1
|
Wensel TG, Potter VL, Moye A, Zhang Z, Robichaux MA. Structure and dynamics of photoreceptor sensory cilia. Pflugers Arch 2021; 473:1517-1537. [PMID: 34050409 PMCID: PMC11216635 DOI: 10.1007/s00424-021-02564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The rod and cone photoreceptor cells of the vertebrate retina have highly specialized structures that enable them to carry out their function of light detection over a broad range of illumination intensities with optimized spatial and temporal resolution. Most prominent are their unusually large sensory cilia, consisting of outer segments packed with photosensitive disc membranes, a connecting cilium with many features reminiscent of the primary cilium transition zone, and a pair of centrioles forming a basal body which serves as the platform upon which the ciliary axoneme is assembled. These structures form a highway through which an enormous flux of material moves on a daily basis to sustain the continual turnover of outer segment discs and the energetic demands of phototransduction. After decades of study, the details of the fine structure and distribution of molecular components of these structures are still incompletely understood, but recent advances in cellular imaging techniques and animal models of inherited ciliary defects are yielding important new insights. This knowledge informs our understanding both of the mechanisms of trafficking and assembly and of the pathophysiological mechanisms of human blinding ciliopathies.
Collapse
Affiliation(s)
- Theodore G Wensel
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Valencia L Potter
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program (MSTP), Baylor College of Medicine, Houston, TX, 77030, USA
| | - Abigail Moye
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhixian Zhang
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael A Robichaux
- Departments of Ophthalmology and Biochemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
2
|
Mühlfeld C, Wrede C, Molnár V, Rajces A, Brandenberger C. The plate body: 3D ultrastructure of a facultative organelle of alveolar epithelial type II cells involved in SP-A trafficking. Histochem Cell Biol 2021; 155:261-269. [PMID: 32880000 PMCID: PMC7910259 DOI: 10.1007/s00418-020-01912-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
Plate bodies are facultative organelles occasionally described in the adult lungs of various species, including sheep and goat. They consist of multiple layers of plate-like cisterns with an electron dense middle bar. The present study was performed to elucidate the three-dimensional (3D) characteristics of this organelle and its presumed function in surfactant protein A (SP-A) biology. Archived material of four adult goat lungs and PFA-fixed lung samples of two adult sheep lungs were used for the morphological and immunocytochemical parts of this study, respectively. 3D imaging was performed by electron tomography and focused ion beam scanning electron microscopy (FIB-SEM). Immuno gold labeling was used to analyze whether plate bodies are positive for SP-A. Transmission electron microscopy revealed the presence of plate bodies in three of four goat lungs and in both sheep lungs. Electron tomography and FIB-SEM characterized the plate bodies as layers of two up to over ten layers of membranous cisterns with the characteristic electron dense middle bar. The membranes of the plates were in connection with the rough endoplasmic reticulum and showed vesicular inclusions in the middle of the plates and a vesicular network at the sides of the organelle. Immuno gold labeling revealed the presence of SP-A in the vesicular network of plate bodies but not in the characteristic plates themselves. In conclusion, the present study clearly proves the connection of plate bodies with the rough endoplasmic reticulum and the presence of a vesicular network as part of the organelle involved in SP-A trafficking.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625, Hannover, Germany
| | | | - Alexandra Rajces
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
3
|
Otegui MS. Electron Tomography and Immunogold Labeling as Tools to Analyze De Novo Assembly of Plant Cell Walls. Methods Mol Biol 2020; 2149:365-382. [PMID: 32617946 DOI: 10.1007/978-1-0716-0621-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
High-resolution imaging of the membranous intermediates and cytoskeletal arrays involved in the assembly of a new cell wall during plant cytokinesis requires state-of-the-art electron microscopy techniques. The combination of cryofixation/freeze-substitution methods with electron tomography (ET) has revealed amazing structural details of this unique cellular process. This chapter deals with the main steps associated with these imaging techniques: selection of samples suitable for studying plant cytokinesis, sample preparation by high-pressure freezing/freeze substitution, and ET of plastic sections. In addition, immunogold approaches for identification of proteins and polysaccharides during cell wall assembly are discussed.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison, WI, USA.
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA.
