1
|
Song X, Cheng M, Gu C, Wang F, Ma K, Wang C, She X, Cui B. Research progress in modulating the auditory system by the cochlear circadian clock system in response to noise exposure. Front Neurosci 2025; 19:1507363. [PMID: 40171535 PMCID: PMC11958988 DOI: 10.3389/fnins.2025.1507363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
The circadian clock is an endogenous system evolved to adapt to environmental changes. Recent studies confirmed that the cochlea exhibits circadian oscillations regulating auditory function. These oscillations are linked to brain-derived neurotrophic factor and glucocorticoid levels. Circadian rhythms influence cochlear sensitivity to noise by regulating the secretion of brain-derived neurotrophic factors and glucocorticoids. This study explores the regulatory mechanism of the circadian clock system, its impact on the auditory system, and its potential role in noise-induced hearing loss. Understanding the regulatory mechanisms of circadian rhythms in auditory function will provide new ideas for developing treatments for noise-induced hearing loss.
Collapse
Affiliation(s)
- Xiaoqiong Song
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
- Academy of Military Medical Sciences, Tianjin, China
| | - Mengzhu Cheng
- Academy of Military Medical Sciences, Tianjin, China
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Cui Gu
- Academy of Military Medical Sciences, Tianjin, China
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fenghan Wang
- Academy of Military Medical Sciences, Tianjin, China
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kefeng Ma
- Academy of Military Medical Sciences, Tianjin, China
| | - Chunping Wang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaojun She
- Academy of Military Medical Sciences, Tianjin, China
| | - Bo Cui
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
- Academy of Military Medical Sciences, Tianjin, China
| |
Collapse
|
2
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2025; 69:495-514. [PMID: 38631431 PMCID: PMC11954810 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
3
|
Tseng Y. A theoretical systems chronopharmacology approach for COVID-19: Modeling circadian regulation of lung infection and potential precision therapies. CPT Pharmacometrics Syst Pharmacol 2025; 14:340-350. [PMID: 39563101 PMCID: PMC11812942 DOI: 10.1002/psp4.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/05/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has underscored the urgent need for innovative therapeutic approaches. Recent studies have revealed a complex interplay between the circadian clock and SARS-CoV-2 infection in lung cells, opening new avenues for targeted interventions. This systems pharmacology study investigates this intricate relationship, focusing on the circadian protein BMAL1. BMAL1 plays a dual role in viral dynamics, driving the expression of the viral entry receptor ACE2 while suppressing interferon-stimulated antiviral genes. Its critical position at the host-pathogen interface suggests potential as a therapeutic target, albeit requiring a nuanced approach to avoid disrupting essential circadian regulation. To enable precise tuning of potential interventions, we constructed a computational model integrating the lung cellular clock with viral infection components. We validated this model against literature data to establish a platform for drug administration simulation studies using the REV-ERB agonist SR9009. Our simulations of optimized SR9009 dosing reveal circadian-based strategies that potentially suppress viral infection while minimizing clock disruption. This quantitative framework offers insights into the viral-circadian interface, aiming to guide the development of chronotherapy-based antivirals. More broadly, it underscores the importance of understanding the connections between circadian timing, respiratory viral infections, and therapeutic responses for advancing precision medicine. Such approaches are vital for responding effectively to the rapid spread of coronaviruses like SARS-CoV-2.
Collapse
Affiliation(s)
- Yu‐Yao Tseng
- Department of Food Science, Nutrition, and Nutraceutical BiotechnologyShih Chien UniversityTaipeiTaiwan
| |
Collapse
|
4
|
Xu W, Li L, Cao Z, Ye J, Gu X. Circadian Rhythms and Lung Cancer in the Context of Aging: A Review of Current Evidence. Aging Dis 2025:AD.2024.1188. [PMID: 39812541 DOI: 10.14336/ad.2024.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body. Both aging and the circadian clock are highly interlinked phenomena with a bidirectional relationship. The process of aging leads to circadian disruptions while dysfunctional circadian rhythms promote age-related complications. Both processes involve diverse physiological, molecular, and cellular changes such as modifications in the DNA repair mechanisms, mechanisms, ROS generation, apoptosis, and cell proliferation. This review aims to examine the role of aging and circadian rhythms in the context of lung cancer. This will also review the existing literature on the role of circadian disruptions in the process of aging and vice versa. Various molecular pathways and genes such as BMAL1, SIRT1, HLF, and PER1 and their implications in aging, circadian rhythms, and lung cancer will also be discussed.
Collapse
Affiliation(s)
- Wenhui Xu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Jinghong Ye
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Xuyu Gu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Zhuang Y, Zhang Y, Liu C, Zhong Y. Interplay Between the Circadian Clock and Sirtuins. Int J Mol Sci 2024; 25:11469. [PMID: 39519022 PMCID: PMC11545976 DOI: 10.3390/ijms252111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The circadian clock is an autonomous timekeeping system evolved by organisms to adapt to external changes, regulating a variety of important physiological and behavioral processes. Recent studies have shown that the sirtuin family of histone deacetylases is involved in regulating the expression of clock genes and plays an important role in maintaining the normal rhythm of clock gene expression and behavior. Moreover, sirtuins are regulated directly or indirectly by the circadian clock system. The mutual regulation between the circadian clock and sirtuins is likely involved in a variety of signal transduction and metabolism processes. In this review, we discuss the molecular mechanisms and research progress on the intertwined relationship between the circadian clock and sirtuins, mainly in mammals, highlighting sirtuins as molecular links between metabolic control and circadian rhythms and offering our perspectives on future developments in the field.
Collapse
Affiliation(s)
- Yan Zhuang
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yantong Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Chao Liu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yingbin Zhong
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Wu K, Li X, Bai Y, Heng BC, Zhang X, Deng X. The circadian clock in enamel development. Int J Oral Sci 2024; 16:56. [PMID: 39242565 PMCID: PMC11379899 DOI: 10.1038/s41368-024-00317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 09/09/2024] Open
Abstract
Circadian rhythms are self-sustaining oscillations within biological systems that play key roles in a diverse multitude of physiological processes. The circadian clock mechanisms in brain and peripheral tissues can oscillate independently or be synchronized/disrupted by external stimuli. Dental enamel is a type of mineralized tissue that forms the exterior surface of the tooth crown. Incremental Retzius lines are readily observable microstructures of mature tooth enamel that indicate the regulation of amelogenesis by circadian rhythms. Teeth enamel is formed by enamel-forming cells known as ameloblasts, which are regulated and orchestrated by the circadian clock during amelogenesis. This review will first examine the key roles of the circadian clock in regulating ameloblasts and amelogenesis. Several physiological processes are involved, including gene expression, cell morphology, metabolic changes, matrix deposition, ion transportation, and mineralization. Next, the potential detrimental effects of circadian rhythm disruption on enamel formation are discussed. Circadian rhythm disruption can directly lead to Enamel Hypoplasia, which might also be a potential causative mechanism of amelogenesis imperfecta. Finally, future research trajectory in this field is extrapolated. It is hoped that this review will inspire more intensive research efforts and provide relevant cues in formulating novel therapeutic strategies for preventing tooth enamel developmental abnormalities.
Collapse
Affiliation(s)
- Ke Wu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- 4th Division, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
- Oral Translational Medicine Research Center Joint Training base for Shanxi Provincial Key Laboratory in Oral and Maxillofacial Repair Reconstruction and Regeneration The First People's Hospital of Jinzhong, Jinzhong, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
7
|
Baburski AZ, Becin AP, Travicic DZ, Medar MLJ, Andric SA, Kostic TS. REVERBA couples the circadian clock to Leydig cell steroidogenesis. Biofactors 2024; 50:738-749. [PMID: 38147453 DOI: 10.1002/biof.2035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023]
Abstract
The involvement of the molecular clock in regulating cell physiological processes on a specific time scale is a recognized concept, yet its specific impact on optimizing androgen production in Leydig cells has been unclear. This study aimed to confirm the role of the REVERBA (NR1D1) gene in controlling the transcription of key genes related to Leydig cell steroid production. We investigated daily variations by collecting Leydig cells from rats at various times within a 24-h period. Chromatin immunoprecipitation study showed a time-dependent pattern for genes linked to steroid production (Nur77, Star, Cyp11a1, and Cyp17a1), which closely matched the 24-h REVERBA levels in Leydig cells, peaking between zeitgeber time (ZT) 7-11. To understand the physiological significance of REVERBA's interaction with promoters of steroidogenesis-related genes, Leydig cells from rats at two different times (ZT7 and ZT16; chosen based on REVERBA expression levels), were treated with either an agonist (GSK4112) or an antagonist (SR8278). The results revealed that the REVERBA agonist stimulated gene transcription, while the antagonist inhibited it, but only when REVERBA was sufficiently present, indicating a reliance on REVERBA's circadian fluctuation. Moreover, this REVERBA-dependent stimulation had a clear impact on testosterone production in the culture medium, underscoring REVERBA's involvement in the circadian regulation of testosterone. This study indicates that REVERBA, in addition to being a core component of the cellular clock, plays a key role in regulating androgen production in Leydig cells by influencing the transcription of critical steroidogenesis-related genes.
Collapse
Affiliation(s)
- Aleksandar Z Baburski
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| | - Alisa P Becin
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| | - Dijana Z Travicic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| | - Marija L J Medar
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| | - Silvana A Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| | - Tatjana S Kostic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| |
Collapse
|
8
|
Juhász KZ, Hajdú T, Kovács P, Vágó J, Matta C, Takács R. Hypoxic Conditions Modulate Chondrogenesis through the Circadian Clock: The Role of Hypoxia-Inducible Factor-1α. Cells 2024; 13:512. [PMID: 38534356 PMCID: PMC10969332 DOI: 10.3390/cells13060512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a heterodimer transcription factor composed of an alpha and a beta subunit. HIF-1α is a master regulator of cellular response to hypoxia by activating the transcription of genes that facilitate metabolic adaptation to hypoxia. Since chondrocytes in mature articular cartilage reside in a hypoxic environment, HIF-1α plays an important role in chondrogenesis and in the physiological lifecycle of articular cartilage. Accumulating evidence suggests interactions between the HIF pathways and the circadian clock. The circadian clock is an emerging regulator in both developing and mature chondrocytes. However, how circadian rhythm is established during the early steps of cartilage formation and through what signaling pathways it promotes the healthy chondrocyte phenotype is still not entirely known. This narrative review aims to deliver a concise analysis of the existing understanding of the dynamic interplay between HIF-1α and the molecular clock in chondrocytes, in states of both health and disease, while also incorporating creative interpretations. We explore diverse hypotheses regarding the intricate interactions among these pathways and propose relevant therapeutic strategies for cartilage disorders such as osteoarthritis.
