1
|
Han SH, Cho E, Jeon J, Moon S, Jeon SJ, Kim DH, Sun SH. Oleanolic acid protects ethanol-induced memory impairments. Behav Brain Res 2025; 480:115368. [PMID: 39626799 DOI: 10.1016/j.bbr.2024.115368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025]
Abstract
A moderate amount of ethanol (EtOH) intake can lower the incidence of various cardiovascular disease but can result in neuropsychiatric issues during adolescence. EtOH acts on GABAA receptor, which can slow down neurotransmission and lead to changes in synaptic functions. These neurological changes due to EtOH can result in transient memory loss and may increase the risk of developing various neurological and psychiatric disorders such as dementia. Therefore, there is a need for strategies to overcome EtOH-induced brain dysfunctions. In this study, we investigated the effects of oleanolic acid (OA) on EtOH-induced memory impairment. OA blocked functional impairment of N-methyl-D-aspartate receptors (NMDAR), which are a key mechanism in EtOH-induced memory impairments. OA inhibited the removal of the major subunit of NMDAR, NR2a, from synapses induced by EtOH. Based on this, OA inhibited the impairment of object recognition memory caused by EtOH. Although OA failed to modulate the blood alcohol and acetaldehyde levels in EtOH-treated mice, OA blocked EtOH-induced increase in brain allopregnalone level with reducing 5α-reductase level. These results indicate that OA inhibits EtOH-induced memory impairment by regulating NMDAR function and passably modulates neurosteroid system.
Collapse
Affiliation(s)
- Seung-Hee Han
- Department of Korean Internal Medicine, College of Korean Medicine, Sang-Ji University, 3 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Republic of Korea.
| | - Eunbi Cho
- Department of Advanced Translational Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Pharmacology, College of Medicine, Konkuk University, 286 Chungwon-daero, Chungju-si, Chungcheongbuk-do 27478, Republic of Korea.
| | - Jieun Jeon
- Department of Advanced Translational Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Pharmacology, College of Medicine, Konkuk University, 286 Chungwon-daero, Chungju-si, Chungcheongbuk-do 27478, Republic of Korea.
| | - Somin Moon
- Department of Advanced Translational Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Pharmacology, College of Medicine, Konkuk University, 286 Chungwon-daero, Chungju-si, Chungcheongbuk-do 27478, Republic of Korea.
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Gangwon, Republic of Korea.
| | - Dong Hyun Kim
- Department of Advanced Translational Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Pharmacology, College of Medicine, Konkuk University, 286 Chungwon-daero, Chungju-si, Chungcheongbuk-do 27478, Republic of Korea.
| | - Seung-Ho Sun
- Department of Korean Internal Medicine, College of Korean Medicine, Sang-Ji University, 3 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Republic of Korea.
| |
Collapse
|
2
|
Xie D, Zhang P, You S, Shen Y, Xu W, Zhan C, Zhang J. Salidroside derivative SHPL-49 attenuates glutamate excitotoxicity in acute ischemic stroke via promoting NR2A-CAMKⅡα-Akt /CREB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155583. [PMID: 39173548 DOI: 10.1016/j.phymed.2024.155583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Ischemic stroke is a significant cause of death and disability with a limited treatment time window. The reduction of early glutamate excitotoxicity using neuroprotective agents targeting N-methyl-d-aspartic acid (NMDA) receptors have attracted recent research attention. SHPL-49, a structurally modified derivative of salidroside, was synthesized by our team. Previous studies have confirmed the neuroprotective efficacy of SHPL-49 in rats with ischemic stroke. However, the underlying mechanisms need to be clarified. METHODS We conducted in vivo experiments using the permanent middle cerebral artery occlusion rat model to investigate the role of SHPL-49 in glutamate release at different time points and treatment durations. Glutamate transporters and receptor proteins and neural survival proteins in the brain were also examined at the same time points. In vitro, primary neurons and the coculture system of primary neurons-astrocytes were subjected to oxygen-glucose deprivation and glutamate injury. Proteomics and parallel reaction monitoring analyses were performed to identify potential therapeutic targets of SHPL-49, which were further confirmed through in vitro experiments on the inhibition and mutation of the target. RESULTS SHPL-49 significantly reduced glutamate release caused by hypoxia-ischemia. One therapeutic pathway of SHPL-49 was promoting the expression of glutamate transporter-1 to increase glutamate reuptake and further reduce the occurrence of subsequent neurotoxicity. In addition, we explored the therapeutic targets of SHPL-49 and its regulatory effects on glutamate receptors for the first time. SHPL-49 enhanced neuroprotection by activating the NMDA subunit NR2A, which upregulated the cyclic-AMP response binding protein (CREB) neural survival pathway and Akt phosphorylation. Since calcium/calmodulin-dependent kinase IIα (CaMKIIα) is necessary for synaptic transmission of NMDA receptors, we explored the interaction between CaMKIIα and SHPL-49, which protected CaMKIIα from hypoxia-ischemia-induced autophosphorylation damage. CONCLUSION Overall, SHPL-49 enhanced neuronal survival and attenuated acute ischemic stroke by promoting the NR2A-CAMKⅡα-Akt/CREB pathway. Our study provides the first evidence demonstrating that the neuroprotective effect of SHPL-49 is achieved by promoting the NR2A subunit to extend the treatment time window, making it a promising drug for ischemic stroke.
Collapse
Affiliation(s)
- Dong Xie
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Suxin You
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Yue Shen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Wenwen Xu
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai 201400, China
| | - Changsen Zhan
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai 201400, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| |
Collapse
|
3
|
Givon S, Altsuler-Nagar R, Oring N, Vinepinsky E, Segev R. Lateral and medial telencephalic pallium lesions impair spatial memory in goldfish. Brain Res Bull 2023; 204:110802. [PMID: 39492553 DOI: 10.1016/j.brainresbull.2023.110802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Fish, like many other animals, navigate to ensure survival. While the telencephalon region of the teleost fish brain is believed to play a critical role in navigation, lesion and electrophysiology studies differ as to whether navigation is situated in the lateral pallium or the medial pallium. To address this inconsistency, we replicated combined behavioral and lesion studies in the goldfish. Goldfish were trained in two navigation tasks testing allocentric navigation on a horizontal plus-maze and a horizontal breadboard to get a reward. The fish were divided randomly into lateral pallium lesion, medial pallium lesion, and sham groups and retested for their success rates. The lateral lesion group had a significant decrease of success on the breadboard task but not on the plus-maze task, whereas the medial lesion affected both tasks significantly. These results suggest that both the medial and lateral pallium are essential for the coding of spatial memory and challenge the assumption that one distinct region of the pallium is involved in spatial memory in teleost.
Collapse
Affiliation(s)
- Shachar Givon
- Department of Life Sciences, Ben-Gurion University of the Negev
| | | | - Naama Oring
- Department of Life Sciences, Ben-Gurion University of the Negev
| | - Ehud Vinepinsky
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Ronen Segev
- Department of Life Sciences, Ben-Gurion University of the Negev; Department of Biomedical Engineering, Ben-Gurion University of the Negev.
| |
Collapse
|
4
|
Fraser EG, Makarowski T, McDonald RJ. Perforant path inputs to hippocampal subfields predict heterogeneous AMPA receptor subunit expression following rapid new spatial learning in a novel context. Eur J Neurosci 2021; 54:6740-6761. [PMID: 34214189 DOI: 10.1111/ejn.15380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
The hippocampus plays a critical role in spatial learning and memory. Its contribution to support these kinds of learning and memory functions relies on synaptic plasticity and related molecular mechanisms, well documented in the long-term potentiation (LTP) literature. The present experiment measures AMPA subunit expression, in a ratio of GluA2:GluA1 as an indicator of plasticity across the hippocampus, in rats that underwent new spatial learning in either a familiar or novel context. Statistically significant effects in this plasticity indicator were observed of context condition, time after task and hippocampal subfield. Based on the strong inputs of entorhinal cortex to hippocampus, we also identified differences in GluA2:GluA1 expression trends between time points and room conditions that mirror trends in medial and lateral entorhinal cortex connectivity between new room and same room context learning, respectively. Across the transverse axis in infrapyramidal dentate gyrus, CA3 and CA1, plasticity followed entorhinal cortex projection patterns. Along the transverse axis in the suprapyramidal blade of the dentate gyrus, and along the long axis in dentate gyrus and CA3, results did not follow entorhinal cortex subregion projection patterns. These latter results may be indicative of pattern separation in the dentate gyrus and emotional triage functions of the ventral hippocampus.
Collapse
Affiliation(s)
- Ellen G Fraser
- The Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ty Makarowski
- The Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| | - Robert J McDonald
- The Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
5
|
Lombardi A, Jedlicka P, Luhmann HJ, Kilb W. Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons. PLoS Comput Biol 2021; 17:e1008573. [PMID: 33465082 PMCID: PMC7845986 DOI: 10.1371/journal.pcbi.1008573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 11/19/2022] Open
Abstract
The impact of GABAergic transmission on neuronal excitability depends on the Cl--gradient across membranes. However, the Cl--fluxes through GABAA receptors alter the intracellular Cl- concentration ([Cl-]i) and in turn attenuate GABAergic responses, a process termed ionic plasticity. Recently it has been shown that coincident glutamatergic inputs significantly affect ionic plasticity. Yet how the [Cl-]i changes depend on the properties of glutamatergic inputs and their spatiotemporal relation to GABAergic stimuli is unknown. To investigate this issue, we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. These computational experiments demonstrated that glutamatergic co-stimulation enhances GABA receptor-mediated Cl- influx at low and attenuates or reverses the Cl- efflux at high initial [Cl-]i. The size of glutamatergic influence on GABAergic Cl--fluxes depends on the conductance, decay kinetics, and localization of glutamatergic inputs. Surprisingly, the glutamatergic shift in GABAergic Cl--fluxes is invariant to latencies between GABAergic and glutamatergic inputs over a substantial interval. In agreement with experimental data, simulations in a reconstructed CA3 pyramidal neuron with physiological patterns of correlated activity revealed that coincident glutamatergic synaptic inputs contribute significantly to the activity-dependent [Cl-]i changes. Whereas the influence of spatial correlation between distributed glutamatergic and GABAergic inputs was negligible, their temporal correlation played a significant role. In summary, our results demonstrate that glutamatergic co-stimulation had a substantial impact on ionic plasticity of GABAergic responses, enhancing the attenuation of GABAergic inhibition in the mature nervous systems, but suppressing GABAergic [Cl-]i changes in the immature brain. Therefore, glutamatergic shift in GABAergic Cl--fluxes should be considered as a relevant factor of short-term plasticity. Information processing in the brain requires that excitation and inhibition are balanced. The main inhibitory neurotransmitter in the brain is gamma-amino-butyric acid (GABA). GABA actions depend on the Cl--gradient, but activation of ionotropic GABA receptors causes Cl--fluxes and thus reduces GABAergic inhibition. Here, we investigated how a coincident membrane depolarization by excitatory glutamatergic synapses influences GABA-induced Cl--fluxes using a biophysical compartmental model of Cl- dynamics, simulating either simple or realistic neuron topologies. We demonstrate that glutamatergic co-stimulation directly affects GABA-induced Cl--fluxes, with the size of glutamatergic effects depending on the conductance, the decay kinetics, and localization of glutamatergic inputs. We also show that the glutamatergic shift in GABAergic Cl--fluxes is surprisingly stable over a substantial range of latencies between glutamatergic and GABAergic inputs. We conclude from these results that glutamatergic co-stimulation alters GABAergic Cl--fluxes and in turn affects the strength of GABAergic inhibition. These coincidence-dependent ionic changes should be considered as a relevant factor of short-term plasticity in the CNS.
