inability to tolerate the haploid state. Genetic analyses involving the UPR target gene KAR2 and the UPR regulator IRE1 revealed that autodiploidization associated with hac1 mutants is a consequence of its role in the UPR pathway. Inhibition of the UPR pathway induces autodiploidization, and constitutive activation of UPR target genes suppresses this response.
Collapse
Affiliation(s)
- Kyungho Lee
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
22
|
Brownlee C, Bouget FY, Corellou F. Choosing sides: establishment of polarity in zygotes of fucoid algae. Semin Cell Dev Biol 2001; 12:345-51. [PMID: 11535041 DOI: 10.1006/scdb.2001.0262] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The acquisition and expression of polarity during early embryogenesis underlies developmental pattern. In many multicellular organisms an initial asymmetric division of the zygote is critical to the determination of different cell fates of the early embryonic cells. Zygotes of the marine fucoid algae are initially apolar and become polarized in response to external cues. This results in an initial asymmetric division of the zygote. Subsequent divisions occur in a highly ordered spatial and temporal pattern. A combination of cell biological and biochemical studies is providing new details, and some controversies concerning the mechanisms by which zygotic polarity is acquired and amplified. Here, we discuss some of the more recent studies that are allowing improved understanding of polarization in this system.
Collapse
Affiliation(s)
- C Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.
| | | | | |
Collapse
|
23
|
Stoeber K, Tlsty TD, Happerfield L, Thomas GA, Romanov S, Bobrow L, Williams ED, Williams GH. DNA replication licensing and human cell proliferation. J Cell Sci 2001; 114:2027-41. [PMID: 11493639 DOI: 10.1242/jcs.114.11.2027] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The convergence point of growth regulatory pathways that control cell proliferation is the initiation of genome replication, the core of which is the assembly of pre-replicative complexes resulting in chromatin being ‘licensed’ for DNA replication in the subsequent S phase. We have analysed regulation of the pre-replicative complex proteins ORC, Cdc6, and MCM in cycling and non-proliferating quiescent, differentiated and replicative senescent human cells. Moreover, a human cell-free DNA replication system has been exploited to study the replicative capacity of nuclei and cytosolic extracts prepared from these cells. These studies demonstrate that downregulation of the Cdc6 and MCM constituents of the replication initiation pathway is a common downstream mechanism for loss of proliferative capacity in human cells. Furthermore, analysis of MCM protein expression in self-renewing, stable and permanent human tissues shows that the three classes of tissue have developed very different growth control strategies with respect to replication licensing. Notably, in breast tissue we found striking differences between the proportion of mammary acinar cells that express MCM proteins and those labelled with conventional proliferation markers, raising the intriguing possibility that progenitor cells of some tissues are held in a prolonged G1 phase or ‘in-cycle arrest’. We conclude that biomarkers for replication-licensed cells detect, in addition to actively proliferating cells, cells with growth potential, a concept that has major implications for developmental and cancer biology.
Collapse
Affiliation(s)
- K Stoeber
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Herrick J, Stanislawski P, Hyrien O, Bensimon A. Replication fork density increases during DNA synthesis in X. laevis egg extracts. J Mol Biol 2000; 300:1133-42. [PMID: 10903859 DOI: 10.1006/jmbi.2000.3930] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Duplication of the eukaryotic genome depends on the temporal and spatial organization of DNA replication during the cell cycle. To investigate the genomic organization of DNA replication in a higher eukaryote, multiple origins of replication must be simultaneously analyzed over large regions of the genome as DNA synthesis progresses through S phase of the cell cycle. We have employed a novel technique that allows for the quantitative analysis of DNA replication on a genome wide basis. The technique involves stretching and aligning individual DNA molecules on a glass surface. As a model system, Xenopus laevis egg extract was used to differentially label sperm chromatin at successive time points after the start of DNA synthesis. The differentially labeled DNA allows earlier and later replicating sequences to be distinguished, and hence the sites of DNA synthesis at any given time can be directly visualized. Genomic DNA was extracted, and measurements made on the linearized molecules provided a comprehensive analysis of the spatial and temporal organization of DNA replication in the X. laevis in vitro replication system. It was found that: (i) DNA synthesis initiates asynchronously at irregular intervals but continuously as DNA replication advances; and (ii) that the frequency of initiation (the number of activated origins per kilobase) increases as DNA synthesis nears completion. The implications of these findings for the regulation of DNA replication in early embryos is discussed.
