1
|
Jong YJI, Harmon SK, O’Malley KL. Activation of Endoplasmic Reticulum-Localized Metabotropic Glutamate Receptor 5 (mGlu 5) Triggers Calcium Release Distinct from Cell Surface Counterparts in Striatal Neurons. Biomolecules 2025; 15:552. [PMID: 40305303 PMCID: PMC12025099 DOI: 10.3390/biom15040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/12/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Metabotropic glutamate receptor 5 (mGlu5) plays a fundamental role in synaptic plasticity, potentially serving as a therapeutic target for various neurodevelopmental and psychiatric disorders. Previously, we have shown that mGlu5 can also signal from intracellular membranes in the cortex, hippocampus, and striatum. Using cytoplasmic Ca2+ indicators, we showed that activated cell surface mGlu5 induced a transient Ca2+ increase, whereas the activation of intracellular mGlu5 mediated a sustained Ca2+ elevation in striatal neurons. Here, we used the newly designed ER-targeted Ca2+ sensor, ER-GCaMP6-150, as a robust, specific approach to directly monitor mGlu5-mediated changes in ER Ca2+ itself. Using this sensor, we found that the activation of cell surface mGlu5 led to small declines in ER Ca2+, whereas the activation of ER-localized mGlu5 resulted in rapid, more pronounced changes. The latter could be blocked by the Gq inhibitor FR9000359, the PLC inhibitor U73122, as well as IP3 and ryanodine receptor blockers. These data demonstrate that like cell surface and nuclear mGlu5, ER-localized receptors play a pivotal role in generating and shaping intracellular Ca2+ signals.
Collapse
Affiliation(s)
| | | | - Karen L. O’Malley
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; (Y.-J.I.J.); (S.K.H.)
| |
Collapse
|
2
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Mao F, Yang W. How Merkel cells transduce mechanical stimuli: A biophysical model of Merkel cells. PLoS Comput Biol 2023; 19:e1011720. [PMID: 38117763 PMCID: PMC10732429 DOI: 10.1371/journal.pcbi.1011720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023] Open
Abstract
Merkel cells combine with Aβ afferents, producing slowly adapting type 1(SA1) responses to mechanical stimuli. However, how Merkel cells transduce mechanical stimuli into neural signals to Aβ afferents is still unclear. Here we develop a biophysical model of Merkel cells for mechanical transduction by incorporating main ingredients such as Ca2+ and K+ voltage-gated channels, Piezo2 channels, internal Ca2+ stores, neurotransmitters release, and cell deformation. We first validate our model with several experiments. Then we reveal that Ca2+ and K+ channels on the plasma membrane shape the depolarization of membrane potentials, further regulating the Ca2+ transients in the cells. We also show that Ca2+ channels on the plasma membrane mainly inspire the Ca2+ transients, while internal Ca2+ stores mainly maintain the Ca2+ transients. Moreover, we show that though Piezo2 channels are rapidly adapting mechanical-sensitive channels, they are sufficient to inspire sustained Ca2+ transients in Merkel cells, which further induce the release of neurotransmitters for tens of seconds. Thus our work provides a model that captures the membrane potentials and Ca2+ transients features of Merkel cells and partly explains how Merkel cells transduce the mechanical stimuli by Piezo2 channels.
