1
|
Ramírez-Hernández E, Sánchez-Maldonado C, Patricio-Martínez A, Limón ID. Amyloid-β (25-35) induces the morphological alteration of dendritic spines and decreases NR2B and PSD-95 expression in the hippocampus. Neurosci Lett 2023; 795:137030. [PMID: 36572143 DOI: 10.1016/j.neulet.2022.137030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Research on the memory impairment caused by the Amyloid-β 25-35 (Aβ25-35) peptide in animal models has provided an understanding of the causes that occurs in Alzheimer's disease. However, it is uncertain whether this cognitive impairment occurs due to disruption of information encoding and consolidation or impaired retrieval of stored memory. The aim of this study was to determine the effect of the Aβ25-35 peptide on the morphology of dendritic spines and the changes in the expression of NR2B and PSD-95 in the hippocampus associated with learning and memory deficit. Vehicle or Aβ25-35 peptide (0.1 µg/µL) was bilaterally administered into the CA1 subfield of the rat hippocampus, then tested for spatial learning and memory in the Morris Water Maze. On Day 39, the morphological changes in the CA1 of the hippocampus and dentate gyrus were examined via Golgi-Cox stain. It was observed that the Aβ25-35 peptide administered in the CA1 region of the rat hippocampus induced changes to the morphology of dendritic spines and the expression of the NR2B subunit of the NMDA receptor co-localized with both the spatial memory and PSD-95 protein in the hippocampus of learning rats. We conclude that, in soluble form, the Aβ25-35 peptide perturbs synaptic plasticity, specifically in the formation of new synapses, thus promoting the progression of memory impairment.
Collapse
Affiliation(s)
- Eleazar Ramírez-Hernández
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma Puebla, Puebla, Puebla, Mexico; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Claudia Sánchez-Maldonado
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma Puebla, Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma Puebla, Puebla, Puebla, Mexico; Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ilhiucamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma Puebla, Puebla, Puebla, Mexico.
| |
Collapse
|
2
|
SAPAP3 regulates epileptic seizures involving GluN2A in post-synaptic densities. Cell Death Dis 2022; 13:437. [PMID: 35513389 PMCID: PMC9072407 DOI: 10.1038/s41419-022-04876-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Aberrantly synchronized neuronal discharges in the brain lead to epilepsy, a devastating neurological disease whose pathogenesis and mechanism are unclear. SAPAP3, a cytoskeletal protein expressed at high levels in the postsynaptic density (PSD) of excitatory synapses, has been well studied in the striatum, but the role of SAPAP3 in epilepsy remains elusive. In this study, we sought to investigate the molecular, cellular, electrophysiological and behavioral consequences of SAPAP3 perturbations in the mouse hippocampus. We identified a significant increase in the SAPAP3 levels in patients with temporal lobe epilepsy (TLE) and in mouse models of epilepsy. In addition, behavioral studies showed that the downregulation of SAPAP3 by shRNA decreased the seizure severity and that the overexpression of SAPAP3 by recombinant SAPAP3 yielded the opposite effect. Moreover, SAPAP3 affected action potentials (APs), miniature excitatory postsynaptic currents (mEPSCs) and N-methyl-D-aspartate receptor (NMDAR)-mediated currents in the CA1 region, which indicated that SAPAP3 plays an important role in excitatory synaptic transmission. Additionally, the levels of the GluN2A protein, which is involved in synaptic function, were perturbed in the hippocampal PSD, and this perturbation was accompanied by ultrastructural morphological changes. These results revealed a previously unknown function of SAPAP3 in epileptogenesis and showed that SAPAP3 may represent a novel target for the treatment of epilepsy.
Collapse
|
3
|
Nardella C, Visconti L, Malagrinò F, Pagano L, Bufano M, Nalli M, Coluccia A, La Regina G, Silvestri R, Gianni S, Toto A. Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biol Direct 2021; 16:15. [PMID: 34641953 PMCID: PMC8506081 DOI: 10.1186/s13062-021-00303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.
Collapse
Affiliation(s)
- Caterina Nardella
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
4
|
Modulation of the MAPKs pathways affects Aβ-induced cognitive deficits in Alzheimer's disease via activation of α7nAChR. Neurobiol Learn Mem 2020; 168:107154. [PMID: 31904546 DOI: 10.1016/j.nlm.2019.107154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/17/2019] [Accepted: 12/31/2019] [Indexed: 01/21/2023]
Abstract
Cognitive impairment in Alzheimer's disease (AD) is characterized by being deficient at learning and memory. Aβ1-42 oligomers have been shown to impair rodent cognitive function. We previously demonstrated that activation of α7nAChR, inhibition of p38 or JNK could alleviate Aβ-induced memory deficits in Y maze test. In this study, we investigated whether the effects of α7nAChR and MAPKs on Y maze test is reproducible with a hippocampus-dependent spatial memory test such as Morris water maze. We also assessed the possible co-existence of hippocampus-independent recognition memory dysfunction using a novel object recognition test and an alternative and stress free hippocampus-dependent recognition memory test such as the novel place recognition. Besides, previous research from our lab has shown that MAPKs pathways regulate Aβ internalization through mediating α7nAChR. In our study, whether MAPKs pathways exert their functions in cognition by modulating α7nAChR through regulating glutamate receptors and synaptic protein, remain little known. Our results showed that activation of α7nAChR restored spatial memory, novel place recognition memory, and short-term and long-term memory in novel object recognition. Inhibition of p38 restored spatial memory and short-term and long-term memory in novel object recognition. Inhibition of ERK restored short-term memory in novel object recognition and novel place recognition memory. Inhibition of JNK restored spatial memory, short-term memory in novel object recognition and novel place recognition memory. Beside this, the activation of α7nAChR, inhibition of p38 or JNK restored Aβ-induced levels of NMDAR1, NMDAR2A, NMDAR2B, GluR1, GluR2 and PSD95 in Aβ-injected mice without influencing synapsin 1. In addition, these treatments also recovered the expression of acetylcholinesterase (AChE). Finally, we found that the inhibition of p38 or JNK resulted in the upregulation of α7nAChR mRNA levels in the hippocampus. Our results indicated that inhibition of p38 or JNK MAPKs could alleviate Aβ-induced spatial memory deficits through regulating activation of α7nAChR via recovering memory-related proteins. Moreover, p38, ERK and JNK MAPKs exert different functions in spatial and recognition memory.
Collapse
|
5
|
Rhee SW, Rusch NJ. Molecular determinants of beta-adrenergic signaling to voltage-gated K + channels in the cerebral circulation. Microcirculation 2018; 25. [PMID: 29072364 DOI: 10.1111/micc.12425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Abstract
Voltage-gated K+ (Kv ) channels are major determinants of membrane potential in vascular smooth muscle cells (VSMCs) and regulate the diameter of small cerebral arteries and arterioles. However, the intracellular structures that govern the expression and function of vascular Kv channels are poorly understood. Scaffolding proteins including postsynaptic density 95 (PSD95) recently were identified in rat cerebral VSMCs. Primarily characterized in neurons, the PSD95 scaffold has more than 50 known binding partners, and it can mediate macromolecular signaling between cell-surface receptors and ion channels. In cerebral arteries, Shaker-type Kv 1 channels appear to associate with the PSD95 molecular scaffold, and PSD95 is required for the normal expression and vasodilator influence of members of this K+ channel gene family. Furthermore, recent findings suggest that the β1-subtype adrenergic receptor is expressed in cerebral VSMCs and forms a functional vasodilator complex with Kv 1 channels on the PSD95 scaffold. Activation of β1-subtype adrenergic receptors in VSMCs enables protein kinase A-dependent phosphorylation and opening of Kv 1 channels in the PSD95 complex; the subsequent K+ efflux mediates membrane hyperpolarization and vasodilation of small cerebral arteries. Early evidence from other studies suggests that other families of Kv channels and scaffolding proteins are expressed in VSMCs. Future investigations into these macromolecular complexes that modulate the expression and function of Kv channels may reveal unknown signaling cascades that regulate VSMC excitability and provide novel targets for ion channel-based medications to optimize vascular tone.
Collapse
Affiliation(s)
- Sung W Rhee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
6
|
Potent PDZ-Domain PICK1 Inhibitors that Modulate Amyloid Beta-Mediated Synaptic Dysfunction. Sci Rep 2018; 8:13438. [PMID: 30194389 PMCID: PMC6128908 DOI: 10.1038/s41598-018-31680-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/21/2018] [Indexed: 02/02/2023] Open
Abstract
Protein interacting with C kinase (PICK1) is a scaffolding protein that is present in dendritic spines and interacts with a wide array of proteins through its PDZ domain. The best understood function of PICK1 is regulation of trafficking of AMPA receptors at neuronal synapses via its specific interaction with the AMPA GluA2 subunit. Disrupting the PICK1-GluA2 interaction has been shown to alter synaptic plasticity, a molecular mechanism of learning and memory. Lack of potent, selective inhibitors of the PICK1 PDZ domain has hindered efforts at exploring the PICK1-GluA2 interaction as a therapeutic target for neurological diseases. Here, we report the discovery of PICK1 small molecule inhibitors using a structure-based drug design strategy. The inhibitors stabilized surface GluA2, reduced Aβ-induced rise in intracellular calcium concentrations in cultured neurons, and blocked long term depression in brain slices. These findings demonstrate that it is possible to identify potent, selective PICK1-GluA2 inhibitors which may prove useful for treatment of neurodegenerative disorders.
