1
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
2
|
Qamar N, Pandey M, Vasudevan M, Kumar A, Shasany AK. Glandular trichome specificity of menthol biosynthesis pathway gene promoters from Mentha × piperita. PLANTA 2022; 256:110. [PMID: 36350410 DOI: 10.1007/s00425-022-04029-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Several cis-elements including Myb-binding motifs together confer glandular trichome specificity as revealed from heterologous expression and analysis of menthol biosynthesis pathway gene promoters. Glandular Trichomes (GTs) are result of division of epidermal cells that produce diverse metabolites. Species of mint family are important for their essential oil containing many high-value terpenoids, biosynthesized and stored in these GTs. Hence, GTs constitute attractive targets for metabolic engineering and GT-specific promoters are important. In this investigation, the upstream regions of the Mentha × piperita menthol biosynthetic pathway genes (-)-limonene synthase, (-)-P450 limonene-3- hydroxylase, (-)-trans-isopiperitenol dehydrogenase, (-)-Isopiperitenone reductase, ( +)-Pulegone reductase, (-)-Menthone reductase/ (-)-Menthol dehydrogenase and a branched pathway gene ( +)-menthofuran synthase were isolated and characterized. These fragments, fused to β-glucuronidase (GUS) reporter gene of pBI101 binary vector, are able to drive high level gene expression in transgenic tobacco trichomes with strong signals in GTs, except for (-)-Isopiperitenone reductase. The GT-enriched tissue from transformed plants were analysed for GUS enzyme activity and RNA expression which correlates the GUS staining. To characterize the cis-elements responsible for GT-specific expression, a series of 5' deletion constructs for MpPLS and MpPMFS were cloned and analysed in stable transgenic tobacco lines. The specificity of trichome expression was located to - 797 to- 598 bp sequence for (-)-limonene synthase and- 629 to - 530 bp for ( +)-menthofuran synthase promoters containing specific Myb-binding motifs in addition to other unique motifs described for developmental regulation without any defined pattern. All other pathway promoters also recruits specific but different Myb factors as indicated by this analysis.
Collapse
Affiliation(s)
- Nida Qamar
- Biotechnology Division, CSIR -Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Mytrai Pandey
- Biotechnology Division, CSIR -Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | | | - Ashish Kumar
- Biotechnology Division, CSIR -Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR -Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa, New Delhi, 110012, India.
| |
Collapse
|
3
|
Torres-Zelada EF, Weake VM. The Gcn5 complexes in Drosophila as a model for metazoa. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194610. [PMID: 32735945 DOI: 10.1016/j.bbagrm.2020.194610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/14/2023]
Abstract
The histone acetyltransferase Gcn5 is conserved throughout eukaryotes where it functions as part of large multi-subunit transcriptional coactivator complexes that stimulate gene expression. Here, we describe how studies in the model insect Drosophila melanogaster have provided insight into the essential roles played by Gcn5 in the development of multicellular organisms. We outline the composition and activity of the four different Gcn5 complexes in Drosophila: the Spt-Ada-Gcn5 Acetyltransferase (SAGA), Ada2a-containing (ATAC), Ada2/Gcn5/Ada3 transcription activator (ADA), and Chiffon Histone Acetyltransferase (CHAT) complexes. Whereas the SAGA and ADA complexes are also present in the yeast Saccharomyces cerevisiae, ATAC has only been identified in other metazoa such as humans, and the CHAT complex appears to be unique to insects. Each of these Gcn5 complexes is nucleated by unique Ada2 homologs or splice isoforms that share conserved N-terminal domains, and differ only in their C-terminal domains. We describe the common and specialized developmental functions of each Gcn5 complex based on phenotypic analysis of mutant flies. In addition, we outline how gene expression studies in mutant flies have shed light on the different biological roles of each complex. Together, these studies highlight the key role that Drosophila has played in understanding the expanded biological function of Gcn5 in multicellular eukaryotes.
Collapse
Affiliation(s)
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Ito E, Miyagawa S, Fukushima S, Yoshikawa Y, Saito S, Saito T, Harada A, Takeda M, Kashiyama N, Nakamura Y, Shiozaki M, Toda K, Sawa Y. Histone Modification Is Correlated With Reverse Left Ventricular Remodeling in Nonischemic Dilated Cardiomyopathy. Ann Thorac Surg 2017; 104:1531-1539. [DOI: 10.1016/j.athoracsur.2017.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
|
5
|
Chen X, Shen Y, Ellis RE. Dependence of the sperm/oocyte decision on the nucleosome remodeling factor complex was acquired during recent Caenorhabditis briggsae evolution. Mol Biol Evol 2014; 31:2573-85. [PMID: 24987105 PMCID: PMC4166919 DOI: 10.1093/molbev/msu198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The major families of chromatin remodelers have been conserved throughout eukaryotic evolution. Because they play broad, pleiotropic roles in gene regulation, it was not known if their functions could change rapidly. Here, we show that major alterations in the use of chromatin remodelers are possible, because the nucleosome remodeling factor (NURF) complex has acquired a unique role in the sperm/oocyte decision of the nematode Caenorhabditis briggsae. First, lowering the activity of C. briggsae NURF-1 or ISW-1, the core components of the NURF complex, causes germ cells to become oocytes rather than sperm. This observation is based on the analysis of weak alleles and null mutations that were induced with TALENs and on RNA interference. Second, qRT-polymerase chain reaction data show that the C. briggsae NURF complex promotes the expression of Cbr-fog-1 and Cbr-fog-3, two genes that control the sperm/oocyte decision. This regulation occurs in the third larval stage and affects the expression of later spermatogenesis genes. Third, double mutants reveal that the NURF complex and the transcription factor TRA-1 act independently on Cbr-fog-1 and Cbr-fog-3. TRA-1 binds both promoters, and computer analyses predict that these binding sites are buried in nucleosomes, so we suggest that the NURF complex alters chromatin structure to allow TRA-1 access to Cbr-fog-1 and Cbr-fog-3. Finally, lowering NURF activity by mutation or RNA interference does not affect this trait in other nematodes, including the sister species C. nigoni, so it must have evolved recently. We conclude that altered chromatin remodeling could play an important role in evolutionary change.
Collapse
Affiliation(s)
- Xiangmei Chen
- Department of Molecular Biology, Rowan University-SOM Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey
| | - Yongquan Shen
- Department of Molecular Biology, Rowan University-SOM
| | | |
Collapse
|
6
|
Separated at birth? The functional and molecular divergence of OLIG1 and OLIG2. Nat Rev Neurosci 2013; 13:819-31. [PMID: 23165259 DOI: 10.1038/nrn3386] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The basic helix-loop-helix transcription factors oligodendrocyte transcription factor 1 (OLIG1) and OLIG2 are structurally similar and, to a first approximation, coordinately expressed in the developing CNS and postnatal brain. Despite these similarities, it was apparent from early on after their discovery that OLIG1 and OLIG2 have non-overlapping developmental functions in patterning, neuron subtype specification and the formation of oligodendrocytes. Here, we summarize more recent insights into the separate roles of these transcription factors in the postnatal brain during repair processes and in neurological disease states, including multiple sclerosis and malignant glioma. We discuss how the unique functions of OLIG1 and OLIG2 may reflect their distinct genetic targets, co-regulator proteins and/or post-translational modifications.
Collapse
|
7
|
Guo SW. The endometrial epigenome and its response to steroid hormones. Mol Cell Endocrinol 2012; 358:185-96. [PMID: 22067514 DOI: 10.1016/j.mce.2011.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 01/21/2023]
Abstract
The human endometrium undergoes cyclic morphological and functional changes during the menstrual cycle. These changes are driven mainly by steroid hormones and orchestrated by a myriad of genes - many of which have been identified recently as being epigenetically regulated. Epigenetic modifications, including DNA methylation and histone acetylations, are shown recently to be involved in functional changes in endometrium and endometrial diseases. Since epigenetics itself is a rapidly evolving field, this review starts with an overview of epigenetics and its intrinsic connections with endometrial response to steroid hormones, highlighting its various levels of complexities. This is followed by a review of published and unpublished work on "writers", "erasers", and other players of endometrial epigenome. In the end, areas in need for future research in this area will be exposed.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai Obstetric and Gynecologic Hospital, and Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University Shanghai College of Medicine, 419 Fangxie Road, Shanghai 200011, China.
| |
Collapse
|
8
|
Urban A, Rossier J. Genetic targeting of specific neuronal cell types in the cerebral cortex. PROGRESS IN BRAIN RESEARCH 2012; 196:163-92. [PMID: 22341326 DOI: 10.1016/b978-0-444-59426-6.00009-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Understanding the structure and function of cortical circuits requires the identification of and control over specific cell types in the cortex. To address these obstacles, recent optogenetic approaches have been developed. The capacity to activate, silence, or monitor specific cell types by combining genetics, virology, and optics will decipher the role of specific groups of neurons within circuits with a spatiotemporal resolution that overcomes standard approaches. In this review, the various strategies for selective genetic targeting of a defined neuronal population are discussed as well as the pros and cons of the use of transgenic animals and recombinant viral vectors for the expression of transgenes in a specific set of neurons.