Collapse
Affiliation(s)
- Fangtao Mao
- Research Center for Humanoid Sensing, Intelligent Perception Research Institute of Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Wenzhen Yang
- Research Center for Humanoid Sensing, Intelligent Perception Research Institute of Zhejiang Lab, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Santos ATD, Kumar S, Albuquerque JVDS, Arcce IML, Chaves OA, Cruz GS, Carretero VJ, Melo LM, Chaves MS, Guijo JMH, Freitas VJDF, Rádis-Baptista G. The anti-infective crotalicidin peptide analog RhoB-Ctn[1-9] is harmless to bovine oocytes and able to induce parthenogenesis in vitro. Toxicon 2023; 234:107274. [PMID: 37657514 DOI: 10.1016/j.toxicon.2023.107274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/04/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Crotalicidin is a cathelicidin-related anti-infective (antimicrobial) peptide expressed in the venom glands of the South American rattlesnake Crotalus durissus terrificus. Congener peptides of crotalicidin, named vipericidins, are found in other pit vipers inhabiting South America. Crotalicidin is active against bacteria and pathogenic yeasts and has anti-proliferative activity for some cancer cells. The structural dissection of crotalicidin produced fragments (e.g., Ctn [15-34]) with multiple biological functionalities that mimic the native peptide. Another structural characteristic of crotalidicin and congeners is a unique repetitive stretch of amino acid sequences in tandem embedded in their primary structures. One of the encrypted vipericidn peptides (Ctn [1-9]) was synthesized, and the analog covalently conjugated with rhodamine B (RhoB-Ctn [1-9]) displayed considerable antimicrobial activity and selective cytotoxicity. Methods to evaluate antimicrobial peptides' toxicity include lysis of red blood cells (hemolysis) in vitro and cytotoxicity of healthy cultured cells (e.g., fibroblasts). Here, as a non-conventional model of toxicity, the bovine oocytes were exposed to two standardized concentrations of RhoB-Ctn [1-9], and embryo viability and development at its first stage of cleavage (division of cells) and blastocyst formation were evaluated. Oocytes treated with peptide at 10 and 40 μM induced cleavage rates of 44.94% and 51.53%, resulting in the formation of blastocysts of 7.07% and 11.73%, respectively. Light sheet microscopy and in silico prediction analysis indicated that RhoB-Ctn [1-9] peptide interacts with zona pellucida and internalizes into bovine oocytes and developing embryos. The ADMET prediction estimated good bioavailability of RhoB-Ctn [1-9]. In conclusion, the peptide appeared harmless to bovine oocytes and, remarkably, activated the parthenogenesis in vitro.
Collapse
Affiliation(s)
- Ariane Teixeira Dos Santos
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry, And Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Pharmacology and Therapy, Faculty of Medicine, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain
| | - Satish Kumar
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza, CE, Brazil
| | - João Victor da Silva Albuquerque
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza, CE, Brazil
| | - Irving Mitchell Laines Arcce
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza, CE, Brazil
| | - Otávio Augusto Chaves
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, 21040-360, RJ, Brazil; CQC-IMS, Departament of Chemistry, University of Coimbra, Rua Larga S/n, Coimbra, Portugal
| | - Gabriela Silva Cruz
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry, And Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Victoria Jimenez Carretero
- Department of Pharmacology and Therapy, Faculty of Medicine, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain
| | - Luciana Magalhães Melo
- Molecular Genetics Research Unit, University Center Fametro (UNIFAMETRO), Fortaleza, CE, Brazil
| | - Maiana Silva Chaves
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza, CE, Brazil
| | - Jesus Miguel Hernandez Guijo
- Department of Pharmacology and Therapy, Faculty of Medicine, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain
| | | | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará (UFC), Fortaleza, CE, Brazil.
| |
Collapse
|
5
|
Liu J, Tang F, Hu D, Zhang Z, Yan Y, Ma Y. TMT-based proteomics profile reveals changes of the entorhinal cortex in a kainic acid model of epilepsy in mice. Neurosci Lett 2023; 800:137127. [PMID: 36792025 DOI: 10.1016/j.neulet.2023.137127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Experimental modeling and clinical neuroimaging of patients has shown that certain seizures are capable of causing neuronal death. Research into cell death after seizures has identified the induction of the molecular machinery of apoptosis. Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults, which is characterized by substantial pathological abnormalities in the temporal lobe, including the hippocampus and entorhinal cortex (EC). Although decades of studies have revealed numerous molecular abnormalities in the hippocampus that are linked to TLE, the biochemical mechanisms associated with TLE in EC remain unclear. In this study, we explored these early phenotypical alterations in the EC 5 days after mice were given a systemic injection of kainic acid (KA) to induce status epilepticus (KA-SE). we used the Tandem Mass Tag (TMT) combined with LC-MS/MS approach to identify distinct proteins in the EC in a mouse model of KA-SE model. According to the findings, 355 differentially abundant proteins including 199 upregulated and 156 downregulated differentially abundant proteins were discovered. The first-ranked biological process according to Gene Ontology (GO) analysis was "negative control of extrinsic apoptotic signaling". "Apoptosis" was the most significantly enriched Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway. Compared with those in control mice, BCL2L1, NTRK2 and MAPK10 abundance levels were reduced in KA mice. MAPK10 and NTRK2 act as upstream regulators to regulate BCL2L1, and BCL2L1 Inhibits cell death by blocking the voltage- dependent anion channel (VDAC) and preventing the release of the caspase activator, CYC1, from the mitochondrial membrane. However, ITPR1 was increased at the mRNA and protein levels in KA mice. Furthermore, there was no significant difference in ACTB, TUBA1A and TUBA4A levels between the two groups. Our results offer clues to help identify biomarkers for the development of pharmacological therapies targeted at epilepsy.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Fenglin Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Danmei Hu
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Zhijuan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yin Yan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yuanlin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China.