Collapse
Affiliation(s)
- Aniello Lombardi
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt/Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Heiko J. Luhmann
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|
6
|
Joo YH, Kim YK, Choi IG, Kim HJ, Son YD, Kim HK, Cumming P, Kim JH. In vivo glucose metabolism and glutamate levels in mGluR5 knockout mice: a multimodal neuroimaging study using [ 18F]FDG microPET and MRS. EJNMMI Res 2020; 10:116. [PMID: 33006705 PMCID: PMC7532251 DOI: 10.1186/s13550-020-00716-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background Perturbed functional coupling between the metabotropic glutamate receptor-5 (mGluR5) and N-methyl-d-aspartate (NMDA) receptor-mediated excitatory glutamatergic neurotransmission may contribute to the pathophysiology of psychiatric disorders such as schizophrenia. We aimed to establish the functional interaction between mGluR5 and NMDA receptors in brain of mice with genetic ablation of the mGluR5. Methods We first measured the brain glutamate levels with magnetic resonance spectroscopy (MRS) in mGluR5 knockout (KO) and wild-type (WT) mice. Then, we assessed brain glucose metabolism with [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography before and after the acute administration of an NMDA antagonist, MK-801 (0.5 mg/kg), in the same mGluR5 KO and WT mice. Results Between-group comparisons showed no significant differences in [18F]FDG standardized uptake values (SUVs) in brain of mGluR5 KO and WT mice at baseline, but widespread reductions in mGluR5 KO mice compared to WT mice after MK-801 administration (p < 0.05). The baseline glutamate levels did not differ significantly between the two groups. However, there were significant negative correlations between baseline prefrontal glutamate levels and regional [18F]FDG SUVs in mGluR5 KO mice (p < 0.05), but no such correlations in WT mice. Fisher’s Z-transformation analysis revealed significant between-group differences in these correlations (p < 0.05). Conclusions This is the first multimodal neuroimaging study in mGluR5 KO mice and the first report on the association between cerebral glucose metabolism and glutamate levels in living rodents. The results indicate that mGluR5 KO mice respond to NMDA antagonism with reduced cerebral glucose metabolism, suggesting that mGluR5 transmission normally moderates the net effects of NMDA receptor antagonism on neuronal activity. The negative correlation between glutamate levels and glucose metabolism in mGluR5 KO mice at baseline may suggest an unmasking of an inhibitory component of the glutamatergic regulation of neuronal energy metabolism.
Collapse
Affiliation(s)
- Yo-Han Joo
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Yun-Kwan Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - In-Gyu Choi
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Hyeon-Jin Kim
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea.,Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea
| | - Paul Cumming
- Institute of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland.,School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea. .,Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea. .,Department of Psychiatry, Research Center for Psychiatry and Behavioral Sciences, Neuroscience Research Institute, Gachon University College of Medicine, Gil Medical Center, Gachon University, 1198 Guwol-dong, Namdong-gu, Incheon, 405-760, South Korea.
| |
Collapse
|
7
|
Thonnard D, Dreesen E, Callaerts-Vegh Z, D'Hooge R. NMDA receptor dependence of reversal learning and the flexible use of cognitively demanding search strategies in mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:235-244. [PMID: 30529376 DOI: 10.1016/j.pnpbp.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
Cognitive flexibility helps organisms to respond adaptively to environmental changes. Deficits in this executive function have been associated with a variety of brain disorders, and it has been shown to rely on various concomitant neurobiological mechanisms. However, the involvement of the glutamatergic system in general, and NMDA receptors in particular, has been debated. Therefore, we injected C57BL/6 mice repeatedly with low-doses of the non-competitive NMDA receptor antagonist MK-801 (dizocilpine, 0.1 mg/kg, i.p.). Reversal learning and the use of specific cognitive strategies were assessed in a non-spatial discrimination touchscreen task and the Morris water maze (MWM) spatial learning task. In addition, mice were subjected to a non-mnemonic test battery. Although initial acquisition learning was not affected by MK-801 administration, it did induce deficits in reversal learning, both in the non-spatial and spatial task. Defects in non-spatial reversal learning appeared to be caused by perseverative errors. Also, MK-801 administration induced perseverative behaviours as well as inefficient spatial strategy use during MWM reversal learning. These effects could not be reduced to changes in exploratory (anxiety-related) behaviours, nor to motor deficits. This was consistent with results in the non-mnemonic test battery, during which MK-801 evoked hyperlocomotion and subtle motor defects, but failed to alter general motor activity and exploratory behaviours. In conclusion, NMDA receptors appear to be involved in the flexible cognitive processes that underlie reversal learning in spatial as well as non-spatial tasks. Our results also indicate that reversal learning as well as the use of cognitively demanding strategies are more sensitive to NMDA receptor blockage than some other functions that have been suggested to be NMDA receptor dependent.
Collapse
Affiliation(s)
- David Thonnard
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | - Eline Dreesen
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium.
| |
Collapse
|
8
|
Zhang X, Ge TT, Yin G, Cui R, Zhao G, Yang W. Stress-Induced Functional Alterations in Amygdala: Implications for Neuropsychiatric Diseases. Front Neurosci 2018; 12:367. [PMID: 29896088 PMCID: PMC5987037 DOI: 10.3389/fnins.2018.00367] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
The amygdala plays a major role in the processing of physiologic and behavioral responses to stress and is characterized by gamma-aminobutyric acid (GABA)-mediated high inhibitory tone under resting state. Human and animal studies showed that stress lead to a hyperactivity of amygdala, which was accompanied by the removal of inhibitory control. However, the contribution of hyperactivity of amygdala to stress-induced neuropsychiatric diseases, such as anxiety and mood disorders, is still dubious. In this review, we will summarize stress-induced various structural and functional alterations in amygdala, including the GABA receptors expression, GABAergic transmission and synaptic plasticity. It may provide new insight on the neuropathologic and neurophysiological mechanisms of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xin Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China.,Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China.,Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tong Tong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Guanghao Yin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Guoqing Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China.,Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Günthner J, Scholl J, Favaron E, Harmer CJ, Johansen-Berg H, Reinecke A. The NMDA receptor partial agonist d-cycloserine does not enhance motor learning. J Psychopharmacol 2016; 30:994-9. [PMID: 27436230 PMCID: PMC5066480 DOI: 10.1177/0269881116658988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
RATIONALE There has recently been increasing interest in pharmacological manipulations that could potentially enhance exposure-based cognitive behaviour therapy for anxiety disorders. One such medication is the partial NMDA agonist d-cycloserine. It has been suggested that d-cycloserine enhances cognitive behaviour therapy by making learning faster. While animal studies have supported this view of the drug accelerating learning, evidence in human studies has been mixed. We therefore designed an experiment to measure the effects of d-cycloserine on human motor learning. METHODS Fifty-four healthy human volunteers were randomly assigned to a single dose of 250mg d-cycloserine versus placebo in a double-blind design. They then performed a motor sequence learning task. RESULTS D-cycloserine did not increase the speed of motor learning or the overall amount learnt. However, we noted that participants on d-cycloserine tended to respond more carefully (shifting towards slower, but more correct responses). CONCLUSION The results suggest that d-cycloserine does not exert beneficial effects on psychological treatments via mechanisms involved in motor learning. Further studies are needed to clarify the influence on other cognitive mechanisms.
Collapse
Affiliation(s)
- Jan Günthner
- Department of Psychiatry, University of Oxford, Oxford, UK,Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Jacqueline Scholl
- Department of Psychiatry, University of Oxford, Oxford, UK Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Elisa Favaron
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | | |
Collapse
|
10
|
Abstract
Molecular genetics has led to major advances in the study of neurological disease over the last 2 decades. Initial advances were made in understanding specific mutations that were associated with disease, such as epilepsy and other neurological conditions. In addition to specific mutations, recent research has focused on long-lasting or permanent changes in genetic expression as an underlying substrate of acquired diseases such as epilepsy. In symptomatic epilepsy, normal brain tissue is permanently altered and develops spon taneous recurrent seizures. Evidence indicates that long-lasting changes in gene expression at both tran scriptional and post-transcriptional levels are associated with epileptogenesis. The expression of transcription factors and other regulatory proteins represent a molecular mechanism for mediating these changes. Understanding the effects of severe environmental stresses on the multiple sites of transcriptional and post-transcriptional regulation of gene expression is likely to provide important insights into the devel opment of altered neuronal function in a number of important disease states, including epilepsy. NEURO SCIENTIST 5:86-99, 1999
Collapse
Affiliation(s)
- Robert J. Delorenzo
- Departments of Neurology, Pharmacology and Toxicology,
and Biochemistry and Molecular Biophysics Virginia Commonwealth University
Richmond, Virginia
| | - T. Allen Morris
- Departments of Neurology, Pharmacology and Toxicology,
and Biochemistry and Molecular Biophysics Virginia Commonwealth University
Richmond, Virginia
| |
Collapse
|
11
|
Abstract
The central point of this article is that the concept of memory as information storage in the brain is inadequate for and irrelevant to understanding the nervous system. Beginning from the sensorimotor hypothesis that underlies neuroscience—that the entire function of the nervous system is to connect experience to appropriate behavior—the paper defines memories as sequences of events that connect remote experience to present behavior. Their essential components are (a) persistent events that bridge the time from remote experience to present behavior and (b) junctional events in which connections from remote experience and recent experience merge to produce behavior. The sequences comprising even the simplest memories are complex. This is both necessary—to preserve previously learned behaviors—and inevitable—due to secondary activity-driven plasticity. This complexity further highlights the inadequacy of the information storage concept and the importance of extreme simplicity in models used to study memory.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| |
Collapse
|
12
|
Liu Z, Wang W, Feng N, Wang L, Shi J, Wang X. Parishin C's prevention of Aβ 1-42-induced inhibition of long-term potentiation is related to NMDA receptors. Acta Pharm Sin B 2016; 6:189-97. [PMID: 27175329 PMCID: PMC4857013 DOI: 10.1016/j.apsb.2016.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/29/2022] Open
Abstract
The rhizome of Gastrodia elata (GE), a herb medicine, has been used for treatment of neuronal disorders in Eastern Asia for hundreds of years. Parishin C is a major ingredient of GE. In this study, the i.c.v. injection of soluble Aβ1–42 oligomers model of LTP injury was used. We investigated the effects of parishin C on the improvement of LTP in soluble Aβ1–42 oligomer–injected rats and the underlying electrophysiological mechanisms. Parishin C (i.p. or i.c.v.) significantly ameliorated LTP impairment induced by i.c.v. injection of soluble Aβ1–42 oligomers. In cultured hippocampal neurons, soluble Aβ1–42 oligomers significantly inhibited NMDAR currents while not affecting AMPAR currents and voltage-dependent currents. Pretreatment with parishin C protected NMDA receptor currents from the damage induced by Aβ. In summary, parishin C improved LTP deficits induced by soluble Aβ1–42 oligomers. The protection by parishin C against Aβ-induced LTP damage might be related to NMDA receptors.