Collapse
Affiliation(s)
- Alan Urban
- Laboratoire de Neurobiologie et Diversité Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7637, Ecole Supérieure de Physique et de Chimie Industrielles, Paris, France.
| | | |
Collapse
|
9
|
Inoue J, Choi JM, Yoshidomi T, Yashiro T, Sato R. Quercetin enhances VDR activity, leading to stimulation of its target gene expression in Caco-2 cells. J Nutr Sci Vitaminol (Tokyo) 2011; 56:326-30. [PMID: 21228504 DOI: 10.3177/jnsv.56.326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vitamin D receptor (VDR) is a nuclear receptor that regulates the expression of genes involved in calcium homeostasis. Activation of VDR is thought to be a promising drug target for osteoporosis. Using a VDR-driven luciferase expression assay for screening a naturally occurring food component, we identified quercetin as a VDR activator. Quercetin also activated the GAL4 DNA-binding domain fused to the VDR ligand-binding domain. Moreover, it was confirmed that quercetin increases the mRNA level of TRPV6, which is a VDR target gene, in Caco-2 cells. These results indicate that quercetin enhances VDR activity through the alteration of cofactor recruitment, thereby stimulating its target genes while providing a new function for quercetin as the VDR activator.
Collapse
Affiliation(s)
- Jun Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Abstract
The transcription factors Adr1 and Cat8 act in concert to regulate the expression of numerous yeast genes after the diauxic shift. Their activities are regulated by Snf1, the yeast homolog of the AMP-activated protein kinase of higher eukaryotes. Cat8 is regulated directly by Snf1, but how Snf1 regulates Adr1 is unknown. Mutations in Adr1 that alleviate glucose repression are clustered between amino acids 227 and 239. This region contains a consensus sequence for protein kinase A, RRAS(230)F, and Ser230 is phosphorylated in vitro by both protein kinase A and Ca(++) calmodulin-dependent protein kinase. Using an antiphosphopeptide antibody, we found that the level of Adr1 phosphorylated on Ser230 was highest in glucose-grown cells and decreased in a Snf1-dependent manner when glucose was depleted. A nonphosphorylatable Ser230Ala mutant was no longer Snf1 dependent for activation of Adr1-dependent genes and could suppress Cat8 dependence at genes coregulated by Adr1 and Cat8. Contrary to expectation, neither protein kinase A (PKA) nor Ca(++) calmodulin-dependent protein kinase appeared to have an important role in Ser230 phosphorylation in vivo, and a screen of 102 viable kinase deletion strains failed to identify a candidate kinase. We conclude that either Ser230 is phosphorylated by multiple protein kinases or its kinase is encoded by an essential gene. Using the Ser230Ala mutant, we explain a long-standing observation of synergy between Adr1 constitutive mutants and Snf1 activation and conclude that dephosphorylation of Ser230 via a Snf1-dependent pathway appears to be a major component of Adr1 regulation.
Collapse
|
12
|
Cui M, Klopot A, Jiang Y, Fleet JC. The effect of differentiation on 1,25 dihydroxyvitamin D-mediated gene expression in the enterocyte-like cell line, Caco-2. J Cell Physiol 2008; 218:113-21. [PMID: 18726998 DOI: 10.1002/jcp.21574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We examined 1,25 dihydroxyvitamin D (1,25(OH)(2)D(3))-induced expression of 25-hydroxyvitamin D(3) 24-hydroxylase (CYP24) and apical calcium channel (TRPV6) mRNA levels in 2-, 9-, and 15-day cultures Caco-2 cells that model proliferating, post-proliferative, and differentiated enterocytes. 1,25(OH)(2)D(3)-induced (10 nM, 8 h) CYP24 and TRPV6 mRNA levels were significantly greater in differentiated and post-proliferative than proliferating Caco-2 cells (>16X and >3X, respectively). Neither CYP24 mRNA half-life nor induction of a -298 bp rat CYP24 promoter-luciferase reporter construct (10 nM 1,25(OH)(2)D(3), 24 h) were different between proliferating and post-proliferating Caco-2 cells. We next tested whether the blunted response of natural genes to 1,25(OH)(2)D(3) in proliferating Caco-2 cells is due to altered chromatin remodeling. VDR and coactivator protein levels do not increase with differentiation but the level of the co-repressor Alien falls by 50% with differentiation. Over-expression of Alien reduced 1,25(OH)(2)D(3)-induced activity of a minimal VDRE containing promoter-luciferase construct by more than 60% in differentiated Caco-2 cells while siRNA knockdown of Alien in proliferating Caco-2 cells increased 1,25(OH)(2)D(3)-induced CYP24 mRNA level by 40%. These observations suggest that Alien is a regulator of VDR-mediated gene transcription in Caco-2 cells. In addition, we found that 1,25(OH)(2)D(3)-induced association of VDR with chromatin and with the CYP24 promoter was lower in proliferating cells. This suggests that decreased recruitment of VDR to vitamin D response elements also contributes to the blunted transcriptional responsiveness to 1,25(OH)(2)D(3) in proliferating Caco-2 cells.
Collapse
Affiliation(s)
- Min Cui
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana, USA
| | | | | | | |
Collapse
|
13
|
Behnke MS, Radke JB, Smith AT, Sullivan WJ, White MW. The transcription of bradyzoite genes in Toxoplasma gondii is controlled by autonomous promoter elements. Mol Microbiol 2008; 68:1502-18. [PMID: 18433450 PMCID: PMC2440561 DOI: 10.1111/j.1365-2958.2008.06249.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2008] [Indexed: 11/28/2022]
Abstract
Experimental evidence suggests that apicomplexan parasites possess bipartite promoters with basal and regulated cis-elements similar to other eukaryotes. Using a dual luciferase model adapted for recombinational cloning and use in Toxoplasma gondii, we show that genomic regions flanking 16 parasite genes, which encompass examples of constitutive and tachyzoite- and bradyzoite-specific genes, are able to reproduce the appropriate developmental stage expression in a transient luciferase assay. Mapping of cis-acting elements in several bradyzoite promoters led to the identification of short sequence spans that are involved in control of bradyzoite gene expression in multiple strains and under different bradyzoite induction conditions. Promoters that regulate the heat shock protein BAG1 and a novel bradyzoite-specific NTPase during bradyzoite development were fine mapped to a 6-8 bp resolution and these minimal cis-elements were capable of converting a constitutive promoter to one that is induced by bradyzoite conditions. Gel-shift experiments show that mapped cis-elements are bound by parasite protein factors with the appropriate functional sequence specificity. These studies are the first to identify the minimal sequence elements that are required and sufficient for bradyzoite gene expression and to show that bradyzoite promoters are maintained in a 'poised' chromatin state throughout the intermediate host life cycle in low passage strains. Together, these data demonstrate that conventional eukaryotic promoter mechanisms work with epigenetic processes to regulate developmental gene expression during tissue cyst formation.
