1
|
Timsit Y. The Expanding Universe of Extensions and Tails: Ribosomal Proteins and Histones in RNA and DNA Complex Signaling and Dynamics. Genes (Basel) 2025; 16:45. [PMID: 39858592 PMCID: PMC11764897 DOI: 10.3390/genes16010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
This short review bridges two biological fields: ribosomes and nucleosomes-two nucleoprotein assemblies that, along with many viruses, share proteins featuring long filamentous segments at their N- or C-termini. A central hypothesis is that these extensions and tails perform analogous functions in both systems. The evolution of these structures appears closely tied to the emergence of regulatory networks and signaling pathways, facilitating increasingly complex roles for ribosomes and nucleosome alike. This review begins by summarizing the structures and functions of ribosomes and nucleosomes, followed by a detailed comparison highlighting their similarities and differences, particularly in light of recent findings on the roles of ribosomal proteins in signaling and ribosome dynamics. The analysis seeks to uncover whether these systems operate based on shared principles and mechanisms. The nucleosome-ribosome analogy may offer valuable insights into unresolved questions in both fields. For instance, new structural insights from ribosomes might shed light on potential motifs formed by histone tails. From an evolutionary perspective, this study revisits the origins of signaling and regulation in ancient nucleoprotein assemblies, suggesting that tails and extensions may represent remnants of the earliest network systems governing signaling and dynamic control.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France;
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
2
|
Al-Marzooqi N, Al-Suhail H, AlRefai MO, Alhaj HA. Genomic factors associated with substance use disorder relapse: A critical review. Addict Behav Rep 2024; 20:100569. [PMID: 39553284 PMCID: PMC11568783 DOI: 10.1016/j.abrep.2024.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Several genetic and epigenetic factors contribute to the elevated substance use disorder (SUD) relapse vulnerability, yet a comprehensive investigation into these factors is lacking. This review aims to delve into current literature to highlight key genomic factors associated with SUD relapse. Focusing on genetic predisposition and epigenetic modifications the review synthesized research findings of several genetic polymorphisms, histone modifications and DNA methylation patterns contributing to the initiation of SUD and the elevated relapse susceptibility. Notably, specific gene polymorphisms, such as Dopamine Receptor D2 gene (DRD2), Gamma-Aminobutyric Acid Receptor Alpha gene (GABRA2), Catechol-O-methyltransferase (COMT) gene, Dopamine Transporter (DAT1) gene and others were identified to be connected to various patterns of SUD relapse. Furthermore, SUD initiation and relapse has been shown to be influenced by epigenetics. Specifically, CpG hypermethylation has been associated with severe alcohol use disorder in the 5' untranslated region of the Bladder Cancer Associated Protein gene (BLCAP) and the upstream region of the Active BCR Related gene (ABR). Co-users of cannabis and tobacco showed notable variations in CpG site methylation, especially at the Aryl Hydrocarbon Receptor Repressor (AHRR), and factor II receptor-like 3 gene sites (F2RL3). In conclusion, there is good evidence of certain associations between genomic factors and relapse to SUD. However, further research is needed to ascertain causality effects of these factors and develop novel interventions for effective treatment and relapse prevention.
Collapse
Affiliation(s)
- Noora Al-Marzooqi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hanan Al-Suhail
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad O. AlRefai
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hamid A Alhaj
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Matlosz S, Franzdóttir SR, Pálsson A, Jónsson ZO. DNA methylation reprogramming in teleosts. Evol Dev 2024; 26:e12486. [PMID: 38783650 DOI: 10.1111/ede.12486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Early embryonic development is crucially important but also remarkably diverse among animal taxa. Axis formation and cell lineage specification occur due to both spatial and temporal control of gene expression. This complex system involves various signaling pathways and developmental genes such as transcription factors as well as other molecular interactants that maintain cellular states, including several types of epigenetic marks. 5mC DNA methylation, the chemical modification of cytosines in eukaryotes, represents one such mark. By influencing the compaction of chromatin (a high-order DNA structure), DNA methylation can either repress or induce transcriptional activity. Mammals exhibit a reprogramming of DNA methylation from the parental genomes in the zygote following fertilization, and later in primordial germ cells (PGCs). Whether these periods of methylation reprogramming are evolutionarily conserved, or an innovation in mammals, is an emerging question. Looking into these processes in other vertebrate lineages is thus important, and teleost fish, with their extensive species richness, phenotypic diversity, and multiple rounds of whole genome duplication, provide the perfect research playground for answering such a question. This review aims to present a concise state of the art of DNA methylation reprogramming in early development in fish by summarizing findings from different research groups investigating methylation reprogramming patterns in teleosts, while keeping in mind the ramifications of the methodology used, then comparing those patterns to reprogramming patterns in mammals.
Collapse
Affiliation(s)
- Sébastien Matlosz
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | | | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
4
|
Siller Wilks SJ, Westneat DF, Heidinger BJ, Solomon J, Rubenstein DR. Epigenetic modification of the hypothalamic-pituitary-adrenal (HPA) axis during development in the house sparrow (Passer domesticus). Gen Comp Endocrinol 2023; 341:114336. [PMID: 37328040 DOI: 10.1016/j.ygcen.2023.114336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications such as DNA methylation are important mechanisms for mediating developmental plasticity, where ontogenetic processes and their phenotypic outcomes are shaped by early environments. In particular, changes in DNA methylation of genes within the hypothalamic-pituitary-adrenal (HPA) axis can impact offspring growth and development. This relationship has been well documented in mammals but is less understood in other taxa. Here, we use target-enriched enzymatic methyl sequencing (TEEM-seq) to assess how DNA methylation in a suite of 25 genes changes over development, how these modifications relate to the early environment, and how they predict differential growth trajectories in the house sparrow (Passer domesticus). We found that DNA methylation changes dynamically over the postnatal developmental period: genes with initially low DNA methylation tended to decline in methylation over development, whereas genes with initially high DNA methylation tended to increase in methylation. However, sex-specific differentially methylated regions (DMRs) were maintained across the developmental period. We also found significant differences in post-hatching DNA methylation in relation to hatch date, with higher levels of DNA methylation in nestlings hatched earlier in the season. Although these differences were largely absent by the end of development, a number of DMRs in HPA-related genes (CRH, MC2R, NR3C1, NR3C2, POMC)-and to a lesser degree HPG-related genes (GNRHR2)-predicted nestling growth trajectories over development. These findings provide insight into the mechanisms by which the early environment shapes DNA methylation in the HPA axis, and how these changes subsequently influence growth and potentially mediate developmental plasticity.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Luo M, Sarnowski TJ, Libault M, Ríos G, Charron JB, Mantri N, Zhang S. Editorial: New insights into mechanisms of epigenetic modifiers in plant growth and development, volume II. FRONTIERS IN PLANT SCIENCE 2023; 14:1213511. [PMID: 37409285 PMCID: PMC10319114 DOI: 10.3389/fpls.2023.1213511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023]
Affiliation(s)
- Ming Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, United States
| | - Gabino Ríos
- Department of Citriculture and Plant Production, Valencian Institute for Agricultural Research (IVIA), Valencia, Spain
| | - Jean-Benoit Charron
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Shoudong Zhang
- School of Agriculture, Yunnan University, Kunming, China
| |
Collapse
|
6
|
Zhu J, Li G, Huang Q, Wen J, Deng Y, Jiang J. TET3-mediated DNA demethylation and chromatin remodeling regulate T-2 toxin-induced human CYP1A1 expression and cytotoxicity in HepG2 cells. Biochem Pharmacol 2023; 211:115506. [PMID: 36948362 DOI: 10.1016/j.bcp.2023.115506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
T-2 toxin is a hazardous environmental pollutant that poses a risk to both farm animals and humans. Our previous research has reported that T-2 toxin highly induced the expression of human cytochrome P450 1A1 (CYP1A1), which may be a representative inducible marker of T-2 toxin and mediate the toxicity of T-2 toxin. In this study, we found that T-2 toxin decreased the DNA methylation levels of the CpG islands on the CYP1A1 promoter by inducing the expression of eleven translocation family protein 3 (TET3) and facilitating its binding to the promoter. These DNA methylation changes then generated an activated chromatin structure on the CYP1A1 promoter by releasing the repressor complex methyl-binding protein 2 (MeCP2) and histone deacetylase 2 (HDAC2), increasing the active histone modification markers, including H3K4ac, H3K9ac and H3K14ac, and facilitating RNA pol II and NRF1/Sp1 recruitment, which ultimately led to the transcriptional activation of CYP1A1. Interestingly, TET3-mediated CYP1A1 induction enhanced the cytotoxicity of T-2 toxin through inhibiting cell proliferation. Our results demonstrate that T-2 toxin-induced CYP1A1 expression is detrimental to cells and clearly show how T-2 toxin inhibits cell proliferation through regulating CYP1A1 expression from an epigenetic perspective. The findings broaden our current knowledge of the epigenetic mechanisms regulating environmental factors-induced CYP1A1 expression and cytotoxicity. TET3 may serve as a potential new target for toxicogenic detoxification.