Collapse
|
9
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
10
|
Adegbesan KA, Tomassoni Ardori F, Yanpallewar S, Bradley SP, Chudasama Y, Vera E, Briceno N, King AL, Tessarollo L, Gilbert MR, Guedes VA, Smart DK, Armstrong TS, Shuboni-Mulligan DD. The sex-dependent impact of PER2 polymorphism on sleep and activity in a novel mouse model of cranial-irradiation-induced hypersomnolence. Neurooncol Adv 2023; 5:vdad108. [PMID: 37781088 PMCID: PMC10540885 DOI: 10.1093/noajnl/vdad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Background Hypersomnolence is a common and disruptive side effect of cranial radiotherapy and is associated with fatigue and disturbances in mood and cognition in primary brain tumor (PBT) patients. The biological underpinnings of this effect are not understood. Our laboratory has previously found that the presence of a single nucleotide polymorphism (rs934945, G-E mutation) in the PERIOD2 (PER2) clock gene was associated with a decreased likelihood of fatigue in PBT patients. Here, we aim to understand the effects of PER2 polymorphism on radiation susceptibility within a murine model of cranial-irradiation-induced hypersomnolence (C-RIH). Methods Male and female transgenic mice were generated using CRISPR-Cas9, replacing the endogenous mouse PER2:CRY1 binding domain with its human isoform with (hE1244 KI) or without the SNP rs934945 (hG1244 KI). Activity and sleep were monitored continuously 10 days before and after cranial irradiation (whole brain, 15Gy, single fraction). Behavioral assessments measuring anxiety, depression, and working memory were used to assess mood and cognitive changes 2 months postradiation. Results During their active phase, hE1244 knock-ins (KIs) had less radiation-induced suppression of activity relative to hG1244 KIs and female hE1244 KIs saw a reduction of hypersomnolence over 10 days. hE1244 KIs displayed less anxiety behavior and were more ambulatory within all behavioral tests. Conclusions The PER2 rs934945 polymorphism had long-lasting behavioral effects associated with radiation toxicity, particularly in sleep in females and the activity of all animals. Our findings shed light on biological mechanisms underlying C-RIH.
Collapse
Affiliation(s)
- Kendra A Adegbesan
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Tomassoni Ardori
- Neural Development Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sudhirkumar Yanpallewar
- Neural Development Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sean P Bradley
- Rodent Behavior Core, National Institute of Mental Health, National Institutes of Health, Frederick, MD, USA
| | - Yogita Chudasama
- Rodent Behavior Core, National Institute of Mental Health, National Institutes of Health, Frederick, MD, USA
- Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Vera
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Briceno
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amanda L King
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian A Guedes
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - DeeDee K Smart
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terri S Armstrong
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
11
|
Common Ground between Biological Rhythms and Forensics. BIOLOGY 2022; 11:biology11071071. [PMID: 36101448 PMCID: PMC9312156 DOI: 10.3390/biology11071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Biological clocks regulate the timing of numerous body functions in adaption to daily repeating cycles in the environment, such as the sleep–wake phases that are trained by the cycling changes of night and day light. The identification of a deceased victim is a critical component in a forensic investigation, but it can be significantly hampered by the condition of the dead body and the lack of personal records and documents. This review links current knowledge on the molecular mechanisms of biological rhythms to forensically relevant aspects, including the time period since death, cause of death, the use of insects for forensics, sex and age of a person, ethnic background and development. Putting these findings in context demonstrates how the analysis of molecular clock analysis could be used as tool for future personal identification in forensic investigations. Abstract Biological clocks set the timing for a large number of essential processes in the living human organism. After death, scientific evidence is required in forensic investigations in order to collect as much information as possible on the death circumstances and personal identifiers of the deceased victim. We summarize the associations between the molecular mechanisms of biological rhythms and forensically relevant aspects, including post-mortem interval and cause of death, entomological findings, sex, age, ethnicity and development. Given their importance during lifetime, biological rhythms could be potential tools to draw conclusions on the death circumstances and the identity of a deceased person by mechanistic investigations of the different biological clocks in a forensic context. This review puts the known effects of biological rhythms on the functions of the human organism in context with potential applications in forensic fields of interest, such as personal identification, entomology as well as the determination of the post-mortem interval and cause of death.
Collapse
|
12
|
Strain and Age Dependent Entrainable Range of Circadian Behavior in C57BL/6 and BALB/c Mice. Physiol Behav 2022; 255:113917. [PMID: 35853482 DOI: 10.1016/j.physbeh.2022.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The mammalian circadian system has a plasticity in a certain range, rather than a strict 24-hour cycle, with considerable variations among species, strains, and ages. As the most widely used mouse strains in circadian research, C57BL/6 and BALB/c mice were well known to have different internal periods and responses to various non-24-hour light-dark cycles. However, their entrainable range of circadian behavior was not specifically studied, neither was the effect of aging. Besides, it is not well known if mice with appeared behavioral adaptation are really healthy. In the current study, we exposed C57BL/6 and BALB/c mice at 3 months and 18 months old to a series of short (T cycles < 24 h) and long (T cycles > 24 h) light-dark cycles. Wheel running activities were monitored continuously for calculation of the entrainable range and glucose homeostasis was investigated to reflect their health status. Our results showed that the range in both young and old C57BL/6 mice is between T23 and T26. By contrast, due to the strong adaptability to extreme LD cycles, the entrainable range on a circadian scale in both young and old BALB/c mice cannot be well determined. Despite the adaptation appeared at the behavioral level, glucose homeostasis revealed by glucose tolerance test and insulin tolerance test was impaired in mice upon T cycle treatment. In summary, our study explored the entrainment range in two popular mouse strains and suggested that behavioral adaptation may not well reflect their health status.
Collapse
|
13
|
Mammalian PERIOD2 regulates H2A.Z incorporation in chromatin to orchestrate circadian negative feedback. Nat Struct Mol Biol 2022; 29:549-562. [PMID: 35606517 DOI: 10.1038/s41594-022-00777-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Mammalian circadian oscillators are built on a feedback loop in which the activity of the transcription factor CLOCK-BMAL1 is repressed by the PER-CRY complex. Here, we show that murine Per-/- fibroblasts display aberrant nucleosome occupancy around transcription start sites (TSSs) and at promoter-proximal and distal CTCF sites due to impaired histone H2A.Z deposition. Knocking out H2A.Z mimicked the Per null chromatin state and disrupted cellular rhythms. We found that endogenous mPER2 complexes retained CTCF as well as the specific H2A.Z-deposition chaperone YL1-a component of the ATP-dependent remodeler SRCAP and p400-TIP60 complex. While depleting YL1 or mutating chaperone-binding sites on H2A.Z lengthened the circadian period, H2A.Z deletion abrogated BMAL1 chromatin recruitment and promoted its proteasomal degradation. We propose that a PER2-mediated H2A.Z deposition pathway (1) compacts CLOCK-BMAL1 binding sites to establish negative feedback, (2) organizes circadian chromatin landscapes using CTCF and (3) bookmarks genomic loci for BMAL1 binding to impinge on the positive arm of the subsequent cycle.
Collapse
|
14
|
Transcriptome Analysis Revealed Long Non-Coding RNAs Associated with mRNAs in Sheep Thyroid Gland under Different Photoperiods. Genes (Basel) 2022; 13:genes13040606. [PMID: 35456411 PMCID: PMC9024850 DOI: 10.3390/genes13040606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
The thyroid gland is a vital endocrine organ involved in the reproduction of animals via the regulation of hormone synthesis and secretion. LncRNAs have been proven to play important roles in reproductive regulation; however, the associated mechanism in the thyroid gland has not been clarified. In this study, we investigated to identify photoperiod-induced lncRNAs and mRNAs in the thyroid gland in Sunite ewes by comparing the expression profiles of short photoperiod (SP) and long photoperiods (LP). A total of 41,088 lncRNAs were identified in the thyroid gland through RNA-Seq. Functional analysis of differentially expressed lncRNAs using the R package revealed that reproductive hormone- and photoperiod response-related pathways, including the prolactin signaling, cAMP signaling, and circadian rhythm pathways, were significantly enriched. An mRNA-lncRNA interaction analysis suggested that the lncRNA LOC1056153S88 trans targets ARG2 and CCNB3, and the lncRNA LOC105607004 trans targets DMXL2, both of these might be involved in seasonal sheep breeding reproduction. Together, these results will provide resources for further studies on seasonal reproduction in sheep.
Collapse
|
15
|
Cui S, Chen Y, Guo Y, Chen D. Clock genes and gastric cancer. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2021.2020993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuanyuan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yunfei Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dahu Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
16
|
Tersigni C, Furqan Bari M, Cai S, Zhang W, Kandzija N, Buchan A, Miranda F, Di Simone N, Redman CW, Bastie C, Vatish M. Syncytiotrophoblast-derived extracellular vesicles carry apolipoprotein-E and affect lipid synthesis of liver cells in vitro. J Cell Mol Med 2021; 26:123-132. [PMID: 34894055 PMCID: PMC8742183 DOI: 10.1111/jcmm.17056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/08/2023] Open
Abstract
In normal pregnancy, hepatic metabolism adaptation occurs with an increase in lipid biosynthesis. Placental shedding of syncytiotrophoblast‐derived extracellular vesicles (STBEVs) into the maternal circulation constitutes a major signalling mechanism between foetus and mother. We investigated whether STBEVs from normal pregnant women might target liver cells in vitro and induce changes in lipid synthesis. This study was performed at the Nuffield Department of Women's & Reproductive Health, Oxford, UK. STBEVs were obtained by dual‐lobe placental perfusion from 11 normal pregnancies at term. Medium/large and small STBEVs were collected by ultracentrifugation at 10,000g and 150,000g, respectively. STBEVs were analysed by Western blot analysis and flow cytometry for co‐expression of apolipoprotein‐E (apoE) and placental alkaline phosphatase (PLAP). The uptake of STBEVs by liver cells and the effect on lipid metabolism was evaluated using a hepatocarcinoma cell line (HepG2 cells). Data were analysed by one‐way ANOVA and Student's t test. We demonstrated that: (a) STBEVs carry apoE; (b) HepG2 cells take up STBEVs through an apoE‐LDL receptor interaction; (c) STBEV incorporation into HepG2 cells resulted in (i) increased cholesterol release (ELISA); (ii) increased expression of the genes SQLE and FDPS (microarray) involved in cholesterol biosynthesis; (iii) downregulation of the CLOCK gene (microarray and PCR), involved in the circadian negative control of lipid synthesis in liver cells. In conclusion, the placenta may orchestrate the metabolic adaptation of the maternal liver through release of apoE‐positive STBEVs, by increasing lipid synthesis in a circadian‐independent fashion, meeting the nutritional needs of the growing foetus.