Collapse
|
7
|
Soler J, Fañanás L, Parellada M, Krebs MO, Rouleau GA, Fatjó-Vilas M. Genetic variability in scaffolding proteins and risk for schizophrenia and autism-spectrum disorders: a systematic review. J Psychiatry Neurosci 2018; 43:223-244. [PMID: 29947605 PMCID: PMC6019351 DOI: 10.1503/jpn.170066] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/18/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Scaffolding proteins represent an evolutionary solution to controlling the specificity of information transfer in intracellular networks. They are highly concentrated in complexes located in specific subcellular locations. One of these complexes is the postsynaptic density of the excitatory synapses. There, scaffolding proteins regulate various processes related to synaptic plasticity, such as glutamate receptor trafficking and signalling, and dendritic structure and function. Most scaffolding proteins can be grouped into 4 main families: discs large (DLG), discs-large-associated protein (DLGAP), Shank and Homer. Owing to the importance of scaffolding proteins in postsynaptic density architecture, it is not surprising that variants in the genes that code for these proteins have been associated with neuropsychiatric diagnoses, including schizophrenia and autism-spectrum disorders. Such evidence, together with the clinical, neurobiological and genetic overlap described between schizophrenia and autism-spectrum disorders, suggest that alteration of scaffolding protein dynamics could be part of the pathophysiology of both. However, despite the potential importance of scaffolding proteins in these psychiatric conditions, no systematic review has integrated the genetic and molecular data from studies conducted in the last decade. This review has the following goals: to systematically analyze the literature in which common and/or rare genetic variants (single nucleotide polymorphisms, single nucleotide variants and copy number variants) in the scaffolding family genes are associated with the risk for either schizophrenia or autism-spectrum disorders; to explore the implications of the reported genetic variants for gene expression and/or protein function; and to discuss the relationship of these genetic variants to the shared genetic, clinical and cognitive traits of schizophrenia and autism-spectrum disorders.
Collapse
Affiliation(s)
- Jordi Soler
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Lourdes Fañanás
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Mara Parellada
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Marie-Odile Krebs
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Guy A Rouleau
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| | - Mar Fatjó-Vilas
- From the Secció Zoologia i Antropologia Biològica, Dept Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain (Soler, Fañanás, Fatjó-Vilas); the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (Soler, Fañanás, Parellada, Fatjó-Vilas); Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IiSGM), Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense, Madrid, Spain (Parellada); the Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Faculté de Médecine Paris Descartes, Paris, France (Krebs); the Université Paris Descartes, Inserm Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, Paris, France (Krebs); the CNRS, GDR 3557, Institut de Psychiatrie, Paris, France (Krebs); the Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC (Rouleau); and the FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain (Fatjó-Vilas)
| |
Collapse
|
8
|
Treviño S, Vázquez-Roque RA, López-López G, Perez-Cruz C, Moran C, Handal-Silva A, González-Vergara E, Flores G, Guevara J, Díaz A. Metabolic syndrome causes recognition impairments and reduced hippocampal neuronal plasticity in rats. J Chem Neuroanat 2017; 82:65-75. [PMID: 28219715 DOI: 10.1016/j.jchemneu.2017.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/17/2017] [Accepted: 02/15/2017] [Indexed: 11/13/2022]
Abstract
Metabolic syndrome (MS) is a serious public health problem, which can promote neuronal alterations in cognitive regions related to learning and memory processes, such as the hippocampus. However, up to now there has been information of a regional segregation of this damage. In this study, we evaluate the MS effect on the neuronal morphology of the hippocampus. Our results demonstrate that 90days of a high-calorie diet alters the metabolic energy markers causing the MS and causes memory impairments, evaluated by the recognition of novel objects test (NORT). In addition, MS animals showed significant differences in dendritic order, total dendritic length and density of dendritic spines in CA1, CA3 and the dentate gyrus (DG) of the hippocampal area, compared with rats fed with a normocaloric diet (vehicle group). Furthermore, the immunoreactivity to synaptophysin (Syp) decreased in the hippocampus of the MS animals compared to the vehicle group. These results indicate that metabolic alterations induced by the MS affect hippocampal plasticity and hippocampal dependent memory processes.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico
| | - Rubén A Vázquez-Roque
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico
| | - Gustavo López-López
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico
| | - Claudia Perez-Cruz
- Departamento de Farmacología, Centro de Investigaciones y Estudios Avanzados, CINVESTAV, Ciudad de México, Mexico
| | - Carolina Moran
- Departamento de Biología y Toxicología de la Reproducción, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico
| | - Anabella Handal-Silva
- Departamento de Biología y Toxicología de la Reproducción, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico
| | - Enrique González-Vergara
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico.
| |
Collapse
|
9
|
Dorsett CR, McGuire JL, DePasquale EAK, Gardner AE, Floyd CL, McCullumsmith RE. Glutamate Neurotransmission in Rodent Models of Traumatic Brain Injury. J Neurotrauma 2016; 34:263-272. [PMID: 27256113 DOI: 10.1089/neu.2015.4373] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in people younger than 45 and is a significant public health concern. In addition to primary mechanical damage to cells and tissue, TBI involves additional molecular mechanisms of injury, termed secondary injury, that continue to evolve over hours, days, weeks, and beyond. The trajectory of recovery after TBI is highly unpredictable and in many cases results in chronic cognitive and behavioral changes. Acutely after TBI, there is an unregulated release of glutamate that cannot be buffered or cleared effectively, resulting in damaging levels of glutamate in the extracellular space. This initial loss of glutamate homeostasis may initiate additional changes in glutamate regulation. The excitatory amino acid transporters (EAATs) are expressed on both neurons and glia and are the principal mechanism for maintaining extracellular glutamate levels. Diffusion of glutamate outside the synapse due to impaired uptake may lead to increased extrasynaptic glutamate signaling, secondary injury through activation of cell death pathways, and loss of fidelity and specificity of synaptic transmission. Coordination of glutamate release and uptake is critical to regulating synaptic strength, long-term potentiation and depression, and cognitive processes. In this review, we will discuss dysregulation of extracellular glutamate and glutamate uptake in the acute stage of TBI and how failure to resolve acute disruptions in glutamate homeostatic mechanisms may play a causal role in chronic cognitive symptoms after TBI.
Collapse
Affiliation(s)
- Christopher R Dorsett
- 1 Biological and Biomedical Sciences Doctoral Program, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Jennifer L McGuire
- 2 Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati , Cincinnati, Ohio
| | - Erica A K DePasquale
- 2 Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati , Cincinnati, Ohio
| | - Amanda E Gardner
- 2 Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati , Cincinnati, Ohio
| | - Candace L Floyd
- 3 Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert E McCullumsmith
- 2 Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
10
|
Brown JC, Petersen A, Zhong L, Himelright ML, Murphy JA, Walikonis RS, Gerges NZ. Bidirectional regulation of synaptic transmission by BRAG1/IQSEC2 and its requirement in long-term depression. Nat Commun 2016; 7:11080. [PMID: 27009485 PMCID: PMC4820844 DOI: 10.1038/ncomms11080] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/16/2016] [Indexed: 01/09/2023] Open
Abstract
Dysfunction of the proteins regulating synaptic function can cause synaptic plasticity imbalance that underlies neurological disorders such as intellectual disability. A study found that four distinct mutations within BRAG1, an Arf-GEF synaptic protein, each led to X-chromosome-linked intellectual disability (XLID). Although the physiological functions of BRAG1 are poorly understood, each of these mutations reduces BRAG1's Arf-GEF activity. Here we show that BRAG1 is required for the activity-dependent removal of AMPA receptors in rat hippocampal pyramidal neurons. Moreover, we show that BRAG1 bidirectionally regulates synaptic transmission. On one hand, BRAG1 is required for the maintenance of synaptic transmission. On the other hand, BRAG1 expression enhances synaptic transmission, independently of BRAG1 Arf-GEF activity or neuronal activity, but dependently on its C-terminus interactions. This study demonstrates a dual role of BRAG1 in synaptic function and highlights the functional relevance of reduced BRAG1 Arf-GEF activity as seen in the XLID-associated human mutations.
Collapse
Affiliation(s)
- Joshua C Brown
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin 53132 USA
| | - Amber Petersen
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin 53132 USA
| | - Ling Zhong
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin 53132 USA
| | - Miranda L Himelright
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269 USA
| | - Jessica A Murphy
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269 USA
| | - Randall S Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269 USA
| | - Nashaat Z Gerges
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin 53132 USA
| |
Collapse
|
11
|
Köles L, Kató E, Hanuska A, Zádori ZS, Al-Khrasani M, Zelles T, Rubini P, Illes P. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems. Purinergic Signal 2015; 12:1-24. [PMID: 26542977 DOI: 10.1007/s11302-015-9480-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/26/2015] [Indexed: 12/29/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| | - Erzsébet Kató
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Adrienn Hanuska
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Patrizia Rubini
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
12
|
Abstract
Glutamate is the main excitatory neurotransmitter in the brain and ionotropic glutamate receptors mediate the majority of excitatory neurotransmission (Dingeldine et al. 1999). The high level of glutamatergic excitation allows the neonatal brain (the 2(nd) postnatal week in rat) to develop quickly but it also makes it highly prone to age-specific seizures that can cause lifelong neurological and cognitive disability (Haut et al. 2004). There are three types of ionotropic glutamate receptors (ligand-gated ion channels) named according to their prototypic agonists: N-methyl-D-aspartate (NMDA), 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) and kainate (KA). During early stages of postnatal development glutamate receptors of NMDA and AMPA type undergo intensive functional changes owing to modifications in their subunit composition (Carter et al. 1988, Watanabe et al. 1992, Monyer et al. 1994, Wenzel et al. 1997, Sun et al. 1998, Lilliu et al. 2001, Kumar et al. 2002, Matsuda et al. 2002, Wee et al. 2008, Henson et al. 2010, Pachernegg et al. 2012, Paoletti et al. 2013). Participation and role of these receptors in mechanisms of seizures and epilepsy became one of the main targets of intensive investigation (De Sarro et al. 2005, Di Maio et al. 2012, Rektor 2013). LiCl/Pilocarpine (LiCl/Pilo) induced status epilepticus is a model of severe seizures resulting in development temporal lobe epilepsy (TLE). This review will consider developmental changes and contribution of NMDA and AMPA receptors in LiCl/Pilo model of status epilepticus in immature rats.