Collapse
Affiliation(s)
- Jiahui Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, P. R. China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Guihong Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, P. R. China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Qiang Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, P. R. China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, P. R. China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, P. R. China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, P. R. China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
| |
Collapse
|
7
|
Khan AQ, Thielen L, Le Pen G, Krebs MO, Kebir O, Groh A, Deest M, Bleich S, Frieling H, Jahn K. Methylation pattern and mRNA expression of synapse-relevant genes in the MAM model of schizophrenia in the time-course of adolescence. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:110. [PMID: 36481661 PMCID: PMC9732294 DOI: 10.1038/s41537-022-00319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
Schizophrenia is highly heritable and aggregating in families, but genetics alone does not exclusively explain the pathogenesis. Many risk factors, including childhood trauma, viral infections, migration, and the use of cannabis, are associated with schizophrenia. Adolescence seems to be the critical period where symptoms of the disease manifest. This work focuses on studying an epigenetic regulatory mechanism (the role of DNA methylation) and its interaction with mRNA expression during development, with a particular emphasis on adolescence. The presumptions regarding the role of aberrant neurodevelopment in schizophrenia were tested in the Methyl-Azoxy-Methanol (MAM) animal model. MAM treatment induces neurodevelopmental disruptions and behavioral deficits in off-springs of the treated animals reminiscent of those observed in schizophrenia and is thus considered a promising model for studying this pathology. On a gestational day-17, adult pregnant rats were treated with the antimitotic agent MAM. Experimental animals were divided into groups and subgroups according to substance treatment (MAM and vehicle agent [Sham]) and age of analysis (pre-adolescent and post-adolescent). Methylation and mRNA expression analysis of four candidate genes, which are often implicated in schizophrenia, with special emphasis on the Dopamine hypothesis i.e., Dopamine receptor D2 (Drd2), and the "co-factors" Disrupted in schizophrenia 1 (DISC1), Synaptophysin (Syp), and Dystrobrevin-binding protein 1 (Dtnbp1), was performed in the Gyrus cingulum (CING) and prefrontal cortex (PFC). Data were analyzed to observe the effect of substance treatment between groups and the impact of adolescence within-group. We found reduced pre-adolescent expression levels of Drd2 in both brain areas under the application of MAM. The "co-factor genes" did not show high deviations in mRNA expression levels but high alterations of methylation rates under the application of MAM (up to ~20%), which diminished in the further time course, reaching a comparable level like in Sham control animals after adolescence. The pre-adolescent reduction in DRD2 expression might be interpreted as downregulation of the receptor due to hyperdopaminergic signaling from the ventral tegmental area (VTA), eventually even to both investigated brain regions. The notable alterations of methylation rates in the three analyzed co-factor genes might be interpreted as attempt to compensate for the altered dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Abdul Qayyum Khan
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,grid.444940.9University of Management and Technology—School of Pharmacy, 72-A Raiwind Rd, Dubai Town, Lahore Pakistan
| | - Lukas Thielen
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gwenaëlle Le Pen
- grid.512035.0Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Pathophysiology of Psychiatric disorders: Development and Vulnerability, U1266, 102-108 Rue de la Santé, 75014 Paris, France
| | - Marie-Odile Krebs
- grid.512035.0Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Pathophysiology of Psychiatric disorders: Development and Vulnerability, U1266, 102-108 Rue de la Santé, 75014 Paris, France ,GHU Paris Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014 Paris, France
| | - Oussama Kebir
- grid.512035.0Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Pathophysiology of Psychiatric disorders: Development and Vulnerability, U1266, 102-108 Rue de la Santé, 75014 Paris, France ,GHU Paris Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014 Paris, France
| | - Adrian Groh
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Maximilian Deest
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Stefan Bleich
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Helge Frieling
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kirsten Jahn
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
8
|
Chen X, Xu X, Zhang S, Munir N, Zhu C, Zhang Z, Chen Y, Xuhan X, Lin Y, Lai Z. Genome-wide circular RNA profiling and competing endogenous RNA regulatory network analysis provide new insights into the molecular mechanisms underlying early somatic embryogenesis in Dimocarpus longan Lour. TREE PHYSIOLOGY 2022; 42:1876-1898. [PMID: 35313353 DOI: 10.1093/treephys/tpac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Circular RNAs (circRNAs) are widely involved in plant growth and development. However, the function of circRNAs in plant somatic embryogenesis (SE) remains elusive. Here, by using high-throughput sequencing, a total of 5029 circRNAs were identified in the three stages of longan (Dimocarpus longan Lour.) early SE. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that differentially expressed (DE) circRNA host genes were enriched in the 'non-homologous end-joining' (NHEJ) and 'butanoate metabolism' pathways. In addition, the reactive oxygen species (ROS) content during longan early SE was determined. The results indicated that ROS-induced DNA double-strand breaks may not depend on the NHEJ repair pathway. Correlation analyses of the levels of related metabolites (glutamate, γ-aminobutyrate and pyruvate) and the expression levels of circRNAs and their host genes involved in butanoate metabolism were performed. The results suggested that circRNAs may act as regulators of the expression of cognate mRNAs, thereby affecting the accumulation of related compounds. A competing endogenous RNA (ceRNA) network of DE circRNAs, DE mRNAs, DE long noncoding RNAs (lncRNAs) and DE microRNAs (miRNAs) was constructed. The results showed that the putative targets of the noncoding RNA (ncRNAs) were significantly enriched in the KEGG pathways 'mitogen-activated protein kinase signaling' and 'nitrogen metabolism'. Furthermore, the expression patterns of the candidate circRNAs, lncRNAs, miRNAs and mRNAs confirmed the negative correlation between miRNAs and ceRNAs. In addition, two circRNA overexpression vectors were constructed to further verify the ceRNA network correlations in longan early SE. Our study revealed the potential role of circRNAs in longan early SE, providing new insights into the intricate regulatory mechanism underlying plant SE.
Collapse
Affiliation(s)
- Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Nigarish Munir
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Chen Zhu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Xu Xuhan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| |
Collapse
|
9
|
Berger T, Vanselow J, Conley A, Almand TJ, Nitta-Oda BS. Multifaceted epigenetic regulation of porcine testicular aromatase. Mol Cell Endocrinol 2022; 541:111526. [PMID: 34856344 DOI: 10.1016/j.mce.2021.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022]
Abstract
Testicular aromatase catalyzes the synthesis of estradiol, which contributes to regulation of porcine Sertoli cell proliferation and postpubertal maintenance of Sertoli cell numbers. Although aromatase enzymatic activity decreases with age and is persistently reprogrammed by prepubertal treatment with the aromatase inhibitor letrozole, the molecular bases for regulation have not been identified. DNA methylation was examined as a potential regulatory mechanism using DNA from Leydig cells isolated from 16-, 40-, and 68-week-old boars and from 68- week-old littermates treated with the aromatase inhibitor, letrozole. Methylation levels of individual CpG dinucleotides located in the distal untranslated exon 1 of the relevant aromatase encoding gene, CYP19A3, were quite high in Leydig cell DNA, and increased further with maturity of boar (P < 0.05), while aromatase activity and transcript abundance decreased more than two-fold. However, reduced aromatase activity following letrozole treatment was not accompanied by altered DNA methylation. Testicular expression of miR378 was altered by prepubertal treatment with letrozole. The data provide evidence for two different epigenetic mechanisms that regulate aromatase expression and enzymatic activity in the boar testis.
Collapse
Affiliation(s)
- Trish Berger
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA.
| | - Jens Vanselow
- Research Institute for Farm Animal Biology FBN, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Alan Conley
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Tana Jo Almand
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA.
| | - Barbara S Nitta-Oda
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
10
|
de Nicola F, Corleone G, Goeman F. Dissecting the Epigenome Driving Drug Resistance by ATAC-Seq. Methods Mol Biol 2022; 2535:171-185. [PMID: 35867231 DOI: 10.1007/978-1-0716-2513-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transcription of each gene is tightly regulated by elements like promoters, enhancers, silencers and insulators. These elements determine the temporal and tissue-specific expression in development and disease. Drug resistance is the major obstacle in successfully treating cancer patients. In the recent years, it became evident that epigenetic changes represent one of the mechanisms that contribute to the onset and progression of cancer but also to the development of therapy resistance. The assay for transposase-accessible chromatin coupled with next generation sequencing (ATAC-seq) is a fast and easy technique to track epigenetic changes that result in different opening of the chromatin in regulatory regions genome-wide. The transposase cuts DNA in regions that are open and therefore accessible for transcription factors, regulatory RNAs and proteins that alter the architectural structure of the DNA and drive or inhibit transcription through the RNA polymerase. Here we describe a detailed protocol to perform an ATAC-seq of cells from culture or tissue.
Collapse
Affiliation(s)
- Francesca de Nicola
- SAFU, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corleone
- SAFU, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Frauke Goeman
- SAFU, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
11
|
Kimijima H, Miyagawa K, Kurokawa K, Mochida-Saito A, Takahashi K, Takeda H, Tsuji M. Trichostatin A, a histone deacetylase inhibitor, alleviates the emotional abnormality induced by maladaptation to stress in mice. Neurosci Lett 2022; 766:136340. [PMID: 34774702 DOI: 10.1016/j.neulet.2021.136340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Recent reports have implied that aberrant biochemical processes in the brain are frequently accompanied by subtle shifts in the cellular epigenetic profile that might underlie the pathogenic progression of psychiatric disorders. The aim of the present study was to examine the effect of trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, on the emotional abnormality induced by maladaptation to stress in mice. Mice were exposed to repeated restraint stress for 240 min/day for 14 days. We applied dosing schedules. In one schedule, from the 3rd day of stress exposure, mice were treated with TSA (1650 μM/4 μL, i.c.v.) immediately after the daily exposure to restraint stress. In the other schedule, from the 1st day of stress exposure, mice were treated with TSA 2 h before exposure to restraint stress. After the final exposure to restraint stress, the emotionality of mice was evaluated using the hole-board test. Mice that were exposed to restraint stress for 240 min/day for 14 days showed a decrease in head-dipping behavior. This decreased emotionality observed in stress-maladaptive mice was significantly recovered by chronic treatment with TSA 2 h before daily exposure to restraint stress, which confirmed the development of stress adaptation. On the other hand, no such stress adaptation was observed under chronic treatment with TSA immediately after daily stress exposure. A biochemical study showed that tryptophan hydroxylase, the rate-limiting enzyme in serotonin (5-HT) synthesis, was increased in midbrain containing raphe nuclei obtained from stress-adapted mice that were chronically treated with TSA 2 h before daily stress exposure. These findings suggest that an HDAC inhibitor may have a beneficial effect on stress adaptation by affecting 5-HT neural function in the brain and alleviate the emotional abnormality under conditions of excessive stress.
