1
|
Utpal BK, Bouenni H, Zehravi M, Sweilam SH, Mortuza MR, Arjun UVNV, Shanmugarajan TS, Mahesh PG, Roja P, Dodda RK, Thilagam E, Almahjari MS, Rab SO, Koula D, Emran TB. Exploring natural products as apoptosis modulators in cancers: insights into natural product-based therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03876-8. [PMID: 40014131 DOI: 10.1007/s00210-025-03876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Cancer remains a leading cause of mortality globally, necessitating ongoing research and development of innovative therapeutic strategies. Natural products from plants, herbs, and marine species have shown great promise as anti-cancer therapies due to their bioactive components that alter cellular pathways, particularly apoptosis. This review explores the mechanism by which natural chemicals trigger the apoptosis of cancerous cells, which is crucial for eliminating them and halting tumor growth. These can affect the mitochondrial process by controlling the Bcl-2 protein family, increasing cytochrome c release, and activating caspases. They also activate death receptors like Fas and TRAIL to enhance the extrinsic apoptotic pathway. We focus on the main signaling channels involved, such as the endoplasmic reticulum (ER) stress-mediated apoptosis, extrinsic death receptor, and intrinsic mitochondrial pathways. The review explores the role of natural substances such as polyphenols, terpenoids, alkaloids, and flavonoids in promoting apoptotic cell death and increasing cancer cell susceptibility, potentially aiding in cancer treatments and the potential of combining natural products with traditional chemotherapeutic medicines to combat medication resistance and enhance therapeutic efficacy. Understanding cancer development involves inhibiting cell proliferation, regulating it, targeting apoptosis pathways, and using plant and marine extracts as apoptotic inducers.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Hasna Bouenni
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | | | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Ponnammal Ganesan Mahesh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Pathakota Roja
- Department of Pharmacology, Sree Dattha Institute of Pharmacy, Sheriguda, Ibrahimpatnam, Hyderabad, Telangana, 501510, India
| | - Ravi Kalyan Dodda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - E Thilagam
- Department of Pharmacognosy, JKKMMRF'S-ANNAI JKK Sampooorani Ammal College of Pharmacy, Ethirmedu, Komarapalayam (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai), India
| | - Mohammed Saeed Almahjari
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Doukani Koula
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
2
|
Muñoz M, Rosso M. Radiotherapy Plus the Neurokinin-1 Receptor Antagonist Aprepitant: A Potent Therapeutic Strategy for the Treatment of Diffuse Intrinsic Pontine Glioma. Cancers (Basel) 2025; 17:520. [PMID: 39941886 PMCID: PMC11816061 DOI: 10.3390/cancers17030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Diffuse intrinsic pontine glioma (DIPG) is a devastating childhood brainstem tumor. The median survival of DIPG is 16-24 months independent of the treatment received. Therefore, new therapeutic strategies against DIPG are urgently needed. Substance P (SP) peptide, through the neurokinin neurokinin-1 receptor (NK-1R), is involved in glioma progression. It induces glioma cell proliferation by activating MAPKs (p38 MAPK, ERK1/2, and JNK), c-Myc, AP-1, and NF-κB and induces antiapoptotic effects via PI3K/Akt/mTOR in glioma cells. SP favors glycogen breakdown that is essential for glycolysis. The SP/NK-1R system also regulates the migration and invasion of glioma cells, stimulates angiogenesis, and triggers inflammation which contributes to glioma progression. Moreover, all glioma cells express NK-1R, and NK-1R is essential for the viability of glioma cells and not of normal cells. In contrast, in glioma, NK-1R antagonists, such as the drug aprepitant, penetrate the brain and reach therapeutic concentrations, thereby inhibiting mitogenesis, inducing apoptosis, and inhibiting the breakdown of glycogen in glioma cells. In addition, they inhibit angiogenesis and exert antimetastatic and anti-inflammatory effects. The combination of radiotherapy with NK-1R antagonists produces radiosensitization and radioneuroprotection, reduces both peritumoral- and radiation-induced inflammation, and also provides antinausea and antivomiting effects. Objective: This review updates the involvement of the SP/NK-1R system in glioma promotion and progression and the potential clinical application of NK-1R antagonist drugs in DIPG therapy. Conclusions: NK-1R plays a crucial role in glioma progression and NK-1R antagonists such as aprepitant could be used in combination with radiotherapy as a potent therapeutic strategy for the treatment of patients with DIPG.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain;
| | | |
Collapse
|
3
|
Li LX, Aguilar B, Gennari JH, Qin G. LM-Merger: A workflow for merging logical models with an application to gene regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612961. [PMID: 39345612 PMCID: PMC11429764 DOI: 10.1101/2024.09.13.612961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Motivation Gene regulatory network (GRN) models provide mechanistic understanding of genetic interactions that regulate gene expression and, consequently, influence cellular behavior. Dysregulated gene expression plays a critical role in disease progression and treatment response, making GRN models a promising tool for precision medicine. While researchers have built many models to describe specific subsets of gene interactions, more comprehensive models that cover a broader range of genes are challenging to build. This necessitates the development of automated approaches for merging existing models. Results We present LM-Merger, a workflow for semi-automatically merging logical GRN models. The workflow consists of five main steps: (a) model identification, (b) model standardization and annotation, (c) model verification, (d) model merging, and (d) model evaluation. We demonstrate the feasibility and benefit of this workflow with two pairs of published models pertaining to acute myeloid leukemia (AML). The integrated models were able to retain the predictive accuracy of the original models, while expanding coverage of the biological system. Notably, when applied to a new dataset, the integrated models outperformed the individual models in predicting patient response. This study highlights the potential of logical model merging to advance systems biology research and our understanding of complex diseases. Availability and implementation The workflow and accompanying tools, including modules for model standardization, automated logical model merging, and evaluation, are available at https://github.com/IlyaLab/LogicModelMerger/.
Collapse
Affiliation(s)
- Luna Xingyu Li
- Institute for Systems Biology, Seattle, WA 98109, United States of America
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, United States of America
| | - Boris Aguilar
- Institute for Systems Biology, Seattle, WA 98109, United States of America
| | - John H Gennari
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, United States of America
| | - Guangrong Qin
- Institute for Systems Biology, Seattle, WA 98109, United States of America
| |
Collapse
|
4
|
Czaja AJ. Cellular senescence and its pathogenic and therapeutic implications in autoimmune hepatitis. Expert Rev Gastroenterol Hepatol 2024; 18:725-743. [PMID: 39575891 DOI: 10.1080/17474124.2024.2432480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Senescent cells are characterized by replicative arrest and phenotypes that produce diverse pro-inflammatory and pro-oxidant mediators. The senescence of diverse hepatic cell types could constitute an unrecognized pathogenic mechanism and prognostic determinant in autoimmune hepatitis. The impact of cellular senescence in autoimmune hepatitis is unknown, and it may suggest adjunctive management strategies. AREAS COVERED This review describes the molecular mechanisms of cellular senescence, indicates its diagnostic features, suggests its consequences, presents possible therapeutic interventions, and encourages investigations of its pathogenic role and management in autoimmune hepatitis. Treatment prospects include elimination or reversal of senescent cells, generation of ectopic telomerase, reactivation of dormant telomerase, neutralization of specific pro-inflammatory secretory products, and mitigation of the effects of mitochondrial dysfunction. EXPERT OPINION The occurrence, nature, and consequences of cellular senescence in autoimmune hepatitis must be determined. The senescence of diverse hepatic cell types could affect the outcome of autoimmune hepatitis by impairing hepatic regeneration, intensifying liver inflammation, and worsening hepatic fibrosis. Cellular senescence could contribute to suboptimal responses during conventional glucocorticoid-based therapy. Interventions that target specific pro-inflammatory products of the senescent phenotype or selectively promote apoptosis of senescent cells may be preferred adjunctive treatments for autoimmune hepatitis depending on the cancer risk.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic, Department of Medicine, Division of Gastroenterology and Hepatology, Rochester, MN, USA
| |
Collapse
|
5
|
González-Arzola K. The nucleolus: Coordinating stress response and genomic stability. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195029. [PMID: 38642633 DOI: 10.1016/j.bbagrm.2024.195029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The perception that the nucleoli are merely the organelles where ribosome biogenesis occurs is challenged. Only around 30 % of nucleolar proteins are solely involved in producing ribosomes. Instead, the nucleolus plays a critical role in controlling protein trafficking during stress and, according to its dynamic nature, undergoes continuous protein exchange with nucleoplasm under various cellular stressors. Hence, the concept of nucleolar stress has evolved as cellular insults that disrupt the structure and function of the nucleolus. Considering the emerging role of this organelle in DNA repair and the fact that rDNAs are the most fragile genomic loci, therapies targeting the nucleoli are increasingly being developed. Besides, drugs that target ribosome synthesis and induce nucleolar stress can be used in cancer therapy. In contrast, agents that regulate nucleolar activity may be a potential treatment for neurodegeneration caused by abnormal protein accumulation in the nucleolus. Here, I explore the roles of nucleoli beyond their ribosomal functions, highlighting the factors triggering nucleolar stress and their impact on genomic stability.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
6
|
Tuval A, Strandgren C, Heldin A, Palomar-Siles M, Wiman KG. Pharmacological reactivation of p53 in the era of precision anticancer medicine. Nat Rev Clin Oncol 2024; 21:106-120. [PMID: 38102383 DOI: 10.1038/s41571-023-00842-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
p53, which is encoded by the most frequently mutated gene in cancer, TP53, is an attractive target for novel cancer therapies. Despite major challenges associated with this approach, several compounds that either augment the activity of wild-type p53 or restore all, or some, of the wild-type functions to p53 mutants are currently being explored. In wild-type TP53 cancer cells, p53 function is often abrogated by overexpression of the negative regulator MDM2, and agents that disrupt p53-MDM2 binding can trigger a robust p53 response, albeit potentially with induction of p53 activity in non-malignant cells. In TP53-mutant cancer cells, compounds that promote the refolding of missense mutant p53 or the translational readthrough of nonsense mutant TP53 might elicit potent cell death. Some of these compounds have been, or are being, tested in clinical trials involving patients with various types of cancer. Nonetheless, no p53-targeting drug has so far been approved for clinical use. Advances in our understanding of p53 biology provide some clues as to the underlying reasons for the variable clinical activity of p53-restoring therapies seen thus far. In this Review, we discuss the intricate interactions between p53 and its cellular and microenvironmental contexts and factors that can influence p53's activity. We also propose several strategies for improving the clinical efficacy of these agents through the complex perspective of p53 functionality.
