1
|
Delestro F, Scheunemann L, Pedrazzani M, Tchenio P, Preat T, Genovesio A. In vivo large-scale analysis of Drosophila neuronal calcium traces by automated tracking of single somata. Sci Rep 2020; 10:7153. [PMID: 32346011 PMCID: PMC7188892 DOI: 10.1038/s41598-020-64060-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/07/2020] [Indexed: 01/30/2023] Open
Abstract
How does the concerted activity of neuronal populations shape behavior? Impediments to address this question are primarily due to critical experimental barriers. An integrated perspective on large scale neural information processing requires an in vivo approach that can combine the advantages of exhaustively observing all neurons dedicated to a given type of stimulus, and simultaneously achieve a resolution that is precise enough to capture individual neuron activity. Current experimental data from in vivo observations are either restricted to a small fraction of the total number of neurons, or are based on larger brain volumes but at a low spatial and temporal resolution. Consequently, fundamental questions as to how sensory information is represented on a population scale remain unanswered. In Drosophila melanogaster, the mushroom body (MB) represents an excellent model to analyze sensory coding and memory plasticity. In this work, we present an experimental setup coupled with a dedicated computational method that provides in vivo measurements of the activity of hundreds of densely packed somata uniformly spread in the MB. We exploit spinning-disk confocal 3D imaging over time of the whole MB cell body layer in vivo while it is exposed to olfactory stimulation. Importantly, to derive individual signal from densely packed somata, we have developed a fully automated image analysis procedure that takes advantage of the specificities of our data. After anisotropy correction, our approach operates a dedicated spot detection and registration over the entire time sequence to transform trajectories to identifiable clusters. This enabled us to discard spurious detections and reconstruct missing ones in a robust way. We demonstrate that this approach outperformed existing methods in this specific context and made possible high-throughput analysis of approximately 500 single somata uniformly spread over the MB in various conditions. Applying this approach, we find that learned experiences change the population code of odor representations in the MB. After long-term memory (LTM) formation, we quantified an increase in responsive somata count and a stable single neuron signal. We predict that this method, which should further enable studying the population pattern of neuronal activity, has the potential to uncover fine details of sensory processing and memory plasticity.
Collapse
Affiliation(s)
- Felipe Delestro
- Computational Bioimaging and Bioinformatics, IBENS, ENS, INSERM, CNRS, PSL, 46 rue d'Ulm, 75005, Paris, France
| | - Lisa Scheunemann
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL, 10 Rue Vauquelin, 75005, Paris, France
| | - Mélanie Pedrazzani
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL, 10 Rue Vauquelin, 75005, Paris, France
| | - Paul Tchenio
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL, 10 Rue Vauquelin, 75005, Paris, France
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL, 10 Rue Vauquelin, 75005, Paris, France.
| | - Auguste Genovesio
- Computational Bioimaging and Bioinformatics, IBENS, ENS, INSERM, CNRS, PSL, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
2
|
Scheunemann L, Plaçais PY, Dromard Y, Schwärzel M, Preat T. Dunce Phosphodiesterase Acts as a Checkpoint for Drosophila Long-Term Memory in a Pair of Serotonergic Neurons. Neuron 2019; 98:350-365.e5. [PMID: 29673482 PMCID: PMC5919781 DOI: 10.1016/j.neuron.2018.03.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/19/2017] [Accepted: 03/16/2018] [Indexed: 01/08/2023]
Abstract
A key function of the brain is to filter essential information and store it in the form of stable, long-term memory (LTM). We demonstrate here that the Dunce (Dnc) phosphodiesterase, an important enzyme that degrades cAMP, acts as a molecular switch that controls LTM formation in Drosophila. We show that, during LTM formation, Dnc is inhibited in the SPN, a pair of newly characterized serotonergic neurons, which stimulates the cAMP/PKA pathway. As a consequence, the SPN activates downstream dopaminergic neurons, opening the gate for LTM formation in the olfactory memory center, the mushroom body. Strikingly, transient inhibition of Dnc in the SPN by RNAi was sufficient to induce LTM formation with a training protocol that normally generates only short-lived memory. Thus, Dnc activity in the SPN acts as a memory checkpoint to guarantee that only the most relevant learned experiences are consolidated into stable memory. Dunce phosphodiesterase is a default inhibitor of long-term memory (LTM) formation Dunce acts in a pair of newly identified serotonergic projection neurons These serotonergic neurons control the activity of LTM-gating dopaminergic neurons
Collapse
Affiliation(s)
- Lisa Scheunemann
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, ESPCI Paris, PSL Research University, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, ESPCI Paris, PSL Research University, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Yann Dromard
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, ESPCI Paris, PSL Research University, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Martin Schwärzel
- Freie Universität Berlin, Department of Biology/Neurobiology, Königin-Luise Str. 28-30, Berlin 14195, Germany
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, ESPCI Paris, PSL Research University, CNRS, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
3
|
Kollmann M, Schmidt R, Heuer CM, Schachtner J. Variations on a Theme: Antennal Lobe Architecture across Coleoptera. PLoS One 2016; 11:e0166253. [PMID: 27973569 PMCID: PMC5156346 DOI: 10.1371/journal.pone.0166253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 12/02/2022] Open
Abstract
Beetles comprise about 400,000 described species, nearly one third of all known animal species. The enormous success of the order Coleoptera is reflected by a rich diversity of lifestyles, behaviors, morphological, and physiological adaptions. All these evolutionary adaptions that have been driven by a variety of parameters over the last about 300 million years, make the Coleoptera an ideal field to study the evolution of the brain on the interface between the basic bauplan of the insect brain and the adaptions that occurred. In the current study we concentrated on the paired antennal lobes (AL), the part of the brain that is typically responsible for the first processing of olfactory information collected from olfactory sensilla on antenna and mouthparts. We analyzed 63 beetle species from 22 different families and thus provide an extensive comparison of principal neuroarchitecture of the AL. On the examined anatomical level, we found a broad diversity including AL containing a wide range of glomeruli numbers reaching from 50 to 150 glomeruli and several species with numerous small glomeruli, resembling the microglomerular design described in acridid grasshoppers and diving beetles, and substructures within the glomeruli that have to date only been described for the small hive beetle, Aethina tumida. A first comparison of the various anatomical features of the AL with available descriptions of lifestyle and behaviors did so far not reveal useful correlations. In summary, the current study provides a solid basis for further studies to unravel mechanisms that are basic to evolutionary adaptions of the insect olfactory system.