Collapse
Affiliation(s)
- Michael S Behnke
- Department of Veterinary Molecular Biology, Montana State University BozemanMT 59717, USA
| | - Josh B Radke
- Department of Veterinary Molecular Biology, Montana State University BozemanMT 59717, USA
| | - Aaron T Smith
- Department Pharmacology and Toxicology, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - William J Sullivan
- Department Pharmacology and Toxicology, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Michael W White
- Department of Veterinary Molecular Biology, Montana State University BozemanMT 59717, USA
| |
Collapse
|
14
|
Kim BJ, Kang KM, Jung SY, Choi HK, Seo JH, Chae JH, Cho EJ, Youn HD, Qin J, Kim ST. Esco2 is a novel corepressor that associates with various chromatin modifying enzymes. Biochem Biophys Res Commun 2008; 372:298-304. [PMID: 18501190 DOI: 10.1016/j.bbrc.2008.05.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
Abstract
Accurate chromosome segregation during cell division requires that sister chromatids are kept together by cohesin complex until anaphase, when the chromatids separate and distribute to the two daughter cells. Esco2 is an acetyltransferase that is required for the establishment of sister chromatid cohesion during S phase. Here, we report that Esco2 interacts with several component proteins of the CoREST complex, including a transcription corepressor CoREST, histone demethlyase LSD1, HDAC1, HDAC2, BRAF35, and PHF21A. Esco2 also interacts with various histone methyltransferases Suv39h1, SETDB1 and G9a. Esco2 complex purified from HeLa nuclear extract possesses histone H3 K9 methylation activity and functions as a transcription repressor. Esco2 fused to Gal4 DNA binding domain represses transcription by increasing methylation of histone H3 K9 in the promoter region. These results suggest a novel function of Esco2 in transcription repression through modulation of the chromatin structure.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 300 Chunchun-dong, Jangan-gu, Suwon, Kyonggi-do 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Carré C, Ciurciu A, Komonyi O, Jacquier C, Fagegaltier D, Pidoux J, Tricoire H, Tora L, Boros IM, Antoniewski C. The Drosophila NURF remodelling and the ATAC histone acetylase complexes functionally interact and are required for global chromosome organization. EMBO Rep 2007; 9:187-92. [PMID: 18084186 DOI: 10.1038/sj.embor.7401141] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 11/13/2007] [Accepted: 11/16/2007] [Indexed: 11/09/2022] Open
Abstract
Drosophila Gcn5 is the catalytic subunit of the SAGA and ATAC histone acetylase complexes. Here, we show that mutations in Gcn5 and the ATAC component Ada2a induce a decondensation of the male X chromosome, similar to that induced by mutations in the Iswi and Nurf301 subunits of the NURF nucleosome remodelling complex. Genetic studies as well as transcript profiling analysis indicate that ATAC and NURF regulate overlapping sets of target genes during development. In addition, we find that Ada2a chromosome binding and histone H4-Lys12 acetylation are compromised in Iswi and Nurf301 mutants. Our results strongly suggest that NURF is required for ATAC to access the chromatin and to regulate global chromosome organization.
Collapse
Affiliation(s)
- Clément Carré
- Department of Developmental Biology/CNRS URA 2578, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bypassing the requirements for epigenetic modifications in gene transcription by increasing enhancer strength. Mol Cell Biol 2007; 28:926-38. [PMID: 18025106 DOI: 10.1128/mcb.01344-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our current concept postulates that histone acetylation is required for the recruitment of bromodomain-containing transcription complexes, such as the chromatin-remodeling machine SWI/SNF and the basal transcription factor TFIID. We generated simple NF-kappaB-dependent enhancers of increasing transcriptional strengths and found that the histone acetylation requirements for activation of transcription depended on the strengths of these enhancers. All enhancers function by recruiting SWI/SNF and TFIID to induce nucleosome sliding, a prerequisite for transcriptional activation. However, histone acetylation, although it occurs, is dispensable for TFIID and SWI/SNF recruitment by the strong enhancers, indicating that strong activators can overcome the chromatin barrier by directly recruiting the necessary transcriptional complexes. Weak enhancers depend on histone acetylation for recruitment, and this requirement is independent of a histone acetylation code. Thus, the need for nucleosome modifications is imposed on genes and translated according to the quality and strengths of the activators.
Collapse
|
17
|
Tachibana C, Biddick R, Law GL, Young ET. A poised initiation complex is activated by SNF1. J Biol Chem 2007; 282:37308-15. [PMID: 17974563 DOI: 10.1074/jbc.m707363200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Snf1, the yeast AMP kinase homolog, is essential for derepression of glucose-repressed genes that are activated by Adr1. Although required for Adr1 DNA binding, the precise role of Snf1 is unknown. Deletion of histone deacetylase genes allowed constitutive promoter binding of Adr1 and Cat8, another activator of glucose-repressed genes. In repressed conditions, at the Adr1-and Cat8-dependent ADH2 promoter, partial chromatin remodeling had occurred, and the activators recruited a partial preinitiation complex that included RNA polymerase II. Transcription did not occur, however, unless Snf1 was activated, suggesting a Snf1-dependent event that occurs after RNA polymerase II recruitment. Glucose regulation persisted because shifting to low glucose increased expression. Glucose repression could be completely relieved by combining the three elements of 1) chromatin perturbation by mutation of histone deacetylases, 2) activation of Snf1, and 3) the addition of an Adr1 mutant that by itself confers only weak constitutive activity.
Collapse
Affiliation(s)
- Christine Tachibana
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
18
|
Lee J, Safe S. Coactivation of estrogen receptor alpha (ER alpha)/Sp1 by vitamin D receptor interacting protein 150 (DRIP150). Arch Biochem Biophys 2007; 461:200-210. [PMID: 17306756 PMCID: PMC1978170 DOI: 10.1016/j.abb.2006.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 12/24/2006] [Indexed: 11/30/2022]
Abstract
Vitamin D receptor interacting protein (DRIP150) coactivates estrogen receptor alpha (ERalpha)-mediated transactivation in breast cancer cell lines transfected with a construct (pERE(3)) containing three estrogen responsive elements (EREs). In this study, we show that DRIP150 also coactivates ERalpha/Sp1-mediated transactivation in ZR-75, MCF-7, and MDA-MB-231 breast cancer cells transfected with a construct (pSp1(3)) containing three consensus GC-rich motifs. Studies on coactivation of wild-type and variant ERalpha/Sp1 by DRIP150 indicates that the DNA-binding domain and helix 12 in the ligand binding domain of ERalpha are required and the coactivation response is squelched by overexpressing an NR-box peptide that contains two LXXLL motifs from GRIP2. In contrast, coactivation of ERalpha/Sp1 by wild-type and mutant DRIP150 expression plasmids show that coactivation of ERalpha/Sp1 by DRIP150 is independent of the NR-boxes. Deletion analysis of DRIP150 demonstrates that coactivation requires an alpha-helical NIFSEVRVYN (amino acids 795-804) motif within 23 amino acid sequence (789-811) in the central region of DRIP150 and similar results were obtained for coactivation of ERalpha by DRIP150. Thus, although different domains of ERalpha are required for hormone-dependent activation of ERalpha and ERalpha/Sp1, coactivation of these transcription factors by DRIP150 requires the alpha-helical amino acids 795-804. This is the first report of a coactivator that enhances ERalpha/Sp1-mediated transactivation in breast cancer cells.
Collapse
Affiliation(s)
- Jeongeun Lee
- Department of Veterinary Physiology and Pharmacology, Texas A&M University College Station, TX 77843-4466
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University College Station, TX 77843-4466
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303
| |
Collapse
|
19
|
Jang H, Choi DE, Kim H, Cho EJ, Youn HD. Cabin1 Represses MEF2 Transcriptional Activity by Association with a Methyltransferase, SUV39H1. J Biol Chem 2007; 282:11172-9. [PMID: 17172641 DOI: 10.1074/jbc.m611199200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2) plays pivotal roles in various biological processes, and its transcriptional activity is regulated by histone acetylation/deacetylation enzymes in a calcium-dependent fashion. A calcineurin-binding protein 1 (Cabin1) has been shown to participate in repression of MEF2 by recruiting mSin3 and its associated histone deacetylases. Here, we report that histone methylation also takes a part in Cabin1-mediated repression of MEF2. Immunoprecipitate of Cabin1 complex can methylate histone H3 by association with SUV39H1. SUV39H1 increased Cabin1-mediated repression of MEF2 transcriptional activity in MEF2-targeting promoters. The SUV39H1 was revealed to bind to the 501-900-amino acid region of Cabin1, which was distinct from its histone deacetylase-recruiting domain. In addition, the Gal4-Cabin1-(501-900) alone repressed a constitutively active Gal4-tk-promoter, indicating that Cabin1 recruits SUV39H1 and represses transcriptional activity. Finally, both SUV39H1 and Cabin1 were shown to bind on the MEF2 target promoter in a calcium-dependent manner. Thus, Cabin1 recruits chromatin-modifying enzymes, both histone deacetylases and a histone methyltransferase, to repress MEF2 transcriptional activity.