Collapse
Affiliation(s)
- Amos Tuval
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Angelos Heldin
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden.
| |
Collapse
|
7
|
Su D, Ding C, Qiu J, Yang G, Wang R, Liu Y, Tao J, Luo W, Weng G, Zhang T. Ribosome profiling: a powerful tool in oncological research. Biomark Res 2024; 12:11. [PMID: 38273337 PMCID: PMC10809610 DOI: 10.1186/s40364-024-00562-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Neoplastic cells need to adapt their gene expression pattern to survive in an ever-changing or unfavorable tumor microenvironment. Protein synthesis (or mRNA translation), an essential part of gene expression, is dysregulated in cancer. The emergence of distinct translatomic technologies has revolutionized oncological studies to elucidate translational regulatory mechanisms. Ribosome profiling can provide adequate information on diverse aspects of translation by aiding in quantitatively analyzing the intensity of translating ribosome-protected fragments. Here, we review the primary currently used translatomics techniques and highlight their advantages and disadvantages as tools for translatomics studies. Subsequently, we clarified the areas in which ribosome profiling could be applied to better understand translational control. Finally, we summarized the latest advances in cancer studies using ribosome profiling to highlight the extensive application of this powerful and promising translatomic tool.
Collapse
Affiliation(s)
- Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Chen Ding
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Gang Yang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Guihu Weng
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China.
| |
Collapse
|
8
|
Futami K, Sato S, Maita M, Katagiri T. Lack of a p16 INK4a/ARF locus in fish genome may underlie senescence resistance in the fish cell line, EPC. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104420. [PMID: 35417735 DOI: 10.1016/j.dci.2022.104420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Unlike most mammalian cell lines, fish cell lines are immortal and resistant to cellular senescence. Elevated expression of H-Ras contributes to the induction of senescence in a fish cell line, EPC, but is not sufficient to induce full senescence. Here, we focused on the absence of a p16INK4a/ARF locus in the fish genome, and investigated whether this might be a critical determinant of the resistance of EPC cells to full senescence. We found that transfected EPC cells constitutively overexpressing p16INK4a exhibited large size and flat morphology characteristic of prematurely senescent cells; the cells also showed p53-independent senescence-like growth arrest and senescence-associated β-galactosidase (SA-β-gal) activity. Furthermore, the mRNA levels of proinflammatory senescence-associated secretory phenotype (SASP) factors increased in EPC cells constitutively overexpressing p16INK4a. These results suggest that the lack of p16INK4a in the fish genome may be a critical determinant of senescence resistance in fish cell lines.
Collapse
Affiliation(s)
- Kunihiko Futami
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan.
| | - Shunichi Sato
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| | - Masashi Maita
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| | - Takayuki Katagiri
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| |
Collapse
|
9
|
Emerging Evidence of the Significance of Thioredoxin-1 in Hematopoietic Stem Cell Aging. Antioxidants (Basel) 2022; 11:antiox11071291. [PMID: 35883782 PMCID: PMC9312246 DOI: 10.3390/antiox11071291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The United States is undergoing a demographic shift towards an older population with profound economic, social, and healthcare implications. The number of Americans aged 65 and older will reach 80 million by 2040. The shift will be even more dramatic in the extremes of age, with a projected 400% increase in the population over 85 years old in the next two decades. Understanding the molecular and cellular mechanisms of ageing is crucial to reduce ageing-associated disease and to improve the quality of life for the elderly. In this review, we summarized the changes associated with the ageing of hematopoietic stem cells (HSCs) and what is known about some of the key underlying cellular and molecular pathways. We focus here on the effects of reactive oxygen species and the thioredoxin redox homeostasis system on ageing biology in HSCs and the HSC microenvironment. We present additional data from our lab demonstrating the key role of thioredoxin-1 in regulating HSC ageing.
Collapse
|
10
|
p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways. Cell Death Differ 2022; 29:972-982. [PMID: 35444234 PMCID: PMC9090812 DOI: 10.1038/s41418-022-00999-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/05/2023] Open
Abstract
Despite several decades of intense research focused on understanding function(s) and disease-associated malfunction of p53, there is no sign of any “mid-life crisis” in this rapidly advancing area of biomedicine. Firmly established as the hub of cellular stress responses and tumor suppressor targeted in most malignancies, p53’s many talents continue to surprise us, providing not only fresh insights into cell and organismal biology, but also new avenues to cancer treatment. Among the most fruitful lines of p53 research in recent years have been the discoveries revealing the multifaceted roles of p53-centered pathways in the fundamental processes of DNA replication and ribosome biogenesis (RiBi), along with cellular responses to replication and RiBi stresses, two intertwined areas of cell (patho)physiology that we discuss in this review. Here, we first provide concise introductory notes on the canonical roles of p53, the key interacting proteins, downstream targets and post-translational modifications involved in p53 regulation. We then highlight the emerging involvement of p53 as a key component of the DNA replication Fork Speed Regulatory Network and the mechanistic links of p53 with cellular checkpoint responses to replication stress (RS), the driving force of cancer-associated genomic instability. Next, the tantalizing, yet still rather foggy functional crosstalk between replication and RiBi (nucleolar) stresses is considered, followed by the more defined involvement of p53-mediated monitoring of the multistep process of RiBi, including the latest updates on the RPL5/RPL11/5 S rRNA-MDM2-p53-mediated Impaired Ribosome Biogenesis Checkpoint (IRBC) pathway and its involvement in tumorigenesis. The diverse defects of RiBi and IRBC that predispose and/or contribute to severe human pathologies including developmental syndromes and cancer are then outlined, along with examples of promising small-molecule-based strategies to therapeutically target the RS- and particularly RiBi- stress-tolerance mechanisms to which cancer cells are addicted due to their aberrant DNA replication, repair, and proteo-synthesis demands. ![]()
Collapse
|
11
|
Yoon JH, Choi BJ, Nam SW, Park WS. Gastric cancer exosomes contribute to the field cancerization of gastric epithelial cells surrounding gastric cancer. Gastric Cancer 2022; 25:490-502. [PMID: 34993738 DOI: 10.1007/s10120-021-01269-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND A dynamic molecular interaction between cancer and the surrounding normal cells is mediated through exosomes. We investigated whether exosomes derived from gastric cancer cells affected the fate of the surrounding gastric epithelial cells. METHODS We analyzed the cell viability and immortalization of primary normal stomach epithelial cells (PNSECs) after treatment with exosomes derived from AGS gastric cancer cells and/or H. pylori CagA. Cell proliferation and apoptosis were analyzed by BrdU incorporation, flow-cytometry, and colony formation assays. We examined telomere length, expression and activity of telomerase, and expression of telomere-related genes in PNSECs treated with cancer exosomes, and in 60 gastric cancer and corresponding mucosal tissues. The differentially expressed genes and transcriptional regulation of telomere-related genes were verified using real-time qPCR and ChIP analyses, respectively. RESULTS Gastric cancer exosomes increased cell viability and the population-doubling levels but inhibited the cellular senescence and apoptosis of PNSECs. The internalization of cancer exosomes in PNSECs dramatically increased the number of surviving colonies and induced a multilayer growth and invasion into the scaffold. Treatment of PNSECs with cancer exosomes markedly increased the expression and activity of telomerase and the T/S ratio and regulated the expression of the telomere-associated genes, heat-shock genes, and hedgehog genes. Compared to gastric mucosae, gastric cancer showed increased hTERT expression, which was positively correlated with telomere length. Interestingly, seven (46.7%) of 15 non-cancerous gastric mucosae demonstrated strong telomerase activity. CONCLUSION These results suggest that gastric cancer exosomes induced the transformation and field cancerization of the surrounding non-cancerous gastric epithelial cells.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Byung Joon Choi
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
12
|
Nutrition Interventions of Herbal Compounds on Cellular Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1059257. [PMID: 35528514 PMCID: PMC9068308 DOI: 10.1155/2022/1059257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/01/2021] [Accepted: 04/02/2022] [Indexed: 01/10/2023]
Abstract
When cells undergo large-scale senescence, organ aging ensues, resulting in irreversible organ pathology and organismal aging. The study of senescence in cells provides an important avenue to understand the factors that influence aging and can be used as one of the useful tools for examining age-related human diseases. At present, many herbal compounds have shown effects on delaying cell senescence. This review summarizes the main characteristics and mechanisms of cell senescence, age-related diseases, and the recent progress on the natural products targeting cellular senescence, with the aim of providing insights to aid the clinical management of age-related diseases.
Collapse
|
13
|
Fontana R, Guidone D, Angrisano T, Calabrò V, Pollice A, La Mantia G, Vivo M. Mutation of the Conserved Threonine 8 within the Human ARF Tumour Suppressor Protein Regulates Autophagy. Biomolecules 2022; 12:biom12010126. [PMID: 35053274 PMCID: PMC8773949 DOI: 10.3390/biom12010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/10/2022] Open
Abstract
Background: The ARF tumour suppressor plays a well-established role as a tumour suppressor, halting cell growth by both p53-dependent and independent pathways in several cellular stress response circuits. However, data collected in recent years challenged the traditional role of this protein as a tumour suppressor. Cancer cells expressing high ARF levels showed that its expression, far from being dispensable, is required to guarantee tumour cell survival. In particular, ARF can promote autophagy, a self-digestion pathway that helps cells cope with stressful growth conditions arising during both physiological and pathological processes. Methods: We previously showed that ARF is regulated through the activation of the protein kinase C (PKC)-dependent pathway and that an ARF phospho-mimetic mutant on the threonine residue 8, ARF-T8D, sustains cell proliferation in HeLa cells. We now explored the role of ARF phosphorylation in both basal and starvation-induced autophagy by analysing autophagic flux in cells transfected with either WT and ARF phosphorylation mutants by immunoblot and immunofluorescence. Results: Here, we show that endogenous ARF expression in HeLa cells is required for starvation-induced autophagy. Further, we provide evidence that the hyper-expression of ARF-T8D appears to inhibit autophagy in both HeLa and lung cancer cells H1299. This effect is due to the cells’ inability to elicit autophagosomes formation upon T8D expression. Conclusions: Our results lead to the hypothesis that ARF phosphorylation could be a mechanism through which the protein promotes or counteracts autophagy. Several observations underline how autophagy could serve a dual role in cancer progression, either protecting healthy cells from damage or aiding cancerous cells to survive. Our results indicate that ARF phosphorylation controls protein’s ability to promote or counteract autophagy, providing evidence of the dual role played by ARF in cancer progression.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Daniela Guidone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Viola Calabrò
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Alessandra Pollice
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Girolama La Mantia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (R.F.); (D.G.); (T.A.); (V.C.); (A.P.); (G.L.M.)