Collapse
Affiliation(s)
- E Szczurowska
- Institute of Physiology AS CR, Prague, Czech Republic.
| | | |
Collapse
|
13
|
McCullumsmith RE, Hammond JH, Shan D, Meador-Woodruff JH. Postmortem brain: an underutilized substrate for studying severe mental illness. Neuropsychopharmacology 2014; 39:65-87. [PMID: 24091486 PMCID: PMC3857666 DOI: 10.1038/npp.2013.239] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 02/08/2023]
Abstract
We propose that postmortem tissue is an underutilized substrate that may be used to translate genetic and/or preclinical studies, particularly for neuropsychiatric illnesses with complex etiologies. Postmortem brain tissues from subjects with schizophrenia have been extensively studied, and thus serve as a useful vehicle for illustrating the challenges associated with this biological substrate. Schizophrenia is likely caused by a combination of genetic risk and environmental factors that combine to create a disease phenotype that is typically not apparent until late adolescence. The complexity of this illness creates challenges for hypothesis testing aimed at understanding the pathophysiology of the illness, as postmortem brain tissues collected from individuals with schizophrenia reflect neuroplastic changes from a lifetime of severe mental illness, as well as treatment with antipsychotic medications. While there are significant challenges with studying postmortem brain, such as the postmortem interval, it confers a translational element that is difficult to recapitulate in animal models. On the other hand, data derived from animal models typically provide specific mechanistic and behavioral measures that cannot be generated using human subjects. Convergence of these two approaches has led to important insights for understanding molecular deficits and their causes in this illness. In this review, we discuss the problem of schizophrenia, review the common challenges related to postmortem studies, discuss the application of biochemical approaches to this substrate, and present examples of postmortem schizophrenia studies that illustrate the role of the postmortem approach for generating important new leads for understanding the pathophysiology of severe mental illness.
Collapse
Affiliation(s)
| | - John H Hammond
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Dan Shan
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| |
Collapse
|
14
|
Wairkar YP, Trivedi D, Natarajan R, Barnes K, Dolores L, Cho P. CK2α regulates the transcription of BRP in Drosophila. Dev Biol 2013; 384:53-64. [PMID: 24080510 DOI: 10.1016/j.ydbio.2013.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 01/26/2023]
Abstract
Development and plasticity of synapses are brought about by a complex interplay between various signaling pathways. Typically, either changing the number of synapses or strengthening an existing synapse can lead to changes during synaptic plasticity. Altering the machinery that governs the exocytosis of synaptic vesicles, which primarily fuse at specialized structures known as active zones on the presynaptic terminal, brings about these changes. Although signaling pathways that regulate the synaptic plasticity from the postsynaptic compartments are well defined, the pathways that control these changes presynaptically are poorly described. In a genetic screen for synapse development in Drosophila, we found that mutations in CK2α lead to an increase in the levels of Bruchpilot (BRP), a scaffolding protein associated with the active zones. Using a combination of genetic and biochemical approaches, we found that the increase in BRP in CK2α mutants is largely due to an increase in the transcription of BRP. Interestingly, the transcripts of other active zone proteins that are important for function of active zones were also increased, while the transcripts from some other synaptic proteins were unchanged. Thus, our data suggest that CK2α might be important in regulating synaptic plasticity by modulating the transcription of BRP. Hence, we propose that CK2α is a novel regulator of the active zone protein, BRP, in Drosophila.
Collapse
Affiliation(s)
- Yogesh P Wairkar
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd., Rte#1045, Galveston, TX 77555, United States.
| | | | | | | | | | | |
Collapse
|
15
|
Esparza MA, Bollati F, Garcia-Keller C, Virgolini MB, Lopez LM, Brusco A, Shen HW, Kalivas PW, Cancela LM. Stress-induced sensitization to cocaine: actin cytoskeleton remodeling within mesocorticolimbic nuclei. Eur J Neurosci 2012; 36:3103-17. [PMID: 22882295 PMCID: PMC4346257 DOI: 10.1111/j.1460-9568.2012.08239.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study investigated the consequence of repeated stress on actin cytoskeleton remodeling in the nucleus accumbens (NAc) and prefrontal cortex (Pfc), and the involvement of this remodeling in the expression of stress-induced motor cross-sensitization with cocaine. Wistar rats were restrained daily (2 h) for 7 days and, 3 weeks later, their NAc and Pfc were dissected 45 min after acute saline or cocaine (30 mg/kg i.p.). F-actin, actin-binding proteins (ABP) and GluR1 were quantified by Western blotting, and dendritic spines and postsynaptic density (PSD) size measured by electron microscopy. In the NAc from the stress plus cocaine group we observed a decrease in the phosphorylation of two ABPs, cofilin and cortactin, and an increase in the PSD size and the surface expression of GluR1, consistent with a more highly branched actin cytoskeleton. The Pfc also showed evidence of increased actin polymerization after stress as an increase was observed in Arp2, and in the number of spines. Inhibiting actin cycling and polymerization with latrunculin A into the NAc, but not the Pfc, inhibited the expression of cross-sensitization to cocaine (15 mg/kg i.p.) and restored the expression of GluR1 to control levels. This study shows that a history of repeated stress alters the ability of a subsequent cocaine injection to modulate dendritic spine morphology, actin dynamics and GluR1 expression in the NAc. Furthermore, by regulating GluR1 expression in the NAc, elevated actin cycling contributes to the expression of cross-sensitization between stress and cocaine, while stress-induced changes in the Pfc were not associated with cross-sensitization.
Collapse
Affiliation(s)
- Maria A Esparza
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Onouchi T, Takamori N, Senda T. Colocalization of APC and PSD-95 in the nerve fiber as well as in the post-synapse of matured neurons. Med Mol Morphol 2012; 45:152-60. [DOI: 10.1007/s00795-011-0552-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/20/2011] [Indexed: 11/25/2022]
|
17
|
Bae J, Sung BH, Cho IH, Song WK. F-actin-dependent regulation of NESH dynamics in rat hippocampal neurons. PLoS One 2012; 7:e34514. [PMID: 22496823 PMCID: PMC3319579 DOI: 10.1371/journal.pone.0034514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/06/2012] [Indexed: 11/18/2022] Open
Abstract
Synaptic plasticity is an important feature of neurons essential for learning and memory. Postsynaptic organization and composition are dynamically remodeled in response to diverse synaptic inputs during synaptic plasticity. During this process, the dynamics and localization of postsynaptic proteins are also precisely regulated. NESH/Abi-3 is a member of the Abl interactor (Abi) protein family. Overexpression of NESH is associated with reduced cell motility and tumor metastasis. Strong evidence of a close relationship between NESH and the actin cytoskeleton has been documented. Although earlier studies have shown that NESH is prominently expressed in the brain, its function and characteristics are yet to be established. Data from the present investigation suggest that synaptic localization of NESH in hippocampal neurons is regulated in an F-actin-dependent manner. The dynamic fraction of NESH in the dendritic spine was analyzed using FRAP (fluorescence recovery after photobleaching). Interestingly, F-actin stabilization and disruption significantly affected the mobile fraction of NESH, possibly through altered interactions of NESH with the F-actin. In addition, NESH was synaptically targeted from the dendritic shaft to spine after induction of chemical LTP (long-term potentiation) and the translocation was dependent on F-actin. Our data collectively support the significance of the F-actin cytoskeleton in synaptic targeting of NESH as well as its dynamics.
Collapse
Affiliation(s)
- Jeomil Bae
- Cell Dynamics and Bioimaging Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Bong Hwan Sung
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - In Ha Cho
- Cell Dynamics and Bioimaging Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Woo Keun Song
- Cell Dynamics and Bioimaging Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
- * E-mail:
| |
Collapse
|
18
|
Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci 2011; 48:308-20. [DOI: 10.1016/j.mcn.2011.05.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/20/2011] [Accepted: 05/01/2011] [Indexed: 11/23/2022] Open
|
19
|
Investigating SAPAP3 variants in the etiology of obsessive-compulsive disorder and trichotillomania in the South African white population. Compr Psychiatry 2011; 52:181-7. [PMID: 21295225 DOI: 10.1016/j.comppsych.2010.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 05/06/2010] [Accepted: 05/19/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder characterized by repeated obsessions and compulsions. Trichotillomania (TTM), a psychiatric disorder characterized by repetitive hairpulling, is presently classified as an impulse control disorder, but has also been viewed as an obsessive-compulsive spectrum disorder. Both conditions are complex disorders, with evidence from family and twin studies indicating that their etiology includes a genetic component. Results from a recent knockout animal model suggest that SAP90/PSD95-associated protein 3 (SAPAP3) may be involved in the pathophysiology of both disorders. METHODS Seven polymorphic variants distributed across the gene encoding SAPAP3 were genotyped in South African white OCD (n = 172), TTM (n = 45), and control (n = 153) subjects. Single-locus and haplotype analyses were conducted to determine association between genetic variants and subjects with OCD, TTM, and controls. RESULTS Although single-locus analysis revealed a significant association between rs11583978 in SAPAP3 and TTM, this association was nonsignificant after correction for multiple testing. In the OCD group, a significant association was observed between earlier age at onset and the A-T-A-T (rs11583978-rs7541937-rs6662980-rs4652867) haplotype compared with the C-G-G-G haplotype. CONCLUSIONS This study generated preliminary evidence to link SAPAP3 variants to the development of earlier onset OCD. Future studies should concentrate on locating the susceptibility variant(s) by focusing on functional polymorphisms within SAPAP3.