Collapse
Affiliation(s)
- Hyonchol Jang
- Department of Biochemistry and Molecular Biology, Cancer Research Institute, Interdisciplinary Program in Genetic Engineering, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | |
Collapse
|
20
|
Liu GB, Jiang YF, Yan H, Zhao KN. Computational analysis of base composition pattern and promoter elements in the putative promoter regions in relation to expression profiles of 682 human genes on chromosome 22. ACTA ACUST UNITED AC 2007; 17:270-81. [PMID: 17312946 DOI: 10.1080/10425170600886136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract The base composition pattern (BCP) in the putative promoter region (PPRs) up to 5 Kb lengths of 682 human genes on Chromosome 22 (Chr22) was examined. Two-dimensional (2D) and three-dimensional (3D) functions were designed to delineate the DNA base composition, with four major patterns identified. It is found that 17.6% genes include TATA box, 28.0% GC box, 18.9% CAAT box and 38.4% CpG islands, and approximately 10% genes have one of four putative initiator (Inr) motifs. The occurrence of the promoter elements is tightly associated with the base composition features in the promoter regions, and the associations of the base composition features with occurrence of the promoter elements in the promoter regions mediate tissue-wide expression of the genes in human. The occurrence of two or more promoter elements in the promoter regions is required for the medium- and wide-range expression profiles of the human genes on Chr22. Thus, the reported data shed light on the characteristics of the PPRs of the human genes on Chr22, which may improve our understanding of regulatory roles of the PPRs with occurrence of the promoter elements in gene expression.
Collapse
Affiliation(s)
- Guang Bin Liu
- Department of Biological and Physical Sciences, Faculty of Science, Centre for Systems Biology, The University of Southern Queensland, Toowoomba, Qld 4350, Australia.
| | | | | | | |
Collapse
|
21
|
Abstract
Apoptosis-programed cell death-is the most common form of death in the body. Once apoptosis is induced, proper execution of the cell death program requires the coordinated activation and execution of multiple molecular processes. Here, we describe the pathways and the basic components of the death-inducing machinery. Since apoptosis is a key regulator of tissue homeostasis, an imbalance of apoptosis results in severe diseases like cancer, autoimmunity, and AIDS.
Collapse
Affiliation(s)
- Peter H Krammer
- Tumor Immunology Program D030, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
22
|
May-Panloup P, Chrétien MF, Malthiery Y, Reynier P. ADN mitochondrial du spermatozoïde. ACTA ACUST UNITED AC 2006; 34:847-54. [PMID: 16962811 DOI: 10.1016/j.gyobfe.2006.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Mitochondria play a primary role in cellular energetic metabolism, homeostasis and death. In spermatozoa, in particular, mitochondria produce the ATP necessary for motility. Mitochondrial functions depend, at least partially, on mitochondrial DNA (mtDNA). The mitochondrial genome, the transmission of which is exclusively maternal contributes to cytoplasmic heredity. Qualitative and quantitative mtDNA abnormalities have been associated with male infertility. This review focuses on the role of mtDNA in human fertility.
Collapse
Affiliation(s)
- P May-Panloup
- Département de pathologie cellulaire et tissulaire, Inserm U694, pôle de biologie, CHU, 49033 Angers, France.
| | | | | | | |
Collapse
|
23
|
Quina AS, Buschbeck M, Di Croce L. Chromatin structure and epigenetics. Biochem Pharmacol 2006; 72:1563-9. [PMID: 16836980 DOI: 10.1016/j.bcp.2006.06.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/11/2006] [Accepted: 06/13/2006] [Indexed: 12/20/2022]
Abstract
In eukaryotic cells, the DNA molecule is found in the form of a nucleoprotein complex named chromatin. The basic unit of the chromatin is the nucleosome, which comprises 147 base pairs of DNA wrapped around an octamer of core histones (made of two molecules of each H2A, H2B, H3, and H4 histones). Each nucleosome is linked to the next by small segments of linker DNA. Most chromatin is further condensated by winding in a polynucleosome fibre, which may be stabilized through the binding of histone H1 to each nucleosome and to the linker DNA. The modulation of the structure of the chromatin fibre is critical for the regulation of gene expression since it determines the accessibility and the sequential recruitment of regulatory factors to the underlying DNA. Depending on the different transcriptional states, the structure of the chromatin may be altered in its constituents (e.g. the presence of repressors, activators, chromatin remodelling complexes, and/or incorporation of histone variants), and in covalent modifications of its constituents (such as DNA methylation at cytosine residues, and posttranslational modifications of histone tails). Here, we give an overview of the molecular mechanisms involved in chromatin regulation and the epigenetic transmission of its state, both in normal and pathological scenarios.
Collapse
Affiliation(s)
- A S Quina
- Center for Genomic Regulation, Passeig Maritim 37-49, 08003 Barcelona, Spain
| | | | | |
Collapse
|
24
|
Abstract
In response to various stresses, p53 is rapidly activated and transcriptionally regulates a number of target genes by which p53 modulates a variety of cellular activities. The transcriptional activity of p53 is delicately regulated by a plethora of cellular factors, independently or synergistically, in multiple ways in order to achieve a specific response. This article reviewed the role of the basal transcriptional machinery, co-activators, and co-repressors involved in p53-dependent transcription, and the underlying mechanism by which the p53 transcriptional activity is regulated. We also discussed some potentially interesting questions and future directions in the field.
Collapse
Affiliation(s)
- Gang Liu
- Department of Cell Biology, The University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA
| | | |
Collapse
|
25
|
Szutorisz H, Dillon N, Tora L. The role of enhancers as centres for general transcription factor recruitment. Trends Biochem Sci 2005; 30:593-9. [PMID: 16126390 DOI: 10.1016/j.tibs.2005.08.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/04/2005] [Accepted: 08/16/2005] [Indexed: 11/23/2022]
Abstract
Activation of eukaryotic genes requires a tight temporal control of trans-acting-factor binding to different types of sequence elements. General transcription factors (GTFs) have a central role in the regulation of RNA polymerase II (Pol II) function because they are involved in the initiation of transcription at all class II promoters. Recent studies have shown that GTFs and Pol II are recruited to enhancer elements and that this binding is an early event in gene activation. We propose that an important role of some enhancers is to function as nucleation centres for the assembly of the pre-initiation complex to regulate the timing of gene activation during development, differentiation and the cell cycle.
Collapse
Affiliation(s)
- Henrietta Szutorisz
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN, UK
| | | | | |
Collapse
|
26
|
Dryer RL, Covey LR. A Novel NF-κB-Regulated Site within the Human Iγ1 Promoter Requires p300 for Optimal Transcriptional Activity. THE JOURNAL OF IMMUNOLOGY 2005; 175:4499-507. [PMID: 16177093 DOI: 10.4049/jimmunol.175.7.4499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcriptional activation of germline (GL) promoters occurs through binding of NF-kappaB to three evolutionarily conserved sites within a CD40 response region in the human and mouse GL Igamma and Iepsilon promoters. Here we identify and characterize a novel NF-kappaB binding site (kappaB6) within the human GL Igamma1 promoter that plays an essential role in basal- and CD40-induced transcription. This site is adjacent to identified CREB/activating transcription factor (ATF) sites, present in the Igamma1 but not the Igamma3 promoter, which are important for the amplification of transcription. Our data suggest a cohesive protein complex regulating Igamma1 promoter activity because disruption of any individual NF-kappaB or CREB/ATF site markedly lowers the overall inducible activity of the promoter. In addition, alteration of helical phasing within the promoter indicates spatial orientation of CREB/ATF and NF-kappaB, proteins contributes directly to promoter activity. We found that CREB and p50 transactivators, as well as coactivator p300, interact in vivo with the Igamma1 promoter in the presence and absence of CD40 signaling in Ramos and primary B cells. However, the level of CREB and p300 binding differs as a consequence of activation in primary B cells. Furthermore, overexpression of p300, and not a mutant lacking acetyltransferase activity, significantly increases Igamma1 construct-specific transcription. Together these data support a model whereby CREB and multiple NF-kappaB complexes bind to the Igamma1 promoter and recruit p300. CD40 signals induce p300-dependent changes that result in optimal Igamma1 promoter activity.