Collapse
Affiliation(s)
- Martin Kollmann
- Department of Biology—Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Rovenna Schmidt
- Department of Biology—Animal Physiology, Philipps-University Marburg, Marburg, Germany
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Gießen, Gießen, Germany
| | - Carsten M. Heuer
- Department of Biology—Animal Physiology, Philipps-University Marburg, Marburg, Germany
- Fraunhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen INT, Euskirchen, Germany
| | - Joachim Schachtner
- Department of Biology—Animal Physiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
4
|
Morphological and Transcriptomic Analysis of a Beetle Chemosensory System Reveals a Gnathal Olfactory Center. BMC Biol 2016; 14:90. [PMID: 27751175 PMCID: PMC5067906 DOI: 10.1186/s12915-016-0304-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The red flour beetle Tribolium castaneum is an emerging insect model organism representing the largest insect order, Coleoptera, which encompasses several serious agricultural and forest pests. Despite the ecological and economic importance of beetles, most insect olfaction studies have so far focused on dipteran, lepidopteran, or hymenopteran systems. RESULTS Here, we present the first detailed morphological description of a coleopteran olfactory pathway in combination with genome-wide expression analysis of the relevant gene families involved in chemoreception. Our study revealed that besides the antennae, also the mouthparts are highly involved in olfaction and that their respective contribution is processed separately. In this beetle, olfactory sensory neurons from the mouthparts project to the lobus glomerulatus, a structure so far only characterized in hemimetabolous insects, as well as to a so far non-described unpaired glomerularly organized olfactory neuropil in the gnathal ganglion, which we term the gnathal olfactory center. The high number of functional odorant receptor genes expressed in the mouthparts also supports the importance of the maxillary and labial palps in olfaction of this beetle. Moreover, gustatory perception seems equally distributed between antenna and mouthparts, since the number of expressed gustatory receptors is similar for both organs. CONCLUSIONS Our analysis of the T. castaneum chemosensory system confirms that olfactory and gustatory perception are not organotopically separated to the antennae and mouthparts, respectively. The identification of additional olfactory processing centers, the lobus glomerulatus and the gnathal olfactory center, is in contrast to the current picture that in holometabolous insects all olfactory inputs allegedly converge in the antennal lobe. These findings indicate that Holometabola have evolved a wider variety of solutions to chemoreception than previously assumed.
Collapse
|
5
|
Liu C, Liu Y, Guo M, Cao D, Dong S, Wang G. Narrow tuning of an odorant receptor to plant volatiles in Spodoptera exigua (Hübner). INSECT MOLECULAR BIOLOGY 2014; 23:487-496. [PMID: 24779920 DOI: 10.1111/imb.12096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Olfaction plays an important role in insects in recognizing volatile compounds, which are used to find food and mates, as well as avoid danger, predators and pathogens. The key players in the detection of volatile compounds are olfactory receptor (OR) proteins, which are located within the dendritic membrane of sensory neurons and extend into the lymph of sensilla on insect antennae. In the present study, we identify an OR gene, named SexiOR3, which is expressed in adult antenna in both sexes, but with female bias, in the beet armyworm moth Spodoptera exigua. Further in situ hybridization analysis revealed that SexiOR3 was mainly located in short trichoid sensilla. In in vitro heterologous expression experiments, SexiOR3 was narrowly tuned to E-β-farnesene and several compounds of related structure, among 62 different compounds tested in this study. Furthermore, SexiOR3 responds to E-β-farnesene at a low concentration of 10(-9) M, comparable to that of pheromone receptors (PRs) responding to the pheromones. This is a very interesting finding for a general OR, indicating that high specificity is a feature of at least one general OR and not only the PRs. The results suggest that the OR3 gene may play an important role in the moth olfactory system, and underpins important insect behaviour.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
6
|
Beyaert I, Hilker M. Plant odour plumes as mediators of plant-insect interactions. Biol Rev Camb Philos Soc 2013; 89:68-81. [PMID: 23714000 DOI: 10.1111/brv.12043] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/19/2013] [Accepted: 04/25/2013] [Indexed: 01/11/2023]
Abstract
Insect olfactory orientation along odour plumes has been studied intensively with respect to pheromonal communication, whereas little knowledge is available on how plant odour plumes (POPs) affect olfactory searching by an insect for its host plants. The primary objective of this review is to examine the role of POPs in the attraction of insects. First, we consider parameters of an odour source and the environment which determine the size, shape and structure of an odour plume, and we apply that knowledge to POPs. Second, we compare characteristics of insect pheromonal plumes and POPs. We propose a 'POP concept' for the olfactory orientation of insects to plants. We suggest that: (i) an insect recognises a POP by means of plant volatile components that are encountered in concentrations higher than a threshold detection limit and that occur in a qualitative and quantitative blend indicating a resource; (ii) perception of the fine structure of a POP enables an insect to distinguish a POP from an unspecific odorous background and other interfering plumes; and (iii) an insect can follow several POPs to their sources, and may leave the track of one POP and switch to another one if this conveys a signal with higher reliability or indicates a more suitable resource. The POP concept proposed here may be a useful tool for research in olfactory-mediated plant-insect interactions.