Collapse
Affiliation(s)
- Chiara Tersigni
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.,Dipartimento di Scienze della Salute della Donna, Fondazione Policlinico Universitario A. Gemelli IRCCS, del Bambino e di Sanità Pubblica, Rome, Italy
| | | | - Shijei Cai
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Wei Zhang
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Neva Kandzija
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Alice Buchan
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Fabrizio Miranda
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.,Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy
| | - Christopher W Redman
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Claire Bastie
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Abstract
A molecular circadian clock exists not only in the brain, but also in most cells of the body. Research over the past two decades has demonstrated that it directs daily rhythmicity of nearly every aspect of metabolism. It also consolidates sleep-wake behavior each day into an activity/feeding period and a sleep/fasting period. Otherwise, sleep-wake states are mostly controlled by hypothalamic and thalamic regulatory circuits in the brain that direct overall brain state. Recent evidence suggests that hypothalamic control of appetite and metabolism may be concomitant with sleep-wake regulation, and even share the same control centers. Thus, circadian control of metabolic pathways might be overlaid by sleep-wake control of the same pathways, providing a flexible and redundant system to modify metabolism according to both activity and environment.
Collapse
|
18
|
Zahova SK, Humby T, Davies JR, Morgan JE, Isles AR. Comparison of mouse models reveals a molecular distinction between psychotic illness in PWS and schizophrenia. Transl Psychiatry 2021; 11:433. [PMID: 34417445 PMCID: PMC8379171 DOI: 10.1038/s41398-021-01561-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
Prader-Willi Syndrome (PWS) is a neurodevelopmental disorder caused by mutations affecting paternal chromosome 15q11-q13, and characterized by hypotonia, hyperphagia, impaired cognition, and behavioural problems. Psychotic illness is a challenging problem for individuals with PWS and has different rates of prevalence in distinct PWS genotypes. Previously, we demonstrated behavioural and cognitive endophenotypes of relevance to psychiatric illness in a mouse model for one of the associated PWS genotypes, namely PWS-IC, in which deletion of the imprinting centre leads to loss of paternally imprinted gene expression and over-expression of Ube3a. Here we examine the broader gene expression changes that are specific to the psychiatric endophenotypes seen in this model. To do this we compared the brain transcriptomic profile of the PWS-IC mouse to the PWS-cr model that carries a deletion of the PWS minimal critical interval spanning the snoRNA Snord116 and Ipw. Firstly, we examined the same behavioural and cognitive endophenotypes of relevance to psychiatric illness in the PWS-cr mice. Unlike the PWS-IC mice, PWS-cr exhibit no differences in locomotor activity, sensory-motor gating, and attention. RNA-seq analysis of neonatal whole brain tissue revealed a greater number of transcriptional changes between PWS-IC and wild-type littermates than between PWS-cr and wild-type littermates. Moreover, the differentially expressed genes in the PWS-IC brain were enriched for GWAS variants of episodes of psychotic illness but, interestingly, not schizophrenia. These data illustrate the molecular pathways that may underpin psychotic illness in PWS and have implications for potential therapeutic interventions.
Collapse
Affiliation(s)
- Simona K Zahova
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Trevor Humby
- School of Psychology, Cardiff University, Cardiff, UK
| | - Jennifer R Davies
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Joanne E Morgan
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
19
|
Straat ME, Hogenboom R, Boon MR, Rensen PCN, Kooijman S. Circadian control of brown adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158961. [PMID: 33933649 DOI: 10.1016/j.bbalip.2021.158961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Disruption of circadian (~24 h) rhythms is associated with an increased risk of cardiometabolic diseases. Therefore, unravelling how circadian rhythms are regulated in different metabolic tissues has become a prominent research focus. Of particular interest is brown adipose tissue (BAT), which combusts triglyceride-derived fatty acids and glucose into heat and displays a circannual and diurnal rhythm in its thermogenic activity. In this review, the genetic, neuronal and endocrine generation of these rhythms in BAT is discussed. In addition, the potential risks of disruption or attenuation of these rhythms in BAT, and possible factors influencing these rhythms, are addressed.
Collapse
Affiliation(s)
- Maaike E Straat
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Rick Hogenboom
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
20
|
Maier G, Delezie J, Westermark PO, Santos G, Ritz D, Handschin C. Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber activity of training in mouse muscle. J Physiol 2021; 600:769-796. [PMID: 34142717 PMCID: PMC9290843 DOI: 10.1113/jp281535] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Key points Maximal endurance performance is greater in the early daytime. Timed exercise differentially alters the muscle transcriptome and (phospho)‐proteome. Early daytime exercise triggers energy provisioning and tissue regeneration. Early night‐time exercise activates stress‐related and catabolic pathways. Scheduled training has limited effects on the muscle and liver circadian clocks.
Abstract Timed physical activity might potentiate the health benefits of training. The underlying signalling events triggered by exercise at different times of day are, however, poorly understood. Here, we found that time‐dependent variations in maximal treadmill exercise capacity of naïve mice were associated with energy stores, mostly hepatic glycogen levels. Importantly, running at different times of day resulted in a vastly different activation of signalling pathways, e.g. related to stress response, vesicular trafficking, repair and regeneration. Second, voluntary wheel running at the opposite phase of the dark, feeding period surprisingly revealed a minimal zeitgeber (i.e. phase‐shifting) effect of training on the muscle clock. This integrated study provides important insights into the circadian regulation of endurance performance and the control of the circadian clock by exercise. In future studies, these results could contribute to better understanding circadian aspects of training design in athletes and the application of chrono‐exercise‐based interventions in patients.
Collapse
Affiliation(s)
- Geraldine Maier
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Julien Delezie
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Pål O Westermark
- Leibniz-Institut für Nutztierbiologie, Institut für Genetik und Biometrie, Wilhelm-Stahl-Allee 2, Dummerstorf, D-18196, Germany
| | - Gesa Santos
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Danilo Ritz
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| |
Collapse
|
21
|
He X, Tao L, Zhong Y, Di R, Xia Q, Wang X, Guo X, Gan S, Zhang X, Zhang J, Liu Q, Chu M. Photoperiod induced the pituitary differential regulation of lncRNAs and mRNAs related to reproduction in sheep. PeerJ 2021; 9:e10953. [PMID: 33976954 PMCID: PMC8067910 DOI: 10.7717/peerj.10953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
The pituitary is a vital endocrine organ that regulates animal seasonal reproduction by controlling the synthesis and secretion of the hormone. The change of photoperiod is the key factor affecting the function of the pituitary in animals, but the mechanism is unclear. Here, we studied the transcriptomic variation in pars distalis (PD) of the pituitary between short photoperiod (SP) and long photoperiod (LP) using RNA sequencing based on the OVX+E2 sheep. 346 differentially expressed (DE) lncRNAs and 186 DE-mRNA were found in the PD. Moreover, function annotation analysis indicated that the reproductive hormones and photoperiod response-related pathways including aldosterone synthesis and secretion, insulin secretion, thyroid hormone synthesis, and circadian entrainment were enriched. The interaction analysis of mRNA-lncRNA suggested that MSTRG.240648, MSTRG.85500, MSTRG.32448, and MSTRG.304959 targeted CREB3L1 and DUSP6, which may be involved in the photoperiodic regulation of the PD. These findings provide resources for further study on the seasonal reproductive in ewes.
Collapse
Affiliation(s)
- Xiaoyun He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Tao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingjie Zhong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Xia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Guo
- Tianjin Institute of Animal Sciences, Tianjin, China
| | - Shangquan Gan
- Xinjiang Academy of Agricultural and Reclamation Sciences, Xinjiang, China
| | | | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, China
| | - Qiuyue Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Assessment of Selected Clock Proteins (CLOCK and CRY1) and Their Relationship with Biochemical, Anthropometric, and Lifestyle Parameters in Hypertensive Patients. Biomolecules 2021; 11:biom11040517. [PMID: 33808431 PMCID: PMC8067097 DOI: 10.3390/biom11040517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circadian rhythms misalignment is associated with hypertension. The aim of the study was to evaluate the concentration of selected clock proteins-cryptochrome 1 (CRY1) and circadian locomotor output cycles kaput (CLOCK) to determine their relationships with biochemical and anthropometric parameters and lifestyle elements (diet, physical activity, and quality of sleep) in hypertensive patients. METHODS In 31 females with hypertension (HT) and 55 non-hypertensive women (NHT) the CRY1 and CLOCK concentrations, total antioxidant status (TAS), lipid profile, and glycemia were analyzed. Blood pressure and anthropometric measurements, nutritional, exercise, and sleep analyses were performed. RESULTS In the HT group, the CRY1 level was 37.38% lower than in the NHT group. No differences were noted in CLOCK concentration between groups. BMI, FBG, and TG were higher in the HT group compared to the NHT group, while TC, LDL, and HDL levels were similar. The study showed no relationship between CRY1 or CLOCK concentrations and glucose or lipids profile, amount of physical activity, or sleep quality, although CRY1 was associated with some anthropometric indicators. In the HT group, increased CLOCK and CRY1 values were associated with a high TAS level. CONCLUSIONS The serum level of CRY1 could be considered in a detailed diagnostic of hypertension risk in populations with abnormal anthropometric indices.
Collapse
|
23
|
Meneses XCA, Park RM, Ridge EE, Daigle CL. Hourly activity patterns and behaviour-based management of feedlot steers with and without a cattle brush. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Abo SMC, Layton AT. Modeling the circadian regulation of the immune system: Sexually dimorphic effects of shift work. PLoS Comput Biol 2021; 17:e1008514. [PMID: 33788832 PMCID: PMC8041207 DOI: 10.1371/journal.pcbi.1008514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/12/2021] [Accepted: 03/06/2021] [Indexed: 12/31/2022] Open
Abstract
The circadian clock exerts significance influence on the immune system and disruption of circadian rhythms has been linked to inflammatory pathologies. Shift workers often experience circadian misalignment as their irregular work schedules disrupt the natural light-dark cycle, which in turn can cause serious health problems associated with alterations in genetic expressions of clock genes. In particular, shift work is associated with impairment in immune function, and those alterations are sex-specific. The goal of this study is to better understand the mechanisms that explain the weakened immune system in shift workers. To achieve that goal, we have constructed a mathematical model of the mammalian pulmonary circadian clock coupled to an acute inflammation model in the male and female rats. Shift work was simulated by an 8h-phase advance of the circadian system with sex-specific modulation of clock genes. The model reproduces the clock gene expression in the lung and the immune response to various doses of lipopolysaccharide (LPS). Under normal conditions, our model predicts that a host is more sensitive to LPS at circadian time (CT) CT12 versus CT0 due to a dynamic change of Interleukin 10 (IL-10), an anti-inflammatory cytokine. We identify REV-ERB as a key modulator of IL-10 activity throughout the circadian day. The model also predicts a reversal of the times of lowest and highest sensitivity to LPS, with males and females exhibiting an exaggerated response to LPS at CT0, which is countered by a blunted immune response at CT12. Overall, females produce fewer pro-inflammatory cytokines than males, but the extent of sequelae experienced by males and females varies across the circadian day. This model can serve as an essential component in an integrative model that will yield mechanistic understanding of how shift work-mediated circadian disruptions affect the inflammatory and other physiological responses.