Collapse
Affiliation(s)
- Hidenao Kimijima
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka 831-8501, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| |
Collapse
|
12
|
Battistini F, Dans PD, Terrazas M, Castellazzi CL, Portella G, Labrador M, Villegas N, Brun-Heath I, González C, Orozco M. The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function. PLoS Comput Biol 2021; 17:e1009547. [PMID: 34748533 PMCID: PMC8601608 DOI: 10.1371/journal.pcbi.1009547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/18/2021] [Accepted: 10/10/2021] [Indexed: 12/30/2022] Open
Abstract
We present a comprehensive, experimental and theoretical study of the impact of 5-hydroxymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate an epigenetic variant with structural and physical properties similar to those of 5-methylcytosine. Experiments and simulations demonstrate that 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) generally lead to stiffer DNA than normal cytosine, with poorer circularization efficiencies and lower ability to form nucleosomes. In particular, we can rule out the hypothesis that hydroxymethylation reverts to unmodified cytosine physical properties, as hmC is even more rigid than mC. Thus, we do not expect dramatic changes in the chromatin structure induced by differences in physical properties between d(mCpG) and d(hmCpG). Conversely, our simulations suggest that methylated-DNA binding domains (MBDs), associated with repression activities, are sensitive to the substitution d(mCpG) ➔ d(hmCpG), while MBD3 which has a dual activation/repression activity is not sensitive to the d(mCpG) d(hmCpG) change. Overall, while gene activity changes due to cytosine methylation are the result of the combination of stiffness-related chromatin reorganization and MBD binding, those associated to 5-hydroxylation of methylcytosine could be explained by a change in the balance of repression/activation pathways related to differential MBD binding. In Eukaryotic cells, DNA epigenetic modifications play an important role in gene expression and regulation, and protein recognition. In this work we investigate the physical implications of cytosine 5-hydroxymethylation on DNA, its structural and flexibility differences with methylated and unmodified cytosine using molecular dynamics, biophysical experiments and NMR spectroscopy. In particular the effect of hydroxyl group on free energy of nucleosome and Methyl binding Protein (MBD) binding, comparing in silico and experimental data to shed light on the effect of the reduced flexibility and the direct protein-DNA recognition.
Collapse
Affiliation(s)
- Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pablo D. Dans
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República (UdelaR), Salto, Uruguay
- Functional Genomics Lab., Institut Pasteur of Montevideo, Montevideo, Uruguay
| | - Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Chiara L. Castellazzi
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Guillem Portella
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
- Chemistry Department, University of Cambridge, Cambridge, United Kingdom
| | - Mireia Labrador
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Núria Villegas
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlos González
- Instituto Química Física Rocasolano, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
13
|
Weiner AKM, Cerón-Romero MA, Yan Y, Katz LA. Phylogenomics of the Epigenetic Toolkit Reveals Punctate Retention of Genes across Eukaryotes. Genome Biol Evol 2021; 12:2196-2210. [PMID: 33049043 DOI: 10.1093/gbe/evaa198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Epigenetic processes in eukaryotes play important roles through regulation of gene expression, chromatin structure, and genome rearrangements. The roles of chromatin modification (e.g., DNA methylation and histone modification) and non-protein-coding RNAs have been well studied in animals and plants. With the exception of a few model organisms (e.g., Saccharomyces and Plasmodium), much less is known about epigenetic toolkits across the remainder of the eukaryotic tree of life. Even with limited data, previous work suggested the existence of an ancient epigenetic toolkit in the last eukaryotic common ancestor. We use PhyloToL, our taxon-rich phylogenomic pipeline, to detect homologs of epigenetic genes and evaluate their macroevolutionary patterns among eukaryotes. In addition to data from GenBank, we increase taxon sampling from understudied clades of SAR (Stramenopila, Alveolata, and Rhizaria) and Amoebozoa by adding new single-cell transcriptomes from ciliates, foraminifera, and testate amoebae. We focus on 118 gene families, 94 involved in chromatin modification and 24 involved in non-protein-coding RNA processes based on the epigenetics literature. Our results indicate 1) the presence of a large number of epigenetic gene families in the last eukaryotic common ancestor; 2) differential conservation among major eukaryotic clades, with a notable paucity of genes within Excavata; and 3) punctate distribution of epigenetic gene families between species consistent with rapid evolution leading to gene loss. Together these data demonstrate the power of taxon-rich phylogenomic studies for illuminating evolutionary patterns at scales of >1 billion years of evolution and suggest that macroevolutionary phenomena, such as genome conflict, have shaped the evolution of the eukaryotic epigenetic toolkit.
Collapse
Affiliation(s)
- Agnes K M Weiner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| |
Collapse
|
14
|
Jiang J, Zhu J, Liu Q, Zhang T, Wen J, Xia J, Deng Y. Role of DNA methylation-related chromatin remodeling in aryl hydrocarbon receptor-dependent regulation of T-2 toxin highly inducible Cytochrome P450 1A4 gene. FASEB J 2021; 35:e21469. [PMID: 33788981 DOI: 10.1096/fj.202002570rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/11/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by food-contaminating fungi, which lead to global epigenetic changes and cause toxicity to both farm animals and humans. However, whether mycotoxins induce gene-specific epigenetic alterations associated with inducible downstream gene expression is unclear as are the underlying regulatory mechanisms. Here, we found that T-2 toxin and its deacetylated metabolites but not deoxynivalenol (DON) or other representative mycotoxins highly induced the expression of cytochrome P450 1A4 (CYP1A4) in both Leghorn male hepatoma (LMH) cells and chicken primary hepatocytes, and this effect was related to the regulation of both aryl hydrocarbon receptor (AhR) and DNA methylation. We used methylation-sensitive restriction enzyme digestion-qPCR (MSRE-qPCR) and chromatin immunoprecipitation (ChIP) assays and found that the binding of DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) to highly methylated CpG island 3-2 at the enhancer of CYP1A4 was accompanied by the recruitment of the repressive histone modification marker H3K27me3, inducing a silent state. In turn, T-2 toxin stimulation enriched the binding of AhR to demethylated CpG island 3-2, which facilitated p300 and H3K9ac recruitment and ultimately generated an activated chromatin structure at the enhancer by increasing the active histone modification markers, including H3K4me3, H3K27ac, and H3K14ac. Interestingly, T-2 toxin-induced AhR activation also facilitated RNA polymerase II binding to CpG island 2, which may form a transcriptionally active chromatin structure at the promoter and ultimately transactivate CYP1A4. Our findings provide novel insights into the epigenetic regulation of T-2 toxin-induced gene expression.
Collapse
Affiliation(s)
- Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Jiahui Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Qian Liu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Tingting Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Jianhong Xia
- Key Laboratory of Regenerative Biology of Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| |
Collapse
|
15
|
Tarozzi N, Nadalini M, Coticchio G, Zacà C, Lagalla C, Borini A. The paternal toolbox for embryo development and health. Mol Hum Reprod 2021; 27:6311671. [PMID: 34191013 DOI: 10.1093/molehr/gaab042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/30/2021] [Indexed: 11/12/2022] Open
Abstract
The sperm is essential for reconstitution of embryonic diploidy and highly specialized developmental functions. Immediately after gamete fusion, the sperm-borne PLC-zeta triggers activation, generating intracellular free Ca2+ oscillations. Mutations in the PLC-zeta encoding gene are associated with the absence of this factor in mature sperm and inability to achieve fertilization. Sperm play also a role in the greater game of the choreography of fertilization. In the human, the sperm centrioles are introduced into the oocyte environment with gamete fusion. They interact with the oocyte cytoskeletal apparatus to form a functional pair of centrosomes and ultimately regulate pronuclear juxtaposition in preparation for the first cleavage. As a consequence, the fidelity of chromosome segregation during the first cell divisions depends on the function of sperm centrioles. Sperm DNA integrity is essential for embryo development and health. Damaged DNA does not impact on the sperm fertilization ability following ICSI. However, detrimental effects emerge at pre- and post-implantation stages. Sperm-specific epigenetic factors also play an active role in the regulation of embryonic development, as shown by correlations between reduced embryo morphological quality and incorrect chromatin packaging during spermiogenesis or abnormal methylation of sperm CpG islands. This functional landscape demonstrates that the contribution of the sperm to development goes far beyond its well-established role in fertilization. Clinical studies confirm this view and indicate sperm function as a crucial aspect of research to increase the efficacy of assisted reproduction treatments.
Collapse
|
16
|
Yi JM. DNA Methylation Change Profiling of Colorectal Disease: Screening towards Clinical Use. Life (Basel) 2021; 11:life11050412. [PMID: 33946400 PMCID: PMC8147151 DOI: 10.3390/life11050412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Colon cancer remains one of the leading causes of cancer-related deaths worldwide. Transformation of colon epithelial cells into invasive adenocarcinomas has been well known to be due to the accumulation of multiple genetic and epigenetic changes. In the past decade, the etiology of inflammatory bowel disease (IBD) which is characterized by chronic inflammation of the intestinal mucosa, was only partially explained by genetic studies providing susceptibility loci, but recently epigenetic studies have provided critical evidences affecting IBD pathogenesis. Over the past decade, A deep understanding of epigenetics along with technological advances have led to identifying numerous genes that are regulated by promoter DNA hypermethylation in colorectal diseases. Recent advances in our understanding of the role of DNA methylation in colorectal diseases could improve a multitude of powerful DNA methylation-based biomarkers, particularly for use as diagnosis, prognosis, and prediction for therapeutic approaches. This review focuses on the emerging potential for translational research of epigenetic alterations into clinical utility as molecular biomarkers. Moreover, this review discusses recent progress regarding the identification of unknown hypermethylated genes in colon cancers and IBD, as well as their possible role in clinical practice, which will have important clinical significance, particularly in the era of the personalized medicine.