Collapse
Affiliation(s)
- J Herrick
- Institut Pasteur, Laboratoire de Biophysique de l'ADN, 25-28 rue du Dr. Roux, Paris Cedex 15, 75425, France
| | | | | | | |
Collapse
|
25
|
Arris CE, Boyle FT, Calvert AH, Curtin NJ, Endicott JA, Garman EF, Gibson AE, Golding BT, Grant S, Griffin RJ, Jewsbury P, Johnson LN, Lawrie AM, Newell DR, Noble ME, Sausville EA, Schultz R, Yu W. Identification of novel purine and pyrimidine cyclin-dependent kinase inhibitors with distinct molecular interactions and tumor cell growth inhibition profiles. J Med Chem 2000; 43:2797-804. [PMID: 10956187 DOI: 10.1021/jm990628o] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substituted guanines and pyrimidines were tested as inhibitors of cyclin B1/CDK1 and cyclin A3/CDK2 and soaked into crystals of monomeric CDK2. O6-Cyclohexylmethylguanine (NU2058) was a competitive inhibitor of CDK1 and CDK2 with respect to ATP (Ki values: CDK1, 5 +/- 1 microM; CDK2, 12 +/- 3 microM) and formed a triplet of hydrogen bonds (i.e., NH-9 to Glu 81, N-3 to Leu 83, and 2-NH2 to Leu 83). The triplet of hydrogen bonding and CDK inhibition was reproduced by 2,6-diamino-4-cyclohexylmethyloxy-5-nitrosopyrimidine (NU6027, Ki values: CDK1, 2.5 +/- 0.4 microM; CDK2, 1.3 +/- 0.2 microM). Against human tumor cells, NU2058 and NU6027 were growth inhibitory in vitro (mean GI50 values of 13 +/- 7 microM and 10 +/- 6 microM, respectively), with a pattern of sensitivity distinct from flavopiridol and olomoucine. These CDK inhibition and chemosensitivity data indicate that the distinct mode of binding of NU2058 and NU6027 has direct consequences for enzyme and cell growth inhibition.
Collapse
Affiliation(s)
- C E Arris
- Department of Chemistry, University of Newcastle, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sun W, Hola M, Pedley K, Tada S, Blow JJ, Todorov IT, Kearsey SE, Brooks RF. The replication capacity of intact mammalian nuclei in Xenopus egg extracts declines with quiescence, but the residual DNA synthesis is independent of Xenopus MCM proteins. J Cell Sci 2000; 113 ( Pt 4):683-95. [PMID: 10652261 DOI: 10.1242/jcs.113.4.683] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, the initiation of DNA synthesis requires the assembly of a pre-replicative complex (pre-RC) at origins of replication. This involves the sequential binding of ORC (origin-recognition-complex), Cdc6 and MCM proteins, a process referred to as licensing. After origin firing, the Cdc6 and MCM proteins dissociate from the chromatin, and do not rebind until after the completion of mitosis, thereby restricting replication to a single round in each cell cycle. Although nuclei normally become licensed for replication as they enter G(1), the extent to which the license is retained when cells enter the quiescent state (G(0)) is controversial. Here we show that the replication capacity of nuclei from Swiss 3T3 cells, in Xenopus egg extracts, is not lost abruptly with the onset of quiescence, but instead declines gradually. The decline in replication capacity, which affects both the number of nuclei induced to replicate and their subsequent rate of DNA synthesis, is accompanied by a fall in the level of chromatin-bound MCM2. When quiescent nuclei are incubated in egg extracts, they do not bind further MCMs unless the nuclei are first permeabilized. The residual replication capacity of intact nuclei must therefore be dependent on the remaining endogenous MCMs. Although high levels of Cdk activity are known to block MCM binding, we show that the failure of intact nuclei in egg extracts to increase their bound MCMs is not due to their uptake and accumulation of Cdk complexes. Instead, the failure of binding must be due to exclusion of some other binding factor from the nucleus, or to the presence within nuclei of an inhibitor of binding other than Cdk activity. In contrast to the situation in Xenopus egg extracts, following serum stimulation of intact quiescent cells, the level of bound MCMs does increase before the cells reach S phase, without any disruption of the nuclear envelope.