| | - Maria Vivo
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Correspondence:
| |
Collapse
|
14
|
Franceschini N, Gaeta R, Krimpenfort P, Briaire-de Bruijn I, Kruisselbrink AB, Szuhai K, Palubeckaitė I, Cleton-Jansen AM, Bovée JVMG. A murine mesenchymal stem cell model for initiating events in osteosarcomagenesis points to CDK4/CDK6 inhibition as a therapeutic target. J Transl Med 2022; 102:391-400. [PMID: 34921235 PMCID: PMC8964417 DOI: 10.1038/s41374-021-00709-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/07/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
Osteosarcoma is a high-grade bone-forming neoplasm, with a complex genome. Tumours frequently show chromothripsis, many deletions, translocations and copy number alterations. Alterations in the p53 or Rb pathway are the most common genetic alterations identified in osteosarcoma. Using spontaneously transformed murine mesenchymal stem cells (MSCs) which formed sarcoma after subcutaneous injection into mice, it was previously demonstrated that p53 is most often involved in the transformation towards sarcomas with complex genomics, including osteosarcoma. In the current study, not only loss of p53 but also loss of p16Ink4a is shown to be a driver of osteosarcomagenesis: murine MSCs with deficient p15Ink4b, p16Ink4a, or p19Arf transform earlier compared to wild-type murine MSCs. Furthermore, in a panel of nine spontaneously transformed murine MSCs, alterations in p15Ink4b, p16Ink4a, or p19Arf were observed in eight out of nine cases. Alterations in the Rb/p16 pathway could indicate that osteosarcoma cells are vulnerable to CDK4/CDK6 inhibitor treatment. Indeed, using two-dimensional (n = 7) and three-dimensional (n = 3) cultures of human osteosarcoma cell lines, it was shown that osteosarcoma cells with defective p16INK4A are sensitive to the CDK4/CDK6 inhibitor palbociclib after 72-hour treatment. A tissue microarray analysis of 109 primary tumour biopsies revealed a subset of patients (20-23%) with intact Rb, but defective p16 or overexpression of CDK4 and/or CDK6. These patients might benefit from CDK4/CDK6 inhibition, therefore our results are promising and might be translated to the clinic.
Collapse
Affiliation(s)
- Natasja Franceschini
- grid.10419.3d0000000089452978Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raffaele Gaeta
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paul Krimpenfort
- grid.430814.a0000 0001 0674 1393Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Inge Briaire-de Bruijn
- grid.10419.3d0000000089452978Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alwine B. Kruisselbrink
- grid.10419.3d0000000089452978Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ieva Palubeckaitė
- grid.10419.3d0000000089452978Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne-Marie Cleton-Jansen
- grid.10419.3d0000000089452978Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith V. M. G. Bovée
- grid.10419.3d0000000089452978Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Wu M, Lu L, Chen S, Li Y, Zhang Q, Fu S, Deng X. Natural products inducing nucleolar stress: implications in cancer therapy. Anticancer Drugs 2022; 33:e21-e27. [PMID: 34561998 DOI: 10.1097/cad.0000000000001146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nucleolus is the site of ribosome biogenesis and is found to play an important role in stress sensing. For over 100 years, the increase in the size and number of nucleoli has been considered as a marker of aggressive tumors. Despite this, the contribution of the nucleolus and the biologic processes mediated by it to cancer pathogenesis has been largely overlooked. This state has been changed over the recent decades with the demonstration that the nucleolus controls numerous cellular functions associated with cancer development. Induction of nucleolar stress has recently been regarded as being superior to conventional cytotoxic/cytostatic strategy in that it is more selective to neoplastic cells while sparing normal cells. Natural products represent an excellent source of bioactive molecules and some of them have been found to be able to induce nucleolar stress. The demonstration of these nucleolar stress-inducing natural products has paved the way for a new therapeutic approach to more delicate tumor cell-killing. This review provides a contemporary summary of the role of the nucleolus as a novel promising target for cancer therapy, with particular emphasis on natural products as an exciting new class of anti-cancer drugs with nucleolar stress-inducing properties.
Collapse
Affiliation(s)
- Mi Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Lu Lu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Sisi Chen
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Ying Li
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Qiuting Zhang
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
- Department of Pathophysiology, Jishou University School of Medicine, Jishou, Hunan, China
| |
Collapse
|
16
|
Zhao Z, Wang Z, Wang P, Liu S, Li Y, Yang X. EPDR1, Which Is Negatively Regulated by miR-429, Suppresses Epithelial Ovarian Cancer Progression via PI3K/AKT Signaling Pathway. Front Oncol 2021; 11:751567. [PMID: 35004274 PMCID: PMC8733570 DOI: 10.3389/fonc.2021.751567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the main pathological type of ovarian cancer. In this study, we found that ependymin-related 1 (EPDR1) was remarkably downregulated in EOC tissues, and low EPDR1 expression was associated with International Federation of Gynecology and Obstetrics (FIGO) stage, metastasis, and poor prognosis. We confirmed that EPDR1 overexpression dramatically suppressed EOC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, EPDR1 inhibited EOC tumorigenesis and progression, at least in part, through the repression of the PI3K (Phosphoinositide 3-kinase)/AKT (AKT Serine/Threonine Kinase 1) signaling pathway. Furthermore, the expression and function of EPDR1 were regulated by miR-429, as demonstrated by luciferase reporter assays and rescue experiments. In conclusion, our study validated that EPDR1, negatively regulated by miR-429, played an important role as a tumor-suppressor gene in EOC development via inhibition of the PI3K/AKT pathway. The miR-429/EPDR1 axis might provide novel therapeutic targets for individualized treatment of EOC patients in the future.
Collapse
Affiliation(s)
- Zhendan Zhao
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Zhiling Wang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Pengling Wang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Shujie Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Zibo Spring Hospital Co., Ltd., Zibo, China
| | - Yingwei Li
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
| | - Xingsheng Yang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
17
|
TP53 in Acute Myeloid Leukemia: Molecular Aspects and Patterns of Mutation. Int J Mol Sci 2021; 22:ijms221910782. [PMID: 34639121 PMCID: PMC8509740 DOI: 10.3390/ijms221910782] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
Mutation of the tumor suppressor gene, TP53, is associated with abysmal survival outcomes in acute myeloid leukemia (AML). Although it is the most commonly mutated gene in cancer, its occurrence is observed in only 5–10% of de novo AML, and in 30% of therapy related AML (t-AML). TP53 mutation serves as a prognostic marker of poor response to standard-of-care chemotherapy, particularly in t-AML and AML with complex cytogenetics. In light of a poor response to traditional chemotherapy and only a modest improvement in outcome with hypomethylation-based interventions, allogenic stem cell transplant is routinely recommended in these cases, albeit with a response that is often short lived. Despite being frequently mutated across the cancer spectrum, progress and enthusiasm for the development of p53 targeted therapeutic interventions is lacking and to date there is no approved drug that mitigates the effects of TP53 mutation. There is a mounting body of evidence indicating that p53 mutants differ in functionality and form from typical AML cases and subsequently display inconsistent responses to therapy at the cellular level. Understanding this pathobiological activity is imperative to the development of effective therapeutic strategies. This review aims to provide a comprehensive understanding of the effects of TP53 on the hematopoietic system, to describe its varying degree of functionality in tumor suppression, and to illustrate the need for the adoption of personalized therapeutic strategies to target distinct classes of the p53 mutation in AML management.
Collapse
|
18
|
He Z, Deng F, Ma Z, Zhang Q, He J, Ye L, Chen H, Yang D, He L, Luo J, Yan T. Molecular characterization, expression, and apoptosis regulation of siva1 in protogynous hermaphrodite fish ricefield eel (Monopterus albus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1585-1596. [PMID: 34414556 DOI: 10.1007/s10695-021-00997-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Siva1, which induces extensive apoptosis, has been well characterized. To elucidate the molecular function of Siva1 in ricefield eel, molecular characterization and phylogenetic analysis were performed, and the mRNA expression in the ovary at different developmental stages and ovary tissues exposed to H2O2 and Z-VAD-FMK in vitro were also evaluated. The results indicated that ricefield eel Siva1 was highly conserved and contains three conserved motifs, despite 83 amino acid differences upstream of the initiation codon. Phylogenetic analysis demonstrated that ricefield eel Siva1 clusters together with the Siva1 protein of the other fish, with high sequence homology with that of Lates calcarifer. Quantitative real-time polymerase chain reaction analysis showed high siva1 expression levels in the ovary and low expression levels in the liver. The higher mRNA levels of siva1 were detected in the IE and IM, and the lower siva1 mRNA levels were found in the OM, IL, and TE during gonadal development. Additionally, siva1 expression levels in the ovarian tissues were significantly increased at 1 h post incubation (hpi) with H2O2 and then significantly decreased at 2 hpi; however, siva1 expression was upregulated significantly at 4 and 8 hpi, similar to the patterns observed with caspase3, which was used as a molecular marker of apoptosis. Moreover, the siva1 mRNAs were elevated significantly than that in control groups at 1 hpi, but the expression of siva1 was down-regulated dramatically at 2, 4, and 8 hpi, which were similar with that of caspase3 expression profiles after Z-VAD-FMK incubation. What's more, Pearson's correlation coefficients showed strongly positive relationships between siva1 and caspase3. These findings suggest that Siva1 plays an important apoptosis role in gonadal development of ricefield eel.
Collapse
Affiliation(s)
- Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Faqiang Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhijun Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiayang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijuan Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongjun Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
19
|
Lees A, Sessler T, McDade S. Dying to Survive-The p53 Paradox. Cancers (Basel) 2021; 13:3257. [PMID: 34209840 PMCID: PMC8268032 DOI: 10.3390/cancers13133257] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The p53 tumour suppressor is best known for its canonical role as "guardian of the genome", activating cell cycle arrest and DNA repair in response to DNA damage which, if irreparable or sustained, triggers activation of cell death. However, despite an enormous amount of work identifying the breadth of the gene regulatory networks activated directly and indirectly in response to p53 activation, how p53 activation results in different cell fates in response to different stress signals in homeostasis and in response to p53 activating anti-cancer treatments remains relatively poorly understood. This is likely due to the complex interaction between cell death mechanisms in which p53 has been activated, their neighbouring stressed or unstressed cells and the local stromal and immune microenvironment in which they reside. In this review, we evaluate our understanding of the burgeoning number of cell death pathways affected by p53 activation and how these may paradoxically suppress cell death to ensure tissue integrity and organismal survival. We also discuss how these functions may be advantageous to tumours that maintain wild-type p53, the understanding of which may provide novel opportunity to enhance treatment efficacy.