Collapse
|
13
|
Reprint of “Value of water mazes for assessing spatial and egocentric learning and memory in rodent basic research and regulatory studies”. Neurotoxicol Teratol 2015; 52:93-108. [DOI: 10.1016/j.ntt.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022]
|
14
|
Kitanishi T, Ujita S, Fallahnezhad M, Kitanishi N, Ikegaya Y, Tashiro A. Novelty-Induced Phase-Locked Firing to Slow Gamma Oscillations in the Hippocampus: Requirement of Synaptic Plasticity. Neuron 2015; 86:1265-76. [PMID: 26050043 DOI: 10.1016/j.neuron.2015.05.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/11/2015] [Accepted: 04/28/2015] [Indexed: 11/17/2022]
Abstract
Temporally precise neuronal firing phase-locked to gamma oscillations is thought to mediate the dynamic interaction of neuronal populations, which is essential for information processing underlying higher-order functions such as learning and memory. However, the cellular mechanisms determining phase locking remain unclear. By devising a virus-mediated approach to perform multi-tetrode recording from genetically manipulated neurons, we demonstrated that synaptic plasticity dependent on the GluR1 subunit of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptor mediates two dynamic changes in neuronal firing in the hippocampal CA1 area during novel experiences: the establishment of phase-locked firing to slow gamma oscillations and the rapid formation of the spatial firing pattern of place cells. The results suggest a series of events potentially underlying the acquisition of new spatial information: slow gamma oscillations, originating from the CA3 area, induce the two GluR1-dependent changes of CA1 neuronal firing, which in turn determine information flow in the hippocampal-entorhinal system.
Collapse
Affiliation(s)
- Takuma Kitanishi
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030 Trondheim, Norway.
| | - Sakiko Ujita
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mehdi Fallahnezhad
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030 Trondheim, Norway; Warwick-NTU Neuroscience Programme, School of Biological Sciences, Nanyang Technological University, 61 Biopolis Drive, 138673, Singapore; Warwick-NTU Neuroscience Programme, School of Life Sciences, University of Warwick, Coventry, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Naomi Kitanishi
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030 Trondheim, Norway
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Osaka, Japan
| | - Ayumu Tashiro
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7030 Trondheim, Norway; Warwick-NTU Neuroscience Programme, School of Biological Sciences, Nanyang Technological University, 61 Biopolis Drive, 138673, Singapore; Warwick-NTU Neuroscience Programme, School of Life Sciences, University of Warwick, Coventry, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
15
|
McGie SC, Masani K, Popovic MR. Failure of spinal paired associative stimulation to induce neuroplasticity in the human corticospinal tract. J Spinal Cord Med 2014; 37:565-74. [PMID: 25229738 PMCID: PMC4166191 DOI: 10.1179/2045772314y.0000000267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
CONTEXT/OBJECTIVE Paired associative stimulation (PAS) involves paired-stimulation pulses at both the head (via transcranial magnetic stimulation) and the periphery (via peripheral nerve stimulation). The purpose of PAS, when applied to the spinal cord, is to induce neuroplasticity and upregulate the corticospinal tract leading to effector muscles. While limited research has suggested that it is possible to produce neuroplasticity through spinal PAS, all such studies have provided stimulation at a fixed frequency of 0.1 or 0.2 Hz. DESIGN/INTERVENTIONS The present study therefore sought to compare the effectiveness of a typical 0.1 Hz paradigm with a 1 Hz paradigm, and a paradigm which provided stimulation in 5 Hz "bursts". Two inter-stimulus intervals were tested: one which was expected to produce synchronous pre- and post-synaptic activation at the spinal synapse, and one which was not. The peripheral stimulation was applied at the wrist, to induce thumb adduction. RESULTS None of the paradigms were able to successfully induce neuroplasticity in a consistent manner. CONCLUSION The high between-subject variability in this study suggests that responses to the spinal PAS treatment may have been highly individual. This serves to highlight a potential limitation of the spinal PAS treatment, which is that its effectiveness may not be universal, but rather dependent on each specific recipient. This may be a challenge faced by spinal PAS should it continue to be tested as a potential novel therapy.
Collapse
Affiliation(s)
- Steven C. McGie
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Correspondence to: Steven C. McGie, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Rosebrugh building, Room 407, 164 College Street, Toronto, ON M5S 3G9, Canada.
| | | | | |
Collapse
|
16
|
Vorhees CV, Williams MT. Value of water mazes for assessing spatial and egocentric learning and memory in rodent basic research and regulatory studies. Neurotoxicol Teratol 2014; 45:75-90. [PMID: 25116937 DOI: 10.1016/j.ntt.2014.07.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 12/12/2022]
Abstract
Maneuvering safely through the environment is central to survival of all animals. The ability to do this depends on learning and remembering locations. This capacity is encoded in the brain by two systems: one using cues outside the organism (distal cues), allocentric navigation, and one using self-movement, internal cues and sometimes proximal cues, egocentric navigation. Allocentric navigation involves the hippocampus, entorhinal cortex, and surrounding structures (e.g., subiculum); in humans this system encodes declarative memory (allocentric, semantic, and episodic, i.e., memory for people, places, things, and events). This form of memory is assessed in laboratory animals by many methods, but predominantly the Morris water maze (MWM). Egocentric navigation involves the dorsal striatum and connected structures; in humans this system encodes routes and integrated paths and when over-learned becomes implicit or procedural memory. Several allocentric methods for rodents are reviewed and compared with the MWM with particular focus on the Cincinnati water maze (CWM). MWM advantages include minimal training, no food deprivation, ease of testing, reliable learning, insensitivity to differences in body weight and appetite, absence of non-performers, control methods for performance effects, repeated testing capability and other factors that make this test well-suited for regulatory studies. MWM limitations are also reviewed. Evidence-based MWM design and testing methods are presented. On balance, the MWM is arguably the preferred test for assessing learning and memory in basic research and regulatory studies and the CWM is recommended if two tests can be accommodated so that both allocentric (MWM) and egocentric (CWM) learning and memory can be effectively and efficiently assessed.
Collapse
Affiliation(s)
- Charles V Vorhees
- Division of Child Neurology, Dept. of Pediatrics, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Michael T Williams
- Division of Child Neurology, Dept. of Pediatrics, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| |
Collapse
|
17
|
Ojo JO, Greenberg MB, Leary P, Mouzon B, Bachmeier C, Mullan M, Diamond DM, Crawford F. Neurobehavioral, neuropathological and biochemical profiles in a novel mouse model of co-morbid post-traumatic stress disorder and mild traumatic brain injury. Front Behav Neurosci 2014; 8:213. [PMID: 25002839 PMCID: PMC4067099 DOI: 10.3389/fnbeh.2014.00213] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/26/2014] [Indexed: 01/12/2023] Open
Abstract
Co-morbid mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) has become the signature disorder for returning combat veterans. The clinical heterogeneity and overlapping symptomatology of mTBI and PTSD underscore the need to develop a preclinical model that will enable the characterization of unique and overlapping features and allow discrimination between both disorders. This study details the development and implementation of a novel experimental paradigm for PTSD and combined PTSD-mTBI. The PTSD paradigm involved exposure to a danger-related predator odor under repeated restraint over a 21 day period and a physical trauma (inescapable footshock). We administered this paradigm alone, or in combination with a previously established mTBI model. We report outcomes of behavioral, pathological and biochemical profiles at an acute timepoint. PTSD animals demonstrated recall of traumatic memories, anxiety and an impaired social behavior. In both mTBI and combination groups there was a pattern of disinhibitory like behavior. mTBI abrogated both contextual fear and impairments in social behavior seen in PTSD animals. No major impairment in spatial memory was observed in any group. Examination of neuroendocrine and neuroimmune responses in plasma revealed a trend toward increase in corticosterone in PTSD and combination groups, and an apparent increase in Th1 and Th17 proinflammatory cytokine(s) in the PTSD only and mTBI only groups respectively. In the brain there were no gross neuropathological changes in any groups. We observed that mTBI on a background of repeated trauma exposure resulted in an augmentation of axonal injury and inflammatory markers, neurofilament L and ICAM-1 respectively. Our observations thus far suggest that this novel stress-trauma-related paradigm may be a useful model for investigating further the overlapping and distinct spatio-temporal and behavioral/biochemical relationship between mTBI and PTSD experienced by combat veterans.