Collapse
Affiliation(s)
- Ivo Beyaert
- Freie Universität Berlin, Institut für Biologie, Haderslebener Str. 9, D-12163, Berlin, Germany
| | | |
Collapse
|
7
|
Datta RR, Cruickshank T, Kumar JP. Differential selection within the Drosophila retinal determination network and evidence for functional divergence between paralog pairs. Evol Dev 2011; 13:58-71. [PMID: 21210943 DOI: 10.1111/j.1525-142x.2010.00456.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The retinal determination (RD) network in Drosophila comprises 14 known nuclear proteins that include DNA-binding proteins, transcriptional coactivators, kinases, and phosphatases. The composition of the network varies considerably throughout the animal kingdom, with the network in several basal insects having fewer members and with vertebrates having potentially significantly higher numbers of RD genes. One important contributing factor for the variation in gene number within the network is gene duplication. For example, 10 members of the RD network in Drosophila are derived from duplication events. Here we present an analysis of the coding regions of the five pairs of duplicate genes from within the RD network of several different Drosophila species. We demonstrate that there is differential selection across the coding regions of all RD genes. Additionally, some of the most significant differences in ratios of non-silent-to-silent site substitutions (d(N)/d(S)) between paralog pairs are found within regions that have no ascribed function. Previous structure/function analyses of several duplicate genes have identified areas within one gene that contain novel activities when compared with its paralog. The evolutionary analysis presented here identifies these same areas in the paralogs as being under high levels of relaxed selection. We suggest that sequence divergence between paralogs and selection signatures can be used as a reasonable predictor of functional changes in rapidly evolving motifs.
Collapse
Affiliation(s)
- Rhea R Datta
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
8
|
Molecular Cloning and cDNA Sequence Analysis of Two New Lepidopteran OR83b Orthologue Chemoreceptors. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60203-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Ulland S, Ian E, Stranden M, Borg-Karlson AK, Mustaparta H. Plant volatiles activating specific olfactory receptor neurons of the cabbage moth Mamestra brassicae L. (Lepidoptera, Noctuidae). Chem Senses 2008; 33:509-22. [PMID: 18480074 DOI: 10.1093/chemse/bjn018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Herbivore insects are suitable model organisms for studying how plant odor information is encoded in olfactory receptor neurons (RNs). By the use of gas chromatography linked to electrophysiological recordings from single RNs, screening for sensitivity to naturally produced plant odorants is possible in order to determine the molecular receptive ranges of the neurons. Using this method, we have in this study of the cabbage moth, Mamestra brassicae, classified 21 types of olfactory RNs according to their responses to odorants present in the host plants of Brassicae, in the related species of Arabidopsis, as well as in essential oils of nonhost plants like ylang-ylang. Most of the RNs were tuned to one or a few structurally similar compounds, showing minimal overlap of their molecular receptive ranges. Whereas some RNs displayed a novel tuning, others were tuned to the same compounds as neurons in other insect species. We also found colocation in the same sensillum of 3 RN types with the same response characteristics and tuning as 3 colocated types described in heliothine moths living on different host plants. The presence of similar RN types across different insect species implies conservation or reappearance of the RN types, independent of the evolution of host plant ranges.
Collapse
Affiliation(s)
- S Ulland
- Neuroscience Unit, Department of Biology, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|
10
|
Groth P, Weiss B, Pohlenz HD, Leser U. Mining phenotypes for gene function prediction. BMC Bioinformatics 2008; 9:136. [PMID: 18315868 PMCID: PMC2311305 DOI: 10.1186/1471-2105-9-136] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 03/03/2008] [Indexed: 01/29/2023] Open
Abstract
Background Health and disease of organisms are reflected in their phenotypes. Often, a genetic component to a disease is discovered only after clearly defining its phenotype. In the past years, many technologies to systematically generate phenotypes in a high-throughput manner, such as RNA interference or gene knock-out, have been developed and used to decipher functions for genes. However, there have been relatively few efforts to make use of phenotype data beyond the single genotype-phenotype relationships. Results We present results on a study where we use a large set of phenotype data – in textual form – to predict gene annotation. To this end, we use text clustering to group genes based on their phenotype descriptions. We show that these clusters correlate well with several indicators for biological coherence in gene groups, such as functional annotations from the Gene Ontology (GO) and protein-protein interactions. We exploit these clusters for predicting gene function by carrying over annotations from well-annotated genes to other, less-characterized genes in the same cluster. For a subset of groups selected by applying objective criteria, we can predict GO-term annotations from the biological process sub-ontology with up to 72.6% precision and 16.7% recall, as evaluated by cross-validation. We manually verified some of these clusters and found them to exhibit high biological coherence, e.g. a group containing all available antennal Drosophila odorant receptors despite inconsistent GO-annotations. Conclusion The intrinsic nature of phenotypes to visibly reflect genetic activity underlines their usefulness in inferring new gene functions. Thus, systematically analyzing these data on a large scale offers many possibilities for inferring functional annotation of genes. We show that text clustering can play an important role in this process.