Collapse
Affiliation(s)
- Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Korea;
- Innovative Therapeutics Research Institute, College of Medicine, Inje University, Busan 47392, Korea
| |
Collapse
|
17
|
Weiner AKM, Katz LA. Epigenetics as Driver of Adaptation and Diversification in Microbial Eukaryotes. Front Genet 2021; 12:642220. [PMID: 33796133 PMCID: PMC8007921 DOI: 10.3389/fgene.2021.642220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Agnes K M Weiner
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA, United States.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
18
|
Jeyaraj SE, Sivasangari K, García-Colunga J, Rajan KE. Environmental enrichment enhances sociability by regulating glutamate signaling pathway through GR by epigenetic mechanisms in amygdala of Indian field mice Mus booduga. Gen Comp Endocrinol 2021; 300:113641. [PMID: 33017584 DOI: 10.1016/j.ygcen.2020.113641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Environmental enrichment (EE) dynamically regulates gene expression and synaptic plasticity with positive consequences on behavior. The present study was performed on field-mice to explore the effects of EE on both captive-condition inducing social stress and epigenetic changes of molecules resilience stress. For this purpose, field-mice were caught and allowed to habituate in standard laboratory conditions for 7 days. The next day animals were randomly assigned to three groups: i) mice at short-term standard condition (STSC); which were subjected to social interaction test (SIT) on day 9, ii) mice continuously maintainedfor additional 30 days, with these long-term standard conditions (LTSC), and iii) mice maintained in an EE cage for additional 30 days. After achieving SIT, we examined epigenetic changes of a repertory of molecules associated with resilience stress, by determining their levels by Western blot. Thus, the main findings were that during SIT, EE exerted more social interaction of field-mice with the strangers compared with STSC and LTSC mice. Related with social behavior results, we found that in mice subjected to EE the levels of histone 3 lysine 9 di-methylation (H3K9me2), glucocorticoid receptor (GR), N-methyl-D asparate (NMDA) receptor subunits NR2A and NR2B, postsynaptic density protein-95 (PSD-95), and mature brain-derived neurotrophic factor (mBDNF) were significantly elevated; whereas the levels of DNA methyltransferase-3A (DNMT3A), methyl-CpG-binding protein-2 (MeCP2), repressor element-1 silencing transcription factor (REST), H3K4me2 and lysine demethylase-1A (KDM1A) decreased. These results suggest that enhanced sociability of EE mice could be mediated, in part, by altered expression of molecules regulating glutamate signaling pathway through GR by epigenetic mechanisms.
Collapse
Affiliation(s)
- Soundarrajan Edwin Jeyaraj
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Karunanithi Sivasangari
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
19
|
Kanakamani S, Suresh PS, Venkatesh T. Regulation of processing bodies: From viruses to cancer epigenetic machinery. Cell Biol Int 2020; 45:708-719. [PMID: 33325125 DOI: 10.1002/cbin.11527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/17/2020] [Accepted: 12/13/2020] [Indexed: 11/08/2022]
Abstract
Processing bodies (PBs) are 100-300 nm cytoplasmic messenger ribonucleoprotein particle (mRNP) granules that regulate eukaryotic gene expression. These cytoplasmic compartments harbor messenger RNAs (mRNAs) and several proteins involved in mRNA decay, microRNA silencing, nonsense-mediated mRNA decay, and splicing. Though membrane-less, PB structures are maintained by RNA-protein and protein-protein interactions. PB proteins have intrinsically disordered regions and low complexity domains, which account for its liquid to liquid phase separation. In addition to being dynamic and actively involved in the exchange of materials with other mRNPs and organelles, they undergo changes on various cellular cues and environmental stresses, including viral infections. Interestingly, several PB proteins are individually implicated in cancer development, and no study has addressed the effects on PB dynamics after epigenetic modifications of cancer-associated PB genes. In the current review, we summarize modulations undergone by P bodies or P body components upon viral infections. Furthermore, we discuss the selective and widely investigated PB proteins that undergo methylation changes in cancer and their potential as biomarkers.
Collapse
Affiliation(s)
- Sunmathy Kanakamani
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| | - Padmanaban S Suresh
- Department of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| |
Collapse
|
20
|
Status epilepticus induced Gadd45b is required for augmented dentate neurogenesis. Stem Cell Res 2020; 49:102102. [PMID: 33279798 DOI: 10.1016/j.scr.2020.102102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
In animal models with temporal lobe epilepsy (TLE), the status epilepticus (SE) leads to a dramatic increase in number of newly born neuron in the subgranular zone (SGZ) of dentate gyrus. How the SE confers a modulation in the dentate neurogenesis is mostly unknown. Gadd45b is involved in epigenetic gene activation by DNA demethylation. This study was performed to present a novel mechanism underling SE-induced dentate neurogenesis. A transient induction (12 hrs to 3 days) of Gadd45b was observed in dentate gyrus of mice after pilocarpine-induced SE. Labeling the dividing cells with BrdU, we next found that the induction of Gadd45b was required to increase the rate of cell proliferation in the dentate gyrus at 7 and 14 days after SE. Afterward, the DNA methylation levels for candidate growth factor genes critical for the adult neurogenesis were assayed with Sequenom MassARRAY Analyzer. The results indicated that Gadd45b was necessary for SE-induced DNA demethylation of specific promoters and expression of corresponding genes in the dentate gyrus, including brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF-2). Using Timm staining, we further suggested that SE-induced Gadd45b might contribute to the subsequent mossy fiber sprouting (MFS) in the chronically epileptic hippocampus via epigenetic regulation of dentate neurogenesis at early stage after SE. Together, Gadd45b links pilocarpine-induced SE to epigenetic DNA modification of secreted factors in the dentate gyrus, leading to extrinsic modulation on the neurogenesis.
Collapse
|
21
|
TET1 Deficiency Impairs Morphogen-free Differentiation of Human Embryonic Stem Cells to Neuroectoderm. Sci Rep 2020; 10:10343. [PMID: 32587369 PMCID: PMC7316867 DOI: 10.1038/s41598-020-67143-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
The TET family of 5-methylcytosine (5mC) dioxygenases plays critical roles in development by modifying DNA methylation. Using CRISPR, we inactivated the TET1 gene in H9 human embryonic stem cells (hESCs). Mutant H9 hESCs remained pluripotent, even though the level of hydroxymethylcytosine (5hmC) decreased to 30% of that in wild-type cells. Neural differentiation induced by dual SMAD inhibitors was not significantly affected by loss of TET1 activity. However, in a morphogen-free condition, TET1 deficiency significantly reduced the generation of NESTIN+SOX1+ neuroectoderm cells from 70% in wild-type cells to 20% in mutant cells. This was accompanied by a 20-fold reduction in the expression level of PAX6 and a significant decrease in the amount of 5hmC on the PAX6 promoter. Overexpression of the TET1 catalytic domain in TET1-deficient hESCs significantly increased 5hmC levels and elevated PAX6 expression during differentiation. Consistent with these in vitro data, PAX6 expression was significantly decreased in teratomas formed by TET1-deficient hESCs. However, TET1 deficiency did not prevent the formation of neural tube-like structures in teratomas. Our results suggest that TET1 deficiency impairs the intrinsic ability of hESCs to differentiate to neuroectoderm, presumably by decreasing the expression of PAX6, a key regulator in the development of human neuroectoderm.
Collapse
|
22
|
Qin Q, Wang C, Zhou Y, Qin H, Zhao C, Yang L, Yu T, Liu S. Rapid Genomic and Epigenetic Alterations in Gynogenetic Carassius auratus Red Var. Derived from Distant Hybridization. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:433-442. [PMID: 32249338 DOI: 10.1007/s10126-020-09963-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Gynogenesis is an important reproductive mode in fish and is used fairly widely in genetic breeding. Gynogenetic offspring (2n = 100, abbreviated as GRCC) were generated through the distant hybridization of Carassius auratus red var. (2n = 100, RCC) (♀) × Megalobrama amblycephala (2n = 48, BSB) (♂), in which male and female individual both had normal gonadal development. To better understand genomic and epigenetic consequences of GRCC, fluorescence in situ hybridization, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analysis were performed on GRCC and RCC. GRCC possess two sets of RCC-derived chromosomes and one to three microchromosomes, in which 30.44% of bands inherit these patterns from red crucian carp and blunt snout bream, and 24.12% of novel bands were found by amplified fragment length polymorphism analysis. In terms of methylation, the DNA methylation level of GRCC was lower than that of their parents, and 45.29% of methylation patterns in GRCC were altered compared with their parents. GRCC show a special genetic composition in the genome, in which genome-wide changes and the adjustment of DNA methylation levels and patterns occurred. The result revealed that genetic and epigenetic changes were rapidly triggered in gynogenetic fish that were derived from distant hybridization, showing a special genetic composition in the genome. This study provides new insights into fish genetic breeding and the evolutionary patterns of the vertebrate genome.