Collapse
Affiliation(s)
- Rebecca L Dryer
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
27
|
Principles of Functioning of the Machinery of Transcription Initiation by RNA Polymerase II. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0186-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Shidlovskii YV, Nabirochkina EN. The Effect of Chromatin Remodeling and Modification on RNA-Polymerase-Mediated Transcription Initiation. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Qiu H, Hu C, Zhang F, Hwang GJ, Swanson MJ, Boonchird C, Hinnebusch AG. Interdependent recruitment of SAGA and Srb mediator by transcriptional activator Gcn4p. Mol Cell Biol 2005; 25:3461-74. [PMID: 15831453 PMCID: PMC1084306 DOI: 10.1128/mcb.25.9.3461-3474.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation by Gcn4p is enhanced by the coactivators SWI/SNF, SAGA, and Srb mediator, which stimulate recruitment of TATA binding protein (TBP) and polymerase II to target promoters. We show that wild-type recruitment of SAGA by Gcn4p is dependent on mediator but independent of SWI/SNF function at three different promoters. Recruitment of mediator is also independent of SWI/SNF but is enhanced by SAGA at a subset of Gcn4p target genes. Recruitment of all three coactivators to ARG1 is independent of the TATA element and preinitiation complex formation, whereas efficient recruitment of the general transcription factors requires the TATA box. We propose an activation pathway involving interdependent recruitment of SAGA and Srb mediator to the upstream activation sequence, enabling SWI/SNF recruitment and the binding of TBP and other general factors to the promoter. We also found that high-level recruitment of Tra1p and other SAGA subunits is independent of the Ada2p/Ada3p/Gcn5p histone acetyltransferase module but requires Spt3p in addition to subunits required for SAGA integrity. Thus, while Tra1p can bind directly to Gcn4p in vitro, it requires other SAGA subunits for efficient recruitment in vivo.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, National Institute of Child Health & Human Development/NIH, Building 6A, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Prostate cancer is the most frequently diagnosed cancer among men and the second leading cause of male cancer deaths in the United States. When prostate cancer initially presents in the clinic, the tumour is dependent on androgen for growth and, therefore, responsive to the surgical or pharmacological ablation of circulating androgens. However, there is a high rate of treatment failure because the disease often recurs as androgen-independent metastases. Surprisingly, this late-stage androgen-independent prostate cancer almost always retains expression of the AR (androgen receptor), despite the near absence of circulating androgens. Although late-stage prostate cancer is androgen-independent, the AR still seems to play a role in cancer cell growth at this stage of disease. Therefore a key to understanding hormone-independent prostate cancer is to determine the mechanism(s) by which the AR can function even in the absence of physiological levels of circulating androgen. This review will focus on the role of growth factor signalling in prostate cancer progression to androgen independence and thus outline potential molecular areas of intervention to treat prostate cancer progression.
Collapse
Affiliation(s)
- Daniel Gioeli
- Department of Microbiology, University of Virginia Health System, PO Box 800734, Charlottesville, VA 22908, U.S.A.
| |
Collapse
|
31
|
Rousseaux S, Caron C, Govin J, Lestrat C, Faure AK, Khochbin S. Establishment of male-specific epigenetic information. Gene 2005; 345:139-53. [PMID: 15716030 DOI: 10.1016/j.gene.2004.12.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/11/2004] [Accepted: 12/06/2004] [Indexed: 11/25/2022]
Abstract
The setting of male-specific epigenetic information is a complex process, which involves a major global re-organisation, as well as localized changes of the nucleus structure during the pre-meiotic, meiotic and post-meiotic stages of the male germ cell differentiation. Although it has long been known that DNA methylation in targeted regions of the genome is associated with male-specific genomic imprinting, or that most core histones are hyperacetylated and then replaced by sperm-specific proteins during the post-meiotic condensation of the nucleus, many questions remain unanswered. How these changes interact, how they affect the epigenetic information and how the paternal epigenetic marks contribute to the future genome are indeed major issues remaining to be explored.
Collapse
Affiliation(s)
- Sophie Rousseaux
- Unite INSERM U309, Institut Albert Bonniot, Domaine de la Merci, 38706 La Tronche Cedex, France.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The myocyte enhancer factor 2 (MEF2) transcription factors were originally identified, as their family name implies, on the basis of their role in muscle differentiation. Expression of the four MEF2 proteins, however, is not restricted to contractile tissue. While it has been known for more than a decade that MEF2s are abundantly expressed in neurons, their contributions to the development and function of the nervous system are only now being elucidated. Interestingly, the emerging mechanisms regulating MEF2 in neurons have significant parallels with the regulatory mechanisms in muscle, despite the quite distinct identities of these two electrically excitable tissues. The goal of this chapter is to provide an introduction to those regulatory mechanisms and their consequences for brain development. As such, we first provide an overview of MEF2 itself and its expression within the central nervous system. The second part of this chapter describes the signaling molecules that regulate MEF2 transcriptional activity and their contributions to MEF2 function. The third part of this chapter discusses the role of MEF2 proteins in the developing nervous system and compares the analogous functions of this protein family in muscle and brain.
Collapse
Affiliation(s)
- Aryaman K Shalizi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
33
|
Rastegar M, Kobrossy L, Kovacs EN, Rambaldi I, Featherstone M. Sequential histone modifications at Hoxd4 regulatory regions distinguish anterior from posterior embryonic compartments. Mol Cell Biol 2004; 24:8090-103. [PMID: 15340071 PMCID: PMC515066 DOI: 10.1128/mcb.24.18.8090-8103.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hox genes are differentially expressed along the embryonic anteroposterior axis. We used chromatin immunoprecipitation to detect chromatin changes at the Hoxd4 locus during neurogenesis in P19 cells and embryonic day 8.0 (E8.0) and E10.5 mouse embryos. During Hoxd4 induction in both systems, we observed that histone modifications typical of transcriptionally active chromatin occurred first at the 3' neural enhancer and then at the promoter. Moreover, the sequential distribution of histone modifications between E8.0 and E10.5 was consistent with a spreading of open chromatin, starting with the enhancer, followed by successively more 5' intervening sequences, and culminating at the promoter. Neither RNA polymerase II (Pol II) nor CBP associated with the inactive gene. During Hoxd4 induction, CBP and RNA Pol II were recruited first to the enhancer and then to the promoter. Whereas the CBP association was transient, RNA Pol II remained associated with both regulatory regions. Histone modification and transcription factor recruitment occurred in posterior, Hox-expressing embryonic tissues, but never in anterior tissues, where such genes are inactive. Together, our observations demonstrate that the direction of histone modifications at Hoxd4 mirrors colinear gene activation across Hox clusters and that the establishment of anterior and posterior compartments is accompanied by the imposition of distinct chromatin states.
Collapse
Affiliation(s)
- Mojgan Rastegar
- McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
34
|
Xie Y, Reeve JN. Transcription by Methanothermobacter thermautotrophicus RNA polymerase in vitro releases archaeal transcription factor B but not TATA-box binding protein from the template DNA. J Bacteriol 2004; 186:6306-10. [PMID: 15342601 PMCID: PMC515165 DOI: 10.1128/jb.186.18.6306-6310.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription initiation in Archaea requires the assembly of a preinitiation complex containing the TATA- box binding protein (TBP), transcription factor B (TFB), and RNA polymerase (RNAP). The results reported establish the fate of Methanothermobacter thermautotrophicus TBP and TFB following transcription initiation by M. thermautotrophicus RNAP in vitro. TFB is released after initiation, during extension of the transcript from 4 to 24 nucleotides, but TBP remains bound to the template DNA. Regulation of archaeal transcription initiation by a repressor competition with TBP for TATA-box region binding must accommodate this observation.