- Laboratory of Molecular and Cellular Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Custer TC, Walter NG. In vitro labeling strategies for in cellulo fluorescence microscopy of single ribonucleoprotein machines. Protein Sci 2017; 26:1363-1379. [PMID: 28028853 PMCID: PMC5477532 DOI: 10.1002/pro.3108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
RNA plays a fundamental, ubiquitous role as either substrate or functional component of many large cellular complexes-"molecular machines"-used to maintain and control the readout of genetic information, a functional landscape that we are only beginning to understand. The cellular mechanisms for the spatiotemporal organization of the plethora of RNAs involved in gene expression are particularly poorly understood. Intracellular single-molecule fluorescence microscopy provides a powerful emerging tool for probing the pertinent mechanistic parameters that govern cellular RNA functions, including those of protein coding messenger RNAs (mRNAs). Progress has been hampered, however, by the scarcity of efficient high-yield methods to fluorescently label RNA molecules without the need to drastically increase their molecular weight through artificial appendages that may result in altered behavior. Herein, we employ T7 RNA polymerase to body label an RNA with a cyanine dye, as well as yeast poly(A) polymerase to strategically place multiple 2'-azido-modifications for subsequent fluorophore labeling either between the body and tail or randomly throughout the tail. Using a combination of biochemical and single-molecule fluorescence microscopy approaches, we demonstrate that both yeast poly(A) polymerase labeling strategies result in fully functional mRNA, whereas protein coding is severely diminished in the case of body labeling.
Collapse
Affiliation(s)
- Thomas C Custer
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, 48109.,Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
5
|
Abstract
High-resolution imaging of endosomal compartments and associated organelles can be achieved using state-of-the-art electron microscopy techniques, such as the combination of cryofixation/freeze-substitution for sample processing and electron tomography for three-dimensional (3D) analysis. This chapter deals with the main steps associated with these imaging techniques: selection of samples suitable for studying plant endosomes, sample preparation by high-pressure freezing/freeze-substitution, and electron tomography of plastic sections. In addition, immunogold approaches for identification of subcellular localization of endosomal and cargo proteins are also discussed.
Collapse
|
6
|
Heymann JB, Winkler DC, Yim YI, Eisenberg E, Greene LE, Steven AC. Clathrin-coated vesicles from brain have small payloads: a cryo-electron tomographic study. J Struct Biol 2013; 184:43-51. [PMID: 23688956 DOI: 10.1016/j.jsb.2013.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/25/2013] [Accepted: 05/09/2013] [Indexed: 02/02/2023]
Abstract
Clathrin coats, which stabilize membrane curvature during endocytosis and vesicular trafficking, form highly polymorphic fullerene lattices. We used cryo-electron tomography to visualize coated particles in isolates from bovine brain. The particles range from ∼66 to ∼134nm in diameter, and only 20% of them (all ⩾80nm) contain vesicles. The remaining 80% are clathrin "baskets", presumably artifactual assembly products. Polyhedral models were built for 54 distinct coat geometries. In true coated vesicles (CVs), most vesicles are offset to one side, leaving a crescent of interstitial space between the coat and the membrane for adaptor proteins and other components. The latter densities are fewer on the membrane-proximal side, which may represent the last part of the vesicle to bud off. A small number of densities - presumably cargo proteins - are associated with the interior surface of the vesicles. The clathrin coat, adaptor proteins, and vesicle membrane contribute almost all of the mass of a CV, with most cargoes accounting for only a few percent. The assembly of a CV therefore represents a massive biosynthetic effort to internalize a relatively diminutive payload. Such a high investment may be needed to overcome the resistance of membranes to high curvature.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, MD 20892, United States.