Collapse
Affiliation(s)
- Philip Groth
- Research Laboratories of Bayer Schering Pharma AG, Berlin, Germany.
| | | | | | | |
Collapse
|
11
|
Processing and classification of chemical data inspired by insect olfaction. Proc Natl Acad Sci U S A 2007; 104:20285-9. [PMID: 18077325 DOI: 10.1073/pnas.0705683104] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chemical sense of insects has evolved to encode and classify odorants. Thus, the neural circuits in their olfactory system are likely to implement an efficient method for coding, processing, and classifying chemical information. Here, we describe a computational method to process molecular representations and classify molecules. The three-step approach mimics neurocomputational principles observed in olfactory systems. In the first step, the original stimulus space is sampled by "virtual receptors," which are chemotopically arranged by a self-organizing map. In the second step, the signals from the virtual receptors are decorrelated via correlation-based lateral inhibition. Finally, in the third step, olfactory scent perception is modeled by a machine learning classifier. We found that signal decorrelation during the second stage significantly increases the accuracy of odorant classification. Moreover, our results suggest that the proposed signal transform is capable of dimensionality reduction and is more robust against overdetermined representations than principal component scores. Our olfaction-inspired method was successfully applied to predicting bioactivities of pharmaceutically active compounds with high accuracy. It represents a way to efficiently connect chemical structure with biological activity space.
Collapse
|
12
|
Ulland S, Ian E, Mozuraitis R, Borg-Karlson AK, Meadow R, Mustaparta H. Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, noctuidae). Chem Senses 2007; 33:35-46. [PMID: 17846100 DOI: 10.1093/chemse/bjm061] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The cabbage moth, Mamestra brassicae L. (Lepidoptera, Noctuidae), is a polyphagous species that is often choosing plants of Brassica as hosts for oviposition. In the search for biologically relevant odorants used by these moths, gas chromatography linked to electrophysiological recordings from single receptor neurons (RNs) has been employed, resulting in classification of distinct types of neurons. This study presents specific olfactory RNs responding to methyl salicylate (MeS) as primary odorant and showing a weak response to methyl benzoate, the 2 aromatic compounds occurring together in several plant species. In 2 cases, the neuron was colocated with another RN type responding to 6 green leaf volatiles: 1-hexanol, (3Z)-hexen-1-ol, (2E)-hexen-1-ol, (3Z)-hexenyl acetate, (2Z)-hexen-1-ol, and an unidentified compound. Whereas the specific RNs detected the minor amounts of MeS in some plants, the compound was not found by gas chromatography linked to mass spectrometry in intact plants, but it was found after herbivore attack. The behavioral effect of MeS was studied in outdoor test arenas with Brassica napus and artificial plants. These experiments indicated that mated M. brassicae females avoid plants with dispensers emitting MeS. As it is induced by caterpillar feeding, this compound may mediate a message to mated M. brassicae females that the plant is already occupied.
Collapse
Affiliation(s)
- S Ulland
- Neuroscience unit, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
13
|
Nikonov AA, Caprio J. Highly specific olfactory receptor neurons for types of amino acids in the channel catfish. J Neurophysiol 2007; 98:1909-18. [PMID: 17686913 DOI: 10.1152/jn.00548.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Odorant specificity to l-alpha-amino acids was determined electrophysiologically for 93 single catfish olfactory receptor neurons (ORNs) selected for their narrow excitatory molecular response range (EMRR) to only one type of amino acid (i.e., Group I units). These units were excited by either a basic amino acid, a neutral amino acid with a long side chain, or a neutral amino acid with a short side chain when tested at 10(-7) to 10(-5) M. Stimulus-induced inhibition, likely for contrast enhancement, was primarily observed in response to the types of amino acid stimuli different from that which activated a specific ORN. The high specificity of single Group I ORNs to type of amino acid was also previously observed for single Group I neurons in both the olfactory bulb and forebrain of the same species. These results indicate that for Group I neurons olfactory information concerning specific types of amino acids is processed from receptor neurons through mitral cells of the olfactory bulb to higher forebrain neurons without significant alteration in unit odorant specificity.
Collapse
Affiliation(s)
- Alexander A Nikonov
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
14
|
Colomb J, Grillenzoni N, Ramaekers A, Stocker RF. Architecture of the primary taste center ofDrosophila melanogasterlarvae. J Comp Neurol 2007; 502:834-47. [PMID: 17436288 DOI: 10.1002/cne.21312] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A simple nervous system combined with stereotypic behavioral responses to tastants, together with powerful genetic and molecular tools, have turned Drosophila larvae into a very promising model for studying gustatory coding. Using the Gal4/UAS system and confocal microscopy for visualizing gustatory afferents, we provide a description of the primary taste center in the larval central nervous system. Essentially, gustatory receptor neurons target different areas of the subesophageal ganglion (SOG), depending on their segmental and sensory organ origin. We define two major and two smaller subregions in the SOG. One of the major areas is a target of pharyngeal sensilla, the other one receives inputs from both internal and external sensilla. In addition to such spatial organization of the taste center, circumstantial evidence suggests a subtle functional organization: aversive and attractive stimuli might be processed in the anterior and posterior part of the SOG, respectively. Our results also suggest less coexpression of gustatory receptors than proposed in prior studies. Finally, projections of putative second-order taste neurons seem to cover large areas of the SOG. These neurons may thus receive multiple gustatory inputs. This suggests broad sensitivity of secondary taste neurons, reminiscent of the situation in mammals.