Collapse
Affiliation(s)
- Andrea Lees
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK;
| | | | - Simon McDade
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK;
| |
Collapse
|
20
|
Genetic Events Inhibiting Apoptosis in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13092167. [PMID: 33946435 PMCID: PMC8125500 DOI: 10.3390/cancers13092167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). Despite the genetic heterogeneity of the disease, most patients are initially treated with a combination of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), but relapse occurs in ~50% of patients. One of the hallmarks of DLBCL is the occurrence of genetic events that inhibit apoptosis, which contributes to disease development and resistance to therapy. These events can affect the intrinsic or extrinsic apoptotic pathways, or their modulators. Understanding the factors that contribute to inhibition of apoptosis in DLBCL is crucial in order to be able to develop targeted therapies and improve outcomes, particularly in relapsed and refractory DLBCL (rrDLBCL). This review provides a description of the genetic events inhibiting apoptosis in DLBCL, their contribution to lymphomagenesis and chemoresistance, and their implication for the future of DLBCL therapy. Abstract Diffuse large B cell lymphoma (DLBCL) is curable with chemoimmunotherapy in ~65% of patients. One of the hallmarks of the pathogenesis and resistance to therapy in DLBCL is inhibition of apoptosis, which allows malignant cells to survive and acquire further alterations. Inhibition of apoptosis can be the result of genetic events inhibiting the intrinsic or extrinsic apoptotic pathways, as well as their modulators, such as the inhibitor of apoptosis proteins, P53, and components of the NF-kB pathway. Mechanisms of dysregulation include upregulation of anti-apoptotic proteins and downregulation of pro-apoptotic proteins via point mutations, amplifications, deletions, translocations, and influences of other proteins. Understanding the factors contributing to resistance to apoptosis in DLBCL is crucial in order to be able to develop targeted therapies that could improve outcomes by restoring apoptosis in malignant cells. This review describes the genetic events inhibiting apoptosis in DLBCL, provides a perspective of their interactions in lymphomagenesis, and discusses their implication for the future of DLBCL therapy.
Collapse
|
21
|
Cui D, Xiong X, Shu J, Dai X, Sun Y, Zhao Y. FBXW7 Confers Radiation Survival by Targeting p53 for Degradation. Cell Rep 2021; 30:497-509.e4. [PMID: 31940492 DOI: 10.1016/j.celrep.2019.12.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/17/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor p53 plays a critical role in integrating a wide variety of stress responses. Therefore, p53 levels are precisely regulated by multiple ubiquitin ligases. In this study, we report that FBXW7, a substrate recognition component of the SKP1-CUL1-F-box (SCF) E3 ligase, interacts with and targets p53 for polyubiquitination and proteasomal degradation after exposure to ionizing radiation or etoposide. Mechanistically, DNA damage activates ATM to phosphorylate p53 on Ser33 and Ser37, which facilitates the FBXW7 binding and subsequent p53 degradation by SCFFBXW7. Inactivation of ATM or SCFFBXW7 by small molecular inhibitors or genetic knockdown/knockout approaches extends the p53 protein half-life upon DNA damage in an MDM2-independent manner. Biologically, FBXW7 inactivation sensitizes cancer cells to radiation or etoposide by stabilizing p53 to induce cell-cycle arrest and apoptosis. Taken together, our study elucidates a mechanism by which FBXW7 confers cancer cell survival during radiotherapy or chemotherapy via p53 targeting.
Collapse
Affiliation(s)
- Danrui Cui
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfeng Shu
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqing Dai
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
22
|
Cottrell KA, Chiou RC, Weber JD. Upregulation of 5'-terminal oligopyrimidine mRNA translation upon loss of the ARF tumor suppressor. Sci Rep 2020; 10:22276. [PMID: 33335292 PMCID: PMC7747592 DOI: 10.1038/s41598-020-79379-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/08/2020] [Indexed: 12/28/2022] Open
Abstract
Tumor cells require nominal increases in protein synthesis in order to maintain high proliferation rates. As such, tumor cells must acquire enhanced ribosome production. How the numerous mutations in tumor cells ultimately achieve this aberrant production is largely unknown. The gene encoding ARF is the most commonly deleted gene in human cancer. ARF plays a significant role in regulating ribosomal RNA synthesis and processing, ribosome export into the cytoplasm, and global protein synthesis. Utilizing ribosome profiling, we show that ARF is a major suppressor of 5'-terminal oligopyrimidine mRNA translation. Genes with increased translational efficiency following loss of ARF include many ribosomal proteins and translation factors. Knockout of p53 largely phenocopies ARF loss, with increased protein synthesis and expression of 5'-TOP encoded proteins. The 5'-TOP regulators eIF4G1 and LARP1 are upregulated in Arf- and p53-null cells.
Collapse
Affiliation(s)
- Kyle A Cottrell
- Division of Molecular Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, Campus, Box 8069, Saint Louis, MO, 63110, USA
| | - Ryan C Chiou
- Division of Molecular Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, Campus, Box 8069, Saint Louis, MO, 63110, USA
| | - Jason D Weber
- Division of Molecular Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, Campus, Box 8069, Saint Louis, MO, 63110, USA.
- Department of Cell Biology and Physiology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
23
|
Sırma Ekmekci S, Emrence Z, Abacı N, Sarıman M, Salman B, Ekmekci CG, Güleç Ç. LEF1 Induces DHRS2 Gene Expression in Human Acute Leukemia Jurkat T-Cells. Turk J Haematol 2020; 37:226-233. [PMID: 32586085 PMCID: PMC7702649 DOI: 10.4274/tjh.galenos.2020.2020.0144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease resulting from the accumulation of genetic changes that affect the development of T-cells. The precise role of lymphoid enhancer-binding factor 1 (LEF1) in T-ALL has been controversial since both overexpression and inactivating LEF1 mutations have been reported to date. Here, we investigate the potential gene targets of LEF1 in the Jurkat human T-cell leukemia cell line. Materials and Methods We used small interfering RNA (siRNA) technology to knock down LEF1 in Jurkat cells and then compared the gene expression levels in the LEF1 knockdown cells with non-targeting siRNA-transfected and non-transfected cells by employing microarray analysis. Results We identified DHRS2, a tumor suppressor gene, as the most significantly downregulated gene in LEF1 knockdown cells, and we further confirmed its downregulation by real-time quantitative polymerase chain reaction (qRT-PCR) in mRNA and at protein level by western blotting. Conclusion Our results revealed that DHRS2 is positively regulated by LEF1 in Jurkat cells, which indicates the capability of LEF1 as a tumor suppressor and, together with previous reports, suggests that LEF1 exhibits a regulatory role in T-ALL via not only its oncogenic targets but also tumor suppressor genes.
Collapse
Affiliation(s)
- Sema Sırma Ekmekci
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Zeliha Emrence
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Neslihan Abacı
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Melda Sarıman
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Burcu Salman
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Cumhur Gökhan Ekmekci
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| | - Çağrı Güleç
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Genetics, İstanbul, Turkey
| |
Collapse
|
24
|
Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both? Antioxid Redox Signal 2020; 33:839-859. [PMID: 32151151 DOI: 10.1089/ars.2020.8074] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: The p53 tumor suppressor has been dubbed the "guardian of genome" because of its various roles in the response to DNA damage such as DNA damage repair, cell cycle arrest, senescence, and apoptosis, all of which are in place to prevent mutations from being passed on down the lineage. Recent Advances: Reactive oxygen species (ROS), for instance hydrogen peroxide derived from mitochondrial respiration, have long been regarded mainly as a major source of cellular damage to DNA and other macromolecules. Critical Issues: More recently, ROS have been shown to also play important physiological roles as second messengers in so-called redox signaling. It is, therefore, not clear whether the observed activation of p53 by ROS is mediated through the DNA damage response, redox signaling, or both. In this review, we will discuss the similarities and differences between p53 activation in response to DNA damage and redox signaling in terms of upstream signaling and downstream transcriptional program activation. Future Directions: Understanding whether and how DNA damage and redox signaling-dependent p53 activation can be dissected could be useful to develop anti-cancer therapeutic p53-reactivation strategies that do not depend on the induction of DNA damage and the resulting additional mutational load.
Collapse
Affiliation(s)
- Tao Shi
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tobias B Dansen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
Moxley AH, Reisman D. Context is key: Understanding the regulation, functional control, and activities of the p53 tumour suppressor. Cell Biochem Funct 2020; 39:235-247. [PMID: 32996618 DOI: 10.1002/cbf.3590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
The p53 tumour suppressor is considered one of the most critical genes in cancer biology. By upregulating apoptosis, cell cycle arrest, and DNA damage repair in normal cells, p53 prevents the propagation of cells with tumorigenic potential; therefore, mutations in p53 are associated with carcinogenic transformation and can be accompanied by the accumulation of a novel gain-of-function oncogenic protein, mutant p53. Although p53 is most often understood to utilize context-dependent post-translational modifications to achieve regulation of its many target genes, recent research has also sought to define other mechanisms of regulating p53 gene expression prior to translation and to understand how this alternative regulation of p53 may influence target gene expression and cellular outcome. This review attempts to summarize what is known about p53 regulation at the transcriptional, post-transcriptional, and post-translational levels while paying special attention to the ways in which context may influence p53 regulation and subsequent regulation of its target genes.
Collapse
Affiliation(s)
- Anne H Moxley
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - David Reisman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
26
|
Hashemian Z, Afsharian P, Farzaneh P, Eftekhari-Yazdi P, Vakhshiteh F, Daneshvar Amoli A, Nasimian A. Establishment and characterization of a PCOS and a normal human granulosa cell line. Cytotechnology 2020; 72:10.1007/s10616-020-00426-3. [PMID: 32989584 PMCID: PMC7695766 DOI: 10.1007/s10616-020-00426-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 11/29/2022] Open
Abstract
Oocyte maturation is an important phase in fertility and any disorder in this process could lead to infertility. The most common disorder during folliculogenesis is polycystic ovary syndrome (PCOS). Due to the secretive activity of granulosa cells (GCs), they play a vital role in folliculogenesis. Although scientists use various cellular and molecular methods to have a better understanding of the mechanism of these cells, some limitations still exist in GC culture such as low primary cell yield and proliferation capability. Therefore, immortalization of primary cells is an approach to overcome these limitations. In the current study, GCs were obtained from two females, one with PCOS and one with normal folliculogenesis. In the first stage, we established two human GC (hGC) lines by immortalizing them through retrovirus-mediated transfer of the human telomerase reverse transcriptase (hTERT) and c-Myc genes. Subsequently, the normal and PCOS cell lines were characterized and were investigated for their growth features. The cell lines were also examined in terms of immortal markers of hTERT, follicle stimulating hormone receptor (FSHR), aromatase, anti-Müllerian hormone (AMH), growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), estrogen, and progesterone. Our results indicated that the normal and PCOS cell lines both showed similar characteristics to GCs during the follicular stage in normal and PCOS women. The normal and PCOS cell lines demonstrate molecular mechanisms similar to that of GCs such as folliculogenesis, oogenesis, and steroidogenesis, which enable researchers to perform further investigations in future.