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Otegui MS. Electron tomography and immunogold labelling as tools to analyse de novo assembly of plant cell walls. Methods Mol Biol 2011; 715:123-140. [PMID: 21222081 DOI: 10.1007/978-1-61779-008-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
High-resolution imaging of the membranous intermediates and cytoskeletal arrays involved in the assembly of a new cell wall during plant cytokinesis requires state-of-the-art electron microscopy techniques. The combination of cryofixation/freeze-substitution methods with electron tomography (ET) has revealed amazing structural details of this unique cellular process. This chapter deals with the main steps associated with these imaging techniques: selection of samples suitable for studying plant cytokinesis, sample preparation by high-pressure freezing/freeze substitution, and ET of plastic sections. In addition, immunogold approaches for the identification of proteins and polysaccharides during cell wall assembly are discussed.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
9
|
MessaoudiI C, Boudier T, Sorzano COS, Marco S. TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 2007; 8:288. [PMID: 17683598 PMCID: PMC1976622 DOI: 10.1186/1471-2105-8-288] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 08/06/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transmission electron tomography is an increasingly common three-dimensional electron microscopy approach that can provide new insights into the structure of subcellular components. Transmission electron tomography fills the gap between high resolution structural methods (X-ray diffraction or nuclear magnetic resonance) and optical microscopy. We developed new software for transmission electron tomography, TomoJ. TomoJ is a plug-in for the now standard image analysis and processing software for optical microscopy, ImageJ. RESULTS TomoJ provides a user-friendly interface for alignment, reconstruction, and combination of multiple tomographic volumes and includes the most recent algorithms for volume reconstructions used in three-dimensional electron microscopy (the algebraic reconstruction technique and simultaneous iterative reconstruction technique) as well as the commonly used approach of weighted back-projection. CONCLUSION The software presented in this work is specifically designed for electron tomography. It has been written in Java as a plug-in for ImageJ and is distributed as freeware.
Collapse
Affiliation(s)
- Cédric MessaoudiI
- Institut Curie. Section Recherche. Laboratoire d'Imagerie Intégrative. Centre Universitaire d'Orsay, 91405 Orsay CEDEX, France
- INSERM U 759. Centre Universitaire d'Orsay. Bât 112. 91405 Orsay CEDEX, France
| | - Thomas Boudier
- Institut Curie. Section Recherche. Laboratoire d'Imagerie Intégrative. Centre Universitaire d'Orsay, 91405 Orsay CEDEX, France
- INSERM U 759. Centre Universitaire d'Orsay. Bât 112. 91405 Orsay CEDEX, France
| | - Carlos Oscar Sanchez Sorzano
- Bioengineering Lab, Escuela Politécnica Superior. Univ. San Pablo – CEU. Campus Urb. Montepríncipe s/n. 28668. Boadilla del Monte, Madrid, Spain
| | - Sergio Marco
- Institut Curie. Section Recherche. Laboratoire d'Imagerie Intégrative. Centre Universitaire d'Orsay, 91405 Orsay CEDEX, France
- INSERM U 759. Centre Universitaire d'Orsay. Bât 112. 91405 Orsay CEDEX, France
| |
Collapse
|
10
|
Otegui MS, Austin JR. Visualization of membrane-cytoskeletal interactions during plant cytokinesis. Methods Cell Biol 2007; 79:221-40. [PMID: 17327159 DOI: 10.1016/s0091-679x(06)79009-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
11
|
Braet F, Wisse E, Bomans P, Frederik P, Geerts W, Koster A, Soon L, Ringer S. Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc Res Tech 2007; 70:230-42. [PMID: 17279510 DOI: 10.1002/jemt.20408] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Correlative microscopy has become increasingly important for the analysis of the structure, function, and dynamics of cells. This is largely due to the result of recent advances in light-, probe-, laser- and various electron microscopy techniques that facilitate three-dimensional studies. Furthermore, the improved understanding in the past decade of imaging cell compartments in the third dimension has resulted largely from the availability of powerful computers, fast high-resolution CCD cameras, specifically developed imaging analysis software, and various probes designed for labeling living and or fixed cells. In this paper, we review different correlative high-resolution imaging methodologies and how these microscopy techniques facilitated the accumulation of new insights in the morpho-functional and structural organization of the hepatic sieve. Various aspects of hepatic endothelial fenestrae regarding their structure, origin, dynamics, and formation will be explored throughout this paper by comparing the results of confocal laser scanning-, correlative fluorescence and scanning electron-, atomic force-, and whole-mount electron microscopy. Furthermore, the recent advances of vitrifying cells with the vitrobot in combination with the glove box for the preparation of cells for cryo-electron microscopic investigation will be discussed. Finally, the first transmission electron tomography data of the liver sieve in three-dimensions are presented. The obtained data unambiguously show the involvement of special domains in the de novo formation and disappearance of hepatic fenestrae, and focuses future research into the (supra)molecular structure of the fenestrae-forming center, defenestration center and fenestrae-, and sieve plate cytoskeleton ring by using advanced cryo-electron tomography.