Collapse
Affiliation(s)
- Julien Colomb
- Department of Biology and Program in Neuroscience, University of Fribourg, 1700 Fribourg, Switzerland.
| | | | | | | |
Collapse
|
15
|
Faucher C, Forstreuter M, Hilker M, de Bruyne M. Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context. J Exp Biol 2006; 209:2739-48. [PMID: 16809465 DOI: 10.1242/jeb.02297] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
SUMMARY
Drosophila melanogaster (Meigen) detects and uses many volatiles for its survival. Carbon dioxide (CO2) is detected in adults by a special class of olfactory receptor neurons, expressing the gustatory receptor Gr21a. The behavioral responses to CO2 were investigated in a four-field olfactometer bioassay that is new for Drosophila. We determined (1) whether the sensitivity of this response changes with odor context, and (2) if it depends on sex and life stage. When CO2 was added to ambient air in one field and tested against ambient air in the three other fields, individually observed adults avoided CO2 (0.1-1%above ambient), but did not respond to a low rise of 0.02%. We relate this behavior to measurements of CO2 production in bananas and flies. When 0.02% CO2 was combined with the odor of apple cider vinegar in one field of the olfactometer and tested against ambient air in the three other fields, the addition of CO2 did not affect the attractiveness of apple cider vinegar alone. However, this combination of CO2 and vinegar became repellent when it was tested against vinegar at ambient CO2 concentrations in the three other fields. This `odor background effect' was female-specific, revealing a sexually dimorphic behavior. The new assay allowed us to test larvae under similar conditions and compare their behavior to that of adults. Like adults, they avoided CO2, but with lower sensitivity. Larvae lacking neurons expressing Gr21a lost their avoidance behavior to CO2, but kept their positive response to vinegar odor. Hence, Gr21a-expressing neurons mediate similar behaviors in larvae and adults.
Collapse
Affiliation(s)
- Cécile Faucher
- Freie Universität Berlin, Neurobiologie, Königin-Luise-Strasse 28-30, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
16
|
Marella S, Fischler W, Kong P, Asgarian S, Rueckert E, Scott K. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 2006; 49:285-95. [PMID: 16423701 DOI: 10.1016/j.neuron.2005.11.037] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 10/27/2005] [Accepted: 11/18/2005] [Indexed: 10/25/2022]
Abstract
The sense of taste allows animals to distinguish nutritious and toxic substances and elicits food acceptance or avoidance behaviors. In Drosophila, taste cells that contain the Gr5a receptor are necessary for acceptance behavior, and cells with the Gr66a receptor are necessary for avoidance. To determine the cellular substrates of taste behaviors, we monitored taste cell activity in vivo with the genetically encoded calcium indicator G-CaMP. These studies reveal that Gr5a cells selectively respond to sugars and Gr66a cells to bitter compounds. Flies are attracted to sugars and avoid bitter substances, suggesting that Gr5a cell activity is sufficient to mediate acceptance behavior and that Gr66a cell activation mediates avoidance. As a direct test of this hypothesis, we inducibly activated different taste neurons by expression of an exogenous ligand-gated ion channel and found that cellular activity is sufficient to drive taste behaviors. These studies demonstrate that taste cells are tuned by taste category and are hardwired to taste behaviors.
Collapse
Affiliation(s)
- Sunanda Marella
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, 291 Life Sciences Addition, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
17
|
Iyengar BG, Chou CJ, Sharma A, Atwood HL. Modular neuropile organization in theDrosophila larval brain facilitates identification and mapping of central neurons. J Comp Neurol 2006; 499:583-602. [PMID: 17029252 DOI: 10.1002/cne.21133] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elucidating how neuronal networks process information requires identification of critical individual neurons and their connectivity patterns. For this purpose, we used the third-instar Drosophila larval brain and applied reverse-genetic tools, immunolabeling procedures, and 3D digital reconstruction software. Consistent topological definition of neuropile compartments in the larval brain can be obtained through simple fluorescence-immunolabeling methods. The modular neuropiles can be used as a fiducial framework for mapping the projection patterns of individual neurons labeled with green fluorescent protein (GFP). GFP-labeled neurons often exhibit dendrite-like arbors as well as clustered varicose terminals on neurite branches that innervate identifiable neuropile compartments. We identified candidate cholinergic interneurons in genetic mosaic brains that overlap with the larval optic nerve terminus. By using the neuropile framework, we demonstrate that the candidate visual interneurons are not a subset of the previously identified circadian pacemaker neurons that also contact the larval optic nerve terminus; they may represent parallel pathways in the processing of visual inputs. Thus, in the Drosophila larval brain, modular neuropiles can be used as a framework for systematically identifying, mapping, and classifying interneurons; understanding their roles in behavior can then be pursued further.
Collapse
Affiliation(s)
- Balaji G Iyengar
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | |
Collapse
|
18
|
Wilson RI, Laurent G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 2005; 25:9069-79. [PMID: 16207866 PMCID: PMC6725763 DOI: 10.1523/jneurosci.2070-05.2005] [Citation(s) in RCA: 346] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drosophila olfactory receptor neurons project to the antennal lobe, the insect analog of the mammalian olfactory bulb. GABAergic synaptic inhibition is thought to play a critical role in olfactory processing in the antennal lobe and olfactory bulb. However, the properties of GABAergic neurons and the cellular effects of GABA have not been described in Drosophila, an important model organism for olfaction research. We have used whole-cell patch-clamp recording, pharmacology, immunohistochemistry, and genetic markers to investigate how GABAergic inhibition affects olfactory processing in the Drosophila antennal lobe. We show that many axonless local neurons (LNs) in the adult antennal lobe are GABAergic. GABA hyperpolarizes antennal lobe projection neurons (PNs) via two distinct conductances, blocked by a GABAA- and GABAB-type antagonist, respectively. Whereas GABAA receptors shape PN odor responses during the early phase of odor responses, GABAB receptors mediate odor-evoked inhibition on longer time scales. The patterns of odor-evoked GABAB-mediated inhibition differ across glomeruli and across odors. Finally, we show that LNs display broad but diverse morphologies and odor preferences, suggesting a cellular basis for odor- and glomerulus-dependent patterns of inhibition. Together, these results are consistent with a model in which odors elicit stimulus-specific spatial patterns of GABA release, and as a result, GABAergic inhibition increases the degree of difference between the neural representations of different odors.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
19
|
Ansebo L, Ignell R, Löfqvist J, Hansson BS. Responses to sex pheromone and plant odours by olfactory receptor neurons housed in sensilla auricillica of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). JOURNAL OF INSECT PHYSIOLOGY 2005; 51:1066-74. [PMID: 15964591 DOI: 10.1016/j.jinsphys.2005.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 05/10/2005] [Accepted: 05/10/2005] [Indexed: 05/03/2023]
Abstract
Antennal olfactory receptor neurons located in a limited number of two types of sensilla auricillica, the rabbit-eared shoehorn and the regular shoehorn, located on the 5-30 flagellomere of the codling moth, Cydia pomonella, antenna were screened for selectivity to 11 plant compounds, the major sex pheromone component, three minor pheromone components and one behavioural antagonist. Both types of sensilla housed at least three neurons characterised by different action potential amplitudes. Neurons in both males and females responded to the plant compounds, ethyl (E,Z)-2,4-decadienoate, (+/-)-linalool, (E)-ss-farnesene, hexanol, (Z)-3-hexenyl acetate, 4,8-dimethyl-1,3,(E)7-nonatriene, nonanol, the major pheromone component codlemone [(E,E)-8,10-dodecadienol] and the minor pheromone component tetradecanol. Additionally, (E,E)-alpha-farnesene and (Z)-3-hexenol elicited responses specifically in female neurons, whereas (E,E)-farnesol elicited a specific response in a male neuron. Neurons responded to 1-3 odorants, with sometimes overlapping response spectra. A scanning electron microscopic study of the antennae of both sexes supported an earlier study, apart from that long s. trichodea were present in a wreath at the proximal margin of the flagellomere and in addition evenly distributed over the remaining surface, and a previously non-described sensillum type with external basiconic features was revealed, distributed on the proximal and medial region of the flagellomeres.