Collapse
Affiliation(s)
- Zohreh Hashemian
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parvaneh Afsharian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parvaneh Farzaneh
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Faezeh Vakhshiteh
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | | | - Ahmad Nasimian
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran.
| |
Collapse
|
27
|
Patel S, Wilkinson CJ, Sviderskaya EV. Loss of Both CDKN2A and CDKN2B Allows for Centrosome Overduplication in Melanoma. J Invest Dermatol 2020; 140:1837-1846.e1. [PMID: 32067956 PMCID: PMC7435684 DOI: 10.1016/j.jid.2020.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Centrosomes duplicate only once in coordination with the DNA replication cycle and have an important role in segregating genetic material. In contrast, most cancer cells have centrosome aberrations, including supernumerary centrosomes, and this correlates with aneuploidy and genetic instability. The tumor suppressors p16 (CDKN2A) and p15 (CDKN2B) (encoded by the familial melanoma CDKN2 locus) inhibit CDK4/6 activity and have important roles in cellular senescence. p16 is also associated with suppressing centrosomal aberrations in breast cancer; however, the role of p15 in centrosome amplification is unknown. Here, we investigated the relationship between p15 and p16 expression, centrosome number abnormalities, and melanoma progression in cell lines derived from various stages of melanoma progression. We found that normal human melanocyte lines did not exhibit centrosome number abnormalities, whereas those from later stages of melanoma did. Additionally, under conditions of S-phase block, p15 and p16 status determined whether centrosome overduplication would occur. Indeed, removal of p15 from p16-negative cell lines derived from various stages of melanoma progression changed cells that previously would not overduplicate their centrosomes into cells that did. Although this study used cell lines in vitro, it suggests that, during clinical melanoma progression, sequential loss of p15 and p16 provides conditions for centrosome duplication to become deregulated with consequences for genome instability.
Collapse
Affiliation(s)
- Shyamal Patel
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, United Kingdom
| | - Christopher J Wilkinson
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, United Kingdom
| | - Elena V Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, United Kingdom.
| |
Collapse
|
28
|
Shattuck-Brandt RL, Chen SC, Murray E, Johnson CA, Crandall H, O'Neal JF, Al-Rohil RN, Nebhan CA, Bharti V, Dahlman KB, Ayers GD, Yan C, Kelley MC, Kauffmann RM, Hooks M, Grau A, Johnson DB, Vilgelm AE, Richmond A. Metastatic Melanoma Patient-Derived Xenografts Respond to MDM2 Inhibition as a Single Agent or in Combination with BRAF/MEK Inhibition. Clin Cancer Res 2020; 26:3803-3818. [PMID: 32234759 PMCID: PMC7367743 DOI: 10.1158/1078-0432.ccr-19-1895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/21/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Over 60% of patients with melanoma respond to immune checkpoint inhibitor (ICI) therapy, but many subsequently progress on these therapies. Second-line targeted therapy is based on BRAF mutation status, but no available agents are available for NRAS, NF1, CDKN2A, PTEN, and TP53 mutations. Over 70% of melanoma tumors have activation of the MAPK pathway due to BRAF or NRAS mutations, while loss or mutation of CDKN2A occurs in approximately 40% of melanomas, resulting in unregulated MDM2-mediated ubiquitination and degradation of p53. Here, we investigated the therapeutic efficacy of over-riding MDM2-mediated degradation of p53 in melanoma with an MDM2 inhibitor that interrupts MDM2 ubiquitination of p53, treating tumor-bearing mice with the MDM2 inhibitor alone or combined with MAPK-targeted therapy. EXPERIMENTAL DESIGN To characterize the ability of the MDM2 antagonist, KRT-232, to inhibit tumor growth, we established patient-derived xenografts (PDX) from 15 patients with melanoma. Mice were treated with KRT-232 or a combination with BRAF and/or MEK inhibitors. Tumor growth, gene mutation status, as well as protein and protein-phosphoprotein changes, were analyzed. RESULTS One-hundred percent of the 15 PDX tumors exhibited significant growth inhibition either in response to KRT-232 alone or in combination with BRAF and/or MEK inhibitors. Only BRAFV600WT tumors responded to KRT-232 treatment alone while BRAFV600E/M PDXs exhibited a synergistic response to the combination of KRT-232 and BRAF/MEK inhibitors. CONCLUSIONS KRT-232 is an effective therapy for the treatment of either BRAFWT or PAN WT (BRAFWT, NRASWT) TP53WT melanomas. In combination with BRAF and/or MEK inhibitors, KRT-232 may be an effective treatment strategy for BRAFV600-mutant tumors.
Collapse
Affiliation(s)
- Rebecca L Shattuck-Brandt
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Sheau-Chiann Chen
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily Murray
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Christopher Andrew Johnson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Holly Crandall
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jamye F O'Neal
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rami Nayef Al-Rohil
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Caroline A Nebhan
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vijaya Bharti
- Division of Surgical Oncology and Endocrine Surgery, Department of Pathology, Ohio State University, Columbus, Ohio
| | - Kimberly B Dahlman
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gregory D Ayers
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chi Yan
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Mark C Kelley
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rondi M Kauffmann
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mary Hooks
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ana Grau
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas B Johnson
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna E Vilgelm
- Division of Surgical Oncology and Endocrine Surgery, Department of Pathology, Ohio State University, Columbus, Ohio
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
29
|
Chen Y, Ohki R. p53-PHLDA3-Akt Network: The Key Regulators of Neuroendocrine Tumorigenesis. Int J Mol Sci 2020; 21:ijms21114098. [PMID: 32521808 PMCID: PMC7312810 DOI: 10.3390/ijms21114098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 01/10/2023] Open
Abstract
p53 is a well-known tumor suppressor gene and one of the most extensively studied genes in cancer research. p53 functions largely as a transcription factor and can trigger a variety of antiproliferative programs via induction of its target genes. We identified PHLDA3 as a p53 target gene and found that its protein product is a suppressor of pancreatic neuroendocrine tumors (PanNETs) and a repressor of Akt function. PHLDA3 is frequently inactivated by loss of heterozygosity (LOH) and methylation in human PanNETs, and LOH at the PHLDA3 gene locus correlates with PanNET progression and poor prognosis. In addition, in PHLDA3-deficient mice, pancreatic islet cells proliferate abnormally and acquire resistance to apoptosis. In this article, we briefly review the roles of p53 and Akt in human neuroendocrine tumors (NETs) and describe the relationship between the p53-PHLDA3 and Akt pathways. We also discuss the role of PHLDA3 as a tumor suppressor in various NETs and speculate on the possibility that loss of PHLDA3 function may be a useful prognostic marker for NET patients indicating particular drug therapies. These results suggest that targeting the downstream PHLDA3-Akt pathway might provide new therapies to treat NETs.
Collapse
|
30
|
Kohlmeyer JL, Gordon DJ, Tanas MR, Monga V, Dodd RD, Quelle DE. CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets. Int J Mol Sci 2020; 21:E3018. [PMID: 32344731 PMCID: PMC7215455 DOI: 10.3390/ijms21083018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcomas represent one of the most challenging tumor types to treat due to their diverse nature and our incomplete understanding of their underlying biology. Recent work suggests cyclin-dependent kinase (CDK) pathway activation is a powerful driver of sarcomagenesis. CDK proteins participate in numerous cellular processes required for normal cell function, but their dysregulation is a hallmark of many pathologies including cancer. The contributions and significance of aberrant CDK activity to sarcoma development, however, is only partly understood. Here, we describe what is known about CDK-related alterations in the most common subtypes of sarcoma and highlight areas that warrant further investigation. As disruptions in CDK pathways appear in most, if not all, subtypes of sarcoma, we discuss the history and value of pharmacologically targeting CDKs to combat these tumors. The goals of this review are to (1) assess the prevalence and importance of CDK pathway alterations in sarcomas, (2) highlight the gap in knowledge for certain CDKs in these tumors, and (3) provide insight into studies focused on CDK inhibition for sarcoma treatment. Overall, growing evidence demonstrates a crucial role for activated CDKs in sarcoma development and as important targets for sarcoma therapy.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
| | - David J Gordon
- The Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Munir R Tanas
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Varun Monga
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Rebecca D Dodd
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
31
|
Khan H, Reale M, Ullah H, Sureda A, Tejada S, Wang Y, Zhang ZJ, Xiao J. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: updates and future directions. Biotechnol Adv 2020; 38:107385. [PMID: 31004736 DOI: 10.1016/j.biotechadv.2019.04.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
The anticancer effects of polyphenols are ascribed to several signaling pathways including the tumor suppressor gene tumor protein 53 (p53). Expression of endogenous p53 is silent in various types of cancers. A number of polyphenols from a wide variety of dietary sources could upregulate p53 expression in several cancer cell lines through distinct mechanisms of action. The aim of this review is to focus the significance of p53 signaling pathways and to provide molecular intuitions of dietary polyphenols in chemoprevention by monitoring p53 expression that have a prominent role in tumor suppression.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Pakistan..
| | - Marcella Reale
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Scalo (CH), Italy
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Pakistan
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, Palma de Mallorca, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, University of Balearic Islands, Ctra. Valldemossa Km 75, E-07122 Palma de Mallorca, Balearic Islands, Spain
| | - Ying Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong.
