1
|
Otaki JM. Peptide Inhibitor Assay for Allocating Functionally Important Accessible Sites Throughout a Protein Chain: Restriction Endonuclease EcoRI as a Model Protein System. BIOTECH 2024; 14:1. [PMID: 39846550 PMCID: PMC11755562 DOI: 10.3390/biotech14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/22/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
Functionally important amino acid sequences in proteins are often located at multiple sites. Three-dimensional structural analysis and site-directed mutagenesis may be performed to allocate functional sites for understanding structure‒function relationships and for developing novel inhibitory drugs. However, such methods are too demanding to comprehensively cover potential functional sites throughout a protein chain. Here, a peptide inhibitor assay (PIA) was devised to allocate functionally important accessible sites in proteins. This simple method presumes that protein‒ligand interactions, intramolecular interactions, and dimerization interactions can be partially inhibited by high concentrations of competitive "endogenous" peptides of the protein of interest. Focusing on the restriction endonuclease EcoRI as a model protein system, many endogenous peptides (6mer-14mer) were synthesized, covering the entire EcoRI protein chain. Some of them were highly inhibitory, but interestingly, the nine most effective peptides were located outside the active sites, with the exception of one. Relatively long peptides with aromatic residues (F, H, W, and Y) corresponding to secondary structures were generally effective. Because synthetic peptides are flexible enough to change length and amino acid residues, this method may be useful for quickly and comprehensively understanding structure‒function relationships and developing novel drugs or epitopes for neutralizing antibodies.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| |
Collapse
|
2
|
Takeuchi N, Taniguchi M, Kato Y, Takata R, Osaka I, Nakajima N, Hamada M, Koyama Y. Synthesis and Conformational Behaviors of Unnatural Peptides Alternating Chiral and Achiral α,α-Disubstituted α-Amino Acid Units. Macromol Rapid Commun 2023; 44:e2300323. [PMID: 37668077 DOI: 10.1002/marc.202300323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/27/2023] [Indexed: 09/06/2023]
Abstract
The development of peptidomimetics to modulate the conformational profile of peptides has been extensively studied in the fields of biological and medicinal chemistry. However, large-scale synthesis of peptidomimetics with both an ordered sequence and a controlled secondary structure is highly challenging. In this paper, the framework of peptidomimetics has been designed to be alternating an achiral α,α-disubstituted α-amino acid unit and a chiral α-methylphenylalanine unit. The polymers are synthesized via invented Ugi reaction-based polycondensation technique. The chiral higher-order structures of the alternating peptides are evaluated mainly through circular dichroism (CD) spectroscopy. The UV-Vis and CD spectra of the polymers in three solvents are systematically measured at various temperatures. The anisotropic factors of CD (gCD ) values are calculated to know the chiroptical response. The results indicate the characteristic conformational behaviors. In a polar solvent, the hydrogen bonds between the N-H group of MePhe unit and the C=O of α,α-diphenylglycine unit outweigh the intraresidue hydrogen bonds in α,α-diphenylglycine unit, leading to the formation of a prevailing preferred-handed 310 -helical conformation. On the other hand, in a less polar solvent, the intrachain hydrogen bonds switch to intraresidue hydrogen bonds in α,α-diphenylglycine unit, which make the polymer adopting a prevailing extended planar C5 -conformation.
Collapse
Affiliation(s)
- Nanami Takeuchi
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Masataka Taniguchi
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yuki Kato
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Riko Takata
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Issey Osaka
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Noriyuki Nakajima
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhito Koyama
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
3
|
Castro TG, Melle-Franco M, Sousa CEA, Cavaco-Paulo A, Marcos JC. Non-Canonical Amino Acids as Building Blocks for Peptidomimetics: Structure, Function, and Applications. Biomolecules 2023; 13:981. [PMID: 37371561 PMCID: PMC10296201 DOI: 10.3390/biom13060981] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
This review provides a fresh overview of non-canonical amino acids and their applications in the design of peptidomimetics. Non-canonical amino acids appear widely distributed in nature and are known to enhance the stability of specific secondary structures and/or biological function. Contrary to the ubiquitous DNA-encoded amino acids, the structure and function of these residues are not fully understood. Here, results from experimental and molecular modelling approaches are gathered to classify several classes of non-canonical amino acids according to their ability to induce specific secondary structures yielding different biological functions and improved stability. Regarding side-chain modifications, symmetrical and asymmetrical α,α-dialkyl glycines, Cα to Cα cyclized amino acids, proline analogues, β-substituted amino acids, and α,β-dehydro amino acids are some of the non-canonical representatives addressed. Backbone modifications were also examined, especially those that result in retro-inverso peptidomimetics and depsipeptides. All this knowledge has an important application in the field of peptidomimetics, which is in continuous progress and promises to deliver new biologically active molecules and new materials in the near future.
Collapse
Affiliation(s)
- Tarsila G. Castro
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.G.C.); (A.C.-P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Melle-Franco
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Cristina E. A. Sousa
- BioMark Sensor Research—School of Engineering of the Polytechnic Institute of Porto, 4249-015 Porto, Portugal;
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.G.C.); (A.C.-P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - João C. Marcos
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
5
|
zeng L, Xu S, Cui S, Zhang F. Three Component Synthesis of β‑Aminoxy Amides. Org Chem Front 2022. [DOI: 10.1039/d2qo00631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multicomponent reaction for the synthesis of β‑aminoxy amides is described. In this reaction, N-hydroxamic acids, yna-mides and aldehydes could assemble efficiently to deliver structurally diverse β‑aminoxy amides under the...
Collapse
|
6
|
Murali R, Zhang H, Cai Z, Lam L, Greene M. Rational Design of Constrained Peptides as Protein Interface Inhibitors. Antibodies (Basel) 2021; 10:antib10030032. [PMID: 34449551 PMCID: PMC8395526 DOI: 10.3390/antib10030032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022] Open
Abstract
The lack of progress in developing targeted therapeutics directed at protein–protein complexes has been due to the absence of well-defined ligand-binding pockets and the extensive intermolecular contacts at the protein–protein interface. Our laboratory has developed approaches to dissect protein–protein complexes focusing on the superfamilies of erbB and tumor necrosis factor (TNF) receptors by the combined use of structural biology and computational biology to facilitate small molecule development. We present a perspective on the development and application of peptide inhibitors as well as immunoadhesins to cell surface receptors performed in our laboratory.