Collapse
|
20
|
Dahlstrom AB. Fast intra-axonal transport: Beginning, development and post-genome advances. Prog Neurobiol 2010; 90:119-45. [DOI: 10.1016/j.pneurobio.2009.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/23/2009] [Accepted: 11/23/2009] [Indexed: 01/02/2023]
|
21
|
Cerpa W, Farías GG, Godoy JA, Fuenzalida M, Bonansco C, Inestrosa NC. Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol Neurodegener 2010; 5:3. [PMID: 20205789 PMCID: PMC2823745 DOI: 10.1186/1750-1326-5-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Accepted: 01/18/2010] [Indexed: 01/08/2023] Open
Abstract
Background Soluble amyloid-β (Aβ;) oligomers have been recognized to be early and key intermediates in Alzheimer's disease (AD)-related synaptic dysfunction. Aβ oligomers block hippocampal long-term potentiation (LTP) and impair rodent spatial memory. Wnt signaling plays an important role in neural development, including synaptic differentiation. Results We report here that the Wnt signaling activation prevents the synaptic damage triggered by Aβ oligomers. Electrophysiological analysis of Schaffer collaterals-CA1 glutamatergic synaptic transmission in hippocampal slices indicates that Wnt-5a increases the amplitude of field excitatory postsynaptic potentials (fEPSP) and both AMPA and NMDA components of the excitatory postsynaptic currents (EPSCs), without modifying the paired pulse facilitation (PPF). Conversely, in the presence of Aβ oligomers the fEPSP and EPSCs amplitude decreased without modification of the PPF, while the postsynaptic scaffold protein (PSD-95) decreased as well. Co-perfusion of hippocampal slices with Wnt-5a and Aβ oligomers occludes against the synaptic depression of EPSCs as well as the reduction of PSD-95 clusters induced by Aβ oligomers in neuronal cultures. Taken together these results indicate that Wnt-5a and Aβ oligomers inversely modulate postsynaptic components. Conclusion These results indicate that post-synaptic damage induced by Aβ oligomers in hippocampal neurons is prevented by non-canonical Wnt pathway activation.
Collapse
Affiliation(s)
- Waldo Cerpa
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V, Luco" (CRCP), MIFAB, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
22
|
Colom LV, Castañeda MT, Bañuelos C, Puras G, García-Hernández A, Hernandez S, Mounsey S, Benavidez J, Lehker C. Medial septal beta-amyloid 1-40 injections alter septo-hippocampal anatomy and function. Neurobiol Aging 2010; 31:46-57. [PMID: 18547680 PMCID: PMC2810281 DOI: 10.1016/j.neurobiolaging.2008.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/22/2008] [Accepted: 05/01/2008] [Indexed: 12/29/2022]
Abstract
Degeneration of septal neurons in Alzheimer's disease (AD) results in abnormal information processing at cortical circuits and consequent brain dysfunction. The septum modulates the activity of hippocampal and cortical circuits and is crucial to the initiation and occurrence of oscillatory activities such as the hippocampal theta rhythm. Previous studies suggest that amyloid beta peptide (Abeta) accumulation may trigger degeneration in AD. This study evaluates the effects of single injections of Abeta 1-40 into the medial septum. Immunohistochemistry revealed a decrease in septal cholinergic (57%) and glutamatergic (53%) neurons in Abeta 1-40 treated tissue. Additionally, glutamatergic terminals were significantly less in Abeta treated tissue. In contrast, septal GABAergic neurons were spared. Unitary recordings from septal neurons and hippocampal field potentials revealed an approximately 50% increase in firing rates of slow firing septal neurons during theta rhythm and large irregular amplitude (LIA) hippocampal activities and a significantly reduced hippocampal theta rhythm power (49%) in Abeta 1-40 treated tissue. Abeta also markedly reduced the proportion of slow firing septal neurons correlated to the hippocampal theta rhythm by 96%. These results confirm that Abeta alters the anatomy and physiology of the medial septum contributing to septo-hippocampal dysfunction. The Abeta induced injury of septal cholinergic and glutamatergic networks may contribute to an altered hippocampal theta rhythm which may underlie the memory loss typically observed in AD patients.
Collapse
Affiliation(s)
- Luis V Colom
- Department of Biological Sciences at the University of Texas at Brownsville/Texas Southmost College, 80 Fort Brown, Brownsville, TX 78520, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sun M, Liu L, Zeng X, Xu M, Liu L, Fang M, Xie W. Genetic interaction between Neurexin and CAKI/CMG is important for synaptic function in Drosophila neuromuscular junction. Neurosci Res 2009; 64:362-71. [PMID: 19379781 DOI: 10.1016/j.neures.2009.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/03/2009] [Accepted: 04/09/2009] [Indexed: 11/17/2022]
Abstract
Neurexins are neuron-specific cell surface molecules thought to localize to presynaptic membranes. Recent genetic studies using Drosophila melanogaster have implicated an essential role for a single Drosophila neurexin (dnrx) in the proper architecture, development and function of synapses in vivo. However, the precise mechanisms underlying these actions are not fully understood. To elucidate the molecular mechanism of Neurexin in vivo, we employed dnrx and caki mutant flies, combined with various methods, and analyzed the animals' locomotion, synaptic vesicle cycling and neurotransmission of neuromuscular junctions. We found that Dneurexin (DNRX) is important for locomotion through a genetic interaction with the scaffold protein, CAKI/CMG, the Drosophila homolog of vertebrate CASK. Similar to its mammalian counterparts, DNRX is essential for synaptic vesicle cycling, which plays critical roles in neurotransmission at neuromuscular junctions (NMJ). However, this interaction appears not to be required for the synaptic targeting of DNRX, but may instead be needed for proper synaptic function, possibly by regulating the synaptic vesicle cycling process.
Collapse
Affiliation(s)
- Mingkuan Sun
- Department of Genetics and Developmental Biology, Southeast University Medical School, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, 87 Dingjiaqiao Road, Nanjing 210009, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Lai SK, Lai CH, Tse YC, Yung KKL, Shum DKY, Chan YS. Developmental maturation of ionotropic glutamate receptor subunits in rat vestibular nuclear neurons responsive to vertical linear acceleration. Eur J Neurosci 2009; 28:2157-72. [PMID: 19046363 DOI: 10.1111/j.1460-9568.2008.06523.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the maturation profile of subunits of ionotropic glutamate receptors in vestibular nuclear neurons that were activated by sinusoidal linear acceleration along the vertical plane. The otolithic origin of Fos expression in these neurons was confirmed as a marker of functional activation when labyrinthectomized and/or stationary control rats contrasted by showing sporadically scattered Fos-labeled neurons in the vestibular nuclei. By double immunohistochemistry for Fos and one of the receptor subunits, otolith-related neurons that expressed either alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate or N-methyl-d-aspartate subunits were first identified in the medial vestibular nucleus, spinal vestibular nucleus and Group x by postnatal day (P)7, and in the lateral vestibular nucleus and Group y by P9. No double-labeled neurons were found in the superior vestibular nucleus. Within each vestibular subnucleus, these double-labeled neurons constituted approximately 90% of the total Fos-labeled neurons. The percentage of Fos-labeled neurons expressing the GluR1 or NR2A subunit showed developmental invariance in all subnuclei. For Fos-labeled neurons expressing the NR1 subunit, similar invariance was observed except that, in Group y, these neurons decreased from P14 onwards. For Fos-labeled neurons expressing the GluR2, GluR2/3, GluR4 or NR2B subunit, a significant decrease was found by the adult stage. In particular, those expressing the GluR4 subunit showed a two- to threefold decrease in the medial vestibular nucleus, spinal vestibular nucleus and Group y. Also, those expressing the NR2B subunit showed a twofold decrease in Group y. Taken together, the postsynaptic expression of ionotropic glutamate receptor subunits in different vestibular subnuclei suggests that glutamatergic transmission within subregions plays differential developmental roles in the coding of gravity-related vertical spatial information.
Collapse
Affiliation(s)
- Suk-King Lai
- Department of Physiology, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
25
|
Hines R, El-Husseini A. Excitatory Amino Acid Neurotransmitter Regulation. Mol Pain 2009. [DOI: 10.1007/978-0-387-75269-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Abstract
Proper synaptic function requires the seamless integration of the transport, assembly, and regulation of synaptic components and structures. Inasmuch as the synapse is often distant from the neuronal cell body, newly synthesized synaptic proteins, the precursors of synaptic vesicles, active zone compartments, channels and receptors, and mitochondria, must be transported along lengthy neuronal processes to participate in synaptogenesis. Neuronal transport is mediated by motor proteins that associate with their cargoes via adaptors (or receptors) and that travel along the cytoskeleton network within the neuronal processes. Thus, the identity of membranous protein cargoes and the specificity of motor-cargo interactions are critical for correctly targeting cargoes and properly assembling synapses in developing neurons and in remodeling synapses of mature neurons in response to neuronal activity. In this article, the authors review recent progress in characterizing microtubule- and actin-based motor proteins that are involved in delivering synaptic components and discuss potential mechanisms underlying the formation of motor-receptor-cargo complexes that contribute to synaptogenesis and activity-induced synaptic plasticity.