Collapse
Affiliation(s)
- Filip Braet
- Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Price DL, Chow SK, Maclean NAB, Hakozaki H, Peltier S, Martone ME, Ellisman MH. High-resolution large-scale mosaic imaging using multiphoton microscopy to characterize transgenic mouse models of human neurological disorders. Neuroinformatics 2006; 4:65-80. [PMID: 16595859 DOI: 10.1385/ni:4:1:65] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The thorough characterization of transgenic mouse models of human central nervous system diseases is a necessary step in realizing the full benefit of using animal models to investigate disease processes and potential therapeutics. Because of the labor- and resource-intensive nature of high-resolution imaging, detailed investigation of possible structural or biochemical alterations in brain sections has typically focused on specific regions of interest as determined by the researcher a priori. For example, Parkinson's disease researchers often focus imaging on regions of the brain expected to exhibit pathology such as the substantia nigra and striatum. Because of limitations in acquiring and storing high-resolution imaging data, additional data contained in the specimen is not usually acquired or disseminated/reported to the research community. Here we present a method of imaging large regions of brain at close to the resolution limit of light microscopy using a mosaic imaging technique in conjunction with multiphoton microscopy. These maps are being used to characterize several genetically modified animal models of neurological disease by filling the information "gap" among techniques such as magnetic resonance imaging and electron microscopic analysis.
Collapse
Affiliation(s)
- Diana L Price
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California, San Diego, CA 92093-0608, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
van de Meene AML, Hohmann-Marriott MF, Vermaas WFJ, Roberson RW. The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 2005; 184:259-70. [PMID: 16320037 DOI: 10.1007/s00203-005-0027-y] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 07/05/2005] [Accepted: 07/11/2005] [Indexed: 11/28/2022]
Abstract
To advance our knowledge of the model cyanobacterium Synechocystis sp. PCC 6803 we investigated the three-dimensional organization of the cytoplasm using standard transmission electron microscopy and electron tomography. Electron tomography allows a resolution of ~5 nm in all three dimensions, superior to the resolution of most traditional electron microscopy, which is often limited in part by the thickness of the section (70 nm). The thylakoid membrane pairs formed layered sheets that followed the periphery of the cell and converged at various sites near the cytoplasmic membrane. At some of these sites, the margins of thylakoid membranes associated closely along the external surface of rod-like structures termed thylakoid centers, which sometimes traversed nearly the entire periphery of the cell. The thylakoid membranes surrounded the central cytoplasm that contained inclusions such as ribosomes and carboxysomes. Lipid bodies were dispersed throughout the peripheral cytoplasm and often juxtaposed with cytoplasmic and thylakoid membranes suggesting involvement in thylakoid maintenance or biogenesis. Ribosomes were numerous and mainly located throughout the central cytoplasm with some associated with thylakoid and cytoplasmic membranes. Some ribosomes were attached along internal unit-membrane-like sheets located in the central cytoplasm and appeared to be continuous with existing thylakoid membranes. These results present a detailed analysis of the structure of Synechocystis sp. PCC 6803 using high-resolution bioimaging techniques and will allow future evaluation and comparison with gene-deletion mutants.
Collapse
|
14
|
Marco S, Boudier T, Messaoudi C, Rigaud JL. Electron tomography of biological samples. BIOCHEMISTRY (MOSCOW) 2005; 69:1219-25. [PMID: 15627375 DOI: 10.1007/s10541-005-0067-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron tomography allows computing three-dimensional (3D) reconstructions of objects from their projections recorded at several angles. Combined with transmission electron microscopy, electron tomography has contributed greatly to the understanding of subcellular structures and organelles. Performed on frozen-hydrated samples, electron tomography has yielded useful information about complex biological structures. Combined with energy filtered transmission electron microscopy (EFTEM) it can be used to analyze the spatial distribution of chemical elements in biological or material sciences samples. In the present review, we present an overview of the requirements, applications, and perspectives of electron tomography in structural biology.