Collapse
Affiliation(s)
- Ramachandran Murali
- Cedars-Sinai Medical Center, Department of Biomedical Science, Research Division of Immunology, Los Angeles, CA 90211, USA
- Correspondence: (R.M.); (M.G.)
| | - Hongtao Zhang
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.Z.); (Z.C.); (L.L.)
| | - Zheng Cai
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.Z.); (Z.C.); (L.L.)
| | - Lian Lam
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.Z.); (Z.C.); (L.L.)
| | - Mark Greene
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.Z.); (Z.C.); (L.L.)
- Correspondence: (R.M.); (M.G.)
| |
Collapse
|
7
|
Saadi S, Ghazali HM, Saari N, Abdulkarim SM. The structural reconformation of peptides in enhancing functional and therapeutic properties: Insights into their solid state crystallizations. Biophys Chem 2021; 273:106565. [PMID: 33780688 DOI: 10.1016/j.bpc.2021.106565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023]
Abstract
Therapeutic peptides derived proteins with alpha-reconformation states like antibody shape have shown potential effects in combating terrible diseases linked with earlier signs of angiogensis, mutagenesis and transgenesis. Alpha reconformation in material design refers to the folding of the peptide chains and their transitions under reversible chemical bonds of disulfide chemical bridges and further non-covalence lesions. Thus, the rational design of signal peptides into alpha-helix is intended in increasing the defending effects of peptides into cores like adjuvant antibiotic and/or vaccines. Thereby, the signal peptides are able in displaying multiple eradicating regions by changing crystal-depositions and deviation angles. These types of molecular structures could have multiple advantages in tracing disease syndromes and impurities by increasing the host defense against the fates of pathogens and viruses, eventually leading to the loss in signaling by increasing peptide susceptibility levels to folding and unfolding and therefore, formation of transgenic peptide models. Alpha reconformation peptides is aimed in triggering as well as other regulatory functions such as remodulating metabolic chain disorders of lipolysis and glucolysis by increasing the insulin and leptin resistance for best lipid storages and lipoprotein density distributions.
Collapse
Affiliation(s)
- Sami Saadi
- Institut de la Nutrition, de l'Alimentation et des Technologies Agro-alimentaires INATAA 25017, Université Frères Mentouri, Constantine 1, Algeria; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Hasanah Mohd Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sabo Mohammed Abdulkarim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Kieber-Emmons T. Antibodies and Structure. Monoclon Antib Immunodiagn Immunother 2020; 39:193-194. [DOI: 10.1089/mab.2020.29003.tke] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
9
|
Ghosh KC, Duttagupta I, Bose C, Banerjee P, Gayen AK, Sinha S. Synthesis and anticancer activities of proline-containing cyclic peptides and their linear analogs and congeners. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1550201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Keshab Ch Ghosh
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Indranil Duttagupta
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Chandra Bose
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Priyanjalee Banerjee
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | | | - Surajit Sinha
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| |
Collapse
|
10
|
Soriente A, Fasolino I, Raucci MG, Demitri C, Madaghiele M, Giuri A, Sannino A, Ambrosio L. Effect of inorganic and organic bioactive signals decoration on the biological performance of chitosan scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:62. [PMID: 29736686 DOI: 10.1007/s10856-018-6072-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
The present work is focused on the design of a bioactive chitosan-based scaffold functionalized with organic and inorganic signals to provide the biochemical cues for promoting stem cell osteogenic commitment. The first approach is based on the use of a sequence of 20 amino acids corresponding to a 68-87 sequence in knuckle epitope of BMP-2 that was coupled covalently to the carboxyl group of chitosan scaffold. Meanwhile, the second approach is based on the biomimetic treatment, which allows the formation of hydroxyapatite nuclei on the scaffold surface. Both scaffolds bioactivated with organic and inorganic signals induce higher expression of an early marker of osteogenic differentiation (ALP) than the neat scaffolds after 3 days of cell culture. However, scaffolds decorated with BMP-mimicking peptide show higher values of ALP than the biomineralized one. Nevertheless, the biomineralized scaffolds showed better cellular behaviour than neat scaffolds, demonstrating the good effect of hydroxyapatite deposits on hMSC osteogenic differentiation. At long incubation time no significant difference among the biomineralized and BMP-activated scaffolds was observed. Furthermore, the highest level of Osteocalcin expression (OCN) was observed for scaffold with BMP2 mimic-peptide at day 21. The overall results showed that the presence of bioactive signals on the scaffold surface allows an osteoinductive effect on hMSC in a basal medium, making the modified chitosan scaffolds a promising candidate for bone tissue regeneration.
Collapse
Affiliation(s)
- Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Mostra d'Oltremare Pad.20 - Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Mostra d'Oltremare Pad.20 - Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Mostra d'Oltremare Pad.20 - Viale J.F. Kennedy 54, Naples, 80125, Italy.
| | - Christian Demitri
- Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce, 73100, Italy.
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce, 73100, Italy
| | - Antonella Giuri
- Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce, 73100, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce, 73100, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Mostra d'Oltremare Pad.20 - Viale J.F. Kennedy 54, Naples, 80125, Italy
| |
Collapse
|
11
|
Gracia-Vitoria J, Osante I, Cativiela C, Merino P, Tejero T. Self-Regeneration of Chirality with l-Cysteine through 1,3-Dipolar Cycloadditions between Diazoalkanes and Enantiomerically Pure Thiazolines: Experimental and Computational Studies. J Org Chem 2018. [DOI: 10.1021/acs.joc.8b00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- J. Gracia-Vitoria
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - I. Osante
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - C. Cativiela
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - P. Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza 50009, Spain
| | - T. Tejero
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| |
Collapse
|
12
|
Affiliation(s)
- Ajay L. Chandgude
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
13
|
Panduranga V, Prabhu G, Kumar R, Basavaprabhu B, Sureshbabu VV. A facile one pot route for the synthesis of imide tethered peptidomimetics. Org Biomol Chem 2016; 14:556-563. [DOI: 10.1039/c5ob01708d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A simple and efficient method for the synthesis of N,N’-orthogonally protected imide tethered peptidomimetics is presented. The imide peptidomimetics were synthesized by coupling the in situ generated selenocarboxylate of Nα-protected amino acids with Nα-protected amino acid azides in good yields.