Collapse
Affiliation(s)
- Yunwei Xie
- Department of Microbiology, Ohio State University, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
35
|
Bannert H, Muranyi W, Ogryzko VV, Nakatani Y, Flügel RM. Coactivators p300 and PCAF physically and functionally interact with the foamy viral trans-activator. BMC Mol Biol 2004; 5:16. [PMID: 15350211 PMCID: PMC517496 DOI: 10.1186/1471-2199-5-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 09/06/2004] [Indexed: 11/22/2022] Open
Abstract
Background Foamy virus Bel1/Tas trans-activators act as key regulators of gene expression and directly bind to Bel1 response elements (BRE) in both the internal and the 5'LTR promoters leading to strong transcriptional trans-activation. Cellular coactivators interacting with Bel1/Tas are unknown to date. Results Transient expression assays, co-immunoprecipitation experiments, pull-down assays, and Western blot analysis were used to demonstrate that the coactivator p300 and histone acetyltransferase PCAF specifically interact with the retroviral trans-activator Bel1/Tas in vivo. Here we show that the Bel1/Tas-mediated trans-activation was enhanced by the coactivator p300, histone acetyltransferases PCAF and SRC-1 based on the crucial internal promoter BRE. The Bel1/Tas-interacting region was mapped to the C/H1 domain of p300 by co-immunoprecipitation and pull-down assays. In contrast, coactivator SRC-1 previously reported to bind to the C-terminal domain of p300 did not directly interact with the Bel1 protein but nevertheless enhanced Bel1/Tas-mediated trans-activation. Cotransfection of Bel1/Tas and p300C with an expression plasmid containing the C/H1domain partially inhibited the p300C-driven trans-activation. Conclusions Our data identify p300 and PCAF as functional partner molecules that directly interact with Bel1/Tas. Since the acetylation activities of the three coactivators reside in or bind to the C-terminal regions of p300, a C/H1 expression plasmid was used as inhibitor. This is the first report of a C/H1 domain-interacting retroviral trans-activator capable of partially blocking the strong Bel1/Tas-mediated activation of the C-terminal region of coactivator p300. The potential mechanisms and functional roles of the three histone and factor acetyltransferases p300, PCAF, and SRC-1 in Bel1/Tas-mediated trans-activation are discussed.
Collapse
Affiliation(s)
- Helmut Bannert
- Department of Retroviral Gene Expression, German Cancer Research Center, Applied Tumor Virology, Heidelberg, Germany
| | - Walter Muranyi
- Abteilung Virologie, Hygiene-Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Vasily V Ogryzko
- André Lwoff Institut, CNRS UR079, 7 Rue Guy Moquet, Villejuif 94801, France
| | - Yoshihiro Nakatani
- Dana-Farber Cancer Institute, 44 Binney Street, Harvard Medical School, Boston, MA 02115, USA
| | - Rolf M Flügel
- Department of Retroviral Gene Expression, German Cancer Research Center, Applied Tumor Virology, Heidelberg, Germany
| |
Collapse
|
36
|
Li YJ, Fu XH, Liu DP, Liang CC. Opening the chromatin for transcription. Int J Biochem Cell Biol 2004; 36:1411-23. [PMID: 15147721 DOI: 10.1016/j.biocel.2003.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Accepted: 11/05/2003] [Indexed: 10/26/2022]
Abstract
Eukaryotic genomes are packaged into a dynamic hierarchy chromatin structure. In such a particular context, the transition from a repressed compacted chromatin to a rather extended fiber is necessary for transcription. The chromatin opening includes three events, the initial factor getting access to nucleosome DNA, local chromatin opening mediated by activator/coactivator, and transcription associated with extensive chromatin opening. Chromatin dynamics, which is DNA sequence dependent, and also occurs in condensed fiber, provides the opportunity for activators binding to DNA. Coactivators recruited by the activator open the chromatin locally. However, it appears that genes adopt distinct chromatin opening mechanisms according to whether the gene is induced expression, developmental and tissue-specific expression, or constitutive expression. In contrast to transcription initiation-related local chromatin opening, large scale of chromatin opening is associated with a functional enhancer as well as high transcription rate. How the transcription initiated from an enhancer or enhancer like modules, i.e. intergenic transcription, conducts the extensive chromatin opening is discussed. A model for long-range interaction that non-coding transcripts from enhancers may promote efficient communication with promoters is proposed.
Collapse
Affiliation(s)
- Ya-Jun Li
- National Laboratory of Medical Molecular Biology, R514, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China.
| | | | | | | |
Collapse
|
37
|
Tamayo E, Bernal G, Teno U, Maldonado E. Mediator is required for activated transcription in a Schizosaccharomyces pombe in vitro system. ACTA ACUST UNITED AC 2004; 271:2561-72. [PMID: 15182371 DOI: 10.1111/j.1432-1033.2004.04187.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA polymerase II (RNAPII) requires a set of general transcription factors - TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH - to initiate transcription from a gene promoter in vitro. General transcription factors have been isolated from Saccharomyces cerevisiae, rat, human and Drosophila, and their corresponding cDNAs have been cloned. In this report, we describe a reconstituted in vitro transcription system that consists of the following preparations of factors from the yeast Schizosaccharomyces pombe: affinity-purified RNAPII, TFIIH, and recombinant TBP, TFIIB, TFIIE and TFIIF. We show that this system can support basal transcription from the adenovirus major late promoter when purified RNAPII is used and activated transcription when the RNAPII holoenzyme (RNAPII plus the Mediator proteins) is included in the reaction. In contrast, the TATA binding protein-associated factors had no effect on transcriptional activation in our Sc. pombe system. These results indicate that Sc. pombe uses the same set of general transcription factors as other eukaryotes and that the Mediator is involved in activated transcription.
Collapse
Affiliation(s)
- Evelyn Tamayo
- Programa de Biologia Celular y Molecular, Facultad de Medicina, Instituto de Ciencias Biomedicas, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
38
|
Abstract
The plant life cycle involves a series of developmental phase transitions. These transitions require the regulation and highly co-ordinated expression of many genes. Epigenetic controls have now been shown to be a key element of this mechanism of regulation. In the model plant Arabidopsis, recent genetic and molecular studies on chromatin have begun to dissect the molecular basis of these epigenetic controls. Chromatin dynamics represent the emerging and exciting field of gene regulation notably involved in plant developmental transitions. By comparing plant and animal systems, new insights into the molecular complexes and mechanisms governing development can be delineated. We are now beginning to identify the components of chromatin complexes and their functions.
Collapse
Affiliation(s)
- Frédéric Berger
- Laboratoire RDP, UMR 5667, ENS-Lyon, 46 allée d'Italie, F-69364 Lyon cedex 07, France
| | | |
Collapse
|
39
|
Abstract
CD95/CD95L mediated apoptosis is an important mechanism of immune homeostasis. It is instrumental for termination of an immune response and mainly be involved in peripheral tolerance. Dysregulation of the CD95/CD95L system leads to severe diseases. In this review, we present a survey of the role of the CD95/CD95L system in the immune system and, particularly, focus on the signals and transcription factors (NF-AT, Egr, NF-kappaB, AP-1, c-Myc, Nur77, IRFs, SP-1, ALG-4, ROR(gamma)t, and CIITA) involved in CD95L expression. It should also be evident from this review that a profound insight into the molecular mechanisms of CD95L activation should allow to explore potential therapeutic means to treat CD95/CD95L-dependent diseases.
Collapse
Affiliation(s)
- Min Li-Weber
- Tumor Immunology Program G0300, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
40
|
Abstract
The human BRCA1 tumor suppressor interacts with transcriptional machinery, including RNA polymerase II (RNA pol II). We demonstrated that interaction with RNA pol II is a conserved feature of BRCA1 proteins from several species. We found that full-length BRCA1 proteins universally fail to activate transcription in classic GAL4-UAS one-hybrid assays and that the activity associated with the human BRCA1 C terminus was poorly conserved in closely related homologs of the gene. Fractionation studies demonstrated that BRCA1 proteins from all species tested interacted specifically with hyperphosphorylated pol II (IIO), in preference to hypophosphorylated RNA pol II (IIA) expected at promoters. BRCA1-RNA pol II complexes showed evidence of a multiply phosphorylated heptad repeat domain in the catalytic subunit (p220) of RNA pol II, and the complex was highly functional in transcriptional run-off assays. Interestingly, endogenous BRCA1 associated with a large fraction of the processive RNA pol II activity present in undamaged cells, and the interaction was disrupted by DNA-damaging agents. Preferential interaction with processive RNA pol II in undamaged cells places BRCA1 in position to link late events in transcription with repair processes in eukaryotic cells.