Collapse
Affiliation(s)
- S Marco
- Institut Curie, Section Recherche, UMR-CNRS 168 et LRC-CEA 34V 11, 75005 Paris, France.
| | | | | | | |
Collapse
|
15
|
Electron tomography of biological samples. BIOCHEMISTRY (MOSCOW) 2004. [DOI: 10.1007/pl00021757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
16
|
Bajaj C, Yu Z, Auer M. Volumetric feature extraction and visualization of tomographic molecular imaging. J Struct Biol 2004; 144:132-43. [PMID: 14643216 DOI: 10.1016/j.jsb.2003.09.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Electron tomography is useful for studying large macromolecular complex within their cellular context. The associate problems include crowding and complexity. Data exploration and 3D visualization of complexes require rendering of tomograms as well as extraction of all features of interest. We present algorithms for fully automatic boundary segmentation and skeletonization, and demonstrate their applications in feature extraction and visualization of cell and molecular tomographic imaging. We also introduce an interactive volumetric exploration and visualization tool (Volume Rover), which encapsulates implementations of the above volumetric image processing algorithms, and additionally uses efficient multi-resolution interactive geometry and volume rendering techniques for interactive visualization.
Collapse
Affiliation(s)
- Chandrajit Bajaj
- Department of Computer Sciences and Institute of Computational and Engineering Sciences, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
17
|
Henrick K, Newman R, Tagari M, Chagoyen M. EMDep: a web-based system for the deposition and validation of high-resolution electron microscopy macromolecular structural information. J Struct Biol 2004; 144:228-37. [PMID: 14643225 DOI: 10.1016/j.jsb.2003.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper describes the design and implementation of a Web-based deposition system, EMDep, for macro-molecular volumes determined by electron microscopy and deposited at the European Bioinformatics Institute (EBI) for inclusion in the Electron Microscopy Data Base (EMDB). EMDep is a flexible and portable system (http://www.ebi.ac.uk/msd-srv/emdep/) that allows for the acceptance and validation of data, by an interactive depositor-driven operation. The system takes full advantage of the knowledge and expertise of the experimenters, rather than relying on the database curators, for the complete and accurate description of the structural experiment and its results.
Collapse
Affiliation(s)
- K Henrick
- EMBL Outstation, The European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | | | | | | |
Collapse
|
18
|
Fernandez MI, Prevost MC, Sansonetti PJ, Griffiths G. Applications of Cryo- and Transmission Electron Microscopy in the Study of Microbial Macromolecular Structure and Bacterial–Host Cell Interactions. METHODS IN MICROBIOLOGY 2004. [DOI: 10.1016/s0580-9517(04)34005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 2002; 298:1209-13. [PMID: 12424373 DOI: 10.1126/science.1076184] [Citation(s) in RCA: 553] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Electron tomography of vitrified cells is a noninvasive three-dimensional imaging technique that opens up new vistas for exploring the supramolecular organization of the cytoplasm. We applied this technique to Dictyostelium cells, focusing on the actin cytoskeleton. In actin networks reconstructed without prior removal of membranes or extraction of soluble proteins, the cross-linking of individual microfilaments, their branching angles, and membrane attachment sites can be analyzed. At a resolution of 5 to 6 nanometers, single macromolecules with distinct shapes, such as the 26S proteasome, can be identified in an unperturbed cellular environment.
Collapse
Affiliation(s)
- Ohad Medalia
- Max Planck Institute for Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Frank J. Single-particle imaging of macromolecules by cryo-electron microscopy. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:303-19. [PMID: 11988472 DOI: 10.1146/annurev.biophys.31.082901.134202] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cryo-electron microscopy (cryo-EM) of biological molecules in single-particle (i.e., unordered, nonaggregated) form is a new approach to the study of molecular assemblies, which are often too large and flexible to be amenable to X-ray crystallography. New insights into biological function on the molecular level are expected from cryo-EM applied to the study of such complexes "trapped" at different stages of their conformational changes and dynamical interactions. Important molecular machines involved in the fundamental processes of transcription, mRNA splicing, and translation are examples for successful applications of the new technique, combined with structural knowledge gained by conventional techniques of structure determination, such as X-ray crystallography and NMR.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Health Research Inc at the Wadsworth Center, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, USA.