Collapse
Affiliation(s)
- W Sun
- GKT School of Biomedical Sciences, King's College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
One of the fundamental characteristics of life is the ability of an entity to reproduce itself, which stems from the ability of the DNA molecule to replicate itself. The initiation step of DNA replication, where control over the timing and frequency of replication is exerted, is poorly understood in eukaryotes in general, and in mammalian cells in particular. The cis-acting DNA element defining the position and providing control over initiation is the replication origin. The activation of replication origins seems to be dependent on the presence of both a particular sequence and of structural determinants. In the past few years, the development of new methods for identification and mapping of origins of DNA replication has allowed some understanding of the fundamental elements that control the replication process. This review summarizes some of the major findings of this century, regarding the mechanism of DNA replication, emphasizing what is known about the replication of mammalian DNA. J. Cell. Biochem. Suppls. 32/33:1-14, 1999.
Collapse
|
28
|
Findeisen M, El-Denary M, Kapitza T, Graf R, Strausfeld U. Cyclin A-dependent kinase activity affects chromatin binding of ORC, Cdc6, and MCM in egg extracts of Xenopus laevis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:415-26. [PMID: 10491086 DOI: 10.1046/j.1432-1327.1999.00613.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The initiation of DNA replication in eukaryotes requires the loading of the origin recognition complex (ORC), Cdc6, and minichromosome maintenance (MCM) proteins onto chromatin to form the preinitiation complex. In Xenopus egg extract, the proteins Orc1, Orc2, Cdc6, and Mcm4 are underphosphorylated in interphase and hyperphosphorylated in metaphase extract. We find that chromatin binding of ORC, Cdc6, and MCM proteins does not require cyclin-dependent kinase activities. High cyclin A-dependent kinase activity inhibits the binding and promotes the release of Xenopus ORC, Cdc6, and MCM from sperm chromatin, but has no effect on chromatin binding of control proteins. Cyclin A together with ORC, Cdc6 and MCM proteins is bound to sperm chromatin in DNA replicating pseudonuclei. In contrast, high cyclin E/cdk2 was not detected on chromatin, but was found soluble in the nucleoplasm. High cyclin E kinase activity allows the binding of Xenopus ORC and Cdc6, but not MCM, to sperm chromatin, even though the kinase does not phosphorylate MCM directly. We conclude that chromatin-bound cyclin A kinase controls DNA replication by protein phosphorylation and chromatin release of Cdc6 and MCM, whereas soluble cyclin E kinase prevents rereplication during the cell cycle by the inhibition of premature MCM chromatin association.
Collapse
Affiliation(s)
- M Findeisen
- Division of Biology, University of Konstanz, Germany
| | | | | | | | | |
Collapse
|
29
|
Abstract
We describe here a novel approach for the study of DNA replication. The approach is based on a process called molecular combing and allows for the genome wide analysis of the spatial and temporal organization of replication units and replication origins in a sample of genomic DNA. Molecular combing is a process whereby molecules of DNA are stretched and aligned on a glass surface by the force exerted by a receding air/water interface. Since the stretching occurs in the immediate vicinity of the meniscus, all molecules are identically stretched in a size and sequence independent manner. The application of fluorescence hybridization to combed DNA results in a high resolution (1 to 4 kb) optical mapping that is simple, controlled and reproducible. The ability to comb up to several hundred haploid genomes on a single coverslip allows for a statistically significant number of measurements to be made. Direct labeling of replicating DNA sequences in turn enables origins of DNA replication to be visualized and mapped. These features therefore make molecular combing an attractive tool for genomic studies of DNA replication. In the following, we discuss the application of molecular combing to the study of DNA replication and genome stability.