Collapse
Affiliation(s)
| | | | | | - Benoit Mouzon
- Roskamp Institute Sarasota, FL, USA ; Research and Development Service, James A. Haley Veterans' Hospital Tampa, FL, USA ; Department of Life sciences, The Open University Milton Keynes, UK
| | - Corbin Bachmeier
- Roskamp Institute Sarasota, FL, USA ; Research and Development Service, James A. Haley Veterans' Hospital Tampa, FL, USA ; Department of Life sciences, The Open University Milton Keynes, UK
| | - Michael Mullan
- Roskamp Institute Sarasota, FL, USA ; Research and Development Service, James A. Haley Veterans' Hospital Tampa, FL, USA ; Department of Life sciences, The Open University Milton Keynes, UK
| | - David M Diamond
- Research and Development Service, James A. Haley Veterans' Hospital Tampa, FL, USA ; Department of Psychology, Department of Molecular Pharmacology and Physiology, Center for Preclinical and Clinical Research on PTSD, University of South Florida Tampa, FL, USA
| | - Fiona Crawford
- Roskamp Institute Sarasota, FL, USA ; Research and Development Service, James A. Haley Veterans' Hospital Tampa, FL, USA ; Department of Life sciences, The Open University Milton Keynes, UK
| |
Collapse
|
18
|
Abstract
Maneuvering safely through the environment is central to survival of almost all species. The ability to do this depends on learning and remembering locations. This capacity is encoded in the brain by two systems: one using cues outside the organism (distal cues), allocentric navigation, and one using self-movement, internal cues and nearby proximal cues, egocentric navigation. Allocentric navigation involves the hippocampus, entorhinal cortex, and surrounding structures; in humans this system encodes allocentric, semantic, and episodic memory. This form of memory is assessed in laboratory animals in many ways, but the dominant form of assessment is the Morris water maze (MWM). Egocentric navigation involves the dorsal striatum and connected structures; in humans this system encodes routes and integrated paths and, when overlearned, becomes procedural memory. In this article, several allocentric assessment methods for rodents are reviewed and compared with the MWM. MWM advantages (little training required, no food deprivation, ease of testing, rapid and reliable learning, insensitivity to differences in body weight and appetite, absence of nonperformers, control methods for proximal cue learning, and performance effects) and disadvantages (concern about stress, perhaps not as sensitive for working memory) are discussed. Evidence-based design improvements and testing methods are reviewed for both rats and mice. Experimental factors that apply generally to spatial navigation and to MWM specifically are considered. It is concluded that, on balance, the MWM has more advantages than disadvantages and compares favorably with other allocentric navigation tasks.
Collapse
|
19
|
Haseneder R, Starker L, Berkmann J, Kellermann K, Jungwirth B, Blobner M, Eder M, Kochs E, Rammes G. Sevoflurane anesthesia improves cognitive performance in mice, but does not influence in vitro long-term potentation in hippocampus CA1 stratum radiatum. PLoS One 2013; 8:e64732. [PMID: 23724087 PMCID: PMC3665835 DOI: 10.1371/journal.pone.0064732] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/17/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Whether the occurrence of postoperative cognitive dysfunction is a result of the effects of surgery or anesthesia is under debate. In this study, we investigated the impact of sevoflurane anesthesia on cognitive performance and cellular mechanisms involved in learning and memory. METHODS Male C57Bl6/J mice (4-5 months) were exposed to one minimum alveolar concentration sevoflurane for two hours. After 24 h, cognitive performance of mice was assessed using the modified hole board test. Additionally, we evaluated hippocampal long-term potentiation and expression levels of different receptor subunits by recording excitatory postsynaptic field potentials and using the western blot technique, respectively. Non-anesthetized mice served as controls. RESULTS In anesthetized mice, neither cognitive performance nor long-term potentiation was impaired 24 h after anesthesia. Interestingly, sevoflurane anesthesia induced even an improvement of cognitive performance and an elevation of the expression levels of N-methyl-D-aspartate (NMDA) receptor type 1 and 2B subunits in the hippocampus. CONCLUSIONS Since NMDA receptor type 1 and 2B subunits play a crucial role in processes related to learning and memory, we hypothesize that sevoflurane-induced changes in NMDA receptor subunit composition might cause hippocampus-dependent cognitive improvement. The data of the present study are in favor of a minor role of anesthesia in mediating postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Rainer Haseneder
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hepp Y, Tano MC, Pedreira ME, Freudenthal RA. NMDA-like receptors in the nervous system of the crabNeohelice granulata: A neuroanatomical description. J Comp Neurol 2013; 521:2279-97. [DOI: 10.1002/cne.23285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/30/2012] [Accepted: 12/11/2012] [Indexed: 11/06/2022]
|
21
|
Alaghband Y, Marshall JF. Common influences of non-competitive NMDA receptor antagonists on the consolidation and reconsolidation of cocaine-cue memory. Psychopharmacology (Berl) 2013; 226:707-19. [PMID: 22829432 PMCID: PMC3917839 DOI: 10.1007/s00213-012-2793-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 06/26/2012] [Indexed: 11/25/2022]
Abstract
RATIONALE Environmental stimuli or contexts previously associated with rewarding drugs contribute importantly to relapse among addicts, and research has focused on neurobiological processes maintaining those memories. Much research shows contributions of cell surface receptors and intracellular signaling pathways in maintaining associations between rewarding drugs (e.g., cocaine) and concurrent cues/contexts; these memories can be degraded at the time of their retrieval through reconsolidation interference. Much less studied is the consolidation of drug-cue memories during their acquisition. OBJECTIVE The present experiments use the cocaine-conditioned place preference (CPP) paradigm in rats to directly compare, in a consistent setting, the effects of N-methyl-D-aspartate (NMDA) glutamate receptor antagonists MK-801 and memantine on the consolidation and reconsolidation of cocaine-cue memories. METHODS For the consolidation studies, animals were systemically administered MK-801 or memantine immediately following training sessions. To investigate the effects of these NMDA receptor antagonists on the retention of previously established cocaine-cue memories, animals were systemically administered MK-801 or memantine immediately after memory retrieval. RESULTS Animals given either NMDA receptor antagonist immediately following training sessions did not establish a preference for the cocaine-paired compartment. Post-retrieval administration of either NMDA receptor antagonist attenuated the animals' preference for the cocaine-paired compartment. Furthermore, animals given NMDA receptor antagonists post-retrieval showed a blunted response to cocaine-primed reinstatement. CONCLUSIONS Using two distinct NMDA receptor antagonists in a common setting, these findings demonstrate that NMDA receptor-dependent processes contribute both to the consolidation and reconsolidation of cocaine-cue memories, and they point to the potential utility of treatments that interfere with drug-cue memory reconsolidation.
Collapse
Affiliation(s)
- Yasaman Alaghband
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
22
|
Morris RGM, Steele RJ, Bell JE, Martin SJ. N-methyl-d-aspartate receptors, learning and memory: chronic intraventricular infusion of the NMDA receptor antagonist d-AP5 interacts directly with the neural mechanisms of spatial learning. Eur J Neurosci 2013; 37:700-17. [PMID: 23311352 DOI: 10.1111/ejn.12086] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/11/2012] [Indexed: 01/03/2023]
Abstract
Three experiments were conducted to contrast the hypothesis that hippocampal N-methyl-d-aspartate (NMDA) receptors participate directly in the mechanisms of hippocampus-dependent learning with an alternative view that apparent impairments of learning induced by NMDA receptor antagonists arise because of drug-induced neuropathological and/or sensorimotor disturbances. In experiment 1, rats given a chronic i.c.v. infusion of d-AP5 (30 mm) at 0.5 μL/h were selectively impaired, relative to aCSF-infused animals, in place but not cued navigation learning when they were trained during the 14-day drug infusion period, but were unimpaired on both tasks if trained 11 days after the minipumps were exhausted. d-AP5 caused sensorimotor disturbances in the spatial task, but these gradually worsened as the animals failed to learn. Histological assessment of potential neuropathological changes revealed no abnormalities in d-AP5-treated rats whether killed during or after chronic drug infusion. In experiment 2, a deficit in spatial learning was also apparent in d-AP5-treated rats trained on a spatial reference memory task involving two identical but visible platforms, a task chosen and shown to minimise sensorimotor disturbances. HPLC was used to identify the presence of d-AP5 in selected brain areas. In Experiment 3, rats treated with d-AP5 showed a delay-dependent deficit in spatial memory in the delayed matching-to-place protocol for the water maze. These data are discussed with respect to the learning mechanism and sensorimotor accounts of the impact of NMDA receptor antagonists on brain function. We argue that NMDA receptor mechanisms participate directly in spatial learning.
Collapse
Affiliation(s)
- R G M Morris
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, The University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
23
|
Jerome D, Hou Q, Yuan Q. Interaction of NMDA receptors and L-type calcium channels during early odor preference learning in rats. Eur J Neurosci 2012; 36:3134-41. [PMID: 22762736 DOI: 10.1111/j.1460-9568.2012.08210.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early odor preference learning in rats provides a simple model for studying learning and memory. Learning results in an enhanced output from mitral cells, which carry odor information from the olfactory bulb to the olfactory cortex. Mitral cell NMDA receptors (NMDARs) are critically involved in plasticity at the olfactory nerve to mitral cell synapse during odor learning. Here we provide evidence that L-type calcium channels (LTCCs) provide an additional and necessary source of calcium for learning induction. LTCCs are thought to act downstream of NMDARs to bridge synaptic activation and the transcription of the plasticity-related proteins necessary for 24-h learning and memory. Using immunohistochemistry, we have demonstrated that LTCCs are present in the mitral cell and are primarily located on mitral cell proximal dendrites in neonate rats. Behavioral experiments demonstrate that inhibiting the function of LTCCs via intrabulbar infusion of nimidopine successfully blocks learning induced by pairing isoproterenol infusion with odor, while activation of LTCCs via an intrabulbar infusion of BayK-8644 rescues isoproterenol-induced learning from a D-APV block. Interestingly, the infusion of BayK-8644 paired with odor is by itself not sufficient to induce learning. Synaptoneurosome Western blot and immunohistochemistry measurement of synapsin I phosphorylation following BayK-8644 infusion suggest LTCCs are involved in synaptic release. Finally, odor preference can be induced by gabazine disinhibition of mitral cells, and NMDAR opening is sufficient for the gabazine-induced learning. These results provide the first evidence that NMDARs and LTCCs interact to permit calcium-dependent mitral cell plasticity during early odor preference learning.
Collapse
Affiliation(s)
- David Jerome
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | |
Collapse
|
24
|
Yuan Q, Harley CW. What a nostril knows: olfactory nerve-evoked AMPA responses increase while NMDA responses decrease at 24-h post-training for lateralized odor preference memory in neonate rat. Learn Mem 2012; 19:50-3. [PMID: 22240324 DOI: 10.1101/lm.024844.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Increased AMPA signaling is proposed to mediate long-term memory. Rat neonates acquire odor preferences in a single olfactory bulb if one nostril is occluded at training. Memory testing here confirmed that only trained bulbs support increased odor preference at 24 h. Olfactory nerve field potentials were tested at 24 h in slices from trained and untrained bulbs. A larger AMPA component and a smaller NMDA component characterized responses in the bulb receiving odor preference training. Field potential changes were not seen in a bulbar region separate from the lateral odor-encoding area. These results support models in which memory is mediated by increased olfactory nerve-mitral cell AMPA signaling, and memory stability is promoted by decreased NMDA-mediated signaling.