Collapse
Affiliation(s)
- Lena Ansebo
- Division of Chemical Ecology, Department of Crop Science, SLU, P.O. Box 44, SE-230 53 Alnarp, Sweden
| | | | | | | |
Collapse
|
20
|
Bohbot J, Vogt RG. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:961-79. [PMID: 15978998 DOI: 10.1016/j.ibmb.2005.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/30/2005] [Accepted: 03/31/2005] [Indexed: 05/03/2023]
Abstract
A small cDNA library was constructed from antennae of 100 adult male Aedes aegypti yellow fever mosquitoes. Sequencing of 80 clones identified 49 unique gene products, including a member of the Odorant Binding Protein family (Aaeg-OBP10), a homologue of Takeout (Aaeg-TO), and transposable elements of the LINE, SINE and MITE classes. Aaeg-OBP10 encodes a 140 amino acid protein including a predicted 25 amino acid signal peptide. Aaeg-OBP10 expression was adult male enriched, increased with adult age, and greatest in antennae and wings but also present in maxillary palps, proboscis and leg. Aaeg-OBP10 is a likely orthologue of Agam-OBP10 of the malaria mosquito Anopheles gambiae and shares significant similarity with members of the OBP56 gene cluster of Drosophila melanogaster. These OBP genes may represent a unified class of OBPs with unique roles in chemodetection; the expression pattern of Aaeg-OBP10 suggests it may play a role in adult male chemosensory behavior. Aaeg-TO encodes a 248 amino acid protein including a predicted 22 amino acid signal peptide. Aaeg-TO is homologous with the circadian/feeding regulated D. melanogaster Takeout protein (Dmel-TO) and a subclass of Juvenile Hormone Binding Proteins (JHBP) characterized by Moling from Manduca sexta; both Dmel-TO and Moling are sensitive to feeding, suggesting Aaeg-TO might regulate the antennal response to food, host or pheromonal odors in a JH sensitive manner. Aaeg-TO was used to identify 25 D. melanogaster and 13 A. gambiae homologues by Blast analysis suggesting these may comprise a relatively large class of protein involved in the hormonal regulation of behavior.
Collapse
Affiliation(s)
- Jonathan Bohbot
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
21
|
Lei H, Christensen TA, Hildebrand JG. Spatial and temporal organization of ensemble representations for different odor classes in the moth antennal lobe. J Neurosci 2005; 24:11108-19. [PMID: 15590927 PMCID: PMC6730268 DOI: 10.1523/jneurosci.3677-04.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the insect antennal lobe, odor discrimination depends on the ability of the brain to read neural activity patterns across arrays of uniquely identifiable olfactory glomeruli. Less is understood about the complex temporal dynamics and interglomerular interactions that underlie these spatial patterns. Using neural-ensemble recording, we show that the evoked firing patterns within and between groups of glomeruli are odor dependent and organized in both space and time. Simultaneous recordings from up to 15 units per ensemble were obtained from four zones of glomerular neuropil in response to four classes of odorants: pheromones, monoterpenoids, aromatics, and aliphatics. Each odor class evoked a different pattern of excitation and inhibition across recording zones. The excitatory response field for each class was spatially defined, but inhibitory activity was spread across the antennal lobe, reflecting a center-surround organization. Some chemically related odorants were not easily distinguished by their spatial patterns, but each odorant evoked transient synchronous firing across a uniquely different subset of ensemble units. Examination of 535 cell pairs revealed a strong relationship between their recording positions, temporal correlations, and similarity of odor response profiles. These findings provide the first definitive support for a nested architecture in the insect olfactory system that uses both spatial and temporal coordination of firing to encode chemosensory signals. The spatial extent of the representation is defined by a stereotyped focus of glomerular activity for each odorant class, whereas the transient temporal correlations embedded within the ensemble provide a second coding dimension that can facilitate discrimination between chemically similar volatiles.