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
32
|
Tandon N, Goller K, Wang F, Soibam B, Gagea M, Jain AK, Schwartz RJ, Liu Y. Aberrant expression of embryonic mesendoderm factor MESP1 promotes tumorigenesis. EBioMedicine 2019; 50:55-66. [PMID: 31761621 PMCID: PMC6921370 DOI: 10.1016/j.ebiom.2019.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
Background Mesoderm Posterior 1 (MESP1) belongs to the family of basic helix-loop-helix transcription factors. It is a master regulator of mesendoderm development, leading to formation of organs such as heart and lung. However, its role in adult pathophysiology remains unknown. Here, we report for the first time a previously-unknown association of MESP1 with non-small cell lung cancer (NSCLC). Methods MESP1 mRNA and protein levels were measured in NSCLC-derived cells by qPCR and immunoblotting respectively. Colony formation assay, colorimetric cell proliferation assay and soft agar colony formation assays were used to assess the effects of MESP1 knockdown and overexpression in vitro. RNA-sequencing and chromatin immunoprecipitation (ChIP)-qPCR were used to determine direct target genes of MESP1. Subcutaneous injection of MESP1-depleted NSCLC cells in immuno-compromised mice was done to study the effects of MESP1 mediated tumor formation in vivo. Findings We found that MESP1 expression correlates with poor prognosis in NSCLC patients, and is critical for proliferation and survival of NSCLC-derived cells, thus implicating MESP1 as a lung cancer oncogene. Ectopic MESP1 expression cooperates with loss of tumor suppressor ARF to transform murine fibroblasts. Xenografts from MESP1-depleted cells showed decreased tumor growth in vivo. Global transcriptome analysis revealed a MESP1 DNA-binding-dependent gene signature associated with various hallmarks of cancer, suggesting that transcription activity of MESP1 is most likely responsible for its oncogenic abilities. Interpretation Our study demonstrates MESP1 as a previously-unknown lineage-survival oncogene in NSCLC which may serve as a potential prognostic marker and therapeutic target for lung cancer in the future.
Collapse
Affiliation(s)
- Neha Tandon
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Kristina Goller
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Fan Wang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States; Department of Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Benjamin Soibam
- Computer Science and Engineering Technology, University of Houston-Downtown, Houston, TX, United States
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Abhinav K Jain
- Center for Cancer Epigenetics, Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States.
| |
Collapse
|
33
|
Adler FR, Gordon DM. Cancer Ecology and Evolution: Positive interactions and system vulnerability. ACTA ACUST UNITED AC 2019; 17:1-7. [PMID: 32318644 DOI: 10.1016/j.coisb.2019.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parallels of cancer with ecology and evolution have provided new insights into the initiation and spread of cancer, and new approaches to therapy. This review describes those parallels while emphasizing some key contrasts. We argue that cancers are less like invasive species than like native species or even crops that have escaped control, and that ecological control and homeo-static control differ fundamentally through both their ends and their means. From our focus on the role of positive interactions in control processes, we introduce a novel mathematical modeling framework that tracks how individual cell lineages arise, and how the many layers of control break down in the emergence of cancer. The next generation of therapies must continue to look beyond cancers as being created by individual renegade cells and address not only the network of interactions those cells inhabit, but the evolutionary logic that created those interactions and their intrinsic vulnerability.
Collapse
Affiliation(s)
- Frederick R Adler
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112.,Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112
| | - Deborah M Gordon
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020
| |
Collapse
|
34
|
Abnormal Ribosome Biogenesis Partly Induced p53-Dependent Aortic Medial Smooth Muscle Cell Apoptosis and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7064319. [PMID: 31210846 PMCID: PMC6532287 DOI: 10.1155/2019/7064319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/30/2019] [Accepted: 04/14/2019] [Indexed: 12/19/2022]
Abstract
Ribosome biogenesis is a crucial biological process related to cell proliferation, redox balance, and muscle contractility. Aortic smooth muscle cells (ASMCs) show inhibition of proliferation and apoptosis, along with high levels of oxidative stress in aortic dissection (AD). Theoretically, ribosome biogenesis should be enhanced in the ASMCs at its proliferative state but suppressed during apoptosis and oxidative stress. However, the exact status and role of ribosome biogenesis in AD are unknown. We therefore analyzed the expression levels of BOP1, a component of the PeBoW complex which is crucial to ribosome biogenesis, in AD patients and a murine AD model and its influence on the ASMCs. BOP1 was downregulated in the aortic tissues of AD patients compared to healthy donors. In addition, overexpression of BOP1 in human aortic smooth muscle cells (HASMCs) inhibited apoptosis and accumulation of p53 under hypoxic conditions, while knockdown of BOP1 decreased the protein synthesis rate and motility of HASMCs. The RNA polymerase I inhibitor cx-5461 induced apoptosis, ROS production, and proliferative inhibition in the HASMCs, which was partly attenuated by p53 knockout. Furthermore, cx-5461 aggravated the severity of AD in vivo, but a p53-/- background extended the life-span and lowered AD incidence in the mice. Taken together, decreased ribosome biogenesis in ASMCs resulting in p53-dependent proliferative inhibition, oxidative stress, and apoptosis is one of the underlying mechanisms of AD.
Collapse
|
35
|
Liu H, Zhao L, Zhang J, Li C, Shen X, Liu X, Jiang W, Luo C, Wang Y, Che L, Xu Y. Critical Role of Cysteine-Rich Protein 61 in Mediating the Activation of Renal Fibroblasts. Front Physiol 2019; 10:464. [PMID: 31130867 PMCID: PMC6510309 DOI: 10.3389/fphys.2019.00464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022] Open
Abstract
Objective To explore the expression of cysteine-rich protein 61 (Cyr61) in ischemic renal fibrosis and the role of Cyr61 in mediating the activation of renal fibroblasts. Methods (1) The rat model of renal fibrosis was established after ischemia-reperfusion acute renal injury (IR-AKI). We detected the renal function by biochemical test, evaluated the fibrosis by Masson staining, and detected the expression of Cyr61 by western blotting. (2) Bioinformatics technique was adopted to analyze the expression of Cyr61 in activated renal fibroblasts. (3) Normal rat kidney fibroblast cells (NRK-49F cells) with over-expression of Cyr61 (Cyr61+) and low-expression of it (Cyr61--) were established by plasmid transfection. Then part of the cells were activated by TGF-β1 and NRK-49F cells were divided into control group, activated group, Cyr61+/Cyr61-- group and Cyr61+/Cyr61-- activated group. The expression of Cyr61 and fibrosis related factors (Col1α1, Col3α1, MMP9, and MMP13) were ascertained by PCR and western blotting. Cell proliferation was discovered by CCK8 method, cell cycle was analyzed by flow cytometry, and the transcription of cell senescence related factors (P53, P21, Rb, and P16) were ascertained by PCR method. Results (1) In the process of fibrosis after IR-AKI, the area of collagen fiber was most obviously at AKI 1W, while the Cyr61 protein was at the lowest level at AKI 1W. (2) Gene chip analysis showed that the expression of Cyr61 was decreased in renal fibroblasts after IR. (3) Compared with control group, Cyr61+ group expressed less Col1α1 or Col3α1, as well as more MMP9 and MMP13. At the same time, the proliferation of Cyr61+ group decreased and cells in G1 phases increased with more transcription of P53, P21, and Rb (all P < 0.05). Compared with activated group, the results of Cyr61+ activated group were similar to the above. The above effects of low expression group were just the opposite. In addition, there was no difference in the transcription of P16 among these groups (P > 0.05). Conclusion Cyr61 may not only inhibit the fibrotic phenotype of fibroblasts, but may also inhibit proliferation by promoting fibroblasts arrest in G1 phase through the P53/P21/Rb interrelated cell senescence pathway, subsequently affecting the process of ischemic renal fibrosis.
Collapse
Affiliation(s)
- Hang Liu
- Department of Nephropathy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Long Zhao
- Department of Nephropathy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jisheng Zhang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenyu Li
- Department of Nephropathy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuefei Shen
- Department of Nephropathy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuemei Liu
- Department of Nephropathy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Jiang
- Department of Nephropathy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Congjuan Luo
- Department of Nephropathy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanfei Wang
- Department of Nephropathy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Che
- Department of Nephropathy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Xu
- Department of Nephropathy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Ladds MJGW, Laín S. Small molecule activators of the p53 response. J Mol Cell Biol 2019; 11:245-254. [PMID: 30689917 PMCID: PMC6478124 DOI: 10.1093/jmcb/mjz006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 01/10/2023] Open
Abstract
Drugging the p53 pathway has been a goal for both academics and pharmaceutical companies since the designation of p53 as the 'guardian of the genome'. Through growing understanding of p53 biology, we can see multiple routes for activation of both wild-type p53 function and restoration of mutant p53. In this review, we focus on small molecules that activate wild-type p53 and that do so in a non-genotoxic manner. In particular, we will describe potential approaches to targeting proteins that alter p53 stability and function through posttranslational modification, affect p53's subcellular localization, or target RNA synthesis or the synthesis of ribonucleotides. The plethora of pathways for exploitation of p53, as well as the wide-ranging response to p53 activation, makes it an attractive target for anti-cancer therapy.
Collapse
Affiliation(s)
- Marcus J G W Ladds
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Solnavägen 9, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Tomtebodavägen 23A, Solna, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Solnavägen 9, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Tomtebodavägen 23A, Solna, Stockholm, Sweden
| |
Collapse
|
37
|
Song H, Sun B, Liao Y, Xu D, Guo W, Wang T, Jing B, Hu M, Li K, Yao F, Deng J. GPRC5A deficiency leads to dysregulated MDM2 via activated EGFR signaling for lung tumor development. Int J Cancer 2018; 144:777-787. [PMID: 29992578 DOI: 10.1002/ijc.31726] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/09/2018] [Accepted: 06/20/2018] [Indexed: 11/07/2022]
Abstract
GPRC5A, a retinoic acid induced gene, is preferentially expressed in lung tissue. Gprc5a gene deletion leads to spontaneous lung tumor development. However, the mechanism of Gprc5a-mediated lung tumor suppression is not fully understood. Here we showed that MDM2, a p53-negative regulator, was dysregulated in Gprc5a-knockout (ko) mouse tracheal epithelial cells (KO-MTEC) compared to wild type ones. Targeting MDM2 in 1601-a Gprc5a-ko mouse derived lung tumor cell line-and A549-human lung cancer cells, by MDM2 inhibitor Nutlin-3a or small hairpin RNA (sh-RNA)-restored p53 signaling pathway, reduced cancer stem cell markers, and inhibited tumorigenicity. This suggests that dysregulated MDM2 pathway is essential for the oncogenic activities of these cells. MDM2 was found to be stabilized mainly by activated EGFR signaling as targeting EGFR by Erlotinib or sh-RNA repressed MDM2 in a transcription-independent manner. Importantly, overexpression of MDM2 and reduced GPRC5A expression at both protein and mRNA levels were frequently found in clinical human lung cancer tissues. Taken together, GPRC5A deficiency contributes to dysregulated MDM2 via activated EGFR signaling, which promotes lung tumor development.