Collapse
Affiliation(s)
- Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9
| | | |
Collapse
|
25
|
Haijima A, Endo T, Zhang Y, Miyazaki W, Kakeyama M, Tohyama C. In utero and lactational exposure to low doses of chlorinated and brominated dioxins induces deficits in the fear memory of male mice. Neurotoxicology 2010; 31:385-90. [PMID: 20398696 DOI: 10.1016/j.neuro.2010.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/20/2010] [Accepted: 04/06/2010] [Indexed: 01/10/2023]
Abstract
Environmental-level in utero and lactational exposures to dioxins have been considered to affect brain functions of offspring. Here, we determined whether in utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,3,7,8-tetrabromodibenzo-p-dioxin (TBDD), at the dose that does not harm the dams, affects the acquisition and retention of fear memory in mouse offspring. Pregnant C57BL/6J mice were administered by gavages TCDD or TBDD at a dose of 0 or 3.0 microg/kg body weight on gestation day 12.5, and their male offspring were examined for their behavior in adulthood. In the fear conditioning, a paired presentation of tone and foot shock was repeated three times, and retention tests for contextual and auditory fear memory were carried out 1 and 24h after the fear conditioning. Groups of mice that were exposed to TCDD and TBDD in utero and via lactation showed deficits in the contextual and auditory retention tests at 1 and 24h retention intervals. The present results suggest that maternal exposure to a low dose of TCDD or TBDD disrupts the functions of memory and emotion in male mouse offspring, and that the developmental toxicities of these chemicals are similar to each other.
Collapse
Affiliation(s)
- Asahi Haijima
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Glantz SB, Cianci CD, Iyer R, Pradhan D, Wang KK, Morrow JS. Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells. Biochemistry 2007; 46:502-13. [PMID: 17209560 PMCID: PMC2825692 DOI: 10.1021/bi061504y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Calpain-catalyzed proteolysis of II-spectrin is a regulated event associated with neuronal long-term potentiation, platelet and leukocyte activation, and other processes. Calpain proteolysis is also linked to apoptotic and nonapoptotic cell death following excessive glutamate exposure, hypoxia, HIV-gp120/160 exposure, or toxic injury. The molecular basis for these divergent consequences of calpain action, and their relationship to spectrin proteolysis, is unclear. Calpain preferentially cleaves II spectrin in vitro in repeat 11 between residues Y1176 and G1177. Unless stimulated by Ca++ and calmodulin (CaM), betaII spectrin proteolysis in vitro is much slower. We identify additional unrecognized sites in spectrin targeted by calpain in vitro and in vivo. Bound CaM induces a second II spectrin cleavage at G1230*S1231. BetaII spectrin is cleaved at four sites. One cleavage only occurs in the absence of CaM at high enzyme-to-substrate ratios near the betaII spectrin COOH-terminus. CaM promotes II spectrin cleavages at Q1440*S1441, S1447*Q1448, and L1482*A1483. These sites are also cleaved in the absence of CaM in recombinant II spectrin fusion peptides, indicating that they are probably shielded in the spectrin heterotetramer and become exposed only after CaM binds alphaII spectrin. Using epitope-specific antibodies prepared to the calpain cleavage sites in both alphaII and betaII spectrin, we find in cultured rat cortical neurons that brief glutamate exposure (a physiologic ligand) rapidly stimulates alphaII spectrin cleavage only at Y1176*G1177, while II spectrin remains intact. In cultured SH-SY5Y cells that lack an NMDA receptor, glutamate is without effect. Conversely, when stimulated by calcium influx (via maitotoxin), there is rapid and sequential cleavage of alphaII and then betaII spectrin, coinciding with the onset of nonapoptotic cell death. These results identify (i) novel calpain target sites in both alphaII and betaII spectrin; (ii) trans-regulation of proteolytic susceptibility between the spectrin subunits in vivo; and (iii) the preferential cleavage of alphaII spectrin vs betaII spectrin when responsive cells are stimulated by engagement of the NMDA receptor. We postulate that calpain proteolysis of spectrin can activate two physiologically distinct responses: one that enhances skeletal plasticity without destroying the spectrin-actin skeleton, characterized by preservation of betaII spectrin; or an alternative response closely correlated with nonapoptotic cell death and characterized by proteolysis of betaII spectrin and complete dissolution of the spectrin skeleton.
Collapse
Affiliation(s)
| | | | - Rathna Iyer
- CNS Biology, Pfizer Global Research and Development, 2800 Plymouth Road, Ann Arbor, MI 48105
| | | | - Kevin K.W. Wang
- Departments of Psychiatry and Neuroscience, McKnight Brain Institute of the University of Florida, (P.O.Box100256), Gainesville, FL 32610, USA
| | - Jon S. Morrow
- * To whom correspondence should be addressed. tel: 203-785-3624 Fax 203-785-7037 E-mail:
| |
Collapse
|
27
|
Golden GJ, Houpt TA. NMDA receptor in conditioned flavor-taste preference learning: blockade by MK-801 and enhancement by D-cycloserine. Pharmacol Biochem Behav 2007; 86:587-96. [PMID: 17350084 PMCID: PMC2570030 DOI: 10.1016/j.pbb.2007.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 01/18/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
Conditioned flavor-taste preference (CFTP) is a robust form of learning in which animals acquire a preference for a flavor (e.g. Kool-Aid) previously mixed with a highly preferred tastant (e.g. fructose) over a flavor previously mixed with a less-preferred tastant (e.g. saccharin). Here, the role of the N-methyl-D-aspartate (NMDA) glutamate-glycine receptor (NR) was probed using systemic MK-801, a non-competitive antagonist, and D-cycloserine (DCS), a glycine agonist. Rats were injected with MK-801 (100 microg/kg) or vehicle 30 min prior to a daily 2-h conditioning session with 1-bottle access to a Kool-Aid flavor (grape or cherry) mixed with either 8% fructose (CS+/F) or 0.2% saccharin (CS-/S). CFTP expression was measured in 2-bottle preference tests between the Kool-Aid flavors mixed with 0.2% saccharin (CS+/S vs. CS-/S). While vehicle-treated rats acquired a preference for CS+/S over CS-/S, MK-801 prior to conditioning completely blocked CFTP learning. The effect of MK-801 was specific to CFTP acquisition, because follow-up experiments demonstrated that MK-801 did not induce a conditioned taste aversion, cause state-dependent learning, or affect CFTP expression. In a second approach, rats were injected with DCS (15 mg/kg) 60 min prior to daily conditioning. In contrast to MK-801, administration of DCS prior to conditioning enhanced CFTP learning (but not reversal conditioning). These results demonstrate that NR neurotransmission is critical for CFTP learning. Furthermore, enhancement of CFTP learning by DCS suggests that endogenous levels of glycine or D-serine may be a limiting factor in CFTP learning.
Collapse
Affiliation(s)
- Glen J Golden
- Department of Biological Science, Program in Neuroscience, The Florida State University, Tallahassee, FL 32306-4340, USA
| | | |
Collapse
|
28
|
Dringenberg HC, Kuo MC. Cholinergic, histaminergic, and noradrenergic regulation of LTP stability and induction threshold: cognitive implications. EXS 2006; 98:165-83. [PMID: 17019888 DOI: 10.1007/978-3-7643-7772-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hans C Dringenberg
- Department of Psychology, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
29
|
Bannerman DM, Rawlins JNP, Good MA. The drugs don't work-or do they? Pharmacological and transgenic studies of the contribution of NMDA and GluR-A-containing AMPA receptors to hippocampal-dependent memory. Psychopharmacology (Berl) 2006; 188:552-66. [PMID: 16676163 DOI: 10.1007/s00213-006-0403-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The aim of this article is to provide a review of studies using N-methyl-D-aspartate (NMDA) receptor antagonists to assess the hippocampal long-term potentiation (LTP)/learning hypothesis. DISCUSSION In particular, we will re-examine the validity of both (1) the original hippocampal LTP/spatial learning hypothesis of Morris and (2) the sensorimotor account put forward by Cain, among others, both from the point of view of the pharmacological studies on which they were based and with regard to recent studies with genetically modified mice. More specifically, we will review the pharmacological studies in the light of recent work on the glutamate receptor A (GluR-A or GluR1) L-alpha-amino-3-hydroxy-5-methyl-4-isoxazelopropionate (AMPA) receptor sub-unit knockout mouse. We will argue that neither the original hippocampal LTP/spatial learning hypothesis nor a sensorimotor account can adequately explain all of the available data. We argue instead that hippocampal synaptic plasticity, which requires NMDA receptors for its induction and GluR-A-containing AMPA receptors for its continued expression, contributes to a process whereby appropriate behavioural responses are selected rapidly on the basis of conditional information provided by the context. These contextual cues could include not only the spatial context (i.e. the 'where') and the temporal context (the 'when'), but also other aspects of context, such as internal state cues (hunger and fear state), and can be used to rapidly and flexibly alter valences of specific response options. RECOMMENDATIONS We also suggest that there is a separate, distinct, NMDA/GluR-A-independent mechanism through which the context can gradually (incrementally or decrementally) alter the valence of a particular response option.
Collapse
Affiliation(s)
- D M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, England.
| | | | | |
Collapse
|
30
|
Disterhoft JF, Oh MM. Learning, aging and intrinsic neuronal plasticity. Trends Neurosci 2006; 29:587-99. [PMID: 16942805 DOI: 10.1016/j.tins.2006.08.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 06/14/2006] [Accepted: 08/17/2006] [Indexed: 11/28/2022]
Abstract
In vitro experiments indicate that intrinsic neuronal excitability, as evidenced by changes in the post-burst afterhyperpolarization (AHP) and spike-frequency accommodation, is altered during learning and normal aging in the brain. Here we review these studies, highlighting two consistent findings: (i) that AHP and accommodation are reduced in pyramidal neurons from animals that have learned a task; and (ii) that AHP and accommodation are enhanced in pyramidal neurons from aging subjects, a cellular change that might contribute to age-related learning impairments. Findings from in vivo single-neuron recording studies complement the in vitro data. From these consistently reproduced findings, we propose that the intrinsic AHP level might determine the degree of synaptic plasticity and learning. Furthermore, it seems that reductions in the AHP must occur before learning if young and aging subjects are to learn a task successfully.
Collapse
Affiliation(s)
- John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA.
| | | |
Collapse
|
31
|
Zannat MT, Locatelli F, Rybak J, Menzel R, Leboulle G. Identification and localisation of the NR1 sub-unit homologue of the NMDA glutamate receptor in the honeybee brain. Neurosci Lett 2006; 398:274-9. [PMID: 16480817 DOI: 10.1016/j.neulet.2006.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/22/2005] [Accepted: 01/05/2006] [Indexed: 11/20/2022]
Abstract
The NR1 sub-unit homologue of the NMDA glutamate receptor was characterised in the honeybee. Sequence analysis suggests that the honeybee NMDA receptor may act as a coincidence detector molecule similar to its counterpart in the mammalian nervous system. The localisation of the expression sites at the mRNA and the protein levels indicates that the receptor is expressed throughout the brain, in neurons and in glial cells.