Collapse
Affiliation(s)
- Stéphanie M. C. Abo
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
25
|
Panzeri M, Mazza G, Bisi F, Mori E. Patterns of spatiotemporal activity of an alien lagomorph inferred through camera-trapping. MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00557-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Hill AM, Crislip GR, Stowie A, Ellis I, Ramsey A, Castanon-Cervantes O, Gumz ML, Davidson AJ. Environmental circadian disruption suppresses rhythms in kidney function and accelerates excretion of renal injury markers in urine of male hypertensive rats. Am J Physiol Renal Physiol 2020; 320:F224-F233. [PMID: 33356955 DOI: 10.1152/ajprenal.00421.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nontraditional work schedules, such as shift work, have been associated with numerous health issues, including cardiovascular and metabolic disease. These work schedules can chronically misalign environmental timing cues with internal circadian clock systems in the brain and in peripheral organs, leading to dysfunction of those systems and their associated biological processes. Environmental circadian disruption in the kidney may be an important factor in the increased incidence of hypertension and adverse health outcomes in human shift workers. The relationship between renal rhythmicity and injury resilience is not well understood, especially in the context of environmental, rather than genetic, manipulations of the circadian system. We conducted a longitudinal study to determine whether chronic shifting of the light cycle that mimics shift work schedules would disrupt output rhythms of the kidney and accelerate kidney injury in salt-loaded male spontaneously hypertensive, stroke-prone rats. We observed that chronic shifting of the light-dark (LD) cycle misaligned and decreased the amplitude of urinary volume rhythms as the kidney phase-shifted to match each new lighting cycle. This schedule also accelerated glomerular and tubular injury marker excretion, as quantified by nephrin and KIM-1 compared with rats kept in a static LD cycle. These data suggest that disrupted rhythms in the kidney may decrease resilience and contribute to disease development in systems dependent on renal and cardiovascular functions.
Collapse
Affiliation(s)
- Atlantis M Hill
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - G Ryan Crislip
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Adam Stowie
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Ivory Ellis
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Anne Ramsey
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Oscar Castanon-Cervantes
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Michelle L Gumz
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Alec J Davidson
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
27
|
Kim W, Shin JC, Lee KH, Kim KT. PTBP1 Positively Regulates the Translation of Circadian Clock Gene, Period1. Int J Mol Sci 2020; 21:ijms21186921. [PMID: 32967200 PMCID: PMC7555454 DOI: 10.3390/ijms21186921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 11/16/2022] Open
Abstract
Circadian oscillations of mRNAs and proteins are the main features of circadian clock genes. Among them, Period1 (Per1) is a key component in negative-feedback regulation, which shows a robust diurnal oscillation and the importance of circadian rhythm and translational regulation of circadian clock genes has been recognized. In the present study, we investigated the 5'-untranslated region (5'-UTR) of the mouse core clock gene, Per1, at the posttranscriptional level, particularly its translational regulation. The 5'-UTR of Per1 was found to promote its translation via an internal ribosomal entry site (IRES). We found that polypyrimidine tract-binding protein 1 (PTBP1) binds to the 5'-UTR of Per1 and positively regulates the IRES-mediated translation of Per1 without affecting the levels of Per1 mRNA. The reduction of PTBP1 level also decreased the endogenous levels of the PER1 protein but not of its mRNA. As for the oscillation of PER1 expression, the disruption of PTBP1 levels lowered the PER1 expression but not the phase of the oscillation. PTBP1 also changed the amplitudes of the mRNAs of other circadian clock genes, such as Cryptochrome 1 (Cry1) and Per3. Our results suggest that the PTBP1 is important for rhythmic translation of Per1 and it fine-tunes the overall circadian system.
Collapse
Affiliation(s)
- Wanil Kim
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan, Gyeongbuk 38610, Korea;
| | | | - Kyung-Ha Lee
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan, Gyeongbuk 38610, Korea;
- Correspondence: (K.-H.L.); (K.-T.K.); Tel.: +82-53-819-7743 (K.-H.L.); +82-54-279-2297 (K.-T.K.)
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Cheongam-Ro 77, Pohang, Gyeongbuk 37673, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Cheongam-Ro 77, Pohang, Gyeongbuk 37673, Korea
- Correspondence: (K.-H.L.); (K.-T.K.); Tel.: +82-53-819-7743 (K.-H.L.); +82-54-279-2297 (K.-T.K.)
| |
Collapse
|
28
|
de Souza Teixeira AA, Lira FS, Rosa-Neto JC. Aging with rhythmicity. Is it possible? Physical exercise as a pacemaker. Life Sci 2020; 261:118453. [PMID: 32956663 PMCID: PMC7500276 DOI: 10.1016/j.lfs.2020.118453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Aging is associated with gradual decline in numerous physiological processes, including a reduction in metabolic functions and immunological system. The circadian rhythm plays a vital role in health, and prolonged clock disruptions are associated with chronic diseases. The relationships between clock genes, aging, and immunosenescence are not well understood. Inflammation is an immune response triggered in living organisms in response to the danger associated with pathogens and injury. The term 'inflammaging' has been used to describe the chronic low-grade-inflammation that develops with advancing age and predicts susceptibility to age-related pathologies. Equilibrium between pro-and anti-inflammatory cytokines is needed for healthy aging and longevity. Sedentary and poor nutrition style life indices a disruption in circadian rhythm promoting an increase in pro-inflammatory factors or leads for chronic low-grade inflammation. Moreover, signals mediated by pro-inflammatory cytokines, such as tumor necrosis factor-alpha and interleukin-6, might accentuate of the muscle loss during aging. Circadian clock is important to maintain the physiological functions, as maintenance of immune system. A strategy for imposes rhythmicity in the physiological systems may be adopted of exercise training routine. The lifelong regular practice of physical exercise decelerates the processes of aging, providing better quality and prolongation of life. Thus, in this review, we will focus on how aging affects circadian rhythms and its relationship to inflammatory processes (inflammaging), as well as the role of physical exercise as a regulator of the circadian rhythm, promoting aging with rhythmicity.
Collapse
Affiliation(s)
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil
| | | |
Collapse
|
29
|
Abstract
The ability of organisms to keep track of external time, by means of the circadian clock interacting with the environment, is essential for health. The focus of this review is recent methods to detect the internal circadian time of an omics sample. Before reaching our main topic, we introduce the circadian clock, its hierarchical structure, and its main functions; we will also explain the notion of internal time, or circadian phase, and how it differs from the geophysical time. We then focus on the role played by the clock in the maintenance of human heath, in particular in the context of cancer. Thereafter, we analyze an important methodological question: how to infer the circadian phase of unlabeled omics snapshot measurements. Answering this question could both significantly increase our understanding of the circadian clock and allow the use of this knowledge in biomedical applications. We review existing methods, focusing on the more recent ones, following a historical trajectory. We explain the basic concepts underlying the methods, as well as some crucial technical aspects of each. We conclude by reporting how some of these methods have, more or less effectively, enabled furthering our understanding of the clock and given insights regarding potential biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Talamanca
- The Institute of Bioengineering (IBI), School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering (IBI), School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
30
|
Gade MR, Connette GM, Crawford JA, Hocking DJ, Maerz JC, Milanovich JR, Peterman WE. Predicted alteration of surface activity as a consequence of climate change. Ecology 2020; 101:e03154. [PMID: 32740923 DOI: 10.1002/ecy.3154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
Wildlife are faced with numerous threats to survival, none more pressing than that of climate change. Understanding how species will respond behaviorally, physiologically, and demographically to a changing climate is a cornerstone of many contemporary ecological studies, especially for organisms, such as amphibians, whose persistence is closely tied to abiotic conditions. Activity is a useful parameter for understanding the effects of climate change because activity is directly linked to fitness as it dictates foraging times, energy budgets, and mating opportunities. However, activity can be challenging to measure directly, especially for secretive organisms like plethodontid salamanders, which only become surface active when conditions are cool and moist because of their anatomical and physiological restrictions. We estimated abiotic predictors of surface activity for the seven species of the Plethodon jordani complex. Five independent data sets collected from 2004 to 2017 were used to determine the parameters driving salamander surface activity in the present day, which were then used to predict potential activity changes over the next 80 yrs. Average active seasonal temperature and vapor pressure deficit were the strongest predictors of salamander surface activity and, without physiological or behavioral modifications, salamanders were predicted to exhibit a higher probability of surface activity during peak active season under future climate conditions. Temperatures during the active season likely do not exceed salamander thermal maxima to cause activity suppression and, until physiological limits are reached, future conditions may continue to increase activity. Our model is the first comprehensive field-based study to assess current and future surface activity probability. Our study provides insights into how a key behavior driving fitness may be affected by climate change.