Collapse
Affiliation(s)
- Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Sun
- Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Guo
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Jing
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Hu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaimi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Vachtenheim J, Lischke R, Vachtenheim J. Siva-1 emerges as a tissue-specific oncogene beyond its classic role of a proapoptotic gene. Onco Targets Ther 2018; 11:6361-6367. [PMID: 30319276 PMCID: PMC6171514 DOI: 10.2147/ott.s173001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Siva-1 is a typical apoptotic protein commonly activated by the p53 tumor suppressor protein and should therefore participate in a barrier against the development of cancer. It has proapoptotic activities in various cell systems. Recent findings suggest that Siva-1 possesses several other apoptosis-independent functions and interacts with many other proteins not directly involved in apoptosis. It harbors the ARF E3 ubiquitin protein ligase activity, a property that is clearly prooncogenic and leads to p53 degradation through the upregulation of the Hdm2 protein level. Surprisingly, recent evidence shows that Siva-1 absence prevents the development of non-small cell lung carcinomas in a mouse model and reveals the oncogenic roles in the same types of human cells, indicating its unique function as an oncogene in the cell context-dependent manner. Herein, we review reported activities of Siva-1 in various experimental settings and comment on its ambiguous function in tumor biology.
Collapse
Affiliation(s)
- Jiri Vachtenheim
- Third Department of Surgery, First Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Robert Lischke
- Third Department of Surgery, First Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Jiri Vachtenheim
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, Czech Republic,
| |
Collapse
|
39
|
Li S, Hua W, Wang K, Gao Y, Chen S, Liu W, Song Y, Wu X, Tu J, Kang L, Zhao K, Xiong L, Zhang Y, Yang C. Autophagy attenuates compression-induced apoptosis of human nucleus pulposus cells via MEK/ERK/NRF1/Atg7 signaling pathways during intervertebral disc degeneration. Exp Cell Res 2018; 370:87-97. [PMID: 29908161 DOI: 10.1016/j.yexcr.2018.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
Autophagy dysfunction has been observed in intervertebral disc degeneration (IVDD) cells, a main contributing factor to cell death, but the precise role of autophagy during IVDD is still controversial. This study aimed to investigate the role of autophagy involved in the pathogenesis of human IVDD and determine the signal transduction pathways responsible for compression-induced autophagy in human nucleus pulposus (NP) cells. Autophagy, suppressing the induction of apoptosis, was activated in NP cells exposed to compression. Molecular analysis showed that compression promoted the activity of NRF1, a transcription regulator increasing Atg7 expression by binding to its promoter, through activating the Ras/MEK/ERK signaling in NP cells. Loss- and gain-of-function studies demonstrate that NRF1 induced autophagy and dampened the apoptotic response by promoting Atg7 expression in NP cells subjected to compression. This study confirmed that compression-induced autophagy could be induced by Ras via MEK/ERK/NRF1/Atg7 signaling pathways, while inhibiting Ras/MEK/ERK/NRF1/Atg7 signaling pathways attenuated this autophagic process, implicating a promising therapeutic strategy for IVDD.
Collapse
Affiliation(s)
- Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City 450052, China
| | - Wei Liu
- Department of Orthopedics, First Hospital of Wuhan, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ji Tu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Kang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liming Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
40
|
Bayramov B, Gunes S, Buyukalpelli R, Aydın O, Henkel R. Promoter methylation analysis of CDH1 and p14ARF genes in patients with urothelial bladder cancer. Onco Targets Ther 2018; 11:4189-4196. [PMID: 30050310 PMCID: PMC6056157 DOI: 10.2147/ott.s158259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND/AIM Urothelial bladder cancer arises from the accumulation of multiple epigenetic and genetic changes. We aimed to investigate the specificity and sensitivity of gene-specific promoter methylation of CDH1 and p14ARF genes in the early diagnosis of bladder cancer and compare those with other diagnostic tests in our population. PATIENTS AND METHODS In the current study, 65 patients with urothelial bladder cancer and 35 controls without any history of cancer were recruited. Methylation profiles of CDH1 and p14ARF genes from tumor and urine samples were determined by methylation-specific polymerase chain reaction method. RESULTS Methylation of CDH1 and p14ARF genes in tumor samples was 95.4% and 78.5%, respectively. The methylation frequencies were found to be 68.8% for CDH1 gene and 72.9% for p14ARF gene in urine samples. Sensitivities of CDH1, p14ARF and urine cytology were found to be 67.4%, 72.1% and 34.9%, respectively, while their specificities were 93.9%, 63.6% and 93.9%, respectively. CONCLUSION Aberrant promoter methylation of CDH1 and p14ARF genes can be used to detect urothelial bladder cancer. In low-grade tumors, when compared with urine cytology, combined methylation analysis of CDH1 and p14ARF genes may not increase the sensitivity to identify malignant cells in urine samples.
Collapse
Affiliation(s)
- Bayram Bayramov
- Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey,
| | - Sezgin Gunes
- Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey,
- Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey,
| | - Recep Buyukalpelli
- Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey,
- Urology, Faculty of Medicine, Ondokuz Mayis University, Samsun
| | - Oğuz Aydın
- Pathology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
41
|
Baud MGJ, Bauer MR, Verduci L, Dingler FA, Patel KJ, Horil Roy D, Joerger AC, Fersht AR. Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines. Eur J Med Chem 2018; 152:101-114. [PMID: 29702446 PMCID: PMC5986712 DOI: 10.1016/j.ejmech.2018.04.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Many cancers have the tumor suppressor p53 inactivated by mutation, making reactivation of mutant p53 with small molecules a promising strategy for the development of novel anticancer therapeutics. The oncogenic p53 mutation Y220C, which accounts for approximately 100,000 cancer cases per year, creates an extended surface crevice in the DNA-binding domain, which destabilizes p53 and causes denaturation and aggregation. Here, we describe the structure-guided design of a novel class of small-molecule Y220C stabilizers and the challenging synthetic routes developed in the process. The synthesized chemical probe MB710, an aminobenzothiazole derivative, binds tightly to the Y220C pocket and stabilizes p53-Y220C in vitro. MB725, an ethylamide analogue of MB710, induced selective viability reduction in several p53-Y220C cancer cell lines while being well tolerated in control cell lines. Reduction of viability correlated with increased and selective transcription of p53 target genes such as BTG2, p21, PUMA, FAS, TNF, and TNFRSF10B, which promote apoptosis and cell cycle arrest, suggesting compound-mediated transcriptional activation of the Y220C mutant. Our data provide a framework for the development of a class of potent, non-toxic compounds for reactivating the Y220C mutant in anticancer therapy.
Collapse
Affiliation(s)
- Matthias G J Baud
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom; Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Matthias R Bauer
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Lorena Verduci
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Felix A Dingler
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Ketan J Patel
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Deeptee Horil Roy
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Andreas C Joerger
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom; German Cancer Consortium (DKTK), German Cancer Center (DKFZ), 69120 Heidelberg, Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
| | - Alan R Fersht
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|
42
|
Abstract
The nucleolus is a prominent subnuclear compartment, where ribosome biosynthesis takes place. Recently, the nucleolus has gained attention for its novel role in the regulation of cellular stress. Nucleolar stress is emerging as a new concept, which is characterized by diverse cellular insult-induced abnormalities in nucleolar structure and function, ultimately leading to activation of p53 or other stress signaling pathways and alterations in cell behavior. Despite a number of comprehensive reviews on this concept, straightforward and clear-cut way criteria for a nucleolar stress state, regarding the factors that elicit this state, the morphological and functional alterations as well as the rationale for p53 activation are still missing. Based on literature of the past two decades, we herein summarize the evolution of the concept and provide hallmarks of nucleolar stress. Along with updated information and thorough discussion of existing confusions in the field, we pay particular attention to the current understanding of the sensing mechanisms, i.e., how stress is integrated by p53. In addition, we propose our own emphasis regarding the role of nucleolar protein NPM1 in the hallmarks of nucleolar stress and sensing mechanisms. Finally, the links of nucleolar stress to human diseases are briefly and selectively introduced.
Collapse
Affiliation(s)
- Kai Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jie Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jing Yi
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
43
|
Moon SJ, Kim HY, Kim YH, Kim KS, Noh JR, Kim HJ, Choi JH, Hwang JH, Lee CH. GADD45β plays a protective role in acute lung injury by regulating apoptosis in experimental sepsis in vivo. J Cell Physiol 2018; 233:7128-7138. [PMID: 29741778 DOI: 10.1002/jcp.26635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
Abstract
Sepsis is a systemic inflammatory response syndrome due to microbial infection. Growth arrest and DNA-damage-inducible 45 beta (GADD45β) are induced by genotoxic stress and inflammatory cytokines. However, the role of GADD45β during bacterial infection remains unclear. This study was aimed at investigating the role of GADD45β in sepsis. We used GADD45β-knockout (KO) mice and C57BL/6J wild-type (WT) mice. Experimental sepsis was induced by lipopolysaccharide (LPS) administration or cecal ligation and puncture (CLP). Sepsis-induced mortality was higher in GADD45β-KO mice than in WT mice. Histopathological data demonstrated LPS treatment markedly increased lung injury in GADD45β-KO mice as compared to that in WT mice; however, no significant difference was observed in the liver and kidney. Further, mRNA levels of inflammatory cytokines, such as Il-1β, Il-6, Il-10, and Tnf-α, were higher in the lungs of LPS-treated GADD45β-KO mice than in WT mice. Interestingly, plasma levels of these inflammatory cytokines were decreased in LPS-administered GADD45β-KO mice. A significant increase in lung cell apoptosis was observed at early time points in GADD45β-KO mice after administration of LPS as compared to that in WT mice. In line with LPS-induced apoptosis, JNK, and p38 activity was higher in the lung of GADD45β-KO mice at 3 hr after LPS treatment than that in WT mice. In summary, this study is the first to demonstrate the protective role of GADD45β in sepsis and the results suggest that GADD45β could be used as a novel therapeutic target to cure sepsis.