Collapse
Affiliation(s)
- Mst Thangima Zannat
- Freie Universität Berlin, Neurobiologie, Königin-Luise-Strasse 28/30, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
32
|
Buwalda B, Kole MHP, Veenema AH, Huininga M, de Boer SF, Korte SM, Koolhaas JM. Long-term effects of social stress on brain and behavior: a focus on hippocampal functioning. Neurosci Biobehav Rev 2004; 29:83-97. [PMID: 15652257 DOI: 10.1016/j.neubiorev.2004.05.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 05/25/2004] [Indexed: 11/24/2022]
Abstract
In order to study mechanisms involved in the etiology of human affective disorders, there is an abundant use of various animal models. Next to genetic factors that predispose for psychopathologies, environmental stress is playing an important role in the etiology of these mental diseases. Since the majority of stress stimuli in humans that lead to psychopathology are of social nature, the study of consequences of social stress in experimental animal models is very valuable. The present review focuses on one of these models that uses the resident-intruder paradigm. In particular the long-lasting effects of social defeat in rats will be evaluated. Data from our laboratory on the consequences of social defeat on emotional behavior, stress responsivity and serotonergic functionality are presented. Furthermore, we will go into detail on hippocampal functioning in socially stressed rats. Very recent results show that there is a differential effect of a brief double social defeat and repetitive social defeat stress on dendritic remodeling in hippocampal CA3 neurons and that this has repercussions on hippocampal LTP and LTD. Both the structural and electrophysiological changes of principal neurons in the hippocampal formation after defeat are discussed as to their relationship with the maintenance in cognitive performance that was observed in socially stressed rats. The results are indicative of a large dynamic range in the adaptive plasticity of the brain, allowing the animals to adapt behaviorally to the previously occurred stressful situation with the progression of time.
Collapse
Affiliation(s)
- Bauke Buwalda
- Department of Animal physiology, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
33
|
Blevins JE, Truong BG, Gietzen DW. NMDA receptor function within the anterior piriform cortex and lateral hypothalamus in rats on the control of intake of amino acid-deficient diets. Brain Res 2004; 1019:124-33. [PMID: 15306246 DOI: 10.1016/j.brainres.2004.05.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2004] [Indexed: 01/30/2023]
Abstract
Animals decrease intake of an indispensable amino acid (AA)-deficient or devoid diet, due in part to decreased dietary limiting AA (DLAA) concentrations within the anterior piriform cortex (APC), and to a recognition process that occurs as early as 20 min following exposure to AA deficiencies. Glutamate levels within the APC change in response to AA deficiencies. The APC projects to the lateral hypothalamus (LH), where glutamate acts to stimulate food intake. We hypothesize that the APC, through glutamatergic projections to the LH, inhibits the LH, which signals to reject the AA-deficient or devoid diet, and trigger aversions to the AA-deficient or devoid diet via an ascending pathway to the APC. We examined the effects of (1) bilateral APC and LH blockade of glutamate's NMDA receptors with the antagonist, D-AP5, (2) APC blockade of AMPA receptors with the antagonist, NBQX, to block glutamate transmission from the APC, and (3) direct injection of the agonist, NMDA, into the LH on intake of the AA-deficient, devoid, or corrected diet. Administration of D-AP5 into the APC increased intake of AA-deficient diet by 6 h, but D-AP5 in the LH decreased AA-devoid diet preferentially over AA corrected intake sooner. NBQX in the APC increased AA-deficient diet intake, also at 6 h. NMDA injection into the LH-stimulated intake of the AA corrected diet by 3 h, but did not affect AA-devoid diet intake. Thus, the glutamate receptors in the APC and LH are involved in the feeding responses to AA-deficient diet, albeit with regional differences. We suggest that glutamate mediates the anorectic responses to AA-deficient diets through recognition of AA-devoid diet with the glutamatergic output cells of the APC sending glutamate-based signals for changes in food intake within the LH and through learned avoidance of AA-deficient diet within the APC, as indicated through the more immediate and prolonged periods of activation within the LH and APC, respectively.
Collapse
Affiliation(s)
- J Ernie Blevins
- Division of Endocrinology/Metabolism, Department of Veterans Affairs Medical Center, and Department Medicine, University of Washington, Research Service (151), 1660 South Columbian Way, Seattle, WA 98108, USA.
| | | | | |
Collapse
|
34
|
Bristol AS, Marinesco S, Carew TJ. Neural circuit of tail-elicited siphon withdrawal in Aplysia. II. Role of gated inhibition in differential lateralization of sensitization and dishabituation. J Neurophysiol 2003; 91:678-92. [PMID: 13679400 DOI: 10.1152/jn.00667.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the preceding report, we observed that tail-shock-induced sensitization of tail-elicited siphon withdrawal reflex (TSW) of Aplysia was expressed ipsilaterally but that dishabituation induced by an identical tail shock was expressed bilaterally. Here we examined the mechanisms of this differential lateralization. We first isolated the modulatory pathway responsible for the induction of contralateral dishabituation by making selective nerve cuts. We found that an intact pleural-abdominal connective, the descending pathway connecting the ring ganglia with the abdominal ganglion, ipsilateral to the shock was required for contralateral dishabituation. We examined whether network inhibition suppresses the contralateral effects of tail shock in nonhabituated preparations. We found that blockade of inhibitory transmission in the CNS by the nicotinic ACh inhibitor d-tubocurarine (d-TC) rendered tail shock capable of inducing bilateral sensitization. We next asked whether serotonin (5-HT), a neuromodulator released in the CNS in response to tail shock, was affected by d-TC. We found that d-TC does not alter 5-HT processes in the ring ganglia: it had no effect on the lateralized pattern of tail nerve shock-induced changes in tail sensory neuron excitability, a 5-HT-dependent process, and it did not alter tail nerve shock-evoked release of 5-HT. By contrast, d-TC enhanced 5-HT release in the abdominal ganglion. Consistent with this observation, restricting d-TC to the abdominal ganglion rendered tail nerve shock capable of producing bilateral sensitization. Together with the results of the preceding paper, our results suggest a model in which TSW sensitization and dishabituation can be dissociated both anatomically and mechanistically.
Collapse
Affiliation(s)
- Adam S Bristol
- Department of Psychology, Yale University, New Haven, Connecticut 06520-8205, USA
| | | | | |
Collapse
|
35
|
Kobayashi T, Tran AH, Nishijo H, Ono T, Matsumoto G. Contribution of hippocampal place cell activity to learning and formation of goal-directed navigation in rats. Neuroscience 2003; 117:1025-35. [PMID: 12654354 DOI: 10.1016/s0306-4522(02)00700-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although extensive behavioral studies have demonstrated that hippocampal lesions impair navigation toward specific places, the role of hippocampal neuronal activity in the development of efficient navigation during place learning remains unknown. The aim of the present study was to investigate how hippocampal neuronal activity changes as rats learn to navigate efficiently to acquire rewards in an open field. Rats were pre-trained in a random reward task where intracranial self-stimulation rewards were provided at random locations. Then, the rats were trained in a novel place task where they were rewarded at two specific locations as they repeatedly shuttled between them. Hippocampal neuronal activity was recorded during the course of learning of the place task. The rats learned reward sites within several sessions, and gradually developed efficient navigation strategies throughout the learning sessions. Some hippocampal neurons gradually changed spatial firing as the learning proceeded, and discharged robustly near the reward sites when efficient navigation was established. Over the learning sessions, the neuronal activity was highly correlated to formation of efficient shuttling trajectories between the reward sites. At the end of the experiment, spatial firing patterns of the hippocampal neurons were re-examined in the random reward task. The specific spatial firing patterns of the neurons were preserved if the rats navigated, as if they expected to find rewards at the previously valid locations. However, those specific spatial firing patterns were not observed in rats pursuing random trajectories. These results suggest that hippocampal neurons have a crucial role in formation of an efficient navigation.
Collapse
Affiliation(s)
- T Kobayashi
- Brain-Operative Expression Team, Brainway Group, Brain Science Institute, RIKEN (The Institute of Physical and Chemical Research), Hirosawa, Wako, 351-0198, Saitama, Japan
| | | | | | | | | |
Collapse
|
36
|
Williams MT, Morford LL, Wood SL, Wallace TL, Fukumura M, Broening HW, Vorhees CV. Developmental D-methamphetamine treatment selectively induces spatial navigation impairments in reference memory in the Morris water maze while sparing working memory. Synapse 2003; 48:138-48. [PMID: 12645039 DOI: 10.1002/syn.10159] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In previous studies, we have shown that P11-20 treatment with D-methamphetamine (MA) (10 mg/kg x 4/day at 2-h intervals) induces impairments in spatial learning and memory in the Morris water maze after the offspring reach adulthood. Using a split-litter, multiple dose, design (0, 5, 10, and 15 mg/kg MA administered s.c. 4/day at 2-h intervals), the spatial learning effect was further explored with a multiple shifted platform (reversal), reference memory-based procedure and a working memory procedure. Prior to spatial learning, animals were first tested for swimming ability (in a straight swimming channel), sequential learning (in the Cincinnati multiple-T water maze), and proximal cue learning (in the Morris water maze). Rats were then assessed in the hidden platform, reference memory-based spatial version of the Morris maze for acquisition and on five subsequent phases in which the platform was moved to new locations. After the reference memory-based, fixed platform position learning phases, animals were tested in the trial-dependent, matching-to-sample, working memory version of the Morris maze. No group differences were found in straight channel, sequential maze, or cued Morris maze performance. By contrast, all MA groups were impaired in spatial learning during acquisition, multiple shift, and shifted with a reduced platform phases of reference memory-based learning. In addition, MA animals were impaired on memory (probe) trials during the acquisition and shifted with a reduced platform phases of learning. No effects on trial-dependent, matching-to-sample, working memory were found. The findings demonstrate that neonatal treatment with MA induces a selective impairment of reference memory-based spatial learning while sparing sequential, cued, and working memory-based learning.