Collapse
Affiliation(s)
- Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yuwei Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Li Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Tingting Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Kravets AP, Sokolova DA. Epigenetic factors of individual radiosensitivity and adaptive capacity. Int J Radiat Biol 2020; 96:999-1007. [PMID: 32396015 DOI: 10.1080/09553002.2020.1767819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: Studying the relationship between epigenetic variability with different individual radiosensitivity and adaptive capacity.Material and method: Using a simple and convenient experimental model - maize seedlings with different germination terms and epigenetic patterns - the hypothesis was tested that homogeneous genetically but epigenetic different organisms have different radiosensitivity and radioadaptive capacity. Differences in the DNA methylation profiles of individual subpopulations of seedlings were used as a marker of epigenetic differences and the yield of chromosomal aberration was used as an indicator of DNA vulnerability and its changes under different UV-C irradiation modes. In two series of experiments involving а UV-C acute single and exposure according to the scheme 'adaptive - challenging', the investigation of possible biological importance of epigenetic polymorphism has been performed. The study used a cytogenetic analysis of the yield of chromosomal aberrations and restriction analysis followed by ITS-ISSR- PCR.Results: Significant differences have been established in chromosome aberration yield and DNA methylation profile in control and under UV-C exposure for seedlings of subpopulations differing in time of germination. The differences in the DNA methylation profiles and the yield of chromosomal aberrations in the control subpopulations of seedlings of different germination term indicate the influence of the DNA methylation profile on DNA damage by regular metabolic factors, such as thermal vibrations or reactive oxygen species (ROS). This phenomenon can be explained with different chromatin conformation determining structural or 'passive' resistance, which provides different DNA availability to damage. Methylation switching into de novo under different mode radiation exposure could become a marker of gene expression changes due to induced repair and protecting.Conclusions: The obtained data indicate the importance of epigenetic factors in determining the radio-resistance and adaptive capacity of organisms. It points out that the epigenetic mechanisms that determine the choice of the metabolic pattern also contribute to the individual radiosensitivity and adaptive capacity of the organisms. This contribution is determined by two ways. First, the DNA methylation profile affects the initial damage processes and secondly, the type of methylation switching into de novo is associated with the further development of protection and repair processes.
Collapse
Affiliation(s)
- Alexandra P Kravets
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Kiev, Ukraine
| | - Daryna A Sokolova
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Kiev, Ukraine
| |
Collapse
|
24
|
Norvil AB, AlAbdi L, Liu B, Tu YH, Forstoffer NE, Michie A, Chen T, Gowher H. The acute myeloid leukemia variant DNMT3A Arg882His is a DNMT3B-like enzyme. Nucleic Acids Res 2020; 48:3761-3775. [PMID: 32123902 PMCID: PMC7144950 DOI: 10.1093/nar/gkaa139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
We have previously shown that the highly prevalent acute myeloid leukemia (AML) mutation, Arg882His, in DNMT3A disrupts its cooperative mechanism and leads to reduced enzymatic activity, thus explaining the genomic hypomethylation in AML cells. However, the underlying cause of the oncogenic effect of Arg882His in DNMT3A is not fully understood. Here, we discovered that DNMT3A WT enzyme under conditions that favor non-cooperative kinetic mechanism as well as DNMT3A Arg882His variant acquire CpG flanking sequence preference akin to that of DNMT3B, which is non-cooperative. We tested if DNMT3A Arg882His could preferably methylate DNMT3B-specific target sites in vivo. Rescue experiments in Dnmt3a/3b double knockout mouse embryonic stem cells show that the corresponding Arg878His mutation in mouse DNMT3A severely impairs its ability to methylate major satellite DNA, a DNMT3A-preferred target, but has no overt effect on the ability to methylate minor satellite DNA, a DNMT3B-preferred target. We also observed a previously unappreciated CpG flanking sequence bias in major and minor satellite repeats that is consistent with DNMT3A and DNMT3B specificity suggesting that DNA methylation patterns are guided by the sequence preference of these enzymes. We speculate that aberrant methylation of DNMT3B target sites could contribute to the oncogenic potential of DNMT3A AML variant.
Collapse
Affiliation(s)
- Allison B Norvil
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Lama AlAbdi
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yu Han Tu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nicole E Forstoffer
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Amie R Michie
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
25
|
Li J, Jiao J, Gao Y, Zhang Y, Zhang L. Association between methylation in nasal epithelial TSLP gene and chronic rhinosinusitis with nasal polyps. Allergy Asthma Clin Immunol 2019; 15:71. [PMID: 31768185 PMCID: PMC6873565 DOI: 10.1186/s13223-019-0389-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
Background This study was performed to determine whether there was any association between abnormal DNA methylation of a thymic stromal lymphopoietin (TSLP) locus and pathogenesis of chronic rhinosinusitis (CRS). Methods A total of 48 CRS patients with nasal polyps (CRSwNP), 28 CRS patients without nasal polyps (CRSsNP) and 21 control subjects were enrolled into the study; and evaluated for serum total IgE level, olfactory score and nasal resistance. Samples were obtained from nasal polyps of CRSwNP patients, ethmoid mucosae of CRSsNP patients and inferior turbinate (IT) mucosa of control subjects during surgery, and used to isolate purified primary human nasal epithelial cells (HNECs). Genomic DNA was extracted from purified primary HNECs of each subject and DNA methylation ratios for a selected region of the TSLP gene were screened the using MassARRAY EpiTYPER. Results A total of 17 CpG units were analyzed; of which two CpG units (CpG3 and 22:23:24) had increased methylation ratios in the CRSwNP patients compared to the CRSsNP and control subjects after correction for false discovery rate (FDR) (Q < 0.1). The methylation ratios at both CpG3 and CpG22:23:24 units were positively correlated with olfactory score (r = 0.41, P = 0.0001; r = 0.25, P = 0.021) and unilateral nasal resistance at 75 Pa (r = 0.24, P = 0.04; r = 0.24, P = 0.036) and 150 Pa (r = 0.34, P = 0.004; r = 0.25, P = 0.031). Total nasal resistance at 75 Pa/150 Pa or serum total IgE levels were not correlated with the methylation ratios at either CpG unit. Conclusions Increased DNA methylation at the TSLP locus is likely to be associated with CRSwNP pathogenesis; however these findings need to be confirmed in larger multicentre group studies.
Collapse
Affiliation(s)
- Jingyun Li
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17 HouGouHuTong, DongCheng District, Beijing, 100005 China
| | - Jian Jiao
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17 HouGouHuTong, DongCheng District, Beijing, 100005 China
| | - Yunbo Gao
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17 HouGouHuTong, DongCheng District, Beijing, 100005 China
| | - Yuan Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17 HouGouHuTong, DongCheng District, Beijing, 100005 China.,3Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, 100176 China
| | - Luo Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17 HouGouHuTong, DongCheng District, Beijing, 100005 China.,3Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, 100176 China
| |
Collapse
|
26
|
Sharma P, Ghanghas P, Kaushal N, Kaur J, Kaur P. Epigenetics and oxidative stress: A twin-edged sword in spermatogenesis. Andrologia 2019; 51:e13432. [PMID: 31583745 DOI: 10.1111/and.13432] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/16/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Spermatogenesis is a series of complex events involving a delicate balance between cell proliferation and cell differentiation. Aggregation of chromatins and epigenetic modifications play a vital role in spermatogenesis via regulation of molecular pathways to maintain testicular homeostasis. These epigenetic mechanisms consist of histone modification, chromatin remodelling, DNA methylation and miRNA, etc., which reportedly are critical players in spermatogenesis. One such mechanism involves regulation of oxidative stress in the male reproductive system. The fact that testicular cells contain plenty of unsaturated fatty acids and undergo division at a high rate makes spermatogenic cells highly susceptible to oxidative insult leading to deleterious effect on spermatozoa, which may culminate in infertility in men. Although the correlation between ROS-mediated oxidative stress and epigenetic alterations has been indicated, research in this regard is still in infancy. Further, the fact that environmental and life style factors are critical determinants of spermatogenic potential indicates the importance of epigenetic regulation of key molecular events in spermatogenesis. Therefore, the current review aims to discuss the ROS-induced epigenetic deregulation of the molecular mechanism(s) involved in spermatogenesis.
Collapse
Affiliation(s)
- Parul Sharma
- University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Preety Ghanghas
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Jaspreet Kaur
- University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Parminder Kaur
- University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
27
|
Huang Y, Wu S, Zhang J, Wen H, Zhang M, He F. Methylation status and expression patterns of myomaker gene play important roles in postnatal development in the Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 2019; 280:104-114. [PMID: 31002826 DOI: 10.1016/j.ygcen.2019.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
Abstract
Myomaker is a membrane protein that plays a crucial role in the fusion of myoblasts during muscle growth. DNA methylation, a significant factor, regulates gene expression. The aim of this study was to examine the methylation and mRNA expression patterns of the myomaker gene during 8 different postnatal developmental stages in the Japanese flounder (L: 7 days post hatch (dph); M1: 21 dph; M2: 28 dph; M3: 35 dph; J1: 90 dph; J2: 180 dph; A1: 24 months; A2: 36 months). Muscle tissue samples were taken from Japanese flounder at different postnatal development stages to measure the extent of DNA methylation and gene expression. Methylation level in the promoter and exon 1 of myomaker was measured using bisulfite sequencing, and the relative expression of myomaker during each developmental stage was measured by quantitative PCR. The relative expression levels of myomaker were up-regulated from stages L to M2, M3 to J2, and methylation of myomaker was negatively correlated with mRNA expression. Furthermore, the CpG site located at -26 bp in the promoter was the lowest methylated region in all developmental stages. These results offer a basis for understanding the mechanism by which myomaker regulates muscle formation during postnatal development.
Collapse
Affiliation(s)
- Yajuan Huang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Shuxian Wu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Jingru Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Meizhao Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Feng He
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
28
|
Taweechaipaisankul A, Kim GA, Jin JX, Lee S, Qasim M, Kim EH, Lee BC. Enhancement of epigenetic reprogramming status of porcine cloned embryos with zebularine, a DNA methyltransferase inhibitor. Mol Reprod Dev 2019; 86:1013-1022. [PMID: 31166644 DOI: 10.1002/mrd.23178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023]
Abstract
Aberrant epigenetic reprogramming is known to be a major cause of inefficient somatic cell nuclear transfer (SCNT) in pigs, and use of epigenetic modification agents, such as DNA methyltransferase inhibitors (DNMTis), is a promising approach for enhancing SCNT efficacy. Here, we attempted to find the optimal condition of zebularine (Zb), a DNMTi, treatment on porcine SCNT embryos during in vitro culture (IVC). As results, treatment with 5 nM Zb for 24 hr showed the highest rate of embryo development to blastocyst compared to other groups (p < .05). Also, the relative intensities of global DNA methylation levels of anti-5-methylcytosine in pseudo-pronuclear (PNC), 2-cell and 4-cell stages were significantly lower in the Zb-treated group (p < .05), however, changes in methylation levels of centromeric satellite repeat were noted only in PNC and blastocyst stages. In addition, significant positive alterations in the relative expression of genes related to pluripotency (OCT4 and SOX2), histone acetylation (HAT1, HDAC1, HDAC2, and HDAC3) and DNA methylation (DNMT1 and DNMT3a) were observed compared to the control (p < .05). In conclusion, we found that Zb could modify DNA methylation levels in the early stages of porcine SCNT embryos and promote their developmental competence.