Collapse
Affiliation(s)
- Qian Cai
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
27
|
Viltono L, Patrizi A, Fritschy JM, Sassoè-Pognetto M. Synaptogenesis in the cerebellar cortex: differential regulation of gephyrin and GABAA receptors at somatic and dendritic synapses of Purkinje cells. J Comp Neurol 2008; 508:579-91. [PMID: 18366064 DOI: 10.1002/cne.21713] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In rodent cerebellar cortex, synaptogenesis occurs entirely postnatally, allowing study of the mechanisms of synapse formation in vivo. Here we monitored the clustering of GABA(A) receptors and the scaffolding protein gephyrin at GABAergic postsynaptic sites during rat cerebellar development. We found that GABA(A) receptors and gephyrin co-aggregate at nascent synapses in the molecular and Purkinje cell layers with a similar time course. With few exceptions, gephyrin and GABA(A) receptor subunits clustered selectively in front of presynaptic boutons expressing the vesicular inhibitory amino acid transporter VIAAT and no ectopic localization of these molecules was observed. Surprisingly, gephyrin clusters outlining the cell body of Purkinje cells were transient, and disappeared rapidly at the end of the second postnatal week. The loss of gephyrin from perisomatic synapses was coincident with a significant reduction in the size of GABA(A) receptor clusters. Furthermore, these changes were accompanied by a developmental decrease in the size of synaptic appositions, as documented by electron microscopy. These findings suggest that gephyrin takes part in the initial assembly of postsynaptic specializations and reveal an unsuspected heterogeneity in the molecular organization of the postsynaptic apparatus at somatic and dendritic synapses of mature Purkinje cells.
Collapse
Affiliation(s)
- Laura Viltono
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, I-10126 Torino, Italy
| | | | | | | |
Collapse
|
28
|
Tse YC, Lai CH, Lai SK, Liu JX, Yung KKL, Shum DKY, Chan YS. Developmental expression of NMDA and AMPA receptor subunits in vestibular nuclear neurons that encode gravity-related horizontal orientations. J Comp Neurol 2008; 508:343-64. [PMID: 18335497 DOI: 10.1002/cne.21688] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We examined the expression profile of subunits of ionotropic glutamate receptors [N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA)] during postnatal development of connectivity in the rat vestibular nucleus. Vestibular nuclear neurons were functionally activated by constant velocity off-vertical axis rotation, a strategy to stimulate otolith organs in the inner ear. These neurons indicated Fos expression as a result. By immunodetection for Fos, otolith-related neurons that expressed NMDA/AMPA receptor subunits were identified as early as P7, and these neurons were found to increase progressively up to adulthood. Although there was developmental invariance in the percentage of Fos-immunoreactive neurons expressing the NR1, NR2A, GluR1, or GluR2/3 subunits, those expressing the NR2B subunit decreased from P14 onward, and those expressing the GluR4 subunit decreased in adults. These double-immunohistochemical data were corroborated by combined immuno-/hybridization histochemical data obtained from Fos-immunoreactive neurons expressing NR2B mRNA or GluR4 mRNA. The staining of both NR2B and GluR4 in the cytoplasm of these neurons decreased upon maturation. The percentage of Fos-immunoreactive neurons expressing the other ionotropic glutamate receptor subunits (viz. NR1, NR2A, GluR1, and GluR2/3) remained relatively constant throughout postnatal maturation. Triple immunofluorescence further demonstrated coexpression of NR1 and NR2 subunits in Fos-immunoreactive neurons. Coexpression of NR1 subunit with each of the GluR subunits was also observed among the Fos-immunoreactive neurons. Taken together, the different expression profiles of ionotropic glutamate receptor subunits constitute the histological basis for glutamatergic neurotransmission in the maturation of central vestibular connectivity for the coding of gravity-related horizontal head movements.
Collapse
Affiliation(s)
- Yiu-Chung Tse
- Department of Physiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Wairkar YP, Fradkin LG, Noordermeer JN, DiAntonio A. Synaptic defects in a Drosophila model of congenital muscular dystrophy. J Neurosci 2008; 28:3781-9. [PMID: 18385336 PMCID: PMC6671091 DOI: 10.1523/jneurosci.0478-08.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 02/29/2008] [Indexed: 11/21/2022] Open
Abstract
The congenital muscular dystrophies present in infancy with muscle weakness and are often associated with mental retardation. Many of these inherited disorders share a common etiology: defective O-glycosylation of alpha-dystroglycan, a component of the dystrophin complex. Protein-O-mannosyl transferase 1 (POMT1) is the first enzyme required for the glycosylation of alpha-dystroglycan, and mutations in the POMT1 gene can lead to both Walker-Warburg syndrome (WWS) and limb girdle muscular dystrophy type 2K (LGMD2K). WWS is associated with severe mental retardation and major structural abnormalities in the brain; however, LGMD2K patients display a more mild retardation with no obvious structural defects in the brain. In a screen for synaptic mutants in Drosophila, we identified mutations in the Drosophila ortholog of POMT1, dPOMT1. Because synaptic defects are a plausible cause of mental retardation, we investigated the molecular and physiological defects associated with loss of dPOMT1 in Drosophila. In dPOMT1 mutants, there is a decrease in the efficacy of synaptic transmission and a change in the subunit composition of the postsynaptic glutamate receptors at the neuromuscular junction. We demonstrate that dPOMT1 is required to glycosylate the Drosophila dystroglycan ortholog Dg in vivo, and that this is the likely cause of these synaptic defects because (1) mutations in Dg lead to similar synaptic defects and (2) genetic interaction studies suggest that dPOMT1 and Dg function in the same pathway. These results are consistent with the model that dPOMT1-dependent glycosylation of Dg is necessary for proper synaptic function and raise the possibility that similar synaptic defects occur in the congenital muscular dystrophies.
Collapse
Affiliation(s)
- Yogesh P. Wairkar
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri 63110, and
| | - Lee G. Fradkin
- Laboratory of Developmental Neurobiology, Department of Molecular and Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jasprina N. Noordermeer
- Laboratory of Developmental Neurobiology, Department of Molecular and Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Aaron DiAntonio
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri 63110, and
| |
Collapse
|
30
|
Esteban JA. Intracellular machinery for the transport of AMPA receptors. Br J Pharmacol 2008; 153 Suppl 1:S35-43. [PMID: 18026130 PMCID: PMC2268045 DOI: 10.1038/sj.bjp.0707525] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 01/03/2023] Open
Abstract
AMPA-type glutamate receptors are one of the most dynamic components of excitatory synapses. Their regulated addition and removal from synapses leads to long-lasting forms of synaptic plasticity, known as long-term potentiation (LTP) and long-term depression (LTD). In addition, AMPA receptors reach their synaptic targets after a complicated journey involving multiple transport steps through different membrane compartments. This review summarizes our current knowledge of the trafficking pathways of AMPARs and their relation to synaptic function and plasticity.
Collapse
Affiliation(s)
- J A Esteban
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Brown TC, Correia SS, Petrok CN, Esteban JA. Functional compartmentalization of endosomal trafficking for the synaptic delivery of AMPA receptors during long-term potentiation. J Neurosci 2007; 27:13311-5. [PMID: 18045925 PMCID: PMC6673392 DOI: 10.1523/jneurosci.4258-07.2007] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/21/2022] Open
Abstract
Endosomal membrane trafficking in dendritic spines is important for proper synaptic function and plasticity. However, little is known about the molecular identity and functional compartmentalization of the membrane trafficking machinery operating at the postsynaptic terminal. Here we report that the transport of AMPA-type glutamate receptors into synapses occurs in two discrete steps, and we identify the specific endosomal functions that control this process during long-term potentiation. We found that Rab11-dependent endosomes translocate AMPA receptors from the dendritic shaft into spines. Subsequently, an additional endosomal trafficking step, controlled by Rab8, drives receptor insertion into the synaptic membrane. Separate from this receptor delivery route, we show that Rab4 mediates a constitutive endosomal recycling within the spine. This Rab4-dependent cycling is critical for maintaining spine size but does not influence receptor transport. Therefore, our data reveal a highly compartmentalized endosomal network within the spine and identify the molecular components and functional organization of the membrane organelles that mediate AMPA receptor synaptic delivery during plasticity.
Collapse
Affiliation(s)
- Tyler C. Brown
- Neuroscience Program and
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Susana S. Correia
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Cortney N. Petrok
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - José A. Esteban
- Neuroscience Program and
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
32
|
Juo P, Harbaugh T, Garriga G, Kaplan JM. CDK-5 regulates the abundance of GLR-1 glutamate receptors in the ventral cord of Caenorhabditis elegans. Mol Biol Cell 2007; 18:3883-93. [PMID: 17671168 PMCID: PMC1995742 DOI: 10.1091/mbc.e06-09-0818] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 06/21/2007] [Accepted: 07/20/2007] [Indexed: 11/11/2022] Open
Abstract
The proline-directed kinase Cdk5 plays a role in several aspects of neuronal development. Here, we show that CDK-5 activity regulates the abundance of the glutamate receptor GLR-1 in the ventral cord of Caenorhabditis elegans and that it produces corresponding changes in GLR-1-dependent behaviors. Loss of CDK-5 activity results in decreased abundance of GLR-1 in the ventral cord, accompanied by accumulation of GLR-1 in neuronal cell bodies. Genetic analysis of cdk-5 and the clathrin adaptin unc-11 AP180 suggests that CDK-5 functions prior to endocytosis at the synapse. The scaffolding protein LIN-10/Mint-1 also regulates GLR-1 abundance in the nerve cord. CDK-5 phosphorylates LIN-10/Mint-1 in vitro and bidirectionally regulates the abundance of LIN-10/Mint-1 in the ventral cord. We propose that CDK-5 promotes the anterograde trafficking of GLR-1 and that phosphorylation of LIN-10 may play a role in this process.