Collapse
Affiliation(s)
- Michael T Williams
- Pharmacology Research Center, Children's Hospital Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Adrover MF, Guyot-Revol V, Cheli VT, Blanco C, Vidal R, Alché L, Kornisiuk E, Epstein AL, Jerusalinsky D. Hippocampal infection with HSV-1-derived vectors expressing an NMDAR1 antisense modifies behavior. GENES, BRAIN, AND BEHAVIOR 2003; 2:103-13. [PMID: 12884967 DOI: 10.1034/j.1601-183x.2003.00015.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herpes simplex virus-derived amplicon vectors simultaneously expressing the open reading frame encoding NR1 subunit of the NMDA receptor, either in sense or antisense orientation, as well as the open reading frame encoding the green fluorescent protein (GFP), as distinct transcription units, were constructed. Vector expression in cells was demonstrated by GFP-fluorescence, immunofluorescence, Western blots and RT-PCR. The vectors were inoculated into the dorsal hippocampus of adult male rats, which were then trained for habituation to an open field and for inhibitory avoidance to a foot-shock. Those animals injected with vectors expressing NR1 protein showed habituation to a new environment, and achieved the criteria for a step-down inhibitory avoidance to a foot-shock. In contrast, animals injected with vectors carrying the NR1 open reading frame in antisense position, showed neither habituation nor appropriate performance in the inhibitory avoidance task. There was no evidence for motor impairment or motivational disturbance, since all the animals exhibit similar behavior and performance in the training sessions. Hence, the impaired performance might be due to either amnesia or disability to record events. Transgene expression in brain, as revealed by GFP fluorescence, was mainly observed in pyramidal cells of CA1, but also in CA3. Therefore, our results strongly support the participation of hippocampal NR1 subunit in habituation to a new environment, but also in recording events for the inhibitory avoidance task. Hence, amplicon vectors appear to be useful tools to modify endogenous gene expression at a defined period, in restricted brain regions, and should allow investigating in vivo functions of genes.
Collapse
Affiliation(s)
- M F Adrover
- Institute of Cellular Biology & Neuroscience Professor Eduardo de Robertis, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rosenzweig ES, Barnes CA. Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 2003; 69:143-79. [PMID: 12758108 DOI: 10.1016/s0301-0082(02)00126-0] [Citation(s) in RCA: 557] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aging is associated with specific impairments of learning and memory, some of which are similar to those caused by hippocampal damage. Studies of the effects of aging on hippocampal anatomy, physiology, plasticity, and network dynamics may lead to a better understanding of age-related cognitive deficits. Anatomical and electrophysiological studies indicate that the hippocampus of the aged rat sustains a loss of synapses in the dentate gyrus, a loss of functional synapses in area CA1, a decrease in the NMDA-receptor-mediated response at perforant path synapses onto dentate gyrus granule cells, and an alteration of Ca(2+) regulation in area CA1. These changes may contribute to the observed age-related impairments of synaptic plasticity, which include deficits in the induction and maintenance of long-term potentiation (LTP) and lower thresholds for depotentiation and long-term depression (LTD). This shift in the balance of LTP and LTD could, in turn, impair the encoding of memories and enhance the erasure of memories, and therefore contribute to cognitive deficits experienced by many aged mammals. Altered synaptic plasticity may also change the dynamic interactions among cells in hippocampal networks, causing deficits in the storage and retrieval of information about the spatial organization of the environment. Further studies of the aged hippocampus will not only lead to treatments for age-related cognitive impairments, but may also clarify the mechanisms of learning in adult mammals.
Collapse
Affiliation(s)
- Ephron S Rosenzweig
- Arizona Research Laboratories, Division of Neural Systems, Memory, and Aging, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
39
|
Chase TN, Bibbiani F, Oh JD. Striatal glutamatergic mechanisms and extrapyramidal movement disorders. Neurotox Res 2003; 5:139-46. [PMID: 12832228 DOI: 10.1007/bf03033378] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The nonphysiologic stimulation of striatal dopaminergic receptors, as a result of disease- or drug-related denervation or intermittent excitation, triggers adaptive responses in the basal ganglia which contribute to the appearance of parkinsonian symptoms and later to the dyskinesias and other alterations in motor response associated with dopaminergic therapy. Current evidence suggests that these altered responses involve activation of signal transduction cascades in striatal medium spiny neurons linking dopaminergic to coexpressed ionotropic glutamatergic receptors of the N-methyl-D-aspartate (NMDA) and Alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) classes. These intraneuronal signaling pathways appear capable of modifying the phosphorylation state of NMDA and AMPA receptor subunits; resultant sensitization enhances cortical glutamatergic input which in turn modifies striatal output in ways that compromise motor behavior. The regulation of these spiny neuron glutamate receptors can also be affected by the activation state of coexpressed nondopaminergic receptors as well as by changes associated with Huntington's disease. These observations lend new insight into molecular mechanisms contributing to the integration of synaptic inputs to spiny neurons. They also suggest novel approaches to the pharmacotherapy of extrapyramidal motor dysfunction.
Collapse
Affiliation(s)
- Thomas N Chase
- National Institutes of Health, Experimental Therapeutics Branch, NINDS, NIH, Building 10, Room 5C103, Bethesda, MD, USA.
| | | | | |
Collapse
|
40
|
Franchi G. Time course of motor cortex reorganization following botulinum toxin injection into the vibrissal pad of the adult rat. Eur J Neurosci 2002; 16:1333-48. [PMID: 12405994 DOI: 10.1046/j.1460-9568.2002.02195.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present experiment studies representation patterns in the motor cortex (M1) of adult rats, 1, 3, 6, and 12 days after unilateral injection of Botulinum Toxin (BTX) into the vibrissa pad. Intracortical microstimulation (ICMS) was used to evidence changes in the representation over time and in the current thresholds required to evoke movements inside the disconnected vibrissa region. After 1 day, isolated as well as contiguous negative sites were observed within the motor cortex corresponding to the disconnected vibrissa region. Thereafter the percentage of unresponsive sites decreased so that after 6 days, the number of unresponsive sites was not significantly higher than those in the control hemispheres. Within the disconnected vibrissa region, electrical stimulation elicited forelimb, eye, ipsilateral vibrissa and neck movements. Following BTX injection, the enlargement of the forelimb representation into the disconnected vibrissa representation began during the first day and stabilized during the second week after injection. In the first days, stimulation thresholds in expanded forelimb sites were higher than those required for similar movement in normal M1 forelimb representation. These thresholds then declined so that in approximately 6 days they were similar to normal. There was no clear evidence that stimulation of sites in the medial part of disconnected vibrissa-cortex evoked eye movements during the first 6 days after BTX injection. After this time, thresholds required to evoke eye movement in expanded sites were generally similar to, and never higher than, those needed to evoke this movement in control sites. Intermingled ipsilateral vibrissa and neck movement occupies part of the medial vibrissa region. Over the 12 days, extension of the ipsilateral vibrissa representation shrank while the representation of neck movement remained unchanged. Throughout the entire time there was no change in the excitability of these sites and the thresholds remained higher than that needed to elicit the vibrissa movement normally represented in this cortical region. No significant differences in threshold were found over time for any of the other movement categories represented in M1. These results indicate that, over time, the new movements inside the disconnected vibrissa region develop differently in M1 following peripheral motor disconnection. The implications for mechanisms involved in cortical plasticity are discussed.
Collapse
Affiliation(s)
- G Franchi
- Dipartimento di Scienze Biomediche e Terapie Avanzate, Sezione di Fisiologia umana, Università di Ferrara, 44100 Ferrara, Italy.
| |
Collapse
|
41
|
Impairment of L-type Ca2+ channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C. J Neurosci 2002. [PMID: 12177213 DOI: 10.1523/jneurosci.22-16-07177.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The extracellular matrix glycoprotein tenascin-C (TN-C) has been suggested to play important functional roles during neural development, axonal regeneration, and synaptic plasticity. We generated a constitutively TN-C-deficient mouse mutant from embryonic stem cells with a floxed tn-C allele, representing a standard for future analysis of conditionally targeted mice. The gross morphology of the CNS was not detectably affected, including no evidence for perturbed nerve cell migration, abnormal oligodendrocyte distribution, or defective myelination. Despite the apparent normal histology of the hippocampus and normal performance in the water maze, theta-burst stimulation (TBS) of Schaffer collaterals elicited reduced long-term potentiation (LTP) in the CA1 region of TN-C-deficient mutants, as compared with wild-type littermates. However, high-frequency stimulation evoked normal LTP not only in CA1, but also at mossy fiber-CA3 and medial and lateral perforant path-granule cell synapses in the dentate gyrus. Low-frequency stimulation failed to induce long-term depression in the CA1 region of TN-C-deficient animals. Recordings of TBS-induced LTP in the presence of nifedipine, an antagonist of L-type voltage-dependent Ca2+ channels (VDCCs), did not affect LTP in TN-C-deficient mice, but reduced LTP in wild-type mice to the levels seen in mutants. Furthermore, chemical induction of a L-type VDCC-dependent LTP in the CA1 region by application of the K+ channel blocker tetraethylammonium resulted in impaired LTP in TN-C mutants. Thus, reduction in L-type VDCC-mediated signaling appears to mediate the deficits in certain forms of synaptic plasticity in constitutively TN-C-deficient mice.
Collapse
|
42
|
Morford LL, Inman-Wood SL, Gudelsky GA, Williams MT, Vorhees CV. Impaired spatial and sequential learning in rats treated neonatally with D-fenfluramine. Eur J Neurosci 2002; 16:491-500. [PMID: 12193193 DOI: 10.1046/j.1460-9568.2002.02100.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
D-Fenfluramine, a serotonin releaser, was administered to neonatal rats on postnatal days 11-20 (a stage of hippocampal development analogous to third trimester human ontogeny). As adults, the D-fenfluramine-treated offspring exhibited dose-related impairments of sequential and spatial learning and reference memory in the absence of sensorimotor impairments. Procedures to minimize stress and to control for other performance effects prior to testing for spatial learning demonstrated that nonspecific factors did not account for the selective effects of D-fenfluramine on learning and memory. Developmental D-fenfluramine-induced spatial and sequential learning deficits are similar to previous findings with developmental MDMA treatment. By contrast, recent findings with developmental D-methamphetamine treatment showed spatial learning deficits while sparing sequential learning. The spatial learning effects common to all three drugs suggest that they may share a common mechanism of action, however, the effects are not related to long-lasting changes in hippocampal 5-HT levels as no differences were found in adulthood. Whether the cognitive deficits are related to the effects of substituted amphetamines on corticosteroids, other aspects of the 5-HT system, or some unidentified neuronal substrates is not known, but the data demonstrate that these drugs are all capable of inducing long-term adverse effects on learning.