Collapse
Affiliation(s)
- Meaghan R Gade
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, Ohio, 43201, USA
| | - Grant M Connette
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - John A Crawford
- National Great Rivers Research and Education Center, One Confluence Way, East Alton, Illinois, 62024, USA
| | - Daniel J Hocking
- Department of Biology, Frostburg State University, 101 Braddock Rd, Frostburg, Maryland, 21532, USA
| | - John C Maerz
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green St, Athens, Georgia, 30602, USA
| | - Joseph R Milanovich
- Department of Biology, Loyola University Chicago, 1032 Sheridan Rd, Chicago, Illinois, 60660, USA
| | - William E Peterman
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, Ohio, 43201, USA
| |
Collapse
|
31
|
Prenatal exposure to lipopolysaccharide induces changes in the circadian clock in the SCN and AA-NAT activity in the pineal gland. Brain Res 2020; 1743:146952. [DOI: 10.1016/j.brainres.2020.146952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 11/20/2022]
|
32
|
Baburski AZ, Andric SA, Kostic TS. Luteinizing hormone signaling is involved in synchronization of Leydig cell's clock and is crucial for rhythm robustness of testosterone production†. Biol Reprod 2020; 100:1406-1415. [PMID: 30722003 DOI: 10.1093/biolre/ioz020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/22/2019] [Accepted: 02/03/2019] [Indexed: 12/16/2022] Open
Abstract
In mammals, circadian clock regulates concentration of many reproductive hormones including testosterone. Previously, we characterized pattern of circadian transcription of core clock genes in testosterone-producing Leydig cells. Here, the potential role of luteinizing hormone receptor (LHR)-cAMP signaling in synchronization of Leydig cell's circadian clock and rhythmic testosterone production were examined. Results showed that activation of LHR-cAMP signaling in primary rat Leydig cell culture increased Star/STAR and changed expression of many clock genes (upregulated Per1/PER1, Dec1/2, and Rorb, and downregulated Bmal1 and Rev-erba/b). Inhibition of protein kinase A prevented LHR-triggered increase in transcription of Per1 and Dec1. Effect of stimulated LHR-cAMP signaling on Leydig cell's clock transcription was also confirmed in vivo, using rats treated with single hCG injection. To analyze in vivo effect of low LH-cAMP activity on rhythmical Leydig cell function, rats with experimental hypogonadotropic hypogonadism were used. Characteristics of hypogonadal rats were decreased LH and testosterone secretion without circadian fluctuation; in Leydig cells decreased arrhythmic cAMP and transcription of steroidogenic genes (Cyp11a1 and Cyp17a1) were observed, while decreased Star/STAR expression retains circadian pattern. However, expression of clock genes, despite changes in transcription levels (increased Bmal1, Per2, Cry1, Cry2, Rora, Rorb, Rev-erba/b/REV-ERBB, Dec1, Csnk1e, and decreased Npas2 and PER1) kept circadian patterns observed in control groups. Altogether, the results strengthened the hypothesis about role of LH-cAMP signaling as synchronizer of Leydig cell's clock. However, clock in Leydig cells is not sufficient to sustain rhythmicity of testosterone production in absence of rhythmic activity of LH-cAMP signaling.
Collapse
Affiliation(s)
- Aleksandar Z Baburski
- Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Silvana A Andric
- Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana S Kostic
- Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
33
|
Henry CJ, Kaur B, Quek RYC. Chrononutrition in the management of diabetes. Nutr Diabetes 2020; 10:6. [PMID: 32075959 PMCID: PMC7031264 DOI: 10.1038/s41387-020-0109-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythms are 24-h cycles regulated by endogeneous molecular oscillators called the circadian clock. The effects of diet on circadian rhythmicity clearly involves a relationship between factors such as meal timings and nutrients, known as chrononutrition. Chrononutrition is influenced by an individual's "chronotype", whereby "evening chronotypes" or also termed "later chronotype" who are biologically driven to consume foods later in the day. Research in this area has suggested that time of day is indicative of having an influence on the postprandial glucose response to a meal, therefore having a major effect on type 2 diabetes. Cross-sectional and experimental studies have shown the benefits of consuming meals early in the day than in the evening on postprandial glycaemia. Modifying the macronutrient composition of night meals, by increasing protein and fat content, has shown to be a simple strategy to improve postprandial glycaemia. Low glycaemic index (GI) foods eaten in the morning improves glycaemic response to a greater effect than when consumed at night. Timing of fat and protein (including amino acids) co-ingested with carbohydrate foods, such as bread and rice, can reduce glycaemic response. The order of food presentation also has considerable potential in reducing postprandial blood glucose (consuming vegetables first, followed by meat and then lastly rice). These practical recommendations could be considered as strategies to improve glycaemic control, rather than focusing on the nutritional value of a meal alone, to optimize dietary patterns of diabetics. It is necessary to further elucidate this fascinating area of research to understand the circadian system and its implications on nutrition that may ultimately reduce the burden of type 2 diabetes.
Collapse
Affiliation(s)
- Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, 14 Medical Drive, #07-02, Singapore, 117599, Singapore. .,National University of Singapore, Department of Biochemistry, 8 Medical Drive, Singapore, 117596, Singapore.
| | - Bhupinder Kaur
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, 14 Medical Drive, #07-02, Singapore, 117599, Singapore
| | - Rina Yu Chin Quek
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, 14 Medical Drive, #07-02, Singapore, 117599, Singapore
| |
Collapse
|
34
|
Teixeira AAS, Biondo LA, Silveira LS, Lima EA, Batatinha HA, Diniz TA, Oliveira De Souza C, Comin J, Neto JCR. Doxorubicin modulated clock genes and cytokines in macrophages extracted from tumor-bearing mice. Cancer Biol Ther 2020; 21:344-353. [PMID: 31931676 PMCID: PMC7515505 DOI: 10.1080/15384047.2019.1702400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Circadian rhythm is essential for cellular regulation of physiological, metabolic, and immune functions. Perturbations of circadian rhythms have been correlated with increased susceptibility to cancer and poor prognosis in the cancer treatment. Our aim is to investigate the role of doxorubicin (DOX) treatment on clock genes expression and inflammation in intraperitoneal macrophages and the antitumoral response. Methods: Macrophages were extracted from intraperitoneal cavity of mice without or with Lewis lung carcinoma (LLC) and treated with DOX totaling four groups (CTL, LLC, LLC+DOX and DOX) and analyzes of clock genes in six time points (ZT02, ZT06, ZT10, ZT14, ZT18 AND ZT22). Intraperitoneal macrophages cell culture was stimulated with LPS and DOX and clock genes and inflammatory profile were analyzed. In tumor were analyzed macrophages markers. Results: The expression of F4/80 (ZT22) and CD11c (ZT06) tumor tissue was significantly differed between LLC and LCC+DOX groups. In the intraperitoneal macrophages, DOX increased Clock (ZT10), Rev-Erbα (ZT18 and ZT22) and Per2 expressions (ZT18); in the LLC+DOX group was increased Bmal1 (ZT10), Per2 (ZT18) and NF-kB (ZT22) expressions; IL-6 expression increased in the LCC group (ZT02). In intraperitoneal macrophages cell culture stimulated with DOX and LPS after 24 h decreased Clock and Per1. DOX causes depression after 6 and 24 h in TNF-α content and Per2 gene expression after 24 h IL-1β expression was reduced also. Conclusion: DOX treatment in vivo disrupted cytokine and clock genes expression in intraperitoneal macrophages suppressing immune response. Moreover, macrophages cultured with DOX had decreased expression of LPS-stimulated inflammatory cytokines.
Collapse
Affiliation(s)
| | | | - Loreana S Silveira
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | - Edson A Lima
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | - Helena A Batatinha
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | - Tiego A Diniz
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | | | - Jeferson Comin
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
35
|
Smiljanec K, Lennon SL. Sodium, hypertension, and the gut: does the gut microbiota go salty? Am J Physiol Heart Circ Physiol 2019; 317:H1173-H1182. [PMID: 31585045 DOI: 10.1152/ajpheart.00312.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent evidence suggests that the gut microbiota contributes to the pathogenesis of hypertension (HTN). The gut microbiota is a highly dynamic organ mediating numerous physiological functions, which can be influenced by external factors such as diet. In particular, a major modifiable risk factor for HTN is dietary sodium intake. Sodium consumption in the United States is significantly greater than that recommended by the federal government and organizations such as the American Heart Association. Because of the emerging connection between the gut microbiota and HTN, the interaction between dietary sodium and gut microbiota has sparked interest. High-sodium diets promote local and systemic tissue inflammation and impair intestinal anatomy compared with low sodium intake in both human and animal studies. It is biologically plausible that the gut microbiota mediates the inflammatory response, as it is in constant interaction with the immune system and is necessary for proper maturation of immune cells. Recent rodent data demonstrate that dietary sodium disrupts gut microbial homeostasis as gut microbiota composition shifts with dietary sodium manipulation. In this review, we will focus on gut microbiota activity in HTN and the influence of high dietary sodium intake with an emphasis on the immune system, bacterial metabolites, and the circadian clock.
Collapse
Affiliation(s)
- Katarina Smiljanec
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
36
|
Sussman W, Stevenson M, Mowdawalla C, Mota S, Ragolia L, Pan X. BMAL1 controls glucose uptake through paired-homeodomain transcription factor 4 in differentiated Caco-2 cells. Am J Physiol Cell Physiol 2019; 317:C492-C501. [PMID: 31216190 PMCID: PMC6766619 DOI: 10.1152/ajpcell.00058.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023]
Abstract
The transcription factor aryl hydrocarbon receptor nuclear translocator-like protein-1 (BMAL1) is an essential regulator of the circadian clock, which controls the 24-h cycle of physiological processes such as nutrient absorption. To examine the role of BMAL1 in small intestinal glucose absorption, we used differentiated human colon adenocarcinoma cells (Caco-2 cells). Here, we show that BMAL1 regulates glucose uptake in differentiated Caco-2 cells and that this process is dependent on the glucose transporter sodium-glucose cotransporter 1 (SGLT1). Mechanistic studies show that BMAL1 regulates glucose uptake by controlling the transcription of SGLT1 involving paired-homeodomain transcription factor 4 (PAX4), a transcriptional repressor. This is supported by the observation that clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated endonuclease Cas9 (Cas9) knockdown of PAX4 increases SGLT1 and glucose uptake. Chromatin immunoprecipitation (ChIP) and ChIP-quantitative PCR assays show that the knockdown or overexpression of BMAL1 decreases or increases the binding of PAX4 to the hepatocyte nuclear factor 1-α binding site of the SGLT1 promoter, respectively. These findings identify BMAL1 as a critical mediator of small intestine carbohydrate absorption and SGLT1.
Collapse
Affiliation(s)
- Whitney Sussman
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Matthew Stevenson
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Cyrus Mowdawalla
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Samantha Mota
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Louis Ragolia
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
37
|
Sleep Assessment During Shift Work in Korean Firefighters: A Cross-Sectional Study. Saf Health Work 2019; 10:254-259. [PMID: 31497322 PMCID: PMC6717904 DOI: 10.1016/j.shaw.2019.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Background This cross-sectional study assessed the sleep quality using the ActiGraph and investigated the relationship between the parameters of sleep assessment and the type of shift work in Korean firefighters. Methods The participants were 359 firefighters: 65 day workers (control group) and 294 shift workers (shift work group: 77 firefighters with 3-day shift, 72 firefighters with 6-day shift, 65 firefighters with 9-day shift, and 80 firefighters with 21-day shift). Sleep assessments were performed using the ActiGraph (wGT3X-BT) for 24 hours during day shift (control and shift work group) and night shift and rest day (shift work group). The participants recorded bed time and sleep hours during the measurement period. Results Sleep efficiency, total sleep time, and percentage of wake after sleep onset during night work were lower in the shift work group than control group (p < 0.05). Sleep efficiency decreased in night shift and increased in rest day, whereas wake after sleep onset increased in night shift and decreased in rest day (p < 0.05). Among shift work groups, sleep efficiency of 6-day shift was higher in day shift, and sleep efficiency of 21-day shift was lower in night shift than other shift groups (p < 0.05). Conclusion We found that the sleep quality in night shift of the shift work group was poorer than the control group. As to the type of shift work, sleep quality was good in 6-day shift and poor in 21-day shift. Thus, fast rotating shift such as 6-day shift may be recommended to improve the sleep quality of the firefighters.