Collapse
Affiliation(s)
- Peter Juo
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
Excitatory (glutamatergic) synapses in the mammalian brain are usually situated on dendritic spines, a postsynaptic microcompartment that also harbors organelles involved in protein synthesis, membrane trafficking, and calcium metabolism. The postsynaptic membrane contains a high concentration of glutamate receptors, associated signaling proteins, and cytoskeletal elements, all assembled by a variety of scaffold proteins into an organized structure called the postsynaptic density (PSD). A complex machine made of hundreds of distinct proteins, the PSD dynamically changes its structure and composition during development and in response to synaptic activity. The molecular size of the PSD and the stoichiometry of many major constituents have been recently measured. The structures of some intact PSD proteins, as well as the spatial arrangement of several proteins within the PSD, have been determined at low resolution by electron microscopy. On the basis of such studies, a more quantitative and geometrically realistic view of PSD architecture is emerging.
Collapse
Affiliation(s)
- Morgan Sheng
- The Picower Institute for Learning and Memory, Howard Hughes Medical Institute, Departments of Brain and Cognitive Sciences, and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
34
|
Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. Trends Cell Biol 2007; 17:343-52. [PMID: 17644382 DOI: 10.1016/j.tcb.2007.07.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/08/2007] [Accepted: 07/04/2007] [Indexed: 11/27/2022]
Abstract
Synaptic transmission underlies every aspect of brain function. Excitatory synapses, which release the neurotransmitter glutamate, are the most numerous type of synapse in the brain. The trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors to and from these synapses controls the strength of excitatory synaptic transmission. However, the underlying mechanisms controlling this trafficking have remained elusive. Recent studies, drawing from advances in molecular biology and electrophysiology techniques, have established an essential role for a family of synaptic scaffolding molecules, known as membrane associate guanylate kinases (MAGUKs), in this trafficking process. These studies highlight the remarkable orchestration of AMPA-type glutamate receptor synaptic trafficking by multiple MAGUKs at different synapses within the same neuron and at different developmental stages.
Collapse
|
35
|
Laumonnier F, Cuthbert PC, Grant SGN. The role of neuronal complexes in human X-linked brain diseases. Am J Hum Genet 2007; 80:205-20. [PMID: 17236127 PMCID: PMC1785339 DOI: 10.1086/511441] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 11/28/2006] [Indexed: 01/28/2023] Open
Abstract
Beyond finding individual genes that are involved in medical disorders, an important challenge is the integration of sets of disease genes with the complexities of basic biological processes. We examine this issue by focusing on neuronal multiprotein complexes and their components encoded on the human X chromosome. Multiprotein signaling complexes in the postsynaptic terminal of central nervous system synapses are essential for the induction of neuronal plasticity and cognitive processes in animals. The prototype complex is the N-methyl-D-aspartate receptor complex/membrane-associated guanylate kinase-associated signaling complex (NRC/MASC) comprising 185 proteins and embedded within the postsynaptic density (PSD), which is a set of complexes totaling approximately 1,100 proteins. It is striking that 86% (6 of 7) of X-linked NRC/MASC genes and 49% (19 of 39) of X-chromosomal PSD genes are already known to be involved in human psychiatric disorders. Moreover, of the 69 known proteins mutated in X-linked mental retardation, 19 (28%) encode postsynaptic proteins. The high incidence of involvement in cognitive disorders is also found in mouse mutants and indicates that the complexes are functioning as integrated entities or molecular machines and that disruption of different components impairs their overall role in cognitive processes. We also noticed that NRC/MASC genes appear to be more strongly associated with mental retardation and autism spectrum disorders. We propose that systematic studies of PSD and NRC/MASC genes in mice and humans will give a high yield of novel genes important for human disease and new mechanistic insights into higher cognitive functions.
Collapse
Affiliation(s)
- Frédéric Laumonnier
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | | | | |
Collapse
|
36
|
Paradis S, Harrar DB, Lin Y, Koon AC, Hauser JL, Griffith EC, Zhu L, Brass LF, Chen C, Greenberg ME. An RNAi-based approach identifies molecules required for glutamatergic and GABAergic synapse development. Neuron 2007; 53:217-32. [PMID: 17224404 PMCID: PMC1950560 DOI: 10.1016/j.neuron.2006.12.012] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 10/20/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
We report the results of a genetic screen to identify molecules important for synapse formation and/or maintenance. siRNAs were used to decrease the expression of candidate genes in neurons, and synapse development was assessed. We surveyed 22 cadherin family members and demonstrated distinct roles for cadherin-11 and cadherin-13 in synapse development. Our screen also revealed roles for the class 4 Semaphorins Sema4B and Sema4D in the development of glutamatergic and/or GABAergic synapses. We found that Sema4D affects the formation of GABAergic, but not glutamatergic, synapses. Our screen also identified the activity-regulated small GTPase Rem2 as a regulator of synapse development. A known calcium channel modulator, Rem2 may function as part of a homeostatic mechanism that controls synapse number. These experiments establish the feasibility of RNAi screens to characterize the mechanisms that control mammalian neuronal development and to identify components of the genetic program that regulate synapse formation and/or maintenance.
Collapse
Affiliation(s)
- Suzanne Paradis
- Neurobiology Program, Children’s Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
| | - Dana B. Harrar
- Neurobiology Program, Children’s Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
| | - Yingxi Lin
- Neurobiology Program, Children’s Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
| | - Alex C. Koon
- Neurobiology Program, Children’s Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
| | - Jessica L. Hauser
- Neurobiology Program, Children’s Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
| | - Eric C. Griffith
- Neurobiology Program, Children’s Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
| | - Li Zhu
- Departments of Medicine and Pharmacology, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104
| | - Lawrence F. Brass
- Departments of Medicine and Pharmacology, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104
| | - Chinfei Chen
- Neurobiology Program, Children’s Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
| | - Michael E. Greenberg
- Neurobiology Program, Children’s Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
| |
Collapse
|
37
|
Douyard J, Shen L, Huganir RL, Rubio ME. Differential neuronal and glial expression of GluR1 AMPA receptor subunit and the scaffolding proteins SAP97 and 4.1N during rat cerebellar development. J Comp Neurol 2007; 502:141-56. [PMID: 17335044 DOI: 10.1002/cne.21294] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In neurons, AMPA glutamate receptors are developmentally regulated and selectively targeted to synaptic sites. Astroglial cells also express AMPA receptors, but their developmental pattern of expression and targeting mechanisms are unknown. In this study we investigated by immunocytochemistry at the light and electron microscopy level the expression of GluR1 and its scaffolding proteins SAP97 (synapse-associated protein) and 4.1N during cerebellar development. In cerebellar cortex the GluR1 AMPA receptor subunit is expressed exclusively in Bergmann glia in the adult rodent. Interestingly, we observed that GluR1 was expressed postsynaptically at the climbing fibers (CF) synapse at early ages during Purkinje cell dendritic growth and before the complete ensheathment of CF/Purkinje cell synapses by Bergmann glia. However, its expression changed from neurons to Bergmann glia once these glial cells had completed their enwrapping process. In contrast, GluR2/3 and GluR4 AMPAR subunits were stably expressed in both Purkinje cells (GluR2/3) and Bergmann glia (GluR4) throughout postnatal development. Our data indicate that GluR1 expression undergoes a developmental switch from neurons to glia and that this appears to correlate with the degree of Purkinje cell dendritic growth and their enwrapping by Bergmann glia. SAP97 and 4.1N were developmentally regulated in the same pattern as GluR1. Therefore, SAP97 and 4.1N may play a role in the transport and insertion of GluR1 at CF/Purkinje cell synapses during early ages and at Bergmann glia plasma membrane in the adult. The parallel fiber (PF)/Purkinje cell synapse contained GluR2/3 but lacked GluR1, SAP97, and 4.1N at the time of PF synaptogenesis.
Collapse
Affiliation(s)
- Jessica Douyard
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 062693156, USA
| | | | | | | |
Collapse
|
38
|
O'Leary H, Lasda E, Bayer KU. CaMKIIbeta association with the actin cytoskeleton is regulated by alternative splicing. Mol Biol Cell 2006; 17:4656-65. [PMID: 16928958 PMCID: PMC1635389 DOI: 10.1091/mbc.e06-03-0252] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 08/02/2006] [Accepted: 08/11/2006] [Indexed: 11/11/2022] Open
Abstract
The Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII)beta has morphogenic functions in neurons not shared by the alpha isoform. CaMKIIbeta contains three exons (v1, v3, and v4) not present in the CaMKIIalpha gene, and two of these exons (v1 and v4) are subject to differential alternative splicing. We show here that CaMKIIbeta, but not alpha, mediated bundling of F-actin filaments in vitro. Most importantly, inclusion of exon v1 was required for CaMKIIbeta association with the F-actin cytoskeleton within cells. CaMKIIbetae, which is the dominant variant around birth and lacks exon v1 sequences, failed to associate with F-actin. By contrast, CaMKIIbeta', which instead lacks exon v4, associated with F-actin as full-length CaMKIIbeta. Previous studies with CaMKIIbeta mutants have indicated a role of nonstimulated kinase activity in enhancing dendritic arborization. Here, we show that F-actin-targeted CaMKIIbeta, but not alpha, was able to phosphorylate actin in vitro even by nonstimulated basal activity in absence of Ca(2+)/CaM. In rat pancreatic islets and in skeletal muscle, the actin-associated CaMKIIbeta' and betaM were the predominant variants, respectively. Thus, cytoskeletal targeting may mediate functions of CaMKIIbeta variants also outside the nervous system.