Collapse
Affiliation(s)
- Veladi Panduranga
- Peptide Research Laboratory
- Department of Studies in Chemistry
- Bangalore 560 001
- India
| | - Girish Prabhu
- Peptide Research Laboratory
- Department of Studies in Chemistry
- Bangalore 560 001
- India
| | - Roopesh Kumar
- Peptide Research Laboratory
- Department of Studies in Chemistry
- Bangalore 560 001
- India
| | | | | |
Collapse
|
14
|
Sato T, Alles N, Khan M, Nagano K, Takahashi M, Tamura Y, Shimoda A, Ohya K, Akiyoshi K, Aoki K. Nanogel-crosslinked nanoparticles increase the inhibitory effects of W9 synthetic peptide on bone loss in a murine bone resorption model. Int J Nanomedicine 2015; 10:3459-73. [PMID: 25999711 PMCID: PMC4435441 DOI: 10.2147/ijn.s61566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We investigated the biological activity of W9, a bone resorption inhibitor peptide, using NanoClik nanoparticles as an injectable carrier, where acryloyl group-modified cholesterol-bearing pullulan (CHPOA) nanogels were crosslinked by pentaerythritol tetra (mercaptoethyl) polyoxyethylene. Thirty 5-week-old male C57BL/6J mice were fed a low calcium diet and received once-daily subcutaneous injections of the carrier alone, W9 24 mg/kg/day alone, W9 24 mg/kg/day incorporated in cholesterol bearing pullulan (CHP) nanogels, or W9 (8 and 24 mg/kg/day) incorporated in NanoClik nanoparticles for 4 days (n=5). Mice that received a normal calcium diet with NanoClik nanoparticle injections without W9 were used as a control group. Radiological analyses showed that administration of W9 24 mg/kg/day significantly prevented low calcium-induced reduction of bone mineral density in the long bones and lumbar vertebrae, but only when the NanoClik nanoparticles were used as a carrier. Histomorphometric analyses of the proximal tibiae revealed that W9 24 mg/kg/day incorporated in NanoClik nanoparticles prevented the increase in bone resorption indices induced by a low calcium diet, which was confirmed by measurement of serum bone resorption markers. These data suggest that NanoClik nanoparticles could be a useful carrier for peptide therapeutics, and also demonstrate that daily subcutaneous injections of the W9 peptide with the nanoparticles were able to inhibit bone loss in vivo. An osteoclastogenesis inhibition assay performed in vitro confirmed a slower release profile of W9 from NanoClik nanoparticles compared with conventional CHP nanogels.
Collapse
Affiliation(s)
- Toshimi Sato
- Department of Bio-Matrix (Pharmacology), Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Neil Alles
- Department of Bio-Matrix (Pharmacology), Graduate School, Tokyo Medical and Dental University, Tokyo, Japan ; Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Masud Khan
- Department of Bio-Matrix (Pharmacology), Graduate School, Tokyo Medical and Dental University, Tokyo, Japan ; Department of Dental Pharmacology, City Dental College and Hospital, Dhaka, Bangladesh
| | - Kenichi Nagano
- Department of Bio-Matrix (Pharmacology), Graduate School, Tokyo Medical and Dental University, Tokyo, Japan ; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Mariko Takahashi
- Department of Bio-Matrix (Pharmacology), Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukihiko Tamura
- Department of Bio-Matrix (Pharmacology), Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Asako Shimoda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura ; ERATO Akiyoshi Bio-Nanotransporter Project, Japan Science and Technology Agency, Katsura Int'tech Center Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, Japan
| | - Keiichi Ohya
- Department of Bio-Matrix (Pharmacology), Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura ; ERATO Akiyoshi Bio-Nanotransporter Project, Japan Science and Technology Agency, Katsura Int'tech Center Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, Japan
| | - Kazuhiro Aoki
- Department of Bio-Matrix (Pharmacology), Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
15
|
Avan I, Hall CD, Katritzky AR. Peptidomimetics via modifications of amino acids and peptide bonds. Chem Soc Rev 2014; 43:3575-94. [DOI: 10.1039/c3cs60384a] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Ohtaki A, Kieber-Emmons T, Murali R. Structure-Based Peptide Mimicry of Tumor-Associated Antigens. Monoclon Antib Immunodiagn Immunother 2013; 32:1-5. [DOI: 10.1089/mab.2012.0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Akashi Ohtaki
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center Los Angeles, California
| | - Thomas Kieber-Emmons
- Department of Pathology and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ramachandran Murali
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center Los Angeles, California
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Kieber-Emmons T, Monzavi-Karbassi B, Pashov A, Saha S, Murali R, Kohler H. The promise of the anti-idiotype concept. Front Oncol 2012; 2:196. [PMID: 23267437 PMCID: PMC3526099 DOI: 10.3389/fonc.2012.00196] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/01/2012] [Indexed: 11/13/2022] Open
Abstract
A basic tenet of antibody-based immunity is their specificity to antigenic determinates from foreign pathogen products to abnormal cellular components such as in cancer. However, an antibody has the potential to bind to more than one determinate, be it an antigen or another antibody. These observations led to the idiotype network theory (INT) to explain immune regulation, which has wax and waned in enthusiasm over the years. A truer measure of the impact of the INT is in terms of the ideas that now form the mainstay of immunological research and whose roots are spawned from the promise of the anti-idiotype concept. Among the applications of the INT is understanding the structural implications of the antibody-mediated network that has the potential for innovation in terms of rational design of reagents with biological, chemical, and pharmaceutical applications that underlies concepts of reverse immunology which is highlighted herein.
Collapse
Affiliation(s)
- Thomas Kieber-Emmons
- Winthrop P. Rockefeller Cancer Institute, Department of Pathology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | | | | | | | | | | |
Collapse
|
18
|
Aoki K, Alles N, Soysa N, Ohya K. Peptide-based delivery to bone. Adv Drug Deliv Rev 2012; 64:1220-38. [PMID: 22709649 DOI: 10.1016/j.addr.2012.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 01/26/2023]
Abstract
Peptides are attractive as novel therapeutic reagents, since they are flexible in adopting and mimicking the local structural features of proteins. Versatile capabilities to perform organic synthetic manipulations are another unique feature of peptides compared to protein-based medicines, such as antibodies. On the other hand, a disadvantage of using a peptide for a therapeutic purpose is its low stability and/or high level of aggregation. During the past two decades, numerous peptides were developed for the treatment of bone diseases, and some peptides have already been used for local applications to repair bone defects in the clinic. However, very few peptides have the ability to form bone themselves. We herein summarize the effects of the therapeutic peptides on bone loss and/or local bone defects, including the results from basic studies. We also herein describe some possible methods for overcoming the obstacles associated with using therapeutic peptide candidates.