Collapse
Affiliation(s)
- Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Heilongjiang, Harbin, China
| | - Sanghoon Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Cheongju, Republic of Korea
| | - Muhammad Qasim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Obri A, Claret M. The role of epigenetics in hypothalamic energy balance control: implications for obesity. Cell Stress 2019; 3:208-220. [PMID: 31309172 PMCID: PMC6612891 DOI: 10.15698/cst2019.07.191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite enormous social and scientific efforts, obesity rates continue to increase worldwide. While genetic factors contribute to obesity development, genetics alone cannot explain the current epidemic. Obesity is essentially the consequence of complex genetic-environmental interactions. Evidence suggests that contemporary lifestyles trigger epigenetic changes, which can dysregulate energy balance and thus contribute to obesity. The hypothalamus plays a pivotal role in the regulation of body weight, through a sophisticated network of neuronal systems. Alterations in the activity of these neuronal pathways have been implicated in the pathophysiology of obesity. Here, we review the current knowledge on the central control of energy balance with a focus on recent studies linking epigenetic mechanisms in the hypothalamus to the development of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| |
Collapse
|
30
|
Zhao Y, Kim JY, Karan R, Jung JH, Pathak B, Williamson B, Kannan B, Wang D, Fan C, Yu W, Dong S, Srivastava V, Altpeter F. Generation of a selectable marker free, highly expressed single copy locus as landing pad for transgene stacking in sugarcane. PLANT MOLECULAR BIOLOGY 2019; 100:247-263. [PMID: 30919152 DOI: 10.1007/s11103-019-00856-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/15/2019] [Indexed: 05/23/2023]
Abstract
A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was supported by FLPe/FRT site-specific recombination. Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when compared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or genome editing tools.
Collapse
Affiliation(s)
- Yang Zhao
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Jae Y Kim
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Ratna Karan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Je H Jung
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- Smart Farm Research Center, Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangwon-do, 25451, Republic of Korea
| | - Bhuvan Pathak
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Bruce Williamson
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Baskaran Kannan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Duoduo Wang
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Chunyang Fan
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Wenjin Yu
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Shujie Dong
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Vibha Srivastava
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA.
| |
Collapse
|
31
|
Santana VP, Miranda-Furtado CL, Pedroso DCC, Eiras MC, Vasconcelos MAC, Ramos ES, Calado RT, Ferriani RA, Esteves SC, dos Reis RM. The relationship among sperm global DNA methylation, telomere length, and DNA fragmentation in varicocele: a cross-sectional study of 20 cases. Syst Biol Reprod Med 2019; 65:95-104. [DOI: 10.1080/19396368.2018.1557762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Viviane Paiva Santana
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Daiana Cristina Chielli Pedroso
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Matheus Credendio Eiras
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Ester Silveira Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Tocantins Calado
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Rosana Maria dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
32
|
Hesson LB, Pritchard AL. Genetics and Epigenetics: A Historical Overview. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Zhang Y, Hu M, Liu Q, Sun L, Chen X, Lv L, Liu Y, Jia X, Li H. Deletion of high-molecular-weight glutenin subunits in wheat significantly reduced dough strength and bread-baking quality. BMC PLANT BIOLOGY 2018; 18:319. [PMID: 30509162 PMCID: PMC6276161 DOI: 10.1186/s12870-018-1530-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/15/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND High-molecular-weight glutenin subunits (HMW-GS) play important roles in the elasticity of dough made from wheat. The HMW-GS null line is useful for studying the contribution of HMW-GS to the end-use quality of wheat. METHODS In a previous work, we cloned the Glu-1Ebx gene from Thinopyrum bessarabicum and introduced it into the wheat cultivar, Bobwhite. In addition to lines expressing the Glu-1Ebx gene, we also obtained a transgenic line (LH-11) with all the HMW-GS genes silenced. The HMW-GS deletion was stably inherited as a dominant and conformed to Mendel's laws. Expression levels of HMW-GS were determined by RT-PCR and epigenetic changes in methylation patterns and small RNAs were analyzed. Glutenins and gliadins were separated and quantitated by reversed-phase ultra-performance liquid chromatography. Measurement of glutenin macropolymer, and analysis of agronomic traits and end-use quality were also performed. RESULTS DNA methylation and the presence of small double-stranded RNA may be the causes of post-transcriptional gene silencing in LH-11. The accumulation rate and final content of glutenin macropolymer (GMP) in LH-11 were significantly lower than in wild-type (WT) Bobwhite. The total protein content was not significantly affected as the total gliadin content increased in LH-11 compared to WT. Deletion of HMW-GS also changed the content of different gliadin fractions. The ratio of ω-gliadin increased, whereas α/β- and γ-gliadins declined in LH-11. The wet gluten content, sedimentation value, development time and stability time of LH-11 were remarkably lower than that of Bobwhite. Bread cannot be made using the flour of LH-11. CONCLUSIONS Post-transcriptional gene silencing through epigenetic changes and RNA inhibition appear to be the causes for the gene expression deficiency in the transgenic line LH-11. The silencing of HMW-GW in LH-11 significantly reduced the dough properties, GMP content, wet gluten content, sedimentation value, development time and stability time of flour made from this wheat cultivar. The HMW-GS null line may provide a potential material for biscuit-making because of its low dough strength.
Collapse
Affiliation(s)
- Yingjun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang, 050035 China
| | - Mengyun Hu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang, 050035 China
| | - Qian Liu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang, 050035 China
| | - Lijing Sun
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang, 050035 China
| | - Xiyong Chen
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang, 050035 China
| | - Liangjie Lv
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang, 050035 China
| | - Yuping Liu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang, 050035 China
| | - Xu Jia
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichenxi Road, Beijing, 100101 China
| | - Hui Li
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, 162 Hengshan Street, Shijiazhuang, 050035 China
| |
Collapse
|
34
|
Polkoff K, Piedrahita JA. The transformational impact of site-specific DNA modifiers on biomedicine and agriculture. Anim Reprod 2018; 15:171-179. [PMID: 34178139 PMCID: PMC8202236 DOI: 10.21451/1984-3143-ar2018-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of genetically modified livestock has been dependent on incremental technological
advances such as embryo transfer, homologous recombination, and somatic cell nuclear transfer
(SCNT). This development rate has increased exponentially with the advent of targeted gene
modifiers such as zinc finger nucleases, TAL-effector nucleases (TALENs) and clustered
regularly interspaced short palindromic repeats (CRISPR-Cas). CRISPR-Cas based systems
in particular have broad applicability, and have low technical and economic barriers for
their implementation. As a result, they are having, and will continue to have, a transformational
impact in the field of gene editing in domestic animals. With these advances also comes the
responsibility to properly apply this technology so it has a beneficial effect throughout
all levels of society.
Collapse
Affiliation(s)
- Kathryn Polkoff
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Jorge A Piedrahita
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
35
|
Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility. Theriogenology 2018; 113:102-112. [DOI: 10.1016/j.theriogenology.2018.02.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 01/06/2023]
|
36
|
Abstract
Since every cell of a multicellular organism contains the same genome, it is intriguing to understand why genetically homogenous cells are different from each other and what controls this. Several observations indicate that DNA methylation has an essential regulatory function in mammalian development, which is to establish the correct pattern of gene expression, and that DNA methylation pattern is tightly correlated with chromatin structure. Various physiological processes are controlled by specific DNA methylation patterns including genomic imprinting, inactivation of the X chromosome, regulation of tissue-specific gene expression and repression of transposons. Moreover, aberrant methylation could confer a selective advantage to cells, leading to cancerous growth. In this review we focus on the epigenetic molecular mechanisms during normal development and discuss how DNA methylation could affect the expression of genes leading to cancer transformation.
Collapse
Affiliation(s)
- Marcella Macaluso
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
37
|
H3K9 Acetylation of Tph2 Involved in Depression-like Behavior in Male, but not Female, Juvenile Offspring Rat Induced by Prenatal Stress. Neuroscience 2018; 381:138-148. [PMID: 29625215 DOI: 10.1016/j.neuroscience.2018.03.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
Abstract
Increasing evidence has shown that prenatal stress (PS) could cause depression-like behavior in the offspring, which is sex-specific. However, the underlying mechanisms remain to be elucidated. This study is to investigate the involvement of tryptophan hydroxylase 2 (Tph2) H3K9 acetylation (H3K9ac) modification on PS-induced depression-like behavior in juvenile offspring rats (JOR). PS models were established, with or without trichostatin A (TSA) treatment. Animal behavior was assessed by the sucrose preference test (SPT) and forced swimming test (FST). The mRNA and protein expression levels of TPH2 in the dorsal raphenucleus (DRN), hippocampus, and prefrontal cortex were detected with quantitative real-time PCR and Western blot analysis, respectively. The Tph2 H3K9ac levels in the hippocampus were also analyzed. SPT and FST showed significantly reduced sucrose preference and significantly prolonged immobility in PS-induced male juvenile offspring rats (MJOR). Moreover, the mRNA and protein expression levels of TPH2 in the DRN and hippocampus were significantly declined, while the hippocampal Tph2 H3K9ac levels were significantly declined in the PS-induced MJOR. Furthermore, the PS-induced effects in MJOR could be reversed by the microinjection of TSA. However, no significant effects were observed for the female juvenile offspring rats (FJORs). In conclusion, our results showed that the Tph2 H3K9ac modification is only involved in PS-induced depression-like behavior in MJOR, in a sex-specific manner. These findings might contribute to the understanding of the disease pathogenesis and clinical treatment in future.