Collapse
Affiliation(s)
- Susan A Krum
- Molecular Biology Institute, The David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
41
|
Herrgård MJ, Covert MW, Palsson BØ. Reconciling gene expression data with known genome-scale regulatory network structures. Genome Res 2003; 13:2423-34. [PMID: 14559784 PMCID: PMC403761 DOI: 10.1101/gr.1330003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The availability of genome-scale gene expression data sets has initiated the development of methods that use this data to infer transcriptional regulatory networks. Alternatively, such regulatory network structures can be reconstructed based on annotated genome information, well-curated databases, and primary research literature. As a first step toward reconciling the two approaches, we examine the consistency between known genome-wide regulatory network structures and extensive gene expression data collections in Escherichia coli and Saccharomyces cerevisiae. By decomposing the regulatory network into a set of basic network elements, we can compute the local consistency of each instance of a particular type of network element. We find that the consistency of network elements is influenced by both structural features of the network such as the number of regulators acting on a target gene and by the functional classes of the genes involved in a particular element. Taken together, the approach presented allows us to define regulatory network subcomponents with a high degree of consistency between the network structure and gene expression data. The results suggest that targeted gene expression profiling data can be used to refine and expand particular subcomponents of known regulatory networks that are sufficiently decoupled from the rest of the network.
Collapse
Affiliation(s)
- Markus J Herrgård
- Department of Bioengineering, Bioinformatics Graduate Program, University of California, San Diego, La Jolla, California 92093-0412, USA
| | | | | |
Collapse
|
42
|
Krum SA, Womack JE, Lane TF. Bovine BRCA1 shows classic responses to genotoxic stress but low in vitro transcriptional activation activity. Oncogene 2003; 22:6032-44. [PMID: 12955082 DOI: 10.1038/sj.onc.1206515] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human BRCA1 has a genetically demonstrated role in DNA repair, and has been proposed to act as a transcriptional activator in a limited number of specialized settings. To gain insight into biologically conserved functional motifs, we isolated an ortholog of BRCA1 from cattle (Bos taurus). The predicted protein product shows 72.5% sequence identity with the human protein and conservation of amino acids involved in BRCA1 structure and function. Although the bovine C-terminus is truncated by seven amino acids as compared to human, bovine BRCA1 protein exhibited a similar cell cycle-regulated nuclear expression pattern. Expression was characteristically low and diffuse in the nucleus of G1/G0 cells, followed by increasing BRCA1-positive nuclear speckles in late S phase and G2/M phase cells. Bovine BRCA1 was phosphorylated and nuclear speckling was enhanced in response to DNA-damaging agents. Consistent with evidence from studies of human BRCA1, bovine BRCA1 was shown to interact with RNA polymerase II in vivo, an activity that was mapped to the C-terminal domain (CTD) (bBRCA(1364-1849)). Interestingly, when tested in the GAL4 transcriptional activation assay, full-length bovine and human BRCA1 lacked any ability to act as transcriptional activators and the CTD of bovine BRCA1 had five-fold lower activity when compared to the more acidic human C-terminus. These results provide evidence that phosphorylation and nuclear relocalization are highly conserved features of the BRCA1 response to genotoxic stress. In addition, bovine BRCA1 binds the RNA polymerase II holoenzyme, but this interaction lacks significant ability to correctly orient or recruit RNA polymerase II for transcription in the classic GAL4 transcriptional activation system.
Collapse
Affiliation(s)
- Susan A Krum
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
43
|
Rombauts S, Florquin K, Lescot M, Marchal K, Rouzé P, van de Peer Y. Computational approaches to identify promoters and cis-regulatory elements in plant genomes. PLANT PHYSIOLOGY 2003; 132:1162-76. [PMID: 12857799 PMCID: PMC167057 DOI: 10.1104/pp.102.017715] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Revised: 01/10/2003] [Accepted: 03/17/2003] [Indexed: 05/19/2023]
Abstract
The identification of promoters and their regulatory elements is one of the major challenges in bioinformatics and integrates comparative, structural, and functional genomics. Many different approaches have been developed to detect conserved motifs in a set of genes that are either coregulated or orthologous. However, although recent approaches seem promising, in general, unambiguous identification of regulatory elements is not straightforward. The delineation of promoters is even harder, due to its complex nature, and in silico promoter prediction is still in its infancy. Here, we review the different approaches that have been developed for identifying promoters and their regulatory elements. We discuss the detection of cis-acting regulatory elements using word-counting or probabilistic methods (so-called "search by signal" methods) and the delineation of promoters by considering both sequence content and structural features ("search by content" methods). As an example of search by content, we explored in greater detail the association of promoters with CpG islands. However, due to differences in sequence content, the parameters used to detect CpG islands in humans and other vertebrates cannot be used for plants. Therefore, a preliminary attempt was made to define parameters that could possibly define CpG and CpNpG islands in Arabidopsis, by exploring the compositional landscape around the transcriptional start site. To this end, a data set of more than 5,000 gene sequences was built, including the promoter region, the 5'-untranslated region, and the first introns and coding exons. Preliminary analysis shows that promoter location based on the detection of potential CpG/CpNpG islands in the Arabidopsis genome is not straightforward. Nevertheless, because the landscape of CpG/CpNpG islands differs considerably between promoters and introns on the one side and exons (whether coding or not) on the other, more sophisticated approaches can probably be developed for the successful detection of "putative" CpG and CpNpG islands in plants.
Collapse
Affiliation(s)
- Stephane Rombauts
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
44
|
Reddy SPM, Vuong H, Adiseshaiah P. Interplay between proximal and distal promoter elements is required for squamous differentiation marker induction in the bronchial epithelium: role for ESE-1, Sp1, and AP-1 proteins. J Biol Chem 2003; 278:21378-87. [PMID: 12682075 DOI: 10.1074/jbc.m212258200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of SPRR1B in bronchial epithelial cells is a marker for early metaplastic changes induced by various toxicants/carcinogens. Previously, we have shown that the transcriptional stimulation of SPRR1B expression by phorbol 12-myristate 13-acetate (PMA) is mainly mediated by a -150/-94 bp enhancer harboring two critical 12-O-tetradecanoylphorbol-13-acetate-responsive elements (TREs) and by Jun.Fra-1 dimers. Here, we show that a region between -54 and -39 bp containing an ETS-binding site (EBS) and a GC box is essential for both basal and PMA-inducible SPRR1B transcription. In vivo footprinting demonstrated binding of transcription factors to these elements. However, unlike enhancer TREs, exposure of cells to PMA did not significantly alter the footprinting pattern at these elements. Mutations that crippled both the EBS and GC box suppressed both basal and PMA-inducible SPRR1B transcription. Consistent with this, overexpression of EBS-binding proteins ESE-1 and ESE-3 significantly stimulated SPRR1B promoter activity. Furthermore, preceding SPRR1B transcription, PMA up-regulated mRNA expression of ETS family members such as ESE-1 and ESE-3. Although ESE-1 synergistically activated c-Jun- and PMA-enhanced SPRR1B transcription, coexpression of Sp1 and ESE-1 showed no synergistic or additive effect on promoter activity, indicating an obligatory role for AP-1 proteins in such regulation. In support of this notion, deletion or mutation of two functional TREs inhibited ESE-1- and Sp1-enhanced promoter activation. Thus, the interaction between ESE-1 and Sp1, and AP-1 proteins that bind to the proximal and distal promoter regions, respectively, play a critical role in the induction of squamous differentiation marker expression in bronchial epithelial cells.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Biomarkers, Tumor
- Bronchial Neoplasms/genetics
- Bronchial Neoplasms/metabolism
- Carcinogens
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Cell Differentiation
- Cell Nucleus/metabolism
- Cornified Envelope Proline-Rich Proteins
- DNA-Binding Proteins
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Epithelium/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- JNK Mitogen-Activated Protein Kinases
- Membrane Proteins
- Mitogen-Activated Protein Kinases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Oligonucleotides/chemistry
- Promoter Regions, Genetic
- Proteins/genetics
- Proteins/physiology
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-ets
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sp1 Transcription Factor/physiology
- Tetradecanoylphorbol Acetate
- Time Factors
- Trans-Activators/physiology
- Transcription Factor AP-1/physiology
- Transcription Factors
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Sekhar P M Reddy
- Department of Environmental Health Sciences, Division of Physiology, The Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
45
|
Liu G, Xia T, Chen X. The activation domains, the proline-rich domain, and the C-terminal basic domain in p53 are necessary for acetylation of histones on the proximal p21 promoter and interaction with p300/CREB-binding protein. J Biol Chem 2003; 278:17557-65. [PMID: 12609999 DOI: 10.1074/jbc.m210696200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The p53 transcription factor contains two separate tandem activation domains (AD1 and AD2), a proline-rich domain (PRD), and a C-terminal basic domain (BD). Previously, we have shown that these domains are necessary for transcriptional activity. To further characterize the role of these domains in transactivation, we analyzed the regulation of p21, a well characterized p53 target gene, by various p53 mutants deficient in one or more of these domains. We found that the induction of endogenous p21 is compromised by AD1-deficient p53 (p53(AD1(-))), AD2-deficient p53 (p53(AD2(-))), both AD1- and AD2-deficient p53 (p53(AD1(-)AD2(-))), p53(deltaPRD), which lacks PRD, and p53(deltaBD), which lacks BD. However, p53(AD2(-)), p53(deltaPRD), and p53(deltaBD) are still capable of activating exogenous p21 promoter to an extent comparable with that by wild-type p53. Thus, we performed chromatin immunoprecipitation assay to measure the DNA binding ability of various p53 mutants in vivo. We found that like wild-type p53, these p53 mutants are capable of binding to the p53 response elements in the p21 promoter. In contrast, we found that the extent of acetylated histones on the p21 promoter, especially the proximal promoter, and the amount of interaction with p300/CREB-binding protein, which contain histone acetyltransferase activity, directly correlate with the activity of p53 to induce endogenous p21. Furthermore, we showed that down-regulation of p300/CBP by short interference RNA markedly decreases the ability of p53 to induce endogenous p21. These data lead us to hypothesize that when p53 binds to the responsive element(s) of a target gene, its ability to interact with histone acetyltransferase-containing proteins and subsequently the acetylation of histones bound to the proximal promoter dictate the induction level of a target gene.