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Dept. of Hard Tissue Engineering (Pharmacology), Graduate School, Tokyo Medical & Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
19
|
Baber JC, Lowe R, Saunders J, Feher M. Automated generation of turn mimetics: Proof of concept study for the MC4 receptor. Bioorg Med Chem 2012; 20:3565-74. [DOI: 10.1016/j.bmc.2012.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/29/2012] [Accepted: 04/03/2012] [Indexed: 12/21/2022]
|
20
|
Tabassum S, Al-Asbahy WM, Afzal M, Arjmand F, Bagchi V. Molecular drug design, synthesis and structure elucidation of a new specific target peptide based metallo drug for cancer chemotherapy as topoisomerase I inhibitor. Dalton Trans 2012; 41:4955-4964. [PMID: 22407358 DOI: 10.1039/c2dt12044e] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
To evaluate the biological preference of metallopeptide drugs in cancer cells, a new dinuclear copper(II) complex [Cu(2)(glygly)(2)(ppz)(H(2)O)(4)]·2H(2)O (1) (glygly = glycyl glycine anion and ppz = piperazine), was designed and synthesized as topoisomerase I inhibitor. The structural elucidation of the complex was done by elemental analysis, spectroscopic methods and single crystal X-ray diffraction. The in vitro DNA binding studies of complex 1 with CT DNA were carried out by employing different optical methods viz. UV-vis, fluorescence and circular dichroism. The molecular docking technique was also utilized to ascertain the mechanism and mode of action towards the molecular target DNA and enzymes. Complex 1 cleaves pBR322 DNA via an oxidative mechanism and strongly binds to the DNA minor groove. Furthermore, complex 1 exhibits significant inhibitory effects on the catalytic activity of topoisomerase I at a very low concentration, ~12.5 μM, in addition to its excellent SOD mimics (IC(50)~0.086 μM).
Collapse
Affiliation(s)
- Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202201, UP, India.
| | | | | | | | | |
Collapse
|
21
|
Kelley WP, Chen S, Floyd PD, Hu P, Kapsi SG, Kord AS, Sun M, Vogt FG. Analytical Characterization of an Orally-Delivered Peptide Pharmaceutical Product. Anal Chem 2012; 84:4357-72. [DOI: 10.1021/ac203478r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wayne P. Kelley
- Biopharmaceutical R&D, GlaxoSmithKline llc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Shujun Chen
- Product Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United
States
| | - Philip D. Floyd
- Product Development, GlaxoSmithKline plc. 5 Moore Drive, Research Triangle Park, North Carolina
27709, United States
| | - Ping Hu
- Biopharmaceutical R&D, GlaxoSmithKline llc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Shiva G. Kapsi
- Product Development, GlaxoSmithKline plc. 1250, South Collegeville Road,
Collegeville, Pennsylvania 19426, United States
| | - Alireza S. Kord
- Product Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United
States
| | - Mingjiang Sun
- Product Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United
States
| | - Frederick G. Vogt
- Product Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United
States
| |
Collapse
|
22
|
Vishwanatha TM, Narendra N, Chattopadhyay B, Mukherjee M, Sureshbabu VV. Synthesis of Selenoxo Peptides and Oligoselenoxo Peptides Employing LiAlHSeH. J Org Chem 2012; 77:2689-702. [DOI: 10.1021/jo2024703] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- T. M. Vishwanatha
- Peptide Research Laboratory,
Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore
560001, India
| | - N. Narendra
- Peptide Research Laboratory,
Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore
560001, India
| | - Basab Chattopadhyay
- Department
of Solid State Physics, Indian Association for the Cultivation of Science,
Jadavpur, Kolkata 700032, India
| | - Monika Mukherjee
- Department
of Solid State Physics, Indian Association for the Cultivation of Science,
Jadavpur, Kolkata 700032, India
| | - Vommina V. Sureshbabu
- Peptide Research Laboratory,
Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore
560001, India
| |
Collapse
|
23
|
Sureshbabu VV, Vasantha B, Nagendra G. A facile one-pot synthesis of Nα-Z/Boc-protected S-linked 1,3,4-oxadiazole tethered peptidomimetics. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2011.12.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Murali R, Greene MI. Structure based antibody-like peptidomimetics. Pharmaceuticals (Basel) 2012; 5:209-35. [PMID: 24288089 PMCID: PMC3763629 DOI: 10.3390/ph5020209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 12/22/2022] Open
Abstract
Biologics such as monoclonal antibodies (mAb) and soluble receptors represent new classes of therapeutic agents for treatment of several diseases. High affinity and high specificity biologics can be utilized for variety of clinical purposes. Monoclonal antibodies have been used as diagnostic agents when coupled with radionuclide, immune modulatory agents or in the treatment of cancers. Among other limitations of using large molecules for therapy the actual cost of biologics has become an issue. There is an effort among chemists and biologists to reduce the size of biologics which includes monoclonal antibodies and receptors without a reduction of biological efficacy. Single chain antibody, camel antibodies, Fv fragments are examples of this type of deconstructive process. Small high-affinity peptides have been identified using phage screening. Our laboratory used a structure-based approach to develop small-size peptidomimetics from the three-dimensional structure of proteins with immunoglobulin folds as exemplified by CD4 and antibodies. Peptides derived either from the receptor or their cognate ligand mimics the functions of the parental macromolecule. These constrained peptides not only provide a platform for developing small molecule drugs, but also provide insight into the atomic features of protein-protein interactions. A general overview of the reduction of monoclonal antibodies to small exocyclic peptide and its prospects as a useful diagnostic and as a drug in the treatment of cancer are discussed.
Collapse
Affiliation(s)
- Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, D5091 Davis Building, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark I. Greene
- Department of Pathology and Laboratory of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
|
26
|
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 2011; 32:143-71. [PMID: 22074402 DOI: 10.3109/07388551.2011.594423] [Citation(s) in RCA: 564] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.