Collapse
Affiliation(s)
- J Herrick
- Laboratoire de Biophysique de l'ADN, Département des Biotechnologies, Institut Pasteur, 25, rue du Dr.-Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
30
|
Ma T, Zou N, Lin BY, Chow LT, Harper JW. Interaction between cyclin-dependent kinases and human papillomavirus replication-initiation protein E1 is required for efficient viral replication. Proc Natl Acad Sci U S A 1999; 96:382-7. [PMID: 9892642 PMCID: PMC15145 DOI: 10.1073/pnas.96.2.382] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/1998] [Accepted: 11/23/1998] [Indexed: 11/18/2022] Open
Abstract
We have identified the human papillomavirus (HPV) DNA replication initiation protein E1 as a tight-binding substrate of cyclin E/cyclin-dependent kinase (Cdk) complexes by using expression cloning. E1, a DNA helicase, collaborates with the HPV E2 protein in ori-dependent replication. E1 formed complexes with cyclin E in insect and mammalian cells, independent of Cdks and E2. Additional cyclins, including A-, B-, and F-type (but not D-type), interacted with the E1/E2 complex, and A- and E-type cyclin kinases were capable of phosphorylating E1 and E2 in vitro. Association with cyclins and efficient phosphorylation of E1 required the presence of a cyclin interaction motif (the RXL motif). E1 lacking the RXL motif displayed defects in E2-dependent HPV ori replication in vivo. Consistent with a role for Cdk-mediated phosphorylation in E1 function, an E1 protein lacking all four candidate Cdk phosphorylation sites still associated with E2 and cyclin E but was impaired in HPV replication in vitro and in vivo. Our data reveal a link between cyclin/Cdk function and activation of HPV DNA replication through targeting of Cdk complexes to the E1 replication-initiation protein and suggest a functional role for E1 phosphorylation by Cdks. The use of cyclin-binding RXL motifs is now emerging as a major mechanism by which cyclins are targeted to key substrates.
Collapse
Affiliation(s)
- T Ma
- Department of Biochemistry, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
31
|
Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998; 9:3273-97. [PMID: 9843569 PMCID: PMC25624 DOI: 10.1091/mbc.9.12.3273] [Citation(s) in RCA: 2748] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/1998] [Accepted: 10/15/1998] [Indexed: 12/13/2022] Open
Abstract
We sought to create a comprehensive catalog of yeast genes whose transcript levels vary periodically within the cell cycle. To this end, we used DNA microarrays and samples from yeast cultures synchronized by three independent methods: alpha factor arrest, elutriation, and arrest of a cdc15 temperature-sensitive mutant. Using periodicity and correlation algorithms, we identified 800 genes that meet an objective minimum criterion for cell cycle regulation. In separate experiments, designed to examine the effects of inducing either the G1 cyclin Cln3p or the B-type cyclin Clb2p, we found that the mRNA levels of more than half of these 800 genes respond to one or both of these cyclins. Furthermore, we analyzed our set of cell cycle-regulated genes for known and new promoter elements and show that several known elements (or variations thereof) contain information predictive of cell cycle regulation. A full description and complete data sets are available at http://cellcycle-www.stanford.edu
Collapse
Affiliation(s)
- P T Spellman
- Department of Genetics, Stanford University Medical Center, Stanford, California 94306-5120, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Audic Y, Omilli F, Osborne HB. Embryo deadenylation element-dependent deadenylation is enhanced by a cis element containing AUU repeats. Mol Cell Biol 1998; 18:6879-84. [PMID: 9819376 PMCID: PMC109271 DOI: 10.1128/mcb.18.12.6879] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deadenylation of maternal mRNAs in the Xenopus embryo is a sequence-specific process. One cis element that targets maternal mRNAs for deadenylation after fertilization is the embryo deadenylation element (EDEN). This element, composed of U/R repeats, is specifically bound by a protein, EDEN-BP. In the present study we show that the rate at which an RNA containing an EDEN is deadenylated can be increased by the presence of an additional cis element composed of three AUU repeats. This effect was observed for a natural EDEN (c-mos) and two synthetic EDENs. Hence, the enhancement of EDEN-dependent deadenylation conferred by the (AUU)3 motif is not due to an interaction with a particular EDEN sequence. Mutation of the (AUU)3 motif abrogated the enhancement of EDEN-dependent deadenylation. These data indicate that the rate at which a specific maternal mRNA is deadenylated in Xenopus embryos is probably defined by a cross talk between multiple cis elements.