Collapse
Affiliation(s)
| | | | - K. Ulrich Bayer
- *Department of Pharmacology
- Biomedical Sciences Program, and
- Neuroscience Program, University of Colorado Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
39
|
Charrier C, Ehrensperger MV, Dahan M, Lévi S, Triller A. Cytoskeleton regulation of glycine receptor number at synapses and diffusion in the plasma membrane. J Neurosci 2006; 26:8502-11. [PMID: 16914675 PMCID: PMC6674337 DOI: 10.1523/jneurosci.1758-06.2006] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lateral diffusion of neurotransmitter receptors in and out of synapses has been postulated as a core mechanism for rapid changes in receptor number at synapses during plastic processes. In this study, we have used single particle tracking to investigate how changes in glycine receptor (GlyR) lateral diffusion properties might account for changes in receptor number at synapses after disruption of the cytoskeleton in dissociated spinal cord neurons. We found that pharmacological disruption of F-actin and microtubules decreased the amount of GlyR and gephyrin, the backbone of the inhibitory postsynaptic scaffold, at synapses. F-actin and microtubule disruption increased GlyR exchanges between the synaptic and extrasynaptic membranes and decreased receptor dwell time at synapses. GlyR lateral diffusion was predominantly controlled by microtubules in the extrasynaptic membrane and by actin at synapses. Both diffusion coefficients and confinement at synapses were affected after F-actin disruption. Our results indicate that receptor exchanges between the synaptic and extrasynaptic compartments depend on the properties of both the postsynaptic differentiation and the extrasynaptic membrane. Consequently, GlyR number at synapses may be rapidly modulated by the cytoskeleton through the regulation of lateral diffusion in the plasma membrane and of receptor stabilization at synapses.
Collapse
|
40
|
Toda S, Shen HW, Peters J, Cagle S, Kalivas PW. Cocaine increases actin cycling: effects in the reinstatement model of drug seeking. J Neurosci 2006; 26:1579-87. [PMID: 16452681 PMCID: PMC6675500 DOI: 10.1523/jneurosci.4132-05.2006] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Addiction to cocaine is associated with persistent changes in synaptic function. The cycling of actin between polymerized [F (for filamentous)] and depolymerized forms contributes to synaptic plasticity, and acute and withdrawal from repeated cocaine administration produced reversible and enduring elevations, respectively, in F-actin in the nucleus accumbens. Increased F-actin after 3 weeks withdrawal from repeated cocaine resulted from changes in the content or phosphorylation state of actin binding proteins (ABPs) that cosediment with F-actin. The profile of altered APBs was consistent with filopodia formation, including increased mammalian Enabled, phosphorylated (p)-cortactin, and p-vasodilator-stimulated phosphoprotein, and increased actin depolymerization [e.g., reduced LIM (Lin11/Isl-1/Mec3)-kinase and p-cofilin]. In contrast to repeated cocaine, the increase in F-actin after acute cocaine administration resulted from reduced depolymerization and actin cycling. The potential involvement of chronic cocaine-induced increases in actin cycling in cocaine addiction was examined using the reinstatement of cocaine seeking in rats previously trained to self-administer cocaine by inhibiting actin polymerization with intra-accumbens latrunculin A or by accelerating actin depolymerization with a LIM-kinase inhibitor. Disrupting actin cycling via either mechanism augmented cocaine-induced reinstatement of drug seeking but did not affect the locomotor response to acute cocaine administration. Thus, withdrawal from repeated cocaine induces a restructuring of actin-ABP complexes, which increases actin cycling and may modulate cocaine-induced reinstatement of drug seeking.
Collapse
|
41
|
Gerges NZ, Backos DS, Rupasinghe CN, Spaller MR, Esteban JA. Dual role of the exocyst in AMPA receptor targeting and insertion into the postsynaptic membrane. EMBO J 2006; 25:1623-34. [PMID: 16601687 PMCID: PMC1440842 DOI: 10.1038/sj.emboj.7601065] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 03/03/2006] [Indexed: 02/08/2023] Open
Abstract
Intracellular membrane trafficking of glutamate receptors at excitatory synapses is critical for synaptic function. However, little is known about the specialized trafficking events occurring at the postsynaptic membrane. We have found that two components of the exocyst complex, Sec8 and Exo70, separately control synaptic targeting and insertion of AMPA-type glutamate receptors. Sec8 controls the directional movement of receptors towards synapses through PDZ-dependent interactions. In contrast, Exo70 mediates receptor insertion at the postsynaptic membrane, but it does not participate in receptor targeting. Thus, interference with Exo70 function accumulates AMPA receptors inside the spine, forming a complex physically associated, but not yet fused with the postsynaptic membrane. Electron microscopic analysis of these complexes indicates that Exo70 mediates AMPA receptor insertion directly within the postsynaptic density, rather than at extrasynaptic membranes. Therefore, we propose a molecular and anatomical model that dissects AMPA receptor sorting and synaptic delivery within the spine, and uncovers new functions of the exocyst at the postsynaptic membrane.
Collapse
Affiliation(s)
- Nashaat Z Gerges
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Donald S Backos
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI USA
| | | | - Mark R Spaller
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - José A Esteban
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI USA
- Department of Pharmacology, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109-0632, USA. Tel.: +1 734 615 2686; Fax: +1 734 763 4450; E-mail:
| |
Collapse
|
42
|
Ruthazer ES, Li J, Cline HT. Stabilization of axon branch dynamics by synaptic maturation. J Neurosci 2006; 26:3594-603. [PMID: 16571768 PMCID: PMC6673865 DOI: 10.1523/jneurosci.0069-06.2006] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 02/12/2006] [Accepted: 02/14/2006] [Indexed: 11/21/2022] Open
Abstract
The developmental refinement of topographic projections in the brain is reflected in the dynamic sculpting of axonal arbors that takes place as connections between CNS structures form and mature. To examine the role of synaptogenesis and synaptic maturation in the structural development of axonal projections during the formation of the topographic retinotectal projection, we coexpressed cytosolic fluorescent protein (FP) and FP-tagged synaptophysin (SYP) in small numbers of retinal ganglion cells in living albino Xenopus laevis tadpoles to reveal the distribution and dynamics of presynaptic sites within labeled retinotectal axons. Two-photon time-lapse observations followed by quantitative analysis of tagged SYP levels at individual synapses demonstrated the time course of synaptogenesis: increases in presynaptic punctum intensity are detectable within minutes of punctum emergence and continue over many hours. Puncta lifetimes correlate with their intensities. Furthermore, we found that axon arbor dynamics are affected by synaptic contacts. Axon branches retract past faintly labeled puncta but are locally stabilized at intensely labeled SYP puncta. Visual stimulation for 4 h enhanced the stability of the arbor at intense presynaptic puncta while concurrently inducing the retraction of exploratory branches with only faintly labeled or no synaptic sites.
Collapse
Affiliation(s)
- Edward S Ruthazer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724-0100, USA
| | | | | |
Collapse
|
43
|
Hori K, Yasuda H, Konno D, Maruoka H, Tsumoto T, Sobue K. NMDA receptor-dependent synaptic translocation of insulin receptor substrate p53 via protein kinase C signaling. J Neurosci 2006; 25:2670-81. [PMID: 15758177 PMCID: PMC6725157 DOI: 10.1523/jneurosci.3638-04.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The activity-dependent remodeling of postsynaptic structure is a fundamental process underlying learning and memory. Insulin receptor substrate p53 (IRSp53), a key player in cytoskeletal dynamics, is enriched in the postsynaptic density (PSD) fraction, but its significance in synaptic functions remains unclear. We report here that IRSp53 is accumulated rapidly at the postsynaptic sites of cultured hippocampal neurons after glutamate or NMDA stimulation in an actin cytoskeleton-dependent manner. Pharmacological profiles showed that a PKC inhibitor, but not other kinase inhibitors, specifically suppressed the synaptic translocation of IRSp53 in response to NMDA, and the selective activation of PKC with phorbol ester markedly induced the synaptic translocation. Reverse transcriptase-PCR and Western blotting showed that IRSp53-S is the major isoform expressed in cultured hippocampal neurons. The synaptic targeting of IRSp53-S was found to be mediated through N-terminal coiled-coil domain and the PDZ (PSD-95/Discs large/zona occludens-1)-binding sequence at its C-terminal end and regulated by the PKC phosphorylation of its N terminus. In electrophysiological experiments, overexpression of IRSp53-S wild type and IRSp53-S mutant that is spontaneously accumulated at the postsynaptic sites enhanced the postsynaptic function as detected by an increased miniature EPSC amplitude. These data suggest that IRSp53 is involved in NMDA receptor-linked synaptic plasticity via PKC signaling.
Collapse
Affiliation(s)
- Kei Hori
- Department of Neuroscience (D13) and Division of Neurophysiology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Nishimura T, Yamaguchi T, Tokunaga A, Hara A, Hamaguchi T, Kato K, Iwamatsu A, Okano H, Kaibuchi K. Role of numb in dendritic spine development with a Cdc42 GEF intersectin and EphB2. Mol Biol Cell 2006; 17:1273-85. [PMID: 16394100 PMCID: PMC1382316 DOI: 10.1091/mbc.e05-07-0700] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 11/15/2005] [Accepted: 12/27/2005] [Indexed: 12/22/2022] Open
Abstract
Numb has been implicated in cortical neurogenesis during nervous system development, as a result of its asymmetric partitioning and antagonizing Notch signaling. Recent studies have revealed that Numb functions in clathrin-dependent endocytosis by binding to the AP-2 complex. Numb is also expressed in postmitotic neurons and plays a role in axonal growth. However, the functions of Numb in later stages of neuronal development remain unknown. Here, we report that Numb specifically localizes to dendritic spines in cultured hippocampal neurons and is implicated in dendritic spine morphogenesis, partially through the direct interaction with intersectin, a Cdc42 guanine nucleotide exchange factor (GEF). Intersectin functions as a multidomain adaptor for proteins involved in endocytosis and cytoskeletal regulation. Numb enhanced the GEF activity of intersectin toward Cdc42 in vivo. Expression of Numb or intersectin caused the elongation of spine neck, whereas knockdown of Numb and Numb-like decreased the protrusion density and its length. Furthermore, Numb formed a complex with EphB2 receptor-type tyrosine kinase and NMDA-type glutamate receptors. Knockdown of Numb suppressed the ephrin-B1-induced spine development and maturation. These results highlight a role of Numb for dendritic spine development and synaptic functions with intersectin and EphB2.