| |
Collapse
|
6
|
Schmitz EA, Takahashi H, Karakas E. Structural basis for activation and gating of IP 3 receptors. Nat Commun 2022; 13:1408. [PMID: 35301323 PMCID: PMC8930994 DOI: 10.1038/s41467-022-29073-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
A pivotal component of the calcium (Ca2+) signaling toolbox in cells is the inositol 1,4,5-triphosphate (IP3) receptor (IP3R), which mediates Ca2+ release from the endoplasmic reticulum (ER), controlling cytoplasmic and organellar Ca2+ concentrations. IP3Rs are co-activated by IP3 and Ca2+, inhibited by Ca2+ at high concentrations, and potentiated by ATP. However, the underlying molecular mechanisms are unclear. Here we report cryo-electron microscopy (cryo-EM) structures of human type-3 IP3R obtained from a single dataset in multiple gating conformations: IP3-ATP bound pre-active states with closed channels, IP3-ATP-Ca2+ bound active state with an open channel, and IP3-ATP-Ca2+ bound inactive state with a closed channel. The structures demonstrate how IP3-induced conformational changes prime the receptor for activation by Ca2+, how Ca2+ binding leads to channel opening, and how ATP modulates the activity, providing insights into the long-sought questions regarding the molecular mechanism underpinning receptor activation and gating. IP3 receptors are intracellular calcium channels involved in numerous signaling pathways. Here, the authors present the cryo-EM structures of type-3 IP3 receptors in multiple gating conformations, including the active state revealing the molecular mechanism of the receptor activation.
Collapse
Affiliation(s)
- Emily A Schmitz
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hirohide Takahashi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA. .,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
7
|
Kunrath-Lima M, de Miranda MC, Ferreira ADF, Faraco CCF, de Melo MIA, Goes AM, Rodrigues MA, Faria JAQA, Gomes DA. Phospholipase C delta 4 (PLCδ4) is a nuclear protein involved in cell proliferation and senescence in mesenchymal stromal stem cells. Cell Signal 2018; 49:59-67. [PMID: 29859928 DOI: 10.1016/j.cellsig.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023]
Abstract
Ca2+ is an important second messenger, and it is involved in many cellular processes such as cell death and proliferation. The rise in intracellular Ca2+ levels can be due to the generation of inositol 1,4,5-trisphosphate (InsP3), which is a product of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis by phospholipases C (PLCs), that leads to Ca2+ release from endoplasmic reticulum by InsP3 receptors (InsP3R). Ca2+ signaling patterns can vary in different regions of the cell and increases in nuclear Ca2+ levels have specific biological effects that differ from those of Ca2+ increase in the cytoplasm. There are PLCs in the cytoplasm and nucleus, but little is known about the functions of nuclear PLCs. This work aimed to characterize phenotypically the human PLCδ4 (hPLCδ4) in mesenchymal stem cells. This nuclear isoform of PLC is present in different cell types and has a possible role in proliferative processes. In this work, hPLCδ4 was found to be mainly nuclear in human adipose-derived mesenchymal stem cells (hASC). PLCδ4 knockdown demonstrated that it is essential for hASC proliferation, without inducing cell death. An increase of cells in G1, and a reduction of cells on interphase and G2/M in knockdown cells were seen. Furthermore, PLCδ4 knockdown increased the percentage of senescent cells, p16INK4A+ and p21Cip1 mRNAs expression, which could explain the impaired cell proliferation. The results show that hPLCδ4 is in involved in cellular proliferation and senescence in hASC.