Collapse
Affiliation(s)
- L L Morford
- Division of Developmental Biology, Children's Hospital Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | | | |
Collapse
|
43
|
Watanabe S, Hoffman DA, Migliore M, Johnston D. Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 2002; 99:8366-71. [PMID: 12048251 PMCID: PMC123073 DOI: 10.1073/pnas.122210599] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the role of A-type K(+) channels for the induction of long-term potentiation (LTP) of Schaffer collateral inputs to hippocampal CA1 pyramidal neurons. When low-amplitude excitatory postsynaptic potentials (EPSPs) were paired with two postsynaptic action potentials in a theta-burst pattern, N-methyl-d-aspartate (NMDA)-receptor-dependent LTP was induced. The amplitudes of the back-propagating action potentials were boosted in the dendrites only when they were coincident with the EPSPs. Mitogen-activated protein kinase (MAPK) inhibitors PD 098059 or U0126 shifted the activation of dendritic K(+) channels to more hyperpolarized potentials, reduced the boosting of dendritic action potentials by EPSPs, and suppressed the induction of LTP. These results support the hypothesis that dendritic K(+) channels and the boosting of back-propagating action potentials contribute to the induction of LTP in CA1 neurons.
Collapse
Affiliation(s)
- Shigeo Watanabe
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
44
|
Lenhard T, Schober A, Suter-Crazzolara C, Unsicker K. Fibroblast growth factor-2 requires glial-cell-line-derived neurotrophic factor for exerting its neuroprotective actions on glutamate-lesioned hippocampal neurons. Mol Cell Neurosci 2002; 20:181-97. [PMID: 12093153 DOI: 10.1006/mcne.2002.1134] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
FGF-2 is a potent neurotrophic factor for several populations of CNS neurons and has been shown to protect hippocampal neurons from glutamate-induced cell death in vitro and in vivo. Mechanisms underlying the neurotrophic and protective actions of FGF-2 have been resolved only in part. Using glutamate-treated cultured hippocampal neurons we show that FGF-2 shares its neuroprotective capacity with GDNF. Hippocampal neurons express glial-cell-line-derived neurotrophic factor (GDNF), its receptors c-Ret and the lipid-anchored GDNF family receptor-alpha1 (GFRalpha-1), and the FGF receptor 1 (FGFR I). Neutralizing antibodies to GDNF abolish the neuroprotective effect of FGF-2. In support of the notion that GDNF is required to permit the protective effects of FGF-2 we find that FGF-2 up-regulates GDNF and GFRalpha-1 in hippocampal neurons. Furthermore, FGF-2-induced GDNF causes enhanced phosphorylation of c-Ret and the signaling components Akt and Erk. A putative downstream target of FGF-2 and GDNF are bcl-2 gene family members, whose mRNAs are differentially up-regulated by the two factors. Together, these data suggest that GDNF is an important protective factor for glutamate-lesioned hippocampal neurons and an essential mediator of the neuroprotective actions of FGF-2.
Collapse
Affiliation(s)
- Thorsten Lenhard
- Department of Neuroanatomy and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 307, Germany
| | | | | | | |
Collapse
|
45
|
Troncoso J, Maldonado H. Two related forms of memory in the crab Chasmagnathus are differentially affected by NMDA receptor antagonists. Pharmacol Biochem Behav 2002; 72:251-65. [PMID: 11900795 DOI: 10.1016/s0091-3057(01)00779-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A visual danger stimulus (VDS) elicits an escape response in the crab Chasmagnathus that declines after a few iterative presentations. Long-lasting retention of such decrement, termed context-signal memory (CSM), is mediated by an association between danger stimulus and environmental cues, cycloheximide sensitive, correlated with PKA activity and NFkappa-B activation, positively modulated by angiotensins, and selectively regulated by a muscarinic-cholinergic mechanism. The present research was aimed at studying the possible involvement of NMDA-like receptors in CSM, given the role attributed to these receptors in vertebrate memory and their occurrence in invertebrates including crustaceans. Vertebrate antagonists (+/-)-2-amino-5-phosphonopentanoic acid (AP5) and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) were used. Memory retention impairment was shown with MK-801 10(-3) M (1 microg/g) injected immediately before training or after training, or delayed 1 or 4 h, but not 6 h, posttraining. An AP5 10(-3) M dose (0.6 microg/g) impairs retention when given before but not after training. Neither antagonist produced retrieval deficit. A memory process similar to CSM but nonassociative in nature and induced by massed training (termed signal memory, SM), proved entirely insensitive to AP5 or MK-801, confirming the view that distinct mechanisms subserve these different types of memory in the crab.
Collapse
Affiliation(s)
- Julieta Troncoso
- Laboratorio de Neurobiología de la Memoria, Facultad de Ciencias Exactas y Naturales, Departamento Biologia, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
46
|
Richter-Levin G, Yaniv D. Is LTP in the hippocampus a useful model for learning-related alterations in gene expression? Rev Neurosci 2002; 12:289-96. [PMID: 11560370 DOI: 10.1515/revneuro.2001.12.3.289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is well established that the formation of long-term memory requires de novo protein synthesis. Altered gene expression is therefore critical in the signal transduction cascade activated by the learning experience. Long-term potentiation (LTP) is a mnemonic model in which particular patterns of activation of incoming excitatory fibers (representing the learning experience) may induce long-lasting enhancement of the communication between the involved pre- and post-synapses (representing the memory). Therefore, cellular and molecular mechanisms of LTP have been extensively studied under the assumption that their understanding will contribute to our comprehension of the mechanisms underlying memory formation. In recent years, however, this analogy has been challenged by reports of inconsistency between LTP and memory. Here we assess LTP in the hippocampus as a model system to study spatial memory-related alterations in gene expression. We focus on three molecular families that are likely to play a role in synaptic plasticity: (1) synaptic communication related proteins; (2) signal transduction machinery; and (3) growth factors. Reviewing first the literature on LTP and then behavioral research we found both consistent and inconsistent findings regarding the LTP/memory linkage. The importance of restricting the discussion to both a learning phase and a brain (sub)structure, as well as of incorporating more physiological LTP stimulation protocols, is discussed. We conclude that while LTP is indeed limited as a model of memory, a careful use of it as a model system of synaptic plasticity is fruitful and productive in screening out candidate memory-related genes.
Collapse
|
47
|
Gerlai RT, McNamara A, Williams S, Phillips HS. Hippocampal dysfunction and behavioral deficit in the water maze in mice: an unresolved issue? Brain Res Bull 2002; 57:3-9. [PMID: 11827731 DOI: 10.1016/s0361-9230(01)00630-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dysfunction of the hippocampal formation manifests as impaired relational learning and memory in humans and animals. One of the most frequently applied relational learning paradigms in animals is the Morris water maze (MWM), in which the subject is required to learn complex spatial relationships of visual cues. MWM has been employed as a diagnostic tool to investigate effects of drugs and mutations. However, the validity of this test and its ability to properly detect hippocampal dysfunction have been questioned. In order to corroborate the role of hippocampus in spatial learning, we employed ibotenic acid lesioning and ablated the hippocampus bilaterally or unilaterally in mice, as ascertained by magnetic resonance imaging. We found a significant impairment in response to hippocampal disruption that was more pronounced in mice with bilateral lesion than with unilateral lesion. However, the results also indicated that even the mice with bilateral lesion could improve their performance, which confirms the notion that the MWM has an important non-hippocampal component. It is thus possible that experimental alteration of brain function does not manifest as modified performance in MWM, even when hippocampal function is modified (false-negative finding), or manifest as altered performance without varying hippocampal function (false-positive finding), possibilities that have important implications for studies using genetic and pharmacological manipulation of the brain.
Collapse
Affiliation(s)
- Robert T Gerlai
- Genentech, Inc. Neuroscience Department, San Francisco, CA, USA.
| | | | | | | |
Collapse
|
48
|
Abstract
Behavioral tests have become important tools for the analysis of functional effects of induced mutations in transgenic mice. However, depending on the type of mutation and several experimental parameters, false positive or negative findings may be obtained. Given the fact that molecular neurobiologists now make increasing use of behavioral paradigms in their research, it is imperative to revisit such problems. In this review three tests, T-maze spontaneous alternation task (T-CAT), Context dependent fear conditioning (CDFC), and Morris water maze (MWM) sensitive to hippocampal function, serve as illustrative examples for the potential problems. Spontaneous alternation tests are sometimes flawed because the handling procedure makes the test dependent on fear rather than exploratory behavior leading to altered alternation rates independent of hippocampal function. CDFC can provide misleading results because the context test, assumed to be a configural task dependent on the hippocampus, may have a significant elemental, i.e. cued, component. MWM may pose problems if its visible platform task is disproportionately easier for the subjects to solve than the hidden platform task, if the order of administration of visible and hidden platform tasks is not counterbalanced, or if inappropriate parameters are measured. Without attempting to be exhaustive, this review discusses such experimental problems and gives examples on how to avoid them.
Collapse
Affiliation(s)
- R Gerlai
- Lilly Research Laboratories, Lilly Corporate Center, Drop Code 0510, Indianapolis, IN 46285, USA.
| |
Collapse
|
49
|
Abstract
Glutamate neurotransmission is an essential component of many forms of neuronal plasticity, however, the intracellular mechanisms that mediate plasticity are only beginning to be elucidated. The emerging image of the NMDA receptor complex reminds us that the similarity between mechanisms of plasticity in various model systems is greater than their apparent differences. For example, the cAMP-dependent protein kinase A signalling pathway is crucial for plasticity in a variety of neuronal systems and across a wide variety of species.
Collapse
Affiliation(s)
- P C Kind
- Department of Biomedical Sciences, Edinburgh University, Hugh Robson Building, George Square, Edinburgh, UK EH8 9XD.
| | | |
Collapse
|
50
|
Misner DL, Jacobs S, Shimizu Y, de Urquiza AM, Solomin L, Perlmann T, De Luca LM, Stevens CF, Evans RM. Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proc Natl Acad Sci U S A 2001; 98:11714-9. [PMID: 11553775 PMCID: PMC58795 DOI: 10.1073/pnas.191369798] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite its long history, the central effects of progressive depletion of vitamin A in adult mice has not been previously described. An examination of vitamin-deprived animals revealed a progressive and ultimately profound impairment of hippocampal CA1 long-term potentiation and a virtual abolishment of long-term depression. Importantly, these losses are fully reversible by dietary vitamin A replenishment in vivo or direct application of all trans-retinoic acid to acute hippocampal slices. We find retinoid responsive transgenes to be highly active in the hippocampus, and by using dissected explants, we show the hippocampus to be a site of robust synthesis of bioactive retinoids. In aggregate, these results demonstrate that vitamin A and its active derivatives function as essential competence factors for long-term synaptic plasticity within the adult brain, and suggest that key genes required for long-term potentiation and long-term depression are retinoid dependent. These data suggest a major mental consequence for the hundreds of millions of adults and children who are vitamin A deficient.
Collapse
Affiliation(s)
- D L Misner
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, Howard Hughes Medical Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|