Collapse
Affiliation(s)
- Mukesh Pasupuleti
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
27
|
Balducci D, Porzi G. Stereocontrolled Synthesis of Unnatural Tetrapeptides Containing L-Valine Units. Part 3. Helv Chim Acta 2011. [DOI: 10.1002/hlca.201000202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Caulfield MJ, Dudkin VY, Ottinger EA, Getty KL, Zuck PD, Kaufhold RM, Hepler RW, McGaughey GB, Citron M, Hrin RC, Wang YJ, Miller MD, Joyce JG. Small molecule mimetics of an HIV-1 gp41 fusion intermediate as vaccine leads. J Biol Chem 2010; 285:40604-11. [PMID: 20943652 DOI: 10.1074/jbc.m110.172197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe here a novel platform technology for the discovery of small molecule mimetics of conformational epitopes on protein antigens. As a model system, we selected mimetics of a conserved hydrophobic pocket within the N-heptad repeat region of the HIV-1 envelope protein, gp41. The human monoclonal antibody, D5, binds to this target and exhibits broadly neutralizing activity against HIV-1. We exploited the antigen-binding property of D5 to select complementary small molecules using a high throughput screen of a diverse chemical collection. The resulting small molecule leads were rendered immunogenic by linking them to a carrier protein and were shown to elicit N-heptad repeat-binding antibodies in a fraction of immunized mice. Plasma from HIV-1-infected subjects shown previously to contain broadly neutralizing antibodies was found to contain antibodies capable of binding to haptens represented in the benzylpiperidine leads identified as a result of the high throughput screen, further validating these molecules as vaccine leads. Our results suggest a new paradigm for vaccine discovery using a medicinal chemistry approach to identify lead molecules that, when optimized, could become vaccine candidates for infectious diseases that have been refractory to conventional vaccine development.
Collapse
Affiliation(s)
- Michael J Caulfield
- Department of Vaccine Basic Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Litvinov S. New adjuvants for accelerated and enhanced antibody response. Nat Methods 2009. [DOI: 10.1038/nmeth.f.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Timmerman P, Barderas R, Desmet J, Altschuh D, Shochat S, Hollestelle MJ, Höppener JWM, Monasterio A, Casal JI, Meloen RH. A combinatorial approach for the design of complementarity-determining region-derived peptidomimetics with in vitro anti-tumoral activity. J Biol Chem 2009; 284:34126-34. [PMID: 19808684 DOI: 10.1074/jbc.m109.041459] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The great success of therapeutic monoclonal antibodies has fueled research toward mimicry of their binding sites and the development of new strategies for peptide-based mimetics production. Here, we describe a new combinatorial approach for the production of peptidomimetics using the complementarity-determining regions (CDRs) from gastrin17 (pyroEGPWLEEEEEAYGWMDF-NH(2)) antibodies as starting material for cyclic peptide synthesis in a microarray format. Gastrin17 is a trophic factor in gastrointestinal tumors, including pancreatic cancer, which makes it an interesting target for development of therapeutic antibodies. Screening of microarrays containing bicyclic peptidomimetics identified a high number of gastrin binders. A strong correlation was observed between gastrin binding and overall charge of the peptidomimetic. Most of the best gastrin binders proceeded from CDRs containing charged residues. In contrast, CDRs from high affinity antibodies containing mostly neutral residues failed to yield good binders. Our experiments revealed essential differences in the mode of antigen binding between CDR-derived peptidomimetics (K(d) values in micromolar range) and the parental monoclonal antibodies (K(d) values in nanomolar range). However, chemically derived peptidomimetics from gastrin binders were very effective in gastrin neutralization studies using cell-based assays, yielding a neutralizing activity in pancreatic tumoral cell lines comparable with that of gastrin-specific monoclonal antibodies. These data support the use of combinatorial CDR-peptide microarrays as a tool for the development of a new generation of chemically synthesized cyclic peptidomimetics with functional activity.
Collapse
Affiliation(s)
- Peter Timmerman
- Pepscan Therapeutics B.V., Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ozawa Y, Sawada SI, Morimoto N, Akiyoshi K. Self-Assembled Nanogel of Hydrophobized Dendritic Dextrin for Protein Delivery. Macromol Biosci 2009; 9:694-701. [DOI: 10.1002/mabi.200800288] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Norton RS. Structure and Function of Peptide and Protein Toxins from Marine Organisms. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15569549809009246] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Sureshbabu VV, Naik SA, Hemantha HP, Narendra N, Das U, Guru Row TN. N-Urethane-Protected Amino Alkyl Isothiocyanates: Synthesis, Isolation, Characterization, and Application to the Synthesis of Thioureidopeptides. J Org Chem 2009; 74:5260-6. [DOI: 10.1021/jo900675s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vommina V. Sureshbabu
- Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore 560 001, India
| | - Shankar A. Naik
- Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore 560 001, India
| | - H. P. Hemantha
- Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore 560 001, India
| | - N. Narendra
- Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore 560 001, India
| | - Ushati Das
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Tayur N. Guru Row
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
34
|
Balducci D, Bottoni A, Calvaresi M, Porzi G. Conformational analysis of hexapseudopeptides mimicking reverse turn structures induced by a modified (S)-proline. A combined spectroscopic and molecular dynamics investigation. Part 4. Mol Phys 2009. [DOI: 10.1080/00268970902845339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Polysaccharide nanogel delivery of a TNF-alpha and RANKL antagonist peptide allows systemic prevention of bone loss. Eur J Pharm Sci 2009; 37:83-8. [PMID: 19429414 DOI: 10.1016/j.ejps.2009.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/22/2008] [Accepted: 01/12/2009] [Indexed: 11/22/2022]
Abstract
We report here a nanogel-mediated peptide drug delivery system. Low stability is a major drawback towards clinical application of peptide drugs. The W9-peptide, a TNF-alpha and RANKL antagonist, was used as a model for testing the feasibility of cholesterol-bearing pullulan (CHP)-nanogel as the drug delivery system. We found CHP-nanogel could form complex with the W9-peptide and prevents its aggregation in vitro. Murine bone resorption model using low dietary calcium was used to investigate the in vivo effect. Two-time-injection of 24 mg/kg W9-peptide per day with or without CHP-nanogel was given for 7 days. Thereafter, radiological, and histological assessments were performed. The injections of the W9-peptide (24 mg/kg) with CHP-nanogel prevented the reduction in bone mineral density whereas the same dose without CHP-nanogel could not show any inhibitory effect. Histomorphometric analysis of tibiae showed significant decrease of osteoclast number and surface in CHP-W9 complex treated group and the levels of urinary deoxypyridinoline reflected these decrease of bone resorption parameters. Taken together these data shows that CHP-nanogel worked as a suitable carrier for the W9-peptide and it prevented aggregation and increased the stability of the W9-peptide. This study reveals the feasibility of CHP-nanogel-mediated peptide delivery in preventing bone resorption in vivo.