Collapse
|
38
|
Meneses-Santos D, Buonfiglio DDC, Peliciari-Garcia RA, Ramos-Lobo AM, Souza DDN, Carpinelli AR, Carvalho CRDO, Sertie RAL, Andreotti S, Lima FB, Afeche SC, Fioretto ET, Cipolla-Neto J, Marçal AC. Chronic treatment with dexamethasone alters clock gene expression and melatonin synthesis in rat pineal gland at night. Nat Sci Sleep 2018; 10:203-215. [PMID: 30046256 PMCID: PMC6054274 DOI: 10.2147/nss.s158602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Melatonin is a neuroendocrine hormone that regulates many functions involving energy metabolism and behavior in mammals throughout the light/dark cycle. It is considered an output signal of the central circadian clock, located in the suprachiasmatic nucleus of the hypothalamus. Melatonin synthesis can be influenced by other hormones, such as insulin and glucocorticoids in pathological conditions or during stress. Furthermore, glucocorticoids appear to modulate circadian clock genes in peripheral tissues and are associated with the onset of metabolic diseases. In the pineal gland, the modulation of melatonin synthesis by clock genes has already been demonstrated. However, few studies have shown the effects of glucocorticoids on clock genes expression in the pineal gland. RESULTS We verified that rats treated with dexamethasone (2 mg/kg body weight, intraperitoneal) for 10 consecutive days, showed hyperglycemia and pronounced hyperinsulinemia during the dark phase. Insulin sensitivity, glucose tolerance, melatonin synthesis, and enzymatic activity of arylalkylamine N-acetyltransferase, the key enzyme of melatonin synthesis, were reduced. Furthermore, we observed an increase in the expression of Bmal1, Per1, Per2, Cry1, and Cry2 in pineal glands of rats treated with dexamethasone. CONCLUSION These results show that chronic treatment with dexamethasone can modulate both melatonin synthesis and circadian clock expression during the dark phase.
Collapse
Affiliation(s)
- Daniela Meneses-Santos
- Department of Morphology, Center of Biological Sciences and Health, Federal University of Sergipe, São Cristóvão, Brazil,
| | - Daniella do Carmo Buonfiglio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Angela Maria Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Divanízia do Nascimento Souza
- Department of Morphology, Center of Biological Sciences and Health, Federal University of Sergipe, São Cristóvão, Brazil,
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Sandra Andreotti
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fabio Bessa Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Emerson Ticona Fioretto
- Department of Morphology, Center of Biological Sciences and Health, Federal University of Sergipe, São Cristóvão, Brazil,
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anderson Carlos Marçal
- Department of Morphology, Center of Biological Sciences and Health, Federal University of Sergipe, São Cristóvão, Brazil,
| |
Collapse
|
39
|
Richter K, Schmutz I, Darna M, Zander JF, Chavan R, Albrecht U, Ahnert-Hilger G. VGLUT1 Binding to Endophilin or Intersectin1 and Dynamin Phosphorylation in a Diurnal Context. Neuroscience 2018; 371:29-37. [DOI: 10.1016/j.neuroscience.2017.11.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
|
40
|
Klein L, Gao T, Barzilai N, Milman S. Association between Sleep Patterns and Health in Families with Exceptional Longevity. Front Med (Lausanne) 2017; 4:214. [PMID: 29276708 PMCID: PMC5727046 DOI: 10.3389/fmed.2017.00214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/15/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Sleep patterns such as longer sleep duration or napping are associated with poor health outcomes. Although centenarians and their offspring demonstrate a delayed onset of age-related diseases, it is not known whether they have healthier sleep patterns or are protected against the negative effects of sleep disturbances. METHODS Data on sleep patterns and health history were collected from Ashkenazi Jewish subjects of the Longevity Genes Project using standardized questionnaires. Participants included individuals with exceptional longevity (centenarians) with preserved cognition (n = 348, median age 97 years), their offspring (n = 513, median age 69 years), and controls (n = 199) age-matched to the offspring. Centenarians reported on their sleep patterns at age 70, while the offspring and controls on their current sleep patterns. Biochemical parameters were measured at baseline. Models were adjusted for age, sex, BMI, and use of sleep medication. RESULTS The offspring and controls reported similar sleep patterns, with 33% sleeping ≥8 h and 17% napping in each group. At age 70, centenarians were more likely to have slept ≥8 h (55%) and to have napped (28%) compared with offspring and controls, p < 0.01. Among centenarians, no association was noted between sleep patterns and health outcomes. Sleeping for ≥8 h was associated with lower high-density lipoprotein cholesterol levels in the offspring and controls, and with insulin resistance in the offspring, but not with diabetes. Napping was associated with insulin resistance among the controls (p < 0.01), but not the offspring. Controls, but not offspring, who napped were 2.79 times more likely to have one or more of the following diseases: hypertension, myocardial infarction, stroke, or diabetes (OR 2.79, 95% CI 1.08-7.21, p = 0.04). CONCLUSION Despite being more likely to exhibit risky sleep patterns at age 70 compared with the offspring and controls, the centenarians were protected from age-related morbidities. The offspring of centenarians did exhibit metabolic disturbances in association with less healthy sleep patterns; however, unlike the controls, they were much less likely to manifest age-related diseases. This suggests that offspring may have inherited resilience genotypes from their centenarian parents that protect them against the harmful effects of sleep disturbances.
Collapse
Affiliation(s)
- Lavy Klein
- Department of Geriatrics, Shoham Medical Center, Pardes-Hanna, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Tina Gao
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nir Barzilai
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Sofiya Milman
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
41
|
Cao Q, Zhao X, Bai J, Gery S, Sun H, Lin DC, Chen Q, Chen Z, Mack L, Yang H, Deng R, Shi X, Chong LW, Cho H, Xie J, Li QZ, Müschen M, Atkins AR, Liddle C, Yu RT, Alkan S, Said JW, Zheng Y, Downes M, Evans RM, Koeffler HP. Circadian clock cryptochrome proteins regulate autoimmunity. Proc Natl Acad Sci U S A 2017; 114:12548-12553. [PMID: 29109286 PMCID: PMC5703267 DOI: 10.1073/pnas.1619119114] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The circadian system regulates numerous physiological processes including immune responses. Here, we show that mice deficient of the circadian clock genes Cry1 and Cry2 [Cry double knockout (DKO)] develop an autoimmune phenotype including high serum IgG concentrations, serum antinuclear antibodies, and precipitation of IgG, IgM, and complement 3 in glomeruli and massive infiltration of leukocytes into the lungs and kidneys. Flow cytometry of lymphoid organs revealed decreased pre-B cell numbers and a higher percentage of mature recirculating B cells in the bone marrow, as well as increased numbers of B2 B cells in the peritoneal cavity of Cry DKO mice. The B cell receptor (BCR) proximal signaling pathway plays a critical role in autoimmunity regulation. Activation of Cry DKO splenic B cells elicited markedly enhanced tyrosine phosphorylation of cellular proteins compared with cells from control mice, suggesting that overactivation of the BCR-signaling pathway may contribute to the autoimmunity phenotype in the Cry DKO mice. In addition, the expression of C1q, the deficiency of which contributes to the pathogenesis of systemic lupus erythematosus, was significantly down-regulated in Cry DKO B cells. Our results suggest that B cell development, the BCR-signaling pathway, and C1q expression are regulated by circadian clock CRY proteins and that their dysregulation through loss of CRY contributes to autoimmunity.
Collapse
Affiliation(s)
- Qi Cao
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048;
- Department of Pathology and Laboratory Medicine, LAC+USC Medical Center, Los Angeles, CA 90033
| | - Xuan Zhao
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Jingwen Bai
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Oncology, Xiang An Hospital of Xiamen University, Xiamen 361102, China
| | - Sigal Gery
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Haibo Sun
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - De-Chen Lin
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Qi Chen
- Department of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Zhengshan Chen
- Department of Pathology and Laboratory Medicine, LAC+USC Medical Center, Los Angeles, CA 90033
- Department of Systems Biology, Beckman Research Institute, City of Hope National Medical Center, Pasadena, CA 91016
| | - Lauren Mack
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Ruishu Deng
- Sanford Burnham Preybs Medical Discovery Institute, La Jolla, CA 92037
| | - Xianping Shi
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Ling-Wa Chong
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Han Cho
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Jianjun Xie
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Quan-Zhen Li
- Department of Immunology, Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Markus Müschen
- Department of Systems Biology, Beckman Research Institute, City of Hope National Medical Center, Pasadena, CA 91016
| | - Annette R Atkins
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles Medical Center, Los Angeles, CA 90095
| | - Ye Zheng
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037;
| | - Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037;
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - H Phillip Koeffler
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| |
Collapse
|
42
|
Xu L, Wu T, Li H, Ni Y, Fu Z. An individual 12-h shift of the light-dark cycle alters the pancreatic and duodenal circadian rhythm and digestive function. Acta Biochim Biophys Sin (Shanghai) 2017; 49:954-961. [PMID: 28981604 DOI: 10.1093/abbs/gmx084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Indexed: 12/28/2022] Open
Abstract
In mammals, behavioral and physiological rhythms are controlled by circadian clocks which are entrained by environmental light and food signals. However, how the environmental cues affect digestive tract's circadian clock remains poorly understood. Therefore, in order to elucidate the effect of light cue on the resetting of the peripheral clocks, we investigated the expressions of clock genes (Bmal1, Cry1, Rev-erbα, Per1, and Per2) and digestive function genes (Cck, Cck-1r, Sct, Sctr, and Ctrb1) in the pancreas and duodenum of rats after the light-dark (LD) cycle reversal for 7 days. We found that both the clock genes and digestive function genes exhibited a clear and similar daily rhythmicity in the pancreas and duodenum of rats. After reversal of the LD cycle for 7 days, the expressions of clock genes in pancreas, including Bmal1, Cry1, and Rev-erbα were affected; whereas the expression of Per1 gene failed to fit the cosine wave. However, in the duodenum the shifted genes were Bmal1, Rev-erbα, and Per2; in parallel, the Per1 gene expression also lost its circadian rhythm by reversal of the LD cycle. Therefore, the acrophases of the clock genes were shifted in a tissue- and gene-specific manner. Furthermore, the profiles of the digestive function genes, including Sctr and Ctrb1, were also affected by changes in LD cycle. These observations suggest that the mechanisms underlying the pancreatic and duodenal clocks are distinct, and there may be a potential linkage between the circadian clock system and the digestive system.