Collapse
Affiliation(s)
- Gang Liu
- Department of Cell Biology, The University of Alabama, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
46
|
Abstract
Archaea contain a variety of sequence-independent DNA binding proteins consistent with the evolution of several different, sometimes overlapping and exchangeable solutions to the problem of genome compaction. Some of these proteins undergo residue-specific post-translational lysine acetylation or methylation, hinting at analogues of the histone modifications that regulate eukaryotic chromatin structure and transcription. Archaeal transcription initiation most closely resembles the eukaryotic RNA polymerase II (RNAPII) system, but Archaea do not appear to have homologues of the multisubunit complexes that remodel eukaryotic chromatin and activate RNAPII initiation. In contrast, they have sequence-specific regulators that repress and perhaps activate archaeal transcription by mechanisms superficially similar to the bacterial paradigm of regulating promoter binding by RNAP. Repressors compete with archaeal TATA-box binding protein (TBP) and TFB for the TATA-box and TFB-recognition elements (BRE) of the archaeal promoter, or with archaeal RNAP for the site of transcription initiation. Transcript-specific regulation by repressors binding to sites of transcript initiation is consistent with such sites having very little sequence conservation. However, most Archaea have only one TBP and/or TFB that presumably must therefore bind to similar TATA-box and BRE sequences upstream of most genes. Repressors that function by competing with TBP and/or TFB binding must therefore also make additional contacts with transcript-specific regulatory sites adjacent or remote from the TATA-box/BRE region. The fate of the archaeal TBP and TFB following transcription initiation remains to be determined. Based on functional homology with their eukaryotic RNAPII-system counterparts, archaeal TBP and possibly also TFB should remain bound to the TATA-box/BRE region after transcription initiation. However, this seems unlikely as it might limit repressor competition at this site to only the first round of transcription initiation.
Collapse
Affiliation(s)
- John N Reeve
- Department of Microbiology, Ohio State University, Columbus, OH 43210-1292, USA.
| |
Collapse
|
47
|
Swanson MJ, Qiu H, Sumibcay L, Krueger A, Kim SJ, Natarajan K, Yoon S, Hinnebusch AG. A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo. Mol Cell Biol 2003; 23:2800-20. [PMID: 12665580 PMCID: PMC152555 DOI: 10.1128/mcb.23.8.2800-2820.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Revised: 10/22/2002] [Accepted: 01/15/2003] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activators interact with multisubunit coactivators that modify chromatin structure or recruit the general transcriptional machinery to their target genes. Budding yeast cells respond to amino acid starvation by inducing an activator of amino acid biosynthetic genes, Gcn4p. We conducted a comprehensive analysis of viable mutants affecting known coactivator subunits from the Saccharomyces Genome Deletion Project for defects in activation by Gcn4p in vivo. The results confirm previous findings that Gcn4p requires SAGA, SWI/SNF, and SRB mediator (SRB/MED) and identify key nonessential subunits of these complexes required for activation. Among the numerous histone acetyltransferases examined, only that present in SAGA, Gcn5p, was required by Gcn4p. We also uncovered a dependence on CCR4-NOT, RSC, and the Paf1 complex. In vitro binding experiments suggest that the Gcn4p activation domain interacts specifically with CCR4-NOT and RSC in addition to SAGA, SWI/SNF, and SRB/MED. Chromatin immunoprecipitation experiments show that Mbf1p, SAGA, SWI/SNF, SRB/MED, RSC, CCR4-NOT, and the Paf1 complex all are recruited by Gcn4p to one of its target genes (ARG1) in vivo. We observed considerable differences in coactivator requirements among several Gcn4p-dependent promoters; thus, only a subset of the array of coactivators that can be recruited by Gcn4p is required at a given target gene in vivo.
Collapse
Affiliation(s)
- Mark J Swanson
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
BACKGROUND The liver and the pancreas arise from adjacent regions of endoderm in embryonic development. Pdx1 is a key transcription factor that is essential for the development of the pancreas and is not expressed in the liver. The aim of this study was to determine whether a gene overexpression protocol based on Pdx1 would be able to cause conversion of liver to pancreas. RESULTS We show that a modified form of Pdx1, carrying the VP16 transcriptional activation domain, can cause conversion of liver to pancreas, both in vivo and in vitro. Transgenic Xenopus tadpoles carrying the construct TTR-Xlhbox8-VP16:Elas-GFP were prepared. Xlhbox8 is the Xenopus homolog of Pdx1, the TTR (transthyretin) promoter directs expression to the liver, and the GFP is under the control of an elastase promoter and provides a real-time visible marker of pancreatic differentiation. In the transgenic tadpoles, part or all of the liver is converted to pancreas, containing both exocrine and endocrine cells, while liver differentiation products are lost from the regions converted to pancreas. The timing of events is such that the liver is differentiating by the time Xlhbox8-VP16 is expressed, so we consider this a transdifferentiation event rather than a reprogramming of embryonic development. Furthermore, this same construct will bring about transdifferentiation of human hepatocytes in culture, with formation of both exocrine and endocrine cells. CONCLUSIONS We consider that the conversion of liver to pancreas could be the basis of a new type of therapy for insulin-dependent diabetes. Although expression of the transgene is transient, once the ectopic pancreas is established, it persists thereafter.
Collapse
Affiliation(s)
- Marko E Horb
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, BA2 7AY, Bath, United Kingdom.
| | | | | | | |
Collapse
|
49
|
Abstract
Glucocorticoids (GCs) are the most common group of medications used in the treatment of allergic and autoimmune disorders. They produce potent anti-inflammatory effects by inducing or repressing the expression of target genes. Although most patients with allergic diseases and autoimmune disorders respond to GC therapy, a small subset of patients demonstrate persistent tissue inflammation despite treatment with high doses of GCs. This condition results from an interaction between susceptibility genes, the host's environment, and immunologic factors. The treatment of these patients requires a systematic approach to rule out underlying conditions that lead to steroid resistance or treatment failure, as well as the use of alternative strategies to inhibit tissue inflammation.
Collapse
Affiliation(s)
- Donald Y M Leung
- Division of Pediatric Allergy/Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | |
Collapse
|
50
|
Abstract
When prostate cancer is first detected it generally is dependent on the presence of androgens for growth, and responds to androgen ablation therapies. However, the disease often recurs in a disseminated and apparently androgen independent (AI) form, and in this state is almost invariably fatal. Considerable evidence indicates that the Androgen receptor (AR) continues to be required even in androgen independent (AI) disease. Thus, a key to understanding hormone independent prostate cancer is to determine the mechanism(s) by which the AR can function even in the absence of physiologic levels of androgen. In this article, we argue that growth factors and receptors that utilize Ras family members drive prostate cancer progression to a state of androgen hypersensitivity; and that post-translational modifications (e.g., phosphorylations) of transcriptional cofactors might be responsible for modulating the function of the AR so that it is active even at low concentrations of androgen.
Collapse
Affiliation(s)
- Michael J Weber
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|