Collapse
|
36
|
Applications and the Future of Peptide Drugs for Inflammatory Bone Resorption. J Oral Biosci 2009. [DOI: 10.1016/s1349-0079(09)80020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Clynen E, Baggerman G, Husson SJ, Landuyt B, Schoofs L. Peptidomics in drug research. Expert Opin Drug Discov 2008; 3:425-40. [DOI: 10.1517/17460441.3.4.425] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Mettu NB, Stanley TB, Dwyer MA, Jansen MS, Allen JE, Hall JM, McDonnell DP. The Nuclear Receptor-Coactivator Interaction Surface as a Target for Peptide Antagonists of the Peroxisome Proliferator-Activated Receptors. Mol Endocrinol 2007; 21:2361-77. [PMID: 17595321 DOI: 10.1210/me.2007-0201] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractThe peroxisome proliferator-activated receptors (PPARα, PPARδ, and PPARγ) constitute a family of nuclear receptors that regulates metabolic processes involved in lipid and glucose homeostasis. Although generally considered to function as ligand-regulated receptors, all three PPARs exhibit a high level of constitutive activity that may result from their stimulation by intracellularly produced endogenous ligands. Consequently, complete inhibition of PPAR signaling requires the development of inverse agonists. However, the currently available small molecule antagonists for the PPARs function only as partial agonists, or their efficacy is not sufficient to inhibit the constitutive activity of these receptors. Due to the lack of efficacious antagonists that interact with the ligand-binding domain of the PPARs, we decided to target an interaction that is central to nuclear receptor-mediated gene transcription: the nuclear receptor-coactivator interaction. We utilized phage display technology to identify short LXXLL-containing peptides that bind to the PPARs. Analysis of these peptides revealed a consensus binding motif consisting of HPLLXXLL. Cross-screening of these peptides for binding to other nuclear receptors enabled the identification of a high-affinity PPAR-selective peptide that has the ability to repress PPARγ1-dependent transcription of transfected reporter genes. Most importantly, when introduced into HepG2 cells, the peptide inhibited the expression of endogenous PPARγ1 target genes, adipose differentiation-related protein and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase 2. This work lends support for the rational development of peptidomimetics that block receptor-mediated transcription by targeting the nuclear receptor-coactivator interaction surface.
Collapse
Affiliation(s)
- Niharika B Mettu
- Duke University Medical Center, Department of Pharmacology and Cancer Biology, Box 3813, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Sureshbabu VV, Patil BS, Venkataramanarao R. Preparation, isolation, and characterization of Nalpha-Fmoc-peptide isocyanates: solution synthesis of oligo-alpha-peptidyl ureas. J Org Chem 2007; 71:7697-705. [PMID: 16995676 DOI: 10.1021/jo0611723] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N(alpha)-Fmoc-peptide isocyanates 3a-q, 4a-c, and 5a-c were prepared by the Curtius rearrangement of N(alpha)-Fmoc-peptide acid azides in toluene under thermal, microwave, and ultrasonic conditions. All the N(alpha)-Fmoc-oligo-peptide isocyanates made were isolated as stable crystalline solids with 71 to 94% yield and were fully characterized by 1H NMR, 13C NMR, and mass spectroscopy. Their utility for the synthesis of oligo-alpha-peptidyl ureas 7a-f and 8a-c by the divergent coupling approach was demonstrated. The coupling of N(alpha)-Fmoc-dipeptide isocyanates with amino acid ester or with N,O-bis(trimethylsilyl)amino acids resulted in N(alpha)-Fmoc-tripeptidyl urea ester and acids containing one each of peptide bond and urea bond. The divergent approach is extended to the synthesis of tetrapeptidyl ureas by the 2 + 2 strategy using bis-TMS-peptide acid as an amino component. To incorporate urea bonds in adjacent positions, N(alpha)-Fmoc-peptidyl urea isocyanates 9a-d were prepared and employed in the synthesis of three tetrapeptidyl ureas 10a-b and 11 containing one peptide bond and two urea bonds in series from the N-terminal end. The protocol was then employed for the synthesis of five urea analogues 13-15, 18, and 21 of [Leu5]enkephalin containing urea bonds at the 2, 3, 4 positions as well as at the 2, 4 and 2, 3, 4 positions. The analogue 2l was made by the convergent synthesis by the N --> C terminal chain extension. Finally, two urea analogues 22 and 23 of repeat units of bioelasto polymers, namely Val-Pro-Gly-Val-Gly-OH and Pro-Gly-Val-Gly-Val-OH, were synthesized incorporating the urea bond by the concomitant isocyanate generation and urea bond formation under thermal conditions.
Collapse
Affiliation(s)
- Vommina V Sureshbabu
- Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore 560 001, India.
| | | | | |
Collapse
|
40
|
Ding J, Shi J, Cui D, Xu L, Duan S, Guo L, Fei J. Development of peptidic dopamine transporter inhibitors via aromatic modification-mediated conformational restriction. J Med Chem 2006; 49:4048-51. [PMID: 16821765 DOI: 10.1021/jm0601654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dopamine transporter plays an important role in the molecular mechanism of cocaine dependence. It is suggested that inhibitors of the dopamine transporter would have strong therapeutic potential. Here we report that aromatic modification can constrain a linear peptide into the beta-turn conformation, which is preferred by the dopamine transporter. On the basis of this finding, a novel selective and competitive peptidic inhibitor of the dopamine transporter was developed. The peptide binds to the dopamine- and cocaine-binding site of the dopamine transporter and has behavioral effects different from those of cocaine in mice.