Collapse
Affiliation(s)
- Hong Lei
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
22
|
Røstelien T, Stranden M, Borg-Karlson AK, Mustaparta H. Olfactory Receptor Neurons in Two Heliothine Moth Species Responding Selectively to Aliphatic Green Leaf Volatiles, Aromatic Compounds, Monoterpenes and Sesquiterpenes of Plant Origin. Chem Senses 2005; 30:443-61. [PMID: 15917371 DOI: 10.1093/chemse/bji039] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Moths of the subfamily Heliothinae are suitable models for comparative studies of plant odour information encoded by the olfactory system. Here we identify and functionally classify types of olfactory receptor neurons by means of electrophysiological recordings from single receptor neurons linked to gas chromatography and to mass spectrometry. The molecular receptive ranges of 14 types in the two polyphagous species Heliothis virescens and Helicoverpa armigera are presented. The receptor neurons are characterized by a narrow tuning, showing the best response to one primary odorant and weak responses to a few chemically related compounds. The most frequently occurring of the 14 types constituted the receptor neurons tuned to (+)-linalool, the enantioselectivity of which was shown by testing two samples with opposite enantiomeric ratios. These neurons, also responding to dihydrolinalool, were found to be functionally similar in the two related species. The primary odorants for 10 other receptor neuron types were identified as (3Z)-hexenyl acetate, (+)-3-carene, trans-pinocarveol, trans-verbenol, vinylbenzaldehyde, 2-phenylethanol, methyl benzoate, alpha-caryophyllene and caryophyllene oxide, respectively. Most odorants were present in several host and non-host plant species, often in trace amounts. The specificity as well as the co-localization of particular neuron types so far recorded in both species showed similarities of the olfactory systems receiving plant odour information in these two species of heliothine moths.
Collapse
Affiliation(s)
- T Røstelien
- Neuroscience Unit, Department of Biology, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway.
| | | | | | | |
Collapse
|
23
|
Mizunami M, Yokohari F, Takahata M. Further exploration into the adaptive design of the arthropod "microbrain": I. Sensory and memory-processing systems. Zoolog Sci 2005; 21:1141-51. [PMID: 15613794 DOI: 10.2108/zsj.21.1141] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arthropods have small but sophisticated brains that have enabled them to adapt their behavior to a diverse range of environments. In this review, we first discuss some of general characteristics of the arthropod "microbrain" in comparison with the mammalian "megalobrain". Then we discuss about recent progress in the study of sensory and memory-processing systems of the arthropod "microbrain". Results of recent studies have shown that (1) insects have excellent capability for elemental and context-dependent forms of olfactory learning, (2) mushroom bodies, higher olfactory and associative centers of arthropods, have much more elaborated internal structures than previously thought, (3) many genes involved in the formation of basic brain structures are common among arthropods and vertebrates, suggesting that common ancestors of arthropods and vertebrates already had organized head ganglia, and (4) the basic organization of sensori-motor pathways of the insect brain has features common to that of the mammalian brain. These findings provide a starting point for the study of brain mechanisms of elaborated behaviors of arthropods, many of which remain unexplored.
Collapse
Affiliation(s)
- Makoto Mizunami
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | | | | |
Collapse
|
24
|
Keene AC, Stratmann M, Keller A, Perrat PN, Vosshall LB, Waddell S. Diverse odor-conditioned memories require uniquely timed dorsal paired medial neuron output. Neuron 2005; 44:521-33. [PMID: 15504331 DOI: 10.1016/j.neuron.2004.10.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 07/21/2004] [Accepted: 09/09/2004] [Indexed: 10/26/2022]
Abstract
Amnesiac mutant flies have an olfactory memory defect. The amn gene encodes a homolog of vertebrate pituitary adenylate cyclase-activating peptide (PACAP), and it is strongly expressed in dorsal paired medial (DPM) neurons. DPM neurons ramify throughout the mushroom bodies in the adult fly brain, and they are required for stable memory. Here, we show that DPM neuron output is only required during the consolidation phase for middle-term odor memory and is dispensable during acquisition and recall. However, we found that DPM neuron output is required during acquisition of a benzaldehyde odor memory. We show that flies sense benzaldehyde by the classical olfactory and a noncanonical route. These results suggest that DPM neurons are required to consolidate memory and are differently involved in memory of a volatile that requires multisensory integration.
Collapse
Affiliation(s)
- Alex C Keene
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
25
|
Rajashekar KP, Shamprasad VR. Maxillary palp glomeruli and ipsilateral projections in the antennal lobe ofDrosophila melanogaster. J Biosci 2004; 29:423-9. [PMID: 15625399 DOI: 10.1007/bf02712114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The antennal lobe was examined by Golgi-silver impregnation to differentiate the glomeruli depending on the source and types of inputs. Thirty-five of the 43 'identified' olfactory glomeruli were Golgi-silver impregnated in the present study. Seven glomeruli compared to three, reported previously, were found to be targets of maxillary palp chemosensory neurons. These include glomeruli VA3, VC2, VM5, VA7m/VA7l of the ventral antennal lobe and DC2, DC3, DM5 of the dorsal antennal lobe. The number of glomeruli receiving the maxillary palp sensory projections tallies with the number of Drosophila olfactory receptors (seven) reported to be expressed exclusively in the maxillary palp. Twenty-eight Golgi-impregnated glomeruli were found to receive input from the antennal nerve. The ratio of glomeruli serving the maxillary palp to those serving the antenna (approximately 1:5) matches with the ratio of Drosophila olfactory receptors expressed in these two olfactory organs respectively. In addition to glomerulus V, glomeruli VP1-3, VL1, VL2a/2p and VC3m/3l were found to receive ipsilateral projections. Thus, additional ipsilateral glomeruli have been identified.