Collapse
Affiliation(s)
- Marianna Kunrath-Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo Coutinho de Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andrea da Fonseca Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila Cristina Fraga Faraco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariane Izabella Abreu de Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alfredo Miranda Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michele Angela Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Human carbonic anhydrase-8 AAV8 gene therapy inhibits nerve growth factor signaling producing prolonged analgesia and anti-hyperalgesia in mice. Gene Ther 2018; 25:297-311. [PMID: 29789638 PMCID: PMC6063772 DOI: 10.1038/s41434-018-0018-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/16/2018] [Accepted: 02/15/2018] [Indexed: 01/02/2023]
Abstract
Carbonic anhydrase-8 (Car8; murine gene symbol) is an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1), which regulates neuronal intracellular calcium release. We previously reported that wildtype Car8 overexpression corrects the baseline allodynia and hyperalgesia associated with calcium dysregulation in the waddle (wdl) mouse due to a 19 bp deletion in exon 8 of the Car8 gene. In this report, we provide preliminary evidence that overexpression of the human wildtype ortholog of Car8 (CA8WT), but not the reported CA8 S100P loss-of-function mutation (CA8MT); inhibits nerve growth factor (NGF)-induced phosphorylation of ITPR1, TrkA (NGF high affinity receptor); and ITPR1-mediated cytoplasmic free calcium release in vitro. Additionally, we show that gene-transfer using AAV8-V5-CA8WT viral particles via sciatic nerve injection demonstrates retrograde transport to dorsal root ganglia (DRG) producing prolonged V5-CA8WT expression, pITPR1 and pTrkA inhibition, and profound analgesia and anti-hyperalgesia in male C57BL/6J mice. AAV8-V5-CA8WT mediated overexpression prevented and treated allodynia and hyperalgesia associated with chronic neuropathic pain produced by the spinal nerve ligation (SNL) model. These AAV8-V5-CA8 data provide a proof-of-concept for precision medicine through targeted gene therapy of NGF-responsive somatosensory neurons as a long-acting local analgesic able to prevent and treat chronic neuropathic pain through regulating TrkA signaling, ITPR1 activation, and intracellular free calcium release by ITPR1.
Collapse
|
9
|
Adrenal Chromaffin Cells Exposed to 5-ns Pulses Require Higher Electric Fields to Porate Intracellular Membranes than the Plasma Membrane: An Experimental and Modeling Study. J Membr Biol 2017; 250:535-552. [PMID: 28840286 DOI: 10.1007/s00232-017-9983-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022]
Abstract
Nanosecond-duration electric pulses (NEPs) can permeabilize the endoplasmic reticulum (ER), causing release of Ca2+ into the cytoplasm. This study used experimentation coupled with numerical modeling to understand the lack of Ca2+ mobilization from Ca2+-storing organelles in catecholamine-secreting adrenal chromaffin cells exposed to 5-ns pulses. Fluorescence imaging determined a threshold electric (E) field of 8 MV/m for mobilizing intracellular Ca2+ whereas whole-cell recordings of membrane conductance determined a threshold E-field of 3 MV/m for causing plasma membrane permeabilization. In contrast, a 2D numerical model of a chromaffin cell, which was constructed with internal structures representing a nucleus, mitochondrion, ER, and secretory granule, predicted that exposing the cell to the same 5-ns pulse electroporated the plasma and ER membranes at the same E-field amplitude, 3-4 MV/m. Agreement of the numerical simulations with the experimental results was obtained only when the ER interior conductivity was 30-fold lower than that of the cytoplasm and the ER membrane permittivity was twice that of the plasma membrane. A more realistic intracellular geometry for chromaffin cells in which structures representing multiple secretory granules and an ER showed slight differences in the thresholds necessary to porate the membranes of the secretory granules. We conclude that more sophisticated cell models together with knowledge of accurate dielectric properties are needed to understand the effects of NEPs on intracellular membranes in chromaffin cells, information that will be important for elucidating how NEPs porate organelle membranes in other cell types having a similarly complex cytoplasmic ultrastructure.
Collapse
|
10
|
Vibhute AM, Konieczny V, Taylor CW, Sureshan KM. Triazolophostins: a library of novel and potent agonists of IP3 receptors. Org Biomol Chem 2016; 13:6698-710. [PMID: 25869535 PMCID: PMC4533600 DOI: 10.1039/c5ob00440c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
IP3R initiate most cellular Ca2+ signaling. AdA is the most potent agonist of IP3R. The structural complexity of AdA makes synthesis of its analogs cumbersome. We report an easy method for generating a library of potent triazole-based analogs of AdA, triazolophostins, which are the most potent AdA analogs devoid of a nucleobase.
IP3 receptors are channels that mediate the release of Ca2+ from the intracellular stores of cells stimulated by hormones or neurotransmitters. Adenophostin A (AdA) is the most potent agonist of IP3 receptors, with the β-anomeric adenine contributing to the increased potency. The potency of AdA and its stability towards the enzymes that degrade IP3 have aroused interest in AdA analogs for biological studies. The complex structure of AdA poses problems that have necessitated optimization of synthetic conditions for each analog. Such lengthy one-at-a-time syntheses limit access to AdA analogs. We have addressed this problem by synthesizing a library of triazole-based AdA analogs, triazolophostins, by employing click chemistry. An advanced intermediate having all the necessary phosphates and a β-azide at the anomeric position was reacted with various alkynes under Cu(i) catalysis to yield triazoles, which upon deprotection gave triazolophostins. All eleven triazolophostins synthesized are more potent than IP3 and some are equipotent with AdA in functional analyses of IP3 receptors. We show that a triazole ring can replace adenine without compromising the potency of AdA and provide facile routes to novel AdA analogs.