Collapse
|
38
|
Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U, Castelo-Branco P. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci 2018. [PMID: 29526163 PMCID: PMC5846307 DOI: 10.1186/s12929-018-0422-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers. Main body The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length maintenance mechanisms, mainly by telomerase activation. hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a better understanding of these mechanisms may promote their translation into effective targeted cancer therapies. Conclusion Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the potential clinical applications in telomerase-dependent cancers.
Collapse
Affiliation(s)
- Ricardo Leão
- Division of Urology, Department of Surgery Princess Margaret Cancer Centre, University Health Network, 610 University Ave 3-130, Toronto, ON, M5G 2M9, Canada. .,Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada. .,Faculty of Medicine, University of Coimbra, R. Larga, 3004-504, Coimbra, Coimbra, Portugal. .,Department of Urology, Coimbra University Hospital, Coimbra, Portugal.
| | - Joana Dias Apolónio
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Edifício 2 - Ala Norte, 8005-139, Faro, Portugal.,Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Algarve Biomedical Center, Campus Gambelas, Faro, Portugal
| | - Donghyun Lee
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Arnaldo Figueiredo
- Faculty of Medicine, University of Coimbra, R. Larga, 3004-504, Coimbra, Coimbra, Portugal.,Department of Urology, Coimbra University Hospital, Coimbra, Portugal
| | - Uri Tabori
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8ON, Canada
| | - Pedro Castelo-Branco
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Edifício 2 - Ala Norte, 8005-139, Faro, Portugal.,Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Algarve Biomedical Center, Campus Gambelas, Faro, Portugal
| |
Collapse
|
39
|
Lejart A, Univ Rennes, CNRS, IGDR-UMR 6290, F35000 Rennes, France, Salbert G, Huet S. Cytosine hydroxymethylation by TET enzymes: From the control of gene expression to the regulation of DNA repair mechanisms, and back. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.3.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Choudhury JH, Das R, Laskar S, Kundu S, Kumar M, Das PP, Choudhury Y, Mondal R, Ghosh SK. Detection of p16 Promoter Hypermethylation by Methylation-Specific PCR. Methods Mol Biol 2018; 1726:111-122. [PMID: 29468548 DOI: 10.1007/978-1-4939-7565-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA methylation plays a decisive role in the regulation and control of gene expression. DNA methylation is a covalent modification, in which a methyl group is attached to the 5th carbon of the cytosine ring of a CpG dinucleotide that is located upstream from the promoter region of a gene. Promoter hypermethylation (gain of DNA methylation) of the p16 gene may cause silencing of gene expression and plays an important role in cancer. Therefore, detection of the methylation status of p16 gene is an important tool in epigenetic studies of various human cancers. The methylation-specific PCR (MSP) is the most commonly used technique for studying DNA methylation. This technique is based on bisulfite modification of DNA, which converts unmethylated cytosine (C) into uracil (U) and leaving methylated cytosine (Cm) unchanged. Here we describe the bisulfite modification of DNA samples and detection of promoter methylation of p16 gene from bisulfite-treated DNA using MSP. In MSP, modified DNA samples are subjected to PCR amplification using methylated and unmethylated specific primers for the p16 gene separately. The PCR amplified products are then analyzed in a 2.5-3% agarose gel containing ethidium bromide. The PCR amplified band generated by specific sets of primers is used to determine the methylation status of the p16 gene.
Collapse
Affiliation(s)
- Javed Hussain Choudhury
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Raima Das
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Shaheen Laskar
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Sharbadeb Kundu
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Manish Kumar
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Partha Pratim Das
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Yashmin Choudhury
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Rosy Mondal
- Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Sankar Kumar Ghosh
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Assam, India.
- University of Kalyani, Kalyani, West Bengal, India.
| |
Collapse
|
41
|
Liu J, Zhang X, Liu A, Zhang D, Su Y, Liu Y, You D, Yuan L, Kong X, Wang X, Sun P. Altered methylation of glucosylceramide synthase promoter regulates its expression and associates with acquired multidrug resistance in invasive ductal breast cancer. Oncotarget 2017; 7:36755-36766. [PMID: 27191984 PMCID: PMC5095037 DOI: 10.18632/oncotarget.9337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Overexpression of glucosylceramide synthase (GCS) increases multidrug resistance (MDR) in many cancer cells. However, its mechanism is unknown. The aim of the present study is to detect the association of methylation at the GCS gene promoter with its expression and MDR in invasive ductal breast cancer. 40 cases GCS-positive and 40 cases GCS-negative primary breast carcinoma samples, three drug-sensitive breast cancer cell lines and one multidrug-resistant breast cancer cell line were used. Immunohistochemistry, methylation-specific PCR (MSP), quantitative real-time (qPCR), westernblot and cytotoxicity assay techniques were employed. Thwe results revealed that there was a statistically negative correlation between GCS CpG islands methylation and GCS phenotype in patients with breast cancer. GCS CpG islands methylation was negatively associated with high ER, meanwhile positively with high HER-2 status. Similar results were obtained from the analysis of breast cancer cell lines. Treatment with the demethylating agent 5-aza-2′-deoxycytidine (5-Aza-dc) changed the GCS promoter methylation pattern in three sensitive cells and also caused increased drug resistance of them. These results suggested that the changes of DNA methylation status of the GCS promoter correlates with multidrug resistance in breast cancer.
Collapse
Affiliation(s)
- Jiannan Liu
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong, 264000, P. R. China
| | - Xiaofang Zhang
- Department of Pathology, Shandong University School of Medicine, Jinan, Shandong, 250012, P. R. China
| | - Aina Liu
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong, 264000, P. R. China
| | - Daoping Zhang
- Department of Rehabilitation, Qianfoshan Hospital, Jinan, Shandong, 250014, P. R. China
| | - Yi Su
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong, 264000, P. R. China
| | - Ying Liu
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong, 264000, P. R. China
| | - Dong You
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong, 264000, P. R. China
| | - Leilei Yuan
- Department of Radiology, Taian Central Hospital, Taian, Shandong, 271000, P. R. China
| | - Xiangshuo Kong
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong, 264000, P. R. China
| | - Xiaodan Wang
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong, 264000, P. R. China
| | - Ping Sun
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong, 264000, P. R. China
| |
Collapse
|
42
|
Histone modifications: A review about the presence of this epigenetic phenomenon in carcinogenesis. Pathol Res Pract 2017; 213:1329-1339. [PMID: 28882400 DOI: 10.1016/j.prp.2017.06.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/23/2017] [Accepted: 06/24/2017] [Indexed: 12/26/2022]
|
43
|
Bhave SA, Uht RM. CpG methylation and the methyl CpG binding protein 2 (MeCP2) are required for restraining corticotropin releasing hormone (CRH) gene expression. Mol Cell Endocrinol 2017; 454:158-164. [PMID: 28655627 DOI: 10.1016/j.mce.2017.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays a critical role in mounting a stress response and maintaining homeostasis. A dysregulated HPA axis and elevated levels of CRH are associated with a number of disorders. Although extensive research has been devoted to understanding molecular events associated with stimulated CRH gene, less is known about the mechanisms that restrain CRH expression. Using a cell culture system, we report here two molecular aspects of CRH gene regulation that are required for maintenance of basal level of CRH gene expression. These are a specific CpG methylation at a single CpG, and adequate levels of the methyl CpG binding protein 2 (MeCP2). The single site methylation allows the recruitment of MeCP2 to the CRH gene promoter region, and MeCP2 knockdown leads to increased expression of CRH gene. Taken together, the results indicate that site-specific methylation and MeCP2 are required for maintenance of basal levels of CRH gene expression.
Collapse
Affiliation(s)
- Shreyas A Bhave
- Graduate School of Biomedical Sciences, Institute for Healthy Aging, University of North Texas Health Science Center in Fort Worth, United States
| | - Rosalie M Uht
- Graduate School of Biomedical Sciences, Institute for Healthy Aging, University of North Texas Health Science Center in Fort Worth, United States; Center for Alzheimer's and Neurodegenerative Disease Research, Institute for Healthy Aging, University of North Texas Health Science Center in Fort Worth, United States.
| |
Collapse
|
44
|
Epigenetic Regulation of Adipokines. Int J Mol Sci 2017; 18:ijms18081740. [PMID: 28796178 PMCID: PMC5578130 DOI: 10.3390/ijms18081740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/29/2022] Open
Abstract
Adipose tissue expansion in obesity leads to changes in the expression of adipokines, adipocyte-specific hormones that can regulate whole body energy metabolism. Epigenetic regulation of gene expression is a mechanism by which cells can alter gene expression through the modifications of DNA and histones. Epigenetic mechanisms, such as DNA methylation and histone modifications, are intimately tied to energy metabolism due to their dependence on metabolic intermediates such as S-adenosylmethionine and acetyl-CoA. Altered expression of adipokines in obesity may be due to epigenetic changes. The goal of this review is to highlight current knowledge of epigenetic regulation of adipokines.