Collapse
Affiliation(s)
- Y Audic
- CNRS UPR 41, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
| | | | | |
Collapse
|
33
|
Abstract
The multiprotein complexes that mediate replication, transcription and homologous recombination in eukaryotic cells face many of the same molecular challenges. These include the recognition of DNA sites embedded in large chromatinized genomes, the denaturation of duplex DNA, and partial dissociation and reassociation at different stages of the catalytic cycle. Therefore, it is not surprising that several steps in the respective catalytic cycles are strikingly similar at the DNA level and may proceed by similar mechanisms. Some of these relationships are reviewed here. It is argued that speculation based on such 'crosspathway' comparisons may be a valuable paradigm for the design of new experiments.
Collapse
Affiliation(s)
- T Kodadek
- University of Texas Southwestern Medical Center, Department of Biochemistry, Dallas 75235-8573, USA.
| |
Collapse
|
34
|
Luca FC, Winey M. MOB1, an essential yeast gene required for completion of mitosis and maintenance of ploidy. Mol Biol Cell 1998; 9:29-46. [PMID: 9436989 PMCID: PMC25214 DOI: 10.1091/mbc.9.1.29] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/1997] [Accepted: 10/07/1997] [Indexed: 02/05/2023] Open
Abstract
Mob1p is an essential Saccharomyces cerevisiae protein, identified from a two-hybrid screen, that binds Mps1p, a protein kinase essential for spindle pole body duplication and mitotic checkpoint regulation. Mob1p contains no known structural motifs; however MOB1 is a member of a conserved gene family and shares sequence similarity with a nonessential yeast gene, MOB2. Mob1p is a phosphoprotein in vivo and a substrate for the Mps1p kinase in vitro. Conditional alleles of MOB1 cause a late nuclear division arrest at restrictive temperature. MOB1 exhibits genetic interaction with three other yeast genes required for the completion of mitosis, LTE1, CDC5, and CDC15 (the latter two encode essential protein kinases). Most haploid mutant mob1 strains also display a complete increase in ploidy at permissive temperature. The mechanism for the increase in ploidy may occur through MPS1 function. One mob1 strain, which maintains stable haploidy at both permissive and restrictive temperature, diploidizes at permissive temperature when combined with the mps1-1 mutation. Strains containing mob2Delta also display a complete increase in ploidy when combined with the mps1-1 mutation. Perhaps in addition to, or as part of, its essential function in late mitosis, MOB1 is required for a cell cycle reset function necessary for the initiation of the spindle pole body duplication.
Collapse
Affiliation(s)
- F C Luca
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309, USA
| | | |
Collapse
|
35
|
Fernandes ER, Zhang JY, Rooney RJ. Adenovirus E1A-regulated transcription factor p120E4F inhibits cell growth and induces the stabilization of the cdk inhibitor p21WAF1. Mol Cell Biol 1998; 18:459-67. [PMID: 9418893 PMCID: PMC121515 DOI: 10.1128/mcb.18.1.459] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1997] [Accepted: 10/22/1997] [Indexed: 02/05/2023] Open
Abstract
Adenovirus E1A proteins influence cell growth and phenotype through physical interactions with cellular proteins that regulate basic processes such as cell cycle progression, DNA synthesis, and differentiation. p120E4F is a low-abundance cellular transcription factor that represses the adenovirus E4 promoter and is regulated by E1A, through a phosphorylation-induced reduction of its DNA binding activity, to permit activation of the E4 promoter during early infection. To determine the normal biological role of p120E4F, we assessed its ability to influence fibroblast cell growth and transformation. p120E4F suppressed NIH 3T3 fibroblast colony formation but had little effect when coexpressed with E1A and/or activated ras. Cells that overexpressed p120E4F were inhibited in their ability to enter S phase, had elevated levels of the cdk inhibitor p21WAF1, and reduced cyclin D-cdk4/6 kinase activity. The increase of p21WAF1 levels occurred through a p53-independent posttranscriptional mechanism that included a three- to fourfold increase in the half-life of p21WAF1 protein. Coexpression of activated ras with p120E4F stimulated cyclin D1 expression, elevated cyclin D-cdk4/6 kinase activity, and accelerated cell growth. These data suggest an important role for p120E4F in normal cell division and demonstrate that p21WAF1 can be regulated by protein turnover.