Collapse
Affiliation(s)
- Sung-Je Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hyun-Yong Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hyun-Jong Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ji-Hyun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jung H Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
44
|
PKC Dependent p14ARF Phosphorylation on Threonine 8 Drives Cell Proliferation. Sci Rep 2018; 8:7056. [PMID: 29728595 PMCID: PMC5935756 DOI: 10.1038/s41598-018-25496-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/24/2018] [Indexed: 01/11/2023] Open
Abstract
ARF role as tumor suppressor has been challenged in the last years by several findings of different groups ultimately showing that its functions can be strictly context dependent. We previously showed that ARF loss in HeLa cells induces spreading defects, evident as rounded morphology of depleted cells, accompanied by a decrease of phosphorylated Focal Adhesion Kinase (FAK) protein levels and anoikis. These data, together with previous finding that a PKC dependent signalling pathway can lead to ARF stabilization, led us to the hypothesis that ARF functions in cell proliferation might be regulated by phosphorylation. In line with this, we show here that upon spreading ARF is induced through PKC activation. A constitutive-phosphorylated ARF mutant on the conserved threonine 8 (T8D) is able to mediate both cell spreading and FAK activation. Finally, ARF-T8D expression confers growth advantage to cells thus leading to the intriguing hypothesis that ARF phosphorylation could be a mechanism through which pro-proliferative or anti proliferative signals could be transduced inside the cells in both physiological and pathological conditions.
Collapse
|
45
|
Meng L, Hu H, Zhi H, Liu Y, Shi F, Zhang L, Zhou Y, Lin A. OCT4B regulates p53 and p16 pathway genes to prevent apoptosis of breast cancer cells. Oncol Lett 2018; 16:522-528. [PMID: 29930717 DOI: 10.3892/ol.2018.8607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/04/2016] [Indexed: 01/06/2023] Open
Abstract
Octamer-binding transcription factor 4 (OCT4) is a transcription factor with a well-defined role in stem cell pluripotency. Two OCT4 isoforms, OCT4A and OCT4B, tend to be downregulated as normal cells differentiate. However, OCT4, particularly OCT4B, may become reactivated in cancer cells. Despite this observation, the exact function of OCT4B re-expression in cancer is unclear. In the present study, the role of OCT4 in breast cancer cells was determined. In particular, the ability of OCT4 to regulate key genes involved in cellular proliferation and apoptosis, two pathways that are frequently deregulated in cancer, was examined. The cyclin-dependent kinase inhibitor 2A locus encodes p16INK4a and p14ARF, two important cell cycle inhibitors. The tumor suppressor p53 also has well characterized roles in suppressing proliferation and promoting apoptosis. The present study demonstrated, via overexpression and genetic knockdown techniques, that OCT4B regulates the expression of several of these genes and ultimately regulates the rate of apoptosis of MCF-7 breast cancer cells. It was also observed that, while OCT4B and OCT4A regulate one another, it is OCT4B that serves a more prominent role in regulating the transcription of downstream genes. Taken together, the present results suggest that OCT4B is re-expressed in a number of breast cancer cell lines, where it affects both the transcription of cell cycle genes and the rate of apoptosis. These properties of OCT4B may depend on, at least in part, the co-function of OCT4A.
Collapse
Affiliation(s)
- Lu Meng
- Molecular/Cellular Biology & Animal Biotech, National Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Hongyu Hu
- Molecular/Cellular Biology & Animal Biotech, National Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Huifang Zhi
- Molecular/Cellular Biology & Animal Biotech, National Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Yue Liu
- Molecular/Cellular Biology & Animal Biotech, National Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Fangyu Shi
- Molecular/Cellular Biology & Animal Biotech, National Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Laiguang Zhang
- Molecular/Cellular Biology & Animal Biotech, National Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Yanjun Zhou
- Molecular/Cellular Biology & Animal Biotech, National Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Aixing Lin
- Molecular/Cellular Biology & Animal Biotech, National Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
46
|
Chen L, Jiao Y, Guan X, Li X, Feng Y, Jiao M. Investigation of cell cycle-associated structural reorganization in nucleolar FC/DFCs from mouse MFC cells by electron microscopy. Microscopy (Oxf) 2018; 67:4994513. [PMID: 29750255 DOI: 10.1093/jmicro/dfy020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/08/2018] [Indexed: 11/14/2022] Open
Abstract
Nucleolus structure alters as the cell cycle is progressing. It is established in telophase, maintained throughout the entire interphase and disassembled in metaphase. Fibrillar centers (FCs), dense fibrillar components (DFCs) and granular components (GCs) are essential nucleolar organizations where rRNA transcription and processing and ribosome assembly take place. Hitherto, little is known about the cell cycle-dependent reorganization of these structures. In this study, we followed the nucleolus structure during the cell cycle by electron microscopy (EM). We found the nucleolus experienced multiple rounds of structural reorganization within a single cell cycle: (1) when nucleoli are formed during the transition from late M to G1 phase, FCs, DFCs and GCs are constructed, leading to the establishment of tripartite nucleolus; (2) as FC/DFCs are disrupted at mid-G1, tripartite nucleolus is gradually changed into a bipartite organization; (3) at late G1, the reassembly of FC/DFCs results in a structural transition from bipartite nucleolus towards tripartite nucleolus; (4) as cells enter S phase, FC/DFCs are disassembled again and tripartite nucleolus is thus changed into a bipartite organization. Of note, FC/DFCs were not observed until late S phase; (5) FC/DFCs experience structural disruption and restoration during G2 and (6) when cells are at mitotic stage, FC/DFCs disappear before nucleolus structure is disassembled. These results also suggest that bipartite nucleolus can exist in higher eukaryotes at certain period of the cell cycle. As structures are the fundamental basis of diverse cell activities, unveiling the structural reorganization of nucleolar FCs and DFCs may bring insights into the spatial-temporal compartmentalization of relevant cellular functions.
Collapse
Affiliation(s)
- Lingling Chen
- School of Life Sciences, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Yang Jiao
- School of Physical Education, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Xin Guan
- School of Life Sciences, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Xiliang Li
- School of Life Sciences, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Yunpeng Feng
- School of Life Sciences, Northeast Normal University, Changchun, Jilin Province 130024, China
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Mingda Jiao
- School of Life Sciences, Northeast Normal University, Changchun, Jilin Province 130024, China
| |
Collapse
|
47
|
Liu B, Pan CF, Yao GL, Wei K, Xia Y, Chen YJ. The long non-coding RNA AK001796 contributes to tumor growth via regulating expression of p53 in esophageal squamous cell carcinoma. Cancer Cell Int 2018; 18:38. [PMID: 29568233 PMCID: PMC5857070 DOI: 10.1186/s12935-018-0537-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the prevalent and deadly cancers worldwide, especially in China. Considering the poor prognosis of ESCC, the aim of this study is to dissect the effects of long non-coding RNA (lncRNA) AK001796 on cell proliferation and cell cycle in vitro and tumorigenicity in vivo, providing therapeutic targets for ESCC. Methods We conducted quantitative real time PCR to detect the expression level of lncRNA AK001796 in human ESCC tumor and adjacent non-tumor tissues, and analyzed the correlation between lncRNA AK001796 expression and clinicopathologic feature of ESCC patients. Then we knocked down the expression of lncRNA AK001796 in human ESCC cell lines Eca-109 and TE-1, and next inspected cell cycle and apoptosis condition in these cells using flow cytometry. Subsequently, we used CCK-8 assay to test proliferation ability of the lncRNA AK001796-silenced ESCC cells, and the MDM2/p53 signaling pathway in these cells was analyzed by western blot analysis. At last, the ESCC xenograft models were established to verify the role of lncRNA AK001796 on the occurrence and development of ESCC. Results In this study, we demonstrated that lncRNA AK001796 was significantly upregulated in ESCC tumor tissues compared to adjacent non-tumor tissues. Knockdown of lncRNA AK001796 inhibited ESCC cell growth, cell cycle, and tumor growth in a xenograft mouse model via regulating MDM2/p53 signal pathway. The expression of lncRNA AK001796 was positively correlated with MDM2 levels in human ESCC samples. Conclusions Overall, lncRNA AK001796 regulates cell proliferation and cell cycle via modulating MDM2/p53 signaling in ESCC, which provides a new insight into the treatment targets for ESCC. Trial registration This study was registrated in the Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (Trial registration: 2012-SR-127, Registered 20 January 2012) Electronic supplementary material The online version of this article (10.1186/s12935-018-0537-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Liu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Chun-Feng Pan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Guo-Liang Yao
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Ke Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Yang Xia
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Yi-Jiang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| |
Collapse
|
48
|
Ko JH, Lee SG, Yang WM, Um JY, Sethi G, Mishra S, Shanmugam MK, Ahn KS. The Application of Embelin for Cancer Prevention and Therapy. Molecules 2018. [PMID: 29522451 PMCID: PMC6017120 DOI: 10.3390/molecules23030621] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Embelin is a naturally-occurring benzoquinone compound that has been shown to possess many biological properties relevant to human cancer prevention and treatment, and increasing evidence indicates that embelin may modulate various characteristic hallmarks of tumor cells. This review summarizes the information related to the various oncogenic pathways that mediate embelin-induced cell death in multiple cancer cells. The mechanisms of the action of embelin are numerous, and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and modulate the NF-κB, p53, PI3K/AKT, and STAT3 signaling pathways. Embelin also induces autophagy in cancer cells; however, these autophagic cell-death mechanisms of embelin have been less reported than the apoptotic ones. Recently, several autophagy-inducing agents have been used in the treatment of different human cancers, although they require further exploration before being transferred from the bench to the clinic. Therefore, embelin could be used as a potential agent for cancer therapy.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Seok-Geun Lee
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Woong Mo Yang
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Srishti Mishra
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
49
|
Lee JR, Appelmann I, Miething C, Shultz TO, Ruderman D, Kim D, Mallick P, Lowe SW, Wang SX. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors. Theranostics 2018; 8:1389-1398. [PMID: 29507628 PMCID: PMC5835944 DOI: 10.7150/thno.20706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 12/12/2017] [Indexed: 01/23/2023] Open
Abstract
Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object.
Collapse
Affiliation(s)
- Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
| | - Iris Appelmann
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Cornelius Miething
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Internal Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tyler O. Shultz
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Daniel Ruderman
- Ellison Institute of Transformative Medicine of USC, USC Keck School of Medicine, Los Angeles, California, USA
| | - Dokyoon Kim
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Parag Mallick
- Department of Medicine, Department of Radiology, Stanford University, Stanford, California, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shan X. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
- Department of Medicine, Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
50
|
Yu SE, Park SH, Jang YK. Sumoylation of the histone demethylase KDM4A is required for binding to tumor suppressor p53 in HCT116 colon cancer cell lines. Anim Cells Syst (Seoul) 2018. [DOI: 10.1080/19768354.2018.1426628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Seung Eun Yu
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Initiative for Biological Function and Systems, Yonsei University, Seoul, Republic of Korea
| | - Su Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeun Kyu Jang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Initiative for Biological Function and Systems, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|