Collapse
Affiliation(s)
- Takashi Nishimura
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Roselli F, Tirard M, Lu J, Hutzler P, Lamberti P, Livrea P, Morabito M, Almeida OFX. Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci 2006; 25:11061-70. [PMID: 16319306 PMCID: PMC6725651 DOI: 10.1523/jneurosci.3034-05.2005] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid-beta (Abeta) has been implicated in memory loss and disruption of synaptic plasticity observed in early-stage Alzheimer's disease. Recently, it has been shown that soluble Abeta oligomers target synapses in cultured rat hippocampal neurons, suggesting a direct role of Abeta in the regulation of synaptic structure and function. Postsynaptic density-95 (PSD-95) is a postsynaptic scaffolding protein that plays a critical role in synaptic plasticity and the stabilization of AMPA (AMPARs) and NMDA (NMDARs) receptors at synapses. Here, we show that exposure of cultured cortical neurons to soluble oligomers of Abeta(1-40) reduces PSD-95 protein levels in a dose- and time-dependent manner and that the Abeta1(1-40)-dependent decrease in PSD-95 requires NMDAR activity. We also show that the decrease in PSD-95 requires cyclin-dependent kinase 5 activity and involves the proteasome pathway. Immunostaining analysis of cortical cultured neurons revealed that Abeta treatment induces concomitant decreases in PSD-95 at synapses and in the surface expression of the AMPAR glutamate receptor subunit 2. Together, these data suggest a novel pathway by which Abeta triggers synaptic dysfunction, namely, by altering the molecular composition of glutamatergic synapses.
Collapse
Affiliation(s)
- F Roselli
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Fedchyshyn MJ, Wang LY. Developmental transformation of the release modality at the calyx of Held synapse. J Neurosci 2006; 25:4131-40. [PMID: 15843616 PMCID: PMC6724960 DOI: 10.1523/jneurosci.0350-05.2005] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ca(2+) influx through voltage-gated Ca(2+) channels (VGCCs) into nerve terminals triggers vesicular fusion and neurotransmitter release. However, it is unknown whether the coupling between VGCCs and synaptic vesicles (SVs) is developmentally regulated. By paired patch-clamp recordings from the mouse calyx of Held synapse, we show here that injection of a Ca(2+) buffer with slow binding kinetics (EGTA; 10 mm) potently attenuated transmitter release in young terminals [postnatal day 8 (P8)-P12] but produced little effect in older ones (P16-P18), suggesting that SVs in young synapses are loosely coupled to VGCCs, but the coupling tightens spatially during maturation. Using voltage paradigms that specifically recruit different numbers of VGCCs without changing the driving force for Ca(2+), we found that the Ca(2+) cooperativity (m), estimated from graded presynaptic Ca(2+) currents and transmitter release, was much higher in P8-P12 synapses (m = 4.8-5.5) than that in P16-P18 synapses (m = 2.8-3.0; 1 mm [Ca(2+)](o)), implying that the number of VGCCs or Ca(2+) domains required for release of single SVs decreases with maturation. The m value remained significantly different between two age groups at 35 degrees C or in 2 mm [Ca(2+)](o) and was independent of postsynaptic receptor desensitization. We demonstrated that release from P8-P12 terminals involved both N- and P/Q-type VGCCs, but P/Q-type-associated release sites specifically displayed low m values. These results suggest a developmental transformation of the release modality from "microdomain," involving cooperative action of many loosely coupled N- and P/Q-type VGCCs, to "nanodomain," in which opening of fewer tightly coupled P/Q-type VGCCs effectively induce a fusion event. Spatial tightening improves the release efficiency and is likely a critical step for the development of high-fidelity neurotransmission in this and other central synapses.
Collapse
Affiliation(s)
- Michael J Fedchyshyn
- The Program for Brain and Behavioural Research and Division of Neurology, The Hospital for Sick Children, and Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | | |
Collapse
|
47
|
Kremerskothen J, Kindler S, Finger I, Veltel S, Barnekow A. Postsynaptic recruitment of Dendrin depends on both dendritic mRNA transport and synaptic anchoring. J Neurochem 2006; 96:1659-66. [PMID: 16464232 DOI: 10.1111/j.1471-4159.2006.03679.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synaptic plasticity and memory formation involve remodeling of the postsynaptic cytoskeleton, a process that is in part based on both local translation of dendritic mRNAs and synaptic recruitment of newly synthesized proteins. The postsynaptic component Dendrin that is encoded by a dendritically localized mRNA is thought to modulate the structure of the synaptic cytoskeleton. However, molecular mechanisms that control extrasomatic Dendrin mRNA transport and postsynaptic protein recruitment are unknown. The data presented here reveal that Dendrin interacts with the cytoskeletal components alpha-actinin and Maguk with inverted orientation (MAGI) or synaptic scaffolding molecule (S-SCAM). The latter retains Dendrin in the cytoplasm of mammalian cells and prevents its nuclear import. Furthermore in neurons, postsynaptic clustering of Dendrin requires dendritic targeting of its messenger RNA (mRNA), a process that is mediated by a sequence motif within the 3' untranslated region. In summary our finding suggest that postsynaptic recruitment of Dendrin appears to critically depend on both local protein synthesis and association with the synaptic scaffolding protein MAGI/S-SCAM. Its nuclear localization capacity further points to a function in retrograde signaling from the synapse to the nucleus.
Collapse
Affiliation(s)
- Joachim Kremerskothen
- Department for Experimental Tumorbiology, University Muenster, Badestrasse 9, D-48149 Muenster, Germany.
| | | | | | | | | |
Collapse
|
48
|
Cai C, Li H, Rivera C, Keinänen K. Interaction between SAP97 and PSD-95, two Maguk proteins involved in synaptic trafficking of AMPA receptors. J Biol Chem 2005; 281:4267-73. [PMID: 16332687 DOI: 10.1074/jbc.m505886200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Synapse-associated protein 97 (SAP97) and postsynaptic density 95 (PSD-95) are closely related membrane-associated guanylate kinase homologs (Maguks) implicated in the synaptic targeting and anchoring of alpha-amino-5-methyl-3-hydroxy-4-isoxazolepropionic acid (AMPA)-selective glutamate receptors. Prompted by accumulating evidence for an oligomeric nature of Maguks, we examined the potential of SAP97 and PSD-95 to form heteromeric complexes. SAP97 and PSD-95 coimmunoprecipitated from rat brain detergent extracts and subsequent glutathione S-transferase pull-down and immunoprecipitation experiments showed that the interaction is mediated by binding of the N-terminal segment of SAP97 (SAP97(NTD)) to the Src homology 3 domain of PSD-95 (PSD-95(SH3)). In cultured hippocampal neurons, expression of green fluorescent protein-tagged PSD-95 triggered accumulation of SAP97 in synaptic spines, which was totally inhibited by coexpression of PSD-95(SH3). Furthermore, overexpression of green fluorescent protein-PSD-95 induced dendritic clustering of GluR-A subunit-containing AMPA receptors, which was strongly inhibited by cotransfection with SAP97(NTD) and PSD-95(SH3) constructs. Our results demonstrated a direct interaction between SAP97 and PSD-95 and suggested that this association may play a functional role in the trafficking and clustering of AMPA receptors.
Collapse
Affiliation(s)
- Chunlin Cai
- Department of Biological and Environmental Sciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|
49
|
Abstract
In recent years great progress has been made in understanding the function of ionotropic and metabotropic glutamate receptors; their pharmacology and potential therapeutic applications. It should be stressed that there are already N-methyl-D-aspartate (NMDA) antagonists in clinical use, such as memantine, which proves the feasibility of their therapeutic potential. It seems unlikely that competitive NMDA receptor antagonists and high-affinity channel blockers will find therapeutic use due to limiting side-effects, whereas agents acting at the glycineB site, NMDA receptor subtype-selective agents and moderate-affinity channel blockers are far more promising. This is supported by the fact that there are several glycineB antagonists, NMDA moderate-affinity channel blockers and NR2B-selective agents under development. Positive and negative modulators of AMPA receptors such as the AMPAkines and 2,3-benzodiazepines also show more promise than e.g. competitive antagonists. Great progress has also been made in the field of metabotropic glutamate receptors since the discovery of novel, allosteric modulatory sites for these receptors. Selective agents acting at these transmembrane sites have been developed that are more drug-like and have a much better access to the central nervous system than their competitive counterparts. The chapter will critically review preclinical and scarce clinical experience in the development of new ionotropic and metabotropic glutamate receptor modulators according to the following scheme: rational, preclinical findings in animal models and finally clinical experience, where available.
Collapse
Affiliation(s)
- C G Parsons
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 München, Germany
| | | | | |
Collapse
|
50
|
Abstract
Synapses are highly specialized intercellular junctions that mediate the transmission of information between axons and target cells. A fundamental property of synapses is their ability to modify the efficacy of synaptic communication through various forms of synaptic plasticity. Recent developments in imaging techniques have revealed that synapses exhibit a high degree of morphological plasticity under basal conditions and also in response to neuronal activity that induces alterations in synaptic strength. The underlying molecular basis for this morphological plasticity has attracted much attention, yet its functional significance to the mechanisms of synaptic transmission and synaptic plasticity remains elusive. These morphological changes ultimately require the dynamic actin cytoskeleton, which is the major structural component of synapses. Delineating the physiological roles of the actin cytoskeleton in supporting synaptic transmission and synaptic plasticity, therefore, paves the way for gaining molecular insights into when and how synaptic machineries couple synapse form and function.
Collapse
Affiliation(s)
- Christian Dillon
- MRC Cell Biology Unit and Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom.
| | | |
Collapse
|