Collapse
Affiliation(s)
- Jinguo Ding
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, SIBS, Chinese Academy of Sciences, CAS, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Hwang H, Kim D, Kim S. Structure-activity relationships of the human prothrombin kringle-2 peptide derivative NSA9: anti-proliferative activity and cellular internalization. Biochem J 2006; 395:165-72. [PMID: 16390327 PMCID: PMC1409683 DOI: 10.1042/bj20051300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human prothrombin kringle-2 protein inhibits angiogenesis and LLC (Lewis lung carcinoma) growth and metastasis in mice. Additionally, the NSA9 peptide (NSAVQLVEN) derived from human prothrombin kringle-2 has been reported to inhibit the proliferation of BCE (bovine capillary endothelial) cells and CAM (chorioallantoic membrane) angiogenesis. In the present study, we examined the structure-activity relationships of the NSA9 peptide in inhibiting the proliferation of endothelial cells lines e.g. BCE and HUVE (human umbilical vein endothelial). N- or C-terminal truncated derivatives and reverse sequence analogues of NSA9 were prepared and their anti-proliferative activities were assessed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay. This cell proliferation assay demonstrated that both the N-terminal region and sequence orientation of NSA9 are important for inhibiting the proliferation of endothelial cells. In particular 2 C-terminal truncation derivatives of NSA9 [NSA7 (NSAVQLV) and NSA8 (NSAVQLVE)] inhibited cellular proliferation to a greater extent than did NSA9. The heptapeptide NSA7, was found to be more potent than NSA9 in inhibiting CAM angiogenesis, and tubular formation and migration of HUVE cells. In addition NSA9, NSA8 and NSA7 peptides exhibited considerable inhibitory effects on the proliferation of tumour cells such as B16F10 (murine melanoma), LLC and L929 (murine fibroblast). Also, cellular internalization studies demonstrated that NSA7 was internalized into both endothelial and tumour cells more easily than was NSA9. In conclusion, these results suggest that NSA7, residing within the full sequence of NSA9, contains the required sequence for anti-proliferative activity and cellular internalization.
Collapse
Affiliation(s)
- Hyun Sook Hwang
- Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, Korea
| | - Dong Won Kim
- Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, Korea
| | - Soung Soo Kim
- Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
42
|
Krumpe LR, Mori T. The Use of Phage-Displayed Peptide Libraries to Develop Tumor-Targeting Drugs. Int J Pept Res Ther 2006; 12:79-91. [PMID: 19444323 PMCID: PMC2678933 DOI: 10.1007/s10989-005-9002-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2005] [Indexed: 01/13/2023]
Abstract
Monoclonal antibodies have been successfully utilized as cancer-targeting therapeutics and diagnostics, but the efficacies of these treatments are limited in part by the size of the molecules and non-specific uptake by the reticuloendothelial system. Peptides are much smaller molecules that can specifically target cancer cells and as such may alleviate complications with antibody therapy. Although many endogenous and exogenous peptides have been developed into clinical therapeutics, only a subset of these consists of cancer-targeting peptides. Combinatorial biological libraries such as bacteriophage-displayed peptide libraries are a resource of potential ligands for various cancer-related molecular targets. Target-binding peptides can be affinity selected from complex mixtures of billions of displayed peptides on phage and further enriched through the biopanning process. Various cancer-specific ligands have been isolated by in vitro, in vivo, and ex vivo screening methods. As several peptides derived from phage-displayed peptide library screenings have been developed into therapeutics in current clinical trials, which validates peptide-targeting potential, the use of phage display to identify cancer-targeting therapeutics should be further exploited.
Collapse
Affiliation(s)
- Lauren R.H. Krumpe
- Basic Research Program, Science Applications International Corporation-Frederick, Inc., Frederick, MD USA
| | - Toshiyuki Mori
- Molecular Targets Development Program, Center for Cancer Research, National Cancer Institute, Frederick, MD USA
- Biomedical Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-17-85 Yodogawaku, Osaka, 532-8686 Japan
| |
Collapse
|
43
|
Matza-Porges S, Horresh I, Tavor E, Panet A, Honigman A. Expression of an anti apoptotic recombinant short peptide in mammalian cells. Apoptosis 2005; 10:987-96. [PMID: 16151634 DOI: 10.1007/s10495-005-1298-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding the mechanisms of the apoptotic and anti apoptotic processes may lead to a better way to control these cascades. Here we demonstrated for the first time the feasibility to express a short functional peptide in mammalian cells that abrogates the apoptosis cascade through interference with the proteolytic activity of the initiator caspase 9 and the executing caspase 3 enzymes. The expression of a short peptide that includes the pseudo-substrate motif of the apoptosis inhibitor protein P35 (Asp-Gln-Met-Asp) leads to the abrogation of cell death induced through either the mitochondrial or the death receptors pathways. Short open reading frames have been detected in several mammalian mRNAs, primarily upstream of the main long reading frame (uORFs), however, direct evidence for de-novo peptides translation has not been provided. Utilizing biochemical and imaging techniques we demonstrate here that the functional recombinant peptide was localized to the cytpoplasmic fraction of the cell. In conclusion, this work demonstrates that ribosomes recognize short ORFs to translate stable short recombinant peptides in mammalian cells. Expression of these intracellular peptides results in the knock down of apoptotic processes to generate apoptosis resistant stable cells.
Collapse
Affiliation(s)
- S Matza-Porges
- Department of Virology, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
44
|
Karsten U, von Mensdorff-Pouilly S, Goletz S. What makes MUC1 a tumor antigen? Tumour Biol 2005; 26:217-20. [PMID: 16006776 DOI: 10.1159/000086956] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 03/17/2005] [Indexed: 12/20/2022] Open
Abstract
The epithelial mucin 1 (MUC1) is an accepted serum tumor marker and cellular tumor antigen. We discuss recent views on the difference(s) between normal and tumor MUC1, and its implication for the development of cancer vaccines and antibody therapies, with special emphasis on the role of glycosylation.
Collapse
Affiliation(s)
- Uwe Karsten
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany.
| | | | | |
Collapse
|
45
|
Abstract
Insight into the molecular mechanisms of malignant transformation is changing the way cancer is being treated. Conventional treatment strategies target the DNA of all dividing cells, resulting in a significantly increased risk of collateral toxicity. In addition, the accumulation of multiple mutations leads to drug resistance in many cancer cells. Targeted strategies have now been developed that specifically disrupt oncogenically active cell surface receptors and endogenous signaling molecules. These agents have a much greater selectivity for tumor tissue and decreased risk of side effects. Increased signaling through ErbB receptors via gene amplification, overexpression, and mutation has been implicated in many human cancers and associated with poor prognosis. Interruption of this process has been shown to cause antitumor effects. Downregulation of the ErbB receptors, HER-2/neu, and later EGFR, with monoclonal antibodies was the first demonstration of targeted therapy. Subsequently, the ErbB tyrosine kinase domain has been successfully targeted with small molecule inhibitors. The development of novel ErbB-directed entities is ongoing, with particular promise being shown by strategies targeting receptor interaction in oligomeric complexes.