Collapse
Affiliation(s)
- E R Fernandes
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
36
|
D'Urso G, Nurse P. Schizosaccharomyces pombe cdc20+ encodes DNA polymerase epsilon and is required for chromosomal replication but not for the S phase checkpoint. Proc Natl Acad Sci U S A 1997; 94:12491-6. [PMID: 9356477 PMCID: PMC25014 DOI: 10.1073/pnas.94.23.12491] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In fission yeast both DNA polymerase alpha (pol alpha) and delta (pol delta) are required for DNA chromosomal replication. Here we demonstrate that Schizosaccharomyces pombe cdc20+ encodes the catalytic subunit of DNA polymerase epsilon (pol epsilon) and that this enzyme is also required for DNA replication. Following a shift to the restrictive temperature, cdc20 temperature-sensitive mutant cells block at the onset of DNA replication, suggesting that cdc20+ is required early in S phase very near to the initiation step. In the budding yeast Saccharomyces cerevisiae, it has been reported that in addition to its proposed role in chromosomal replication, DNA pol epsilon (encoded by POL2) also functions directly as an S phase checkpoint sensor [Navas, T. A., Zhou, Z. & Elledge, S. J. (1995) Cell 80, 29-39]. We have investigated whether cdc20+ is required for the checkpoint control operating in fission yeast, and our data indicate that pol epsilon does not have a role as a checkpoint sensor coordinating S phase with mitosis. In contrast, germinating spores disrupted for the gene encoding pol alpha rapidly enter mitosis in the absence of DNA synthesis, suggesting that in the absence of pol alpha, normal coordination between S phase and mitosis is lost. We propose that the checkpoint signal operating in S phase depends on assembly of the replication initiation complex, and that this signal is generated prior to the elongation stage of DNA synthesis.
Collapse
Affiliation(s)
- G D'Urso
- University of Miami School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL 33136, USA
| | | |
Collapse
|
37
|
Tao L, Nielsen T, Friedlander P, Zannis-Hadjopoulos M, Price G. Differential DNA replication origin activities in human normal skin fibroblast and HeLa cell lines. J Mol Biol 1997; 273:509-18. [PMID: 9356241 DOI: 10.1006/jmbi.1997.1352] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A modification of the extrusion method for the isolation of nascent DNA from mammalian cells and a PCR-based assay has been used in order to compare the in vivo activities of DNA replication origins in different cell lines. Conventional PCR was firstly applied to detect the chromosomal activities of several known (origins associated with c-myc, hsp70, beta-globin, immunoglobulin mu-chain enhancer) and putative DNA replication origins (autonomously replicating sequences obtained from enriched libraries of human origins of DNA replication from normal and transformed cells) in four human cell lines (HeLa, NSF, WI-38 and SK-MG-1). Then, in nascent DNA samples from normal skin fibroblast (NSF) and HeLa cells, abundance of DNA sequences in the regions of five of these origins was determined by competitive PCR. Our results suggest that autonomously replicating sequences NOA3, S14, S3 and F15 are associated with functional chromosomal origins of replication. Quantitative comparison of origin activities demonstrates that origins associated with c-myc and NOA3 are approximately twice as active in HeLa cells as in NSF cells. The described approach can facilitate the identification of origins which may be differentially active in normal cells and transformed cells or in different cell types.
Collapse
Affiliation(s)
- L Tao
- McGill Cancer Centre, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
38
|
Stewart E, Chapman CR, Al-Khodairy F, Carr AM, Enoch T. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest. EMBO J 1997; 16:2682-92. [PMID: 9184215 PMCID: PMC1169879 DOI: 10.1093/emboj/16.10.2682] [Citation(s) in RCA: 296] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In eukaryotic cells, S phase can be reversibly arrested by drugs that inhibit DNA synthesis or DNA damage. Here we show that recovery from such treatments is under genetic control and is defective in fission yeast rqh1 mutants. rqh1+, previously known as hus2+, encodes a putative DNA helicase related to the Escherichia coli RecQ helicase, with particular homology to the gene products of the human BLM and WRN genes and the Saccharomyces cerevisiae SGS1 gene. BLM and WRN are mutated in patients with Bloom's syndrome and Werner's syndrome respectively. Both syndromes are associated with genomic instability and cancer susceptibility. We show that, like BLM and SGS1, rqh1+ is required to prevent recombination and that in fission yeast suppression of inappropriate recombination is essential for reversible S phase arrest.
Collapse
Affiliation(s)
- E Stewart
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|