Collapse
Affiliation(s)
- Liang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Li
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
43
|
Abstract
Female ovulation depends on a surge in circulating luteinizing hormone (LH) which occurs at the end of the resting period and requests high circulating estradiol. This fine tuning involves both an estradiol feedback as an indicator of oocyte maturation, and the master circadian clock of the suprachiasmatic nuclei as an indicator of the time of the day. This review describes the mechanisms through which daily time cues are conveyed to reproductive hypothalamic neurons to time the pre-ovulatory surge. In female rodents, neurotransmitters released by the suprachiasmatic nuclei activate the stimulatory kisspeptin neurons and reduce the inhibitory RFRP neurons precisely at the end of the afternoon of proestrus to allow a full surge in LH secretion. From these findings, the impact of circadian disruptions (during shift or night work) on female reproductive performance and fertility should now being investigated in both animal models and humans.
Collapse
Affiliation(s)
- Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France.
| | - Thibault Bahougne
- Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France; Service d'Endocrinologie et Diabète, Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Eleni Angelopoulou
- Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France; Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
44
|
Circadian Rhythm of Wrist Temperature among Shift Workers in South Korea: A Prospective Observational Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101109. [PMID: 28946653 PMCID: PMC5664610 DOI: 10.3390/ijerph14101109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/14/2017] [Accepted: 09/22/2017] [Indexed: 12/24/2022]
Abstract
Background: Human body temperature varies with circadian rhythm. To determine the effect of shift work on the circadian rhythm of the distal-skin temperature, wrist temperatures were measured. Methods: Wrist-skin temperatures were measured by an iButton® Temperature Logger. It was measured every 3 min for two and eight consecutive working days in the day and shift workers, respectively. Mesor, amplitude, and acrophase were measured by Cosinor analysis. Results: The shift-worker amplitude dropped significantly as the night shift progressed (0.92 to 0.85 °C), dropped further during rest (0.69 °C), and rose during the morning-shift days (0.82 °C). Day workers still had higher amplitudes (0.93 °C) than the morning-shift workers. The acrophase was delayed during the four night-shift days, then advanced during rest days and the morning-shift days. Nevertheless, the morning-shift worker acrophase was still significantly delayed compared to the day workers (08:03 a.m. vs. 04:11 a.m.). Conclusions: The further reduction of wrist-temperature amplitude during rest after the night shift may be due to the signal circadian rhythm disruption. Reduced amplitudes have been reported to be associated with intolerance to shift work. The findings of our study may help to design the most desirable schedule for shift workers.
Collapse
|
45
|
Riestra P, Gebreab SY, Xu R, Khan RJ, Gaye A, Correa A, Min N, Sims M, Davis SK. Circadian CLOCK gene polymorphisms in relation to sleep patterns and obesity in African Americans: findings from the Jackson heart study. BMC Genet 2017. [PMID: 28645331 PMCID: PMC5481932 DOI: 10.1186/s12863-017-0522-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circadian rhythms regulate key biological processes and the dysregulation of the intrinsic clock mechanism affects sleep patterns and obesity onset. The CLOCK (circadian locomotor output cycles protein kaput) gene encodes a core transcription factor of the molecular circadian clock influencing diverse metabolic pathways, including glucose and lipid homeostasis. The primary objective of this study was to evaluate the associations between CLOCK single nucleotide polymorphisms (SNPs) and body mass index (BMI). We also evaluated the association of SNPs with BMI related factors such as sleep duration and quality, adiponectin and leptin, in 2962 participants (1116 men and 1810 women) from the Jackson Heart Study. Genotype data for the selected 23 CLOCK gene SNPS was obtained by imputation with IMPUTE2 software and reference phase data from the 1000 genome project. Genetic analyses were conducted with PLINK RESULTS: We found a significant association between the CLOCK SNP rs2070062 and sleep duration, participants carriers of the T allele showed significantly shorter sleep duration compared to non-carriers after the adjustment for individual proportions of European ancestry (PEA), socio economic status (SES), body mass index (BMI), alcohol consumption and smoking status that reach the significance threshold after multiple testing correction. In addition, we found nominal associations of the CLOCK SNP rs6853192 with longer sleep duration and the rs6820823, rs3792603 and rs11726609 with BMI. However, these associations did not reach the significance threshold after correction for multiple testing. CONCLUSIONS In this work, CLOCK gene variants were associated with sleep duration and BMI suggesting that the effects of these polymorphisms on circadian rhythmicity may affect sleep duration and body weight regulation in Africans Americans.
Collapse
Affiliation(s)
- Pia Riestra
- National Human Genome Research Institute Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch Social Epidemiology Research Unit, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA.
| | - Samson Y Gebreab
- National Human Genome Research Institute Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch Social Epidemiology Research Unit, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Ruihua Xu
- National Human Genome Research Institute Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch Social Epidemiology Research Unit, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Rumana J Khan
- National Human Genome Research Institute Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch Social Epidemiology Research Unit, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Amadou Gaye
- National Human Genome Research Institute Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch Social Epidemiology Research Unit, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Adolfo Correa
- Jackson Heart Study, Jackson Medical Mall, 350 West Woodrow Wilson Av., Suite 701, Jackson, MS, 39217, USA
| | - Nancy Min
- Jackson Heart Study, University of Mississippi Medical Center, 350 W Woodrow Wilson Ave, Ste 701, Jackson, MS, 39213, USA
| | - Mario Sims
- Jackson Heart Study, University of Mississippi Medical Center, 350 W Woodrow Wilson Ave, Ste 701, Jackson, MS, 39213, USA
| | - Sharon K Davis
- National Human Genome Research Institute Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch Social Epidemiology Research Unit, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
46
|
Dexamethasone Modulates Nonvisual Opsins, Glucocorticoid Receptor, and Clock Genes in Danio rerio ZEM-2S Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8459385. [PMID: 28589149 PMCID: PMC5446867 DOI: 10.1155/2017/8459385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
Here we report, for the first time, the differential cellular distribution of two melanopsins (Opn4m1 and Opn4m2) and the effects of GR agonist, dexamethasone, on the expression of these opsins and clock genes, in the photosensitive D. rerio ZEM-2S embryonic cells. Immunopositive labeling for Opn4m1 was detected in the cell membrane whereas Opn4m2 labeling shows nuclear localization, which did not change in response to light. opn4m1, opn4m2, gr, per1b, and cry1b presented an oscillatory profile of expression in LD condition. In both DD and LD condition, dexamethasone (DEX) treatment shifted the peak expression of per1b and cry1b transcripts to ZT16, which corresponds to the highest opn4m1 expression. Interestingly, DEX promoted an increase of per1b expression when applied in LD condition but a decrease when the cells were kept under DD condition. Although DEX effects are divergent with different light conditions, the response resulted in clock synchronization in all cases. Taken together, these data demonstrate that D. rerio ZEM-2S cells possess a photosensitive system due to melanopsin expression which results in an oscillatory profile of clock genes in response to LD cycle. Moreover, we provide evidence that glucocorticoid acts as a circadian regulator of D. rerio peripheral clocks.
Collapse
|
47
|
Zhao L, Isayama K, Chen H, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. The nuclear receptor REV-ERBα represses the transcription of growth/differentiation factor 10 and 15 genes in rat endometrium stromal cells. Physiol Rep 2016; 4:4/2/e12663. [PMID: 26811051 PMCID: PMC4760387 DOI: 10.14814/phy2.12663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cellular oscillators in the uterus play critical roles in the gestation processes of mammals through entraining of the clock proteins to numerous downstream genes, including growth/differentiation factor (Gdf)10 and Gdf15. The expression of Gdf10 and Gdf15 is significantly increased in the uterus during decidualization, but the mechanism underlying the regulation of Gdf gene expression in the uterus is poorly understood. Here, we focused on the function of the cellular oscillators in the expression of Gdf family by using uterine endometrial stromal cells (UESCs) isolated from pregnant Per2‐dLuc transgenic rats. A significant decline of Per2‐dLuc bioluminescence activity was induced in in vitro decidualized UESCs, and concomitantly the expression of canonical clock genes was downregulated. Conversely, the expression of Gdf10 and Gdf15 of the Gdf was upregulated. In UESCs transfected with Bmal1‐specific siRNA, in which Rev‐erbα expression was downregulated, Gdf10 and Gdf15 were upregulated. However, Gdf5, Gdf7, and Gdf11 were not significantly affected by Bmal1 silencing. The expression of Gdf10 and Gdf15 was enhanced after treatment with a REV‐ERBα antagonist in the presence or absence of progesterone. Chromatin immunoprecipitation‐PCR analysis revealed the inhibitory effect of REV‐ERBα on the expression of Gdf10 and Gdf15 in UESCs by recognizing their gene promoters. Collectively, our findings indicate that the attenuation of REV‐ERBα leads to an upregulation of Gdf10 and Gdf15 in decidual cells, in which cellular oscillators are impaired. Our results provide novel evidence regarding the functions of cellular oscillators regulating the expression of downstream genes during the differentiation of UESCs.
Collapse
Affiliation(s)
- Lijia Zhao
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Keishiro Isayama
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Huatao Chen
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Nobuhiko Yamauchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka, Japan
| | | | - Masa-Aki Hattori
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
48
|
Knott GJ, Bond CS, Fox AH. The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res 2016; 44:3989-4004. [PMID: 27084935 PMCID: PMC4872119 DOI: 10.1093/nar/gkw271] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Nuclear proteins are often given a concise title that captures their function, such as 'transcription factor,' 'polymerase' or 'nuclear-receptor.' However, for members of the Drosophila behavior/human splicing (DBHS) protein family, no such clean-cut title exists. DBHS proteins are frequently identified engaging in almost every step of gene regulation, including but not limited to, transcriptional regulation, RNA processing and transport, and DNA repair. Herein, we present a coherent picture of DBHS proteins, integrating recent structural insights on dimerization, nucleic acid binding modalities and oligomerization propensity with biological function. The emerging paradigm describes a family of dynamic proteins mediating a wide range of protein-protein and protein-nucleic acid interactions, on the whole acting as a multipurpose molecular scaffold. Overall, significant steps toward appreciating the role of DBHS proteins have been made, but we are only beginning to understand the complexity and broader importance of this family in cellular biology.