Collapse
Affiliation(s)
- Mark Richter
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6082, USA
| | | |
Collapse
|
46
|
Baggerman G, Boonen K, Verleyen P, De Loof A, Schoofs L. Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:250-260. [PMID: 15706625 DOI: 10.1002/jms.744] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Peptides are the largest class of signalling molecules found in animals. Nevertheless, in most proteomic studies peptides are overlooked since they literally fall through the mazes of the net. In analogy with proteomics technology, where all proteins expressed in a cell or tissue are analyzed, the peptidomic approach aims at the simultaneous visualization and identification of the whole peptidome of a cell or tissue, i.e. all expressed peptides with their post-translational modifications. In this paper we describe the analysis of the larval fruit fly central nervous system using two-dimensional capillary liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (LC/Q-TOF-MS/MS. Using the central nervous systems of only 50 larval Drosophila as starting material, we identified 38 peptides in a single analysis, 20 of which were not detected in a previous study that reported on the one-dimensional capillary LC/MS/MS analysis of the same tissue. Among the 38 sequenced peptides, some originate from precursors, such as the tachykinin and the IFamide precursor that were entirely missed in the first study. This clearly demonstrates that the two-dimensional capillary LC approach enhances the coverage of the peptidomic analysis.
Collapse
Affiliation(s)
- Geert Baggerman
- Laboratory of Developmental Physiology, Genomics and Proteomics, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
47
|
Laios E, Waddington M, Saraiya AA, Baker KA, O'Connor E, Pamarathy D, Cunningham PR. Combinatorial Genetic Technology for the Development of New Anti-infectives. Arch Pathol Lab Med 2004; 128:1351-9. [PMID: 15578878 DOI: 10.5858/2004-128-1351-cgtftd] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Context.—We previously developed a novel technology known as instant evolution for high-throughput analysis of mutations in Escherichia coli ribosomal RNA.
Objective.—To develop a genetic platform for the isolation of new classes of antiinfectives that are not susceptible to drug resistance based on the instant evolution system.
Design.—Mutation libraries were constructed in the 16S rRNA gene of E coli and analyzed. In addition, the rRNA genes from a number of pathogenic bacteria were cloned and expressed in E coli. The 16S rRNA genes were incorporated into the instant-evolution system in E coli.
Setting.—The Department of Biological Sciences, Wayne State University, Detroit, Mich.
Main Outcome Measures.—Ribosome function was assayed by measuring the amount of green fluorescent protein produced by ribosomes containing mutant or foreign RNA in vivo.
Results.—We have developed a new combinatorial genetic technology (CGT) platform that allows high-throughput in vivo isolation and analysis of rRNA mutations that might lead to drug resistance. This information is being used to develop anti-infectives that recognize the wild type and all viable mutants of the drug target. CGT also provides a novel mechanism for identifying new drug targets.
Conclusions.—Antimicrobials produced using CGT will provide new therapies for the treatment of infections caused by human pathogens that are resistant to current antibiotics. The new therapeutics will be less susceptible to de novo resistance because CGT identifies all mutations of the target that might lead to resistance during the earliest stages of the drug discovery process.
Collapse
Affiliation(s)
- Eleftheria Laios
- First Department of Pediatrics, University of Athens, St Sophia Children's Hospital, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
48
|
Wong D, Robertson G. Applying combinatorial chemistry and biology to food research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:7187-7198. [PMID: 15563194 DOI: 10.1021/jf040140i] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the past decade combinatorial chemistry has become a major focus of research activity in the pharmaceutical industry for accelerating the development of novel therapeutic compounds. The same combinatorial strategies could be applied to a broad spectrum of areas in agricultural and food research, including food safety and nutrition, development of product ingredients, and processing and conversion of natural products. In contrast to "rational design", the combinatorial approach relies on molecular diversity and high-throughput screening. The capability of exploring the structural and functional limits of a vast population of diverse chemical and biochemical molecules makes it possible to expedite the creation and isolation of compounds of desirable and useful properties. Several studies in recent years have demonstrated the utility of combinatorial methods for food research. These include the discovery of synthetic antimicrobial, antioxidative, and aflatoxin-binding peptides, the identification and analysis of unique flavor compounds, the generation of new enzyme inhibitors, the development of therapeutic antibodies for botulinum neurotoxins, the synthesis of unnatural polyketides and carotenoids, and the modification of food enzymes with novel properties. The results of such activities could open a large area of applications with potential benefits to the food industry. This review describes the current techniques of combinatorial chemistry and their applications, with emphasis on examples in food science research.
Collapse
Affiliation(s)
- Dominic Wong
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| | | |
Collapse
|
49
|
Grotenbreg GM, Timmer MSM, Llamas-Saiz AL, Verdoes M, van der Marel GA, van Raaij MJ, Overkleeft HS, Overhand M. An unusual reverse turn structure adopted by a furanoid sugar amino acid incorporated in gramicidin S. J Am Chem Soc 2004; 126:3444-6. [PMID: 15025470 DOI: 10.1021/ja0397254] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new reverse turn, replacing one of the native type II' beta-turns in the cyclic peptide antibiotic gramicidin S, induced by a furanoid sugar amino acid is revealed. The C3-hydroxyl function plays a pivotal role by acting as a H-bond acceptor, consequently flipping the amide bond between residues i and i + 1, as was established by NMR and X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Gijsbert M Grotenbreg
- Leiden Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cheng X, Kinosaki M, Murali R, Greene MI. The TNF receptor superfamily: role in immune inflammation and bone formation. Immunol Res 2004; 27:287-94. [PMID: 12857975 DOI: 10.1385/ir:27:2-3:287] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tumor necrosis factor (TNF) and TNF receptor (TNFR) family proteins play important roles in many biological processes. Recently, the TNF-family molecule, RANKL (also called TRANCE, ODF, and OPGL), and its receptors, RANK and OPG, were found to be regulators of the development and activation of osteoclasts in bone remodeling. TNFalphaalso activates osteoclasts both by themselves and in synergy with RANKL. We used structure-based design to create peptidomimetics and organic therapeutics that inhibit osteoclastogenesis by inhibiting the interaction of ligands and receptors. Here we show for the first time that blocking TNFalpha by these small molecules effectively inhibited osteoclast formation in vitro. These mimetics can be used as a probe to understand the molecular basis of osteoclastogenesis and also as a platform to create useful therapeutic agent.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Pathology, Abramson Institute for Cancer Research, University of Pennsylvania, Philadelphia, PA 19104-6082, USA
| | | | | | | |
Collapse
|