Collapse
Affiliation(s)
- K P Rajashekar
- Department of Applied Zoology, Mangalore University, Mangalore 574 199, India.
| | | |
Collapse
|
26
|
Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 2004; 43:703-14. [PMID: 15339651 DOI: 10.1016/j.neuron.2004.08.019] [Citation(s) in RCA: 958] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2004] [Revised: 08/10/2004] [Accepted: 08/11/2004] [Indexed: 10/25/2022]
Abstract
Fruit flies are attracted by a diversity of odors that signal the presence of food, potential mates, or attractive egg-laying sites. Most Drosophila olfactory neurons express two types of odorant receptor genes: Or83b, a broadly expressed receptor of unknown function, and one or more members of a family of 61 selectively expressed receptors. While the conventional odorant receptors are highly divergent, Or83b is remarkably conserved between insect species. Two models could account for Or83b function: it could interact with specific odor stimuli independent of conventional odorant receptors, or it could act in concert with these receptors to mediate responses to all odors. Our results support the second model. Dendritic localization of conventional odorant receptors is abolished in Or83b mutants. Consistent with this cellular defect, the Or83b mutation disrupts behavioral and electrophysiological responses to many odorants. Or83b therefore encodes an atypical odorant receptor that plays an essential general role in olfaction.
Collapse
Affiliation(s)
- Mattias C Larsson
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
27
|
Representation of binary pheromone blends by glomerulus-specific olfactory projection neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004. [PMID: 15378331 DOI: 10.1007/s00359-004-0559-7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An outstanding challenge in olfactory neurobiology is to explain how glomerular networks encode information about stimulus mixtures, which are typical of natural olfactory stimuli. In the moth Manduca sexta, a species-specific blend of two sex-pheromone components is required for reproductive signaling. Each component stimulates a different population of olfactory receptor cells that in turn target two identified glomeruli in the macroglomerular complex of the male's antennal lobe. Using intracellular recording and staining, we examined how responses of projection neurons innervating these glomeruli are modulated by changes in the level and ratio of the two essential components in stimulus blends. Compared to projection neurons specific for one component, projection neurons that integrated information about the blend (received excitatory input from one component and inhibitory input from the other) showed enhanced ability to track a train of stimulus pulses. The precision of stimulus-pulse tracking was furthermore optimized at a synthetic blend ratio that mimics the physiological response to an extract of the female's pheromone gland. Optimal responsiveness of a projection neuron to repetitive stimulus pulses therefore appears to depend not only on stimulus intensity but also on the relative strength of the two opposing synaptic inputs that are integrated by macroglomerular complex projection neurons.
Collapse
|
28
|
Heinbockel T, Christensen TA, Hildebrand JG. Representation of binary pheromone blends by glomerulus-specific olfactory projection neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:1023-37. [PMID: 15378331 DOI: 10.1007/s00359-004-0559-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 07/20/2004] [Accepted: 08/02/2004] [Indexed: 11/25/2022]
Abstract
An outstanding challenge in olfactory neurobiology is to explain how glomerular networks encode information about stimulus mixtures, which are typical of natural olfactory stimuli. In the moth Manduca sexta, a species-specific blend of two sex-pheromone components is required for reproductive signaling. Each component stimulates a different population of olfactory receptor cells that in turn target two identified glomeruli in the macroglomerular complex of the male's antennal lobe. Using intracellular recording and staining, we examined how responses of projection neurons innervating these glomeruli are modulated by changes in the level and ratio of the two essential components in stimulus blends. Compared to projection neurons specific for one component, projection neurons that integrated information about the blend (received excitatory input from one component and inhibitory input from the other) showed enhanced ability to track a train of stimulus pulses. The precision of stimulus-pulse tracking was furthermore optimized at a synthetic blend ratio that mimics the physiological response to an extract of the female's pheromone gland. Optimal responsiveness of a projection neuron to repetitive stimulus pulses therefore appears to depend not only on stimulus intensity but also on the relative strength of the two opposing synaptic inputs that are integrated by macroglomerular complex projection neurons.
Collapse
Affiliation(s)
- T Heinbockel
- Department of Physiology and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201-1509, USA.
| | | | | |
Collapse
|
29
|
Zhu H, Luo L. Diverse functions of N-cadherin in dendritic and axonal terminal arborization of olfactory projection neurons. Neuron 2004; 42:63-75. [PMID: 15066265 DOI: 10.1016/s0896-6273(04)00142-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 02/09/2004] [Accepted: 02/24/2004] [Indexed: 10/26/2022]
Abstract
The cadherin superfamily of cell adhesion molecules have been proposed to play important roles in determining synaptic specificity in developing nervous systems. We examine the function of N-cadherin in Drosophila second order olfactory projection neurons (PNs), each of which must selectively target their dendrites to one of approximately 50 glomeruli. Our results do not support an instructive role for N-cadherin in selecting dendritic targets; rather, N-cadherin is essential for PNs to restrict their dendrites to single glomeruli. Mosaic analyses suggest that N-cadherin mediates dendro-dendritic interactions between PNs and thus contributes to refinement of PN dendrites to single glomeruli. N-cadherin is also essential for the development of PN axon terminal arbors in two distinct central targets: regulating branch stability in the lateral horn and restricting high-order branching in the mushroom body. Although the N-cadherin locus potentially encodes eight alternatively spliced isoforms, transgenic expression of one isoform is sufficient to rescue all phenotypes.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
30
|
Landgraf M, Jeffrey V, Fujioka M, Jaynes JB, Bate M. Embryonic origins of a motor system: motor dendrites form a myotopic map in Drosophila. PLoS Biol 2003; 1:E41. [PMID: 14624243 PMCID: PMC261881 DOI: 10.1371/journal.pbio.0000041] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 08/25/2003] [Indexed: 11/19/2022] Open
Abstract
The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning) competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.
Collapse
Affiliation(s)
- Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Peter C Brunjes
- Department of Psychology, University of Virginia, Charlottesville, VA 22901, USA
| | | |
Collapse
|