Collapse
Affiliation(s)
- Gavin J Knott
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Archa H Fox
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| |
Collapse
|
49
|
Kalil B, Ribeiro AB, Leite CM, Uchôa ET, Carolino RO, Cardoso TSR, Elias LLK, Rodrigues JA, Plant TM, Poletini MO, Anselmo-Franci JA. The Increase in Signaling by Kisspeptin Neurons in the Preoptic Area and Associated Changes in Clock Gene Expression That Trigger the LH Surge in Female Rats Are Dependent on the Facilitatory Action of a Noradrenaline Input. Endocrinology 2016; 157:323-35. [PMID: 26556532 DOI: 10.1210/en.2015-1323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In rodents, kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3V) of the preoptic area are considered to provide a major stimulatory input to the GnRH neuronal network that is responsible for triggering the preovulatory LH surge. Noradrenaline (NA) is one of the main modulators of GnRH release, and NA fibers are found in close apposition to kisspeptin neurons in the RP3V. Our objective was to interrogate the role of NA signaling in the kisspeptin control of GnRH secretion during the estradiol induced LH surge in ovariectomized rats, using prazosin, an α1-adrenergic receptor antagonist. In control rats, the estradiol-induced LH surge at 17 hours was associated with a significant increase in GnRH and kisspeptin content in the median eminence with the increase in kisspeptin preceding that of GnRH and LH. Prazosin, administered 5 and 3 hours prior to the predicted time of the LH surge truncated the LH surge and abolished the rise in GnRH and kisspeptin in the median eminence. In the preoptic area, prazosin blocked the increases in Kiss1 gene expression and kisspeptin content in association with a disruption in the expression of the clock genes, Per1 and Bmal1. Together these findings demonstrate for the first time that NA modulates kisspeptin synthesis in the RP3V through the activation of α1-adrenergic receptors prior to the initiation of the LH surge and indicate a potential role of α1-adrenergic signaling in the circadian-controlled pathway timing of the preovulatory LH surge.
Collapse
Affiliation(s)
- Bruna Kalil
- Departamento de Fisiologia (B.K., A.B.R., E.T.U., L.L.K.E., J.A.R.), Faculdade de Medicina de Ribeirão Preto, and Departamento de Morfologia, Fisiologia, e Patologia Básica (C.M.L., R.O.C., J.A.A.-F.), Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, 14049-900 São Paulo, Brazil; Department of Obstetrics, Gynecology, and Reproductive Sciences (T.M.P.), University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213; Departamento de Fisiologia e Biofísica (T.S.R.C., M.O.P.), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; and Departamento de Ciências Fisiológicas (E.T.U.), Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Aline B Ribeiro
- Departamento de Fisiologia (B.K., A.B.R., E.T.U., L.L.K.E., J.A.R.), Faculdade de Medicina de Ribeirão Preto, and Departamento de Morfologia, Fisiologia, e Patologia Básica (C.M.L., R.O.C., J.A.A.-F.), Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, 14049-900 São Paulo, Brazil; Department of Obstetrics, Gynecology, and Reproductive Sciences (T.M.P.), University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213; Departamento de Fisiologia e Biofísica (T.S.R.C., M.O.P.), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; and Departamento de Ciências Fisiológicas (E.T.U.), Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Cristiane M Leite
- Departamento de Fisiologia (B.K., A.B.R., E.T.U., L.L.K.E., J.A.R.), Faculdade de Medicina de Ribeirão Preto, and Departamento de Morfologia, Fisiologia, e Patologia Básica (C.M.L., R.O.C., J.A.A.-F.), Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, 14049-900 São Paulo, Brazil; Department of Obstetrics, Gynecology, and Reproductive Sciences (T.M.P.), University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213; Departamento de Fisiologia e Biofísica (T.S.R.C., M.O.P.), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; and Departamento de Ciências Fisiológicas (E.T.U.), Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Ernane T Uchôa
- Departamento de Fisiologia (B.K., A.B.R., E.T.U., L.L.K.E., J.A.R.), Faculdade de Medicina de Ribeirão Preto, and Departamento de Morfologia, Fisiologia, e Patologia Básica (C.M.L., R.O.C., J.A.A.-F.), Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, 14049-900 São Paulo, Brazil; Department of Obstetrics, Gynecology, and Reproductive Sciences (T.M.P.), University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213; Departamento de Fisiologia e Biofísica (T.S.R.C., M.O.P.), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; and Departamento de Ciências Fisiológicas (E.T.U.), Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Ruither O Carolino
- Departamento de Fisiologia (B.K., A.B.R., E.T.U., L.L.K.E., J.A.R.), Faculdade de Medicina de Ribeirão Preto, and Departamento de Morfologia, Fisiologia, e Patologia Básica (C.M.L., R.O.C., J.A.A.-F.), Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, 14049-900 São Paulo, Brazil; Department of Obstetrics, Gynecology, and Reproductive Sciences (T.M.P.), University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213; Departamento de Fisiologia e Biofísica (T.S.R.C., M.O.P.), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; and Departamento de Ciências Fisiológicas (E.T.U.), Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Thais S R Cardoso
- Departamento de Fisiologia (B.K., A.B.R., E.T.U., L.L.K.E., J.A.R.), Faculdade de Medicina de Ribeirão Preto, and Departamento de Morfologia, Fisiologia, e Patologia Básica (C.M.L., R.O.C., J.A.A.-F.), Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, 14049-900 São Paulo, Brazil; Department of Obstetrics, Gynecology, and Reproductive Sciences (T.M.P.), University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213; Departamento de Fisiologia e Biofísica (T.S.R.C., M.O.P.), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; and Departamento de Ciências Fisiológicas (E.T.U.), Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Lucila L K Elias
- Departamento de Fisiologia (B.K., A.B.R., E.T.U., L.L.K.E., J.A.R.), Faculdade de Medicina de Ribeirão Preto, and Departamento de Morfologia, Fisiologia, e Patologia Básica (C.M.L., R.O.C., J.A.A.-F.), Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, 14049-900 São Paulo, Brazil; Department of Obstetrics, Gynecology, and Reproductive Sciences (T.M.P.), University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213; Departamento de Fisiologia e Biofísica (T.S.R.C., M.O.P.), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; and Departamento de Ciências Fisiológicas (E.T.U.), Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - José A Rodrigues
- Departamento de Fisiologia (B.K., A.B.R., E.T.U., L.L.K.E., J.A.R.), Faculdade de Medicina de Ribeirão Preto, and Departamento de Morfologia, Fisiologia, e Patologia Básica (C.M.L., R.O.C., J.A.A.-F.), Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, 14049-900 São Paulo, Brazil; Department of Obstetrics, Gynecology, and Reproductive Sciences (T.M.P.), University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213; Departamento de Fisiologia e Biofísica (T.S.R.C., M.O.P.), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; and Departamento de Ciências Fisiológicas (E.T.U.), Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Tony M Plant
- Departamento de Fisiologia (B.K., A.B.R., E.T.U., L.L.K.E., J.A.R.), Faculdade de Medicina de Ribeirão Preto, and Departamento de Morfologia, Fisiologia, e Patologia Básica (C.M.L., R.O.C., J.A.A.-F.), Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, 14049-900 São Paulo, Brazil; Department of Obstetrics, Gynecology, and Reproductive Sciences (T.M.P.), University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213; Departamento de Fisiologia e Biofísica (T.S.R.C., M.O.P.), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; and Departamento de Ciências Fisiológicas (E.T.U.), Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Maristela O Poletini
- Departamento de Fisiologia (B.K., A.B.R., E.T.U., L.L.K.E., J.A.R.), Faculdade de Medicina de Ribeirão Preto, and Departamento de Morfologia, Fisiologia, e Patologia Básica (C.M.L., R.O.C., J.A.A.-F.), Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, 14049-900 São Paulo, Brazil; Department of Obstetrics, Gynecology, and Reproductive Sciences (T.M.P.), University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213; Departamento de Fisiologia e Biofísica (T.S.R.C., M.O.P.), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; and Departamento de Ciências Fisiológicas (E.T.U.), Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Janete A Anselmo-Franci
- Departamento de Fisiologia (B.K., A.B.R., E.T.U., L.L.K.E., J.A.R.), Faculdade de Medicina de Ribeirão Preto, and Departamento de Morfologia, Fisiologia, e Patologia Básica (C.M.L., R.O.C., J.A.A.-F.), Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, 14049-900 São Paulo, Brazil; Department of Obstetrics, Gynecology, and Reproductive Sciences (T.M.P.), University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213; Departamento de Fisiologia e Biofísica (T.S.R.C., M.O.P.), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; and Departamento de Ciências Fisiológicas (E.T.U.), Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| |
Collapse
|
50
|
Sato F, Bhawal UK, Yoshimura T, Muragaki Y. DEC1 and DEC2 Crosstalk between Circadian Rhythm and Tumor Progression. J Cancer 2016; 7:153-9. [PMID: 26819638 PMCID: PMC4716847 DOI: 10.7150/jca.13748] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/18/2015] [Indexed: 02/06/2023] Open
Abstract
Clock genes, major regulators of circadian rhythm, are involved in tumor progression. We have shown that clock genes basic helix-loop-helix (BHLH) transcription factors, differentiated embryonic chondrocyte gene 1 (DEC1/BHLHE40/Sharp2/Stra13) and DEC2 (BHLHE41/Sharp1) play important roles in circadian rhythm, cell proliferation, apoptosis, hypoxia response, various stresses, and epithelial-to-mesenchymal transition (EMT) of tumor cells. Various stresses, such as exposure to transforming growth factor-beta (TGF-β), hypoxia, cytokines, serum-free, and anti-tumor drugs affect DEC1 and DEC2 expression. An increased or decreased expression of DEC1 and DEC2 regulated tumor progression. However, DEC1 and DEC2 have opposite effects in tumor progression, where the reason behind remains unclear. We found that DEC2 has circadian expression in implanted mouse sarcoma cells, suggesting that DEC2 regulates tumor progression under circadian rhythm. In addition to that, we showed that DEC1 and DEC2 regulate target genes via positive or negative feedback system in tumor progression. We propose that DEC1 and DEC2 act as an accelerator or a brake in tumor progression. In this review, we summarize current progress of knowledge in the function of DEC1 and DEC2 genes in tumor progression.
Collapse
Affiliation(s)
- Fuyuki Sato
- 1. Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan
| | - Ujjal K. Bhawal
- 2. Department of Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Tomohiro Yoshimura
- 1. Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan
| | - Yasuteru Muragaki
- 1. Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan
| |
Collapse
|