| |
Collapse
|
21
|
McEwen BF, Koster AJ. Academic colloquium on electron tomography. Amsterdam, the Netherlands, October 17-20, 2001. J Struct Biol 2002; 138:1-2. [PMID: 12160696 DOI: 10.1016/s1047-8477(02)00038-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
McEwen BF, Marko M, Hsieh CE, Mannella C. Use of frozen-hydrated axonemes to assess imaging parameters and resolution limits in cryoelectron tomography. J Struct Biol 2002; 138:47-57. [PMID: 12160700 DOI: 10.1016/s1047-8477(02)00020-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using a 400-kV cryoelectron microscope, we have obtained tomographic reconstructions of frozen-hydrated sea urchin axonemes with 8-10-nm resolution, as assessed by detection of characteristic components including doublet microtubules, radial spokes, central sheath projections, and outer dynein arms. We did not detect the inner dynein arms or the microtubule lattice. The 1/(8 nm) and 1/(16 nm) layer lines are consistently present in power spectra of both projection images and tomographic reconstructions. Strength and detection of the layer lines are dependent upon total electron dose and defocus. Both layer lines are surprisingly resistant to electron doses of up to 11000 electrons/nm(2). We present a summary of resolution considerations in cryoelectron tomography and conclude that the fundamental limitation is the total electron dose required for statistical significance. The electron dose can be fractionated among the numerous angular views in a tomographic data set, but there is an unavoidable fourth-power dependence of total dose on target resolution. Since higher-resolution features are more beam-sensitive, this dose requirement places an ultimate limit on the resolution of individual tomographic reconstructions. Instrumental and computational strategies to circumvent this limitation are discussed.
Collapse
Affiliation(s)
- Bruce F McEwen
- Wadsworth Center, New York State Department of Health, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509, USA.
| | | | | | | |
Collapse
|
23
|
Martone ME, Gupta A, Wong M, Qian X, Sosinsky G, Ludäscher B, Ellisman MH. A cell-centered database for electron tomographic data. J Struct Biol 2002; 138:145-55. [PMID: 12160711 DOI: 10.1016/s1047-8477(02)00006-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Electron tomography is providing a wealth of 3D structural data on biological components ranging from molecules to cells. We are developing a web-accessible database tailored to high-resolution cellular level structural and protein localization data derived from electron tomography. The Cell Centered Database or CCDB is built on an object-relational framework using Oracle 8i and is housed on a server at the San Diego Supercomputer Center at the University of California, San Diego. Data can be deposited and accessed via a web interface. Each volume reconstruction is stored with a full set of descriptors along with tilt images and any derived products such as segmented objects and animations. Tomographic data are supplemented by high-resolution light microscopic data in order to provide correlated data on higher-order cellular and tissue structure. Every object segmented from a reconstruction is included as a distinct entity in the database along with measurements such as volume, surface area, diameter, and length and amount of protein labeling, allowing the querying of image-specific attributes. Data sets obtained in response to a CCDB query are retrieved via the Storage Resource Broker, a data management system for transparent access to local and distributed data collections. The CCDB is designed to provide a resource for structural biologists and to make tomographic data sets available to the scientific community at large.
Collapse
Affiliation(s)
- Maryann E Martone
- National Center for Microscopy and Imaging Research, Center for Research in Biological Structure and Department of Neurosciences, University of California, San Diego, La Jolla, 92093-0608, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Our knowledge of the structure of the cytoplasm has grown with the advent of advanced techniques and equipment that have allowed us to study cellular components. Over the past 150 years, such advances have steadily improved our realization of the complexity of cytoplasmic organization.
Collapse
Affiliation(s)
- Manfred Schliwa
- ABI Cell Biology, University of Munich, Schillerstr. 42, 80336 Munich, Germany.
| |
Collapse
|
25
|
Frank J, Wagenknecht T, McEwen BF, Marko M, Hsieh CE, Mannella CA. Three-dimensional imaging of biological complexity. J Struct Biol 2002; 138:85-91. [PMID: 12160704 DOI: 10.1016/s1047-8477(02)00019-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over the past 5 years, thanks to advances in both instrumentation and computational speed, three-dimensional imaging techniques using the electron microscope have been greatly improved in two areas: electron tomography of cell organelles or cell sections and reconstruction of macromolecules from single particles. Ice embedment has brought a breakthrough in the degree of preservation of specimens under close-to-native conditions. The current challenge is to push the resolution of electron tomographic imaging to a point where macromolecular signatures can be recognized within the cellular context. We show first progress toward this goal by examples in two areas of application: the structure of the muscle triad junction and the architecture and fine structure of mitochondria. As techniques of cryo-microtomy are perfected, we hope to be able to apply tomography to high-pressure frozen sections of tissue.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Health Research, Incorporated, Albany, NY 12201-0509, USA.
| | | | | | | | | | | |
Collapse
|