Collapse
|
45
|
Seo M, Kim MS, Jang A, Chung HJ, Noh Y, Kim DH, Lee J, Ko K, Myung SC. Epigenetic suppression of the anti-aging gene KLOTHO in human prostate cancer cell lines. Anim Cells Syst (Seoul) 2017; 21:223-232. [PMID: 30460073 PMCID: PMC6138301 DOI: 10.1080/19768354.2017.1336112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 12/23/2022] Open
Abstract
KLOTHO was originally identified as an aging-suppressor gene that causes a human aging-like phenotype when tested in KLOTHO-deficient-mice. Recent evidence suggests that KLOTHO functions as a tumor suppressor by inhibiting Wnt signaling. KLOTHO gene silencing, including DNA methylation, has been observed in some human cancers. Aberrant activation of Wnt signaling plays a significant role in aging, and its silencing may be related to prostate cancer and other types of cancers. Thus, we investigated whether the expression of the anti-aging gene KLOTHO was associated with epigenetic changes in prostate cancer cell lines. KLOTHO mRNA was detected in the 22Rv1 cell line while it was not detected in DU145 and PC-3 cell lines. The restoration of KLOTHO mRNA in the DU145 and PC-3 cell lines was induced with a DNA methyltransferase inhibitor. Methylation-specific PCR was performed to determine the specific CpG sites in the KLOTHO promoter responsible for expression. In addition, the level of methylation was assessed in each CpG by performing bisulfite sequencing and quantitative pyrosequencing analysis. The results suggested a remarkable inverse relationship between KLOTHO expression and promoter methylation in prostate cancer cell lines.
Collapse
Affiliation(s)
- Minkyu Seo
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Min Su Kim
- Department of Urology, Seoul Medical Center, Seoul, Republic of Korea
| | - Ara Jang
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea.,Advanced Urogenital Diseases Research Center, Chung-Ang University College of Medicine, Seoul, Republic of Korea.,Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Joo Chung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea.,Advanced Urogenital Diseases Research Center, Chung-Ang University College of Medicine, Seoul, Republic of Korea.,Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul, Republic of Korea
| | - Yoohun Noh
- Department of Anatomy and Cell Biology and Neurology, College of Medicine, Chung-Ang University, Seoul, Korea.,Famenity Biomedical Research Center, Famenity, Inc., Gyeonggi, Korea
| | - Do-Hee Kim
- Natural Pharmaceutical R&D Center, Naturesense, Inc., Gyeonggi, Korea
| | - Jaehyouk Lee
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea.,Advanced Urogenital Diseases Research Center, Chung-Ang University College of Medicine, Seoul, Republic of Korea.,Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul, Republic of Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Soon Chul Myung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea.,Advanced Urogenital Diseases Research Center, Chung-Ang University College of Medicine, Seoul, Republic of Korea.,Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Li J, Yang S, Gai J. Transcriptome comparative analysis between the cytoplasmic male sterile line and fertile line in soybean (Glycine max (L.) Merr.). Genes Genomics 2017. [DOI: 10.1007/s13258-017-0578-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Chastain LG, Sarkar DK. Alcohol effects on the epigenome in the germline: Role in the inheritance of alcohol-related pathology. Alcohol 2017; 60:53-66. [PMID: 28431793 DOI: 10.1016/j.alcohol.2016.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/04/2016] [Accepted: 12/30/2016] [Indexed: 12/18/2022]
Abstract
Excessive alcohol exposure has severe health consequences, and clinical and animal studies have demonstrated that disruptions in the epigenome of somatic cells, such as those in brain, are an important factor in the development of alcohol-related pathologies, such as alcohol-use disorders (AUDs) and fetal alcohol spectrum disorders (FASDs). It is also well known that alcohol-related health problems are passed down across generations in human populations, but the complete mechanisms for this phenomenon are currently unknown. Recent studies in animal models have suggested that epigenetic factors are also responsible for the transmission of alcohol-related pathologies across generations. Alcohol exposure has been shown to induce changes in the epigenome of sperm of exposed male animals, and these epimutations are inherited in the offspring. This paper reviews evidence for multigenerational and transgenerational epigenetic inheritance of alcohol-related pathology through the germline. We also review the literature on the epigenetic effects of alcohol exposure on somatic cells in brain, and its contribution to AUDs and FASDs. We note gaps in knowledge in this field, such as the lack of clinical studies in human populations and the lack of data on epigenetic inheritance via the female germline, and we suggest future research directions.
Collapse
Affiliation(s)
- Lucy G Chastain
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Lane, New Brunswick, NJ 08901, USA
| | - Dipak K Sarkar
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Lane, New Brunswick, NJ 08901, USA.
| |
Collapse
|
48
|
Priya ES, Kumar TS, Singh PR, Balakrishnan S, Arunakaran J. Impact of Lactational Exposure to Polychlorinated Biphenyl Causes Epigenetic Modification and Impairs Sertoli Cells Functional Regulators in F1 Progeny. Reprod Sci 2017; 25:818-829. [DOI: 10.1177/1933719117699707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- E. Sugantha Priya
- Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | - T. Sathish Kumar
- Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | - P. Raja Singh
- Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | - S. Balakrishnan
- Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | - J. Arunakaran
- Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
49
|
Machin M, Amaral AFS, Wielscher M, Rezwan FI, Imboden M, Jarvelin MR, Adcock IM, Probst-Hensch N, Holloway JW, Jarvis DL. Systematic review of lung function and COPD with peripheral blood DNA methylation in population based studies. BMC Pulm Med 2017; 17:54. [PMID: 28320365 PMCID: PMC5360084 DOI: 10.1186/s12890-017-0397-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Epigenetic variations in peripheral blood have potential as biomarkers for disease. This systematic review assesses the association of lung function and chronic obstructive pulmonary disease (COPD) with DNA methylation profiles in peripheral blood from population-based studies. METHODS Online databases Medline, Embase, and Web of Science were searched. Google Scholar was searched to identify grey literature. After removing duplicate articles, 1155 articles were independently screened by two investigators. Peer reviewed reports on population-based studies that examined peripheral blood DNA methylation in participants with measured lung function (FEV1, FEV1/FVC ratio) or known COPD status were selected for full-text review. Six articles were suitable for inclusion. Information regarding study characteristics, designs, methodologies and conclusions was extracted. A narrative synthesis was performed based on published results. RESULTS Three of the six articles assessed the association of COPD with DNA methylation, and two of these also included associations with lung function. Overall, five reports examined the association of lung function with DNA methylation profiles. Five of the six articles reported 'significant' results. However, no consistent CpG sites were identified across studies for COPD status or lung function values. CONCLUSIONS DNA methylation patterns in peripheral blood from individuals with reduced lung function or COPD may be different to those in people with normal lung function. However, this systematic review did not find any consistent associations of lung function or COPD with differentially methylated CpG sites. Large studies with a longitudinal design to address reverse causality may prove a more fruitful area of research. TRIAL REGISTRATION PROSPERO 2016: CRD42016037352 .
Collapse
Affiliation(s)
| | - André F S Amaral
- Population Health and Occupational Disease, NHLI, Imperial College London, London, UK.
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.
| | - Matthias Wielscher
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marjo-Riitta Jarvelin
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Ian M Adcock
- Airways Disease Section, NHLI, Imperial College London, London, UK
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Deborah L Jarvis
- Population Health and Occupational Disease, NHLI, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| |
Collapse
|
50
|
Kilin V, Gavvala K, Barthes NPF, Michel BY, Shin D, Boudier C, Mauffret O, Yashchuk V, Mousli M, Ruff M, Granger F, Eiler S, Bronner C, Tor Y, Burger A, Mély Y. Dynamics of Methylated Cytosine Flipping by UHRF1. J Am Chem Soc 2017; 139:2520-2528. [PMID: 28112929 PMCID: PMC5335914 DOI: 10.1021/jacs.7b00154] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA methylation patterns, which are critical for gene expression, are replicated by DNA methyltransferase 1 (DNMT1) and ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) proteins. This replication is initiated by the recognition of hemimethylated CpG sites and further flipping of methylated cytosines (mC) by the Set and Ring Associated (SRA) domain of UHRF1. Although crystallography has shed light on the mechanism of mC flipping by SRA, tools are required to monitor in real time how SRA reads DNA and flips the modified nucleobase. To accomplish this aim, we have utilized two distinct fluorescent nucleobase surrogates, 2-thienyl-3-hydroxychromone nucleoside (3HCnt) and thienoguanosine (thG), incorporated at different positions into hemimethylated (HM) and nonmethylated (NM) DNA duplexes. Large fluorescence changes were associated with mC flipping in HM duplexes, showing the outstanding sensitivity of both nucleobase surrogates to the small structural changes accompanying base flipping. Importantly, the nucleobase surrogates marginally affected the structure of the duplex and its affinity for SRA at positions where they were responsive to base flipping, illustrating their promise as nonperturbing probes for monitoring such events. Stopped-flow studies using these two distinct tools revealed the fast kinetics of SRA binding and sliding to NM duplexes, consistent with its reader role. In contrast, the kinetics of mC flipping was found to be much slower in HM duplexes, substantially increasing the lifetime of CpG-bound UHRF1, and thus the probability of recruiting DNMT1 to faithfully duplicate the DNA methylation profile. The fluorescence-based approach using these two different fluorescent nucleoside surrogates advances the mechanistic understanding of the UHRF1/DNMT1 tandem and the development of assays for the identification of base flipping inhibitors.
Collapse
Affiliation(s)
- Vasyl Kilin
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Krishna Gavvala
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Nicolas P. F. Barthes
- Institut de Chimie de Nice, UMR 7272 CNRS, UniversitéCôte d’Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Benoît Y. Michel
- Institut de Chimie de Nice, UMR 7272 CNRS, UniversitéCôte d’Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Dongwon Shin
- TriLink BioTechnologies, LLC., San Diego, California 92121, United States
| | - Christian Boudier
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Olivier Mauffret
- LBPA, UMR 8113 CNRS, ENS Paris-Saclay, Université Paris Saclay, 94235 Cachan Cedex, France
| | - Valeriy Yashchuk
- Department of Physics, Kiev National Taras Shevchenko University, Kiev 01601, Ukraine
| | - Marc Mousli
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch 67000, France
| | - Florence Granger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch 67000, France
| | - Sylvia Eiler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch 67000, France
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch 67000, France
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272 CNRS, UniversitéCôte d’Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Universitéde Strasbourg, Facultéde pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| |
Collapse
|