Collapse
Affiliation(s)
- Amol M Vibhute
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala-695016, India.
| | | | | | | |
Collapse
|
11
|
Carbonic anhydrase-8 regulates inflammatory pain by inhibiting the ITPR1-cytosolic free calcium pathway. PLoS One 2015; 10:e0118273. [PMID: 25734498 PMCID: PMC4347988 DOI: 10.1371/journal.pone.0118273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023] Open
Abstract
Calcium dysregulation is causally linked with various forms of neuropathology including seizure disorders, multiple sclerosis, Huntington’s disease, Alzheimer’s, spinal cerebellar ataxia (SCA) and chronic pain. Carbonic anhydrase-8 (Car8) is an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1), which regulates intracellular calcium release fundamental to critical cellular functions including neuronal excitability, neurite outgrowth, neurotransmitter release, mitochondrial energy production and cell fate. In this report we test the hypothesis that Car8 regulation of ITPR1 and cytoplasmic free calcium release is critical to nociception and pain behaviors. We show Car8 null mutant mice (MT) exhibit mechanical allodynia and thermal hyperalgesia. Dorsal root ganglia (DRG) from MT also demonstrate increased steady-state ITPR1 phosphorylation (pITPR1) and cytoplasmic free calcium release. Overexpression of Car8 wildtype protein in MT nociceptors complements Car8 deficiency, down regulates pITPR1 and abolishes thermal and mechanical hypersensitivity. We also show that Car8 nociceptor overexpression alleviates chronic inflammatory pain. Finally, inflammation results in downregulation of DRG Car8 that is associated with increased pITPR1 expression relative to ITPR1, suggesting a possible mechanism of acute hypersensitivity. Our findings indicate Car8 regulates the ITPR1-cytosolic free calcium pathway that is critical to nociception, inflammatory pain and possibly other neuropathological states. Car8 and ITPR1 represent new therapeutic targets for chronic pain.
Collapse
|
12
|
Kurokawa K, Mizuno K, Ohkuma S. Sensitization of ethanol-induced place preference as a result of up-regulation of type 1 inositol 1,4,5-trisphosphate receptors in mouse nucleus accumbens. J Neurochem 2014; 131:836-47. [DOI: 10.1111/jnc.12945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Kazuhiro Kurokawa
- Department of Pharmacology; Kawasaki Medical School; Kurashiki Japan
| | - Koji Mizuno
- Department of Pharmacology; Kawasaki Medical School; Kurashiki Japan
| | - Seitaro Ohkuma
- Department of Pharmacology; Kawasaki Medical School; Kurashiki Japan
| |
Collapse
|
13
|
Maggio N, Vlachos A. Synaptic plasticity at the interface of health and disease: New insights on the role of endoplasmic reticulum intracellular calcium stores. Neuroscience 2014; 281:135-46. [PMID: 25264032 DOI: 10.1016/j.neuroscience.2014.09.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Work from the past 40years has unraveled a wealth of information on the cellular and molecular mechanisms underlying synaptic plasticity and their relevance in physiological brain function. At the same time, it has been recognized that a broad range of neurological diseases may be accompanied by severe alterations in synaptic plasticity, i.e., 'maladaptive synaptic plasticity', which could initiate and sustain the remodeling of neuronal networks under pathological conditions. Nonetheless, our current knowledge on the specific contribution and interaction of distinct forms of synaptic plasticity (including metaplasticity and homeostatic plasticity) in the context of pathological brain states remains limited. This review focuses on recent experimental evidence, which highlights the fundamental role of endoplasmic reticulum-mediated Ca(2+) signals in modulating the duration, direction, extent and type of synaptic plasticity. We discuss the possibility that intracellular Ca(2+) stores may regulate synaptic plasticity and hence behavioral and cognitive functions at the interface between physiology and pathology.
Collapse
Affiliation(s)
- N Maggio
- Talpiot Medical Leadership Program, Department of Neurology, The Chaim Sheba Medical Center, 52621 Tel HaShomer, Israel
| | - A Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
14
|
Agomelatine and Duloxetine Synergistically Modulates Apoptotic Pathway by Inhibiting Oxidative Stress Triggered Intracellular Calcium Entry in Neuronal PC12 Cells: Role of TRPM2 and Voltage-Gated Calcium Channels. J Membr Biol 2014; 247:451-9. [DOI: 10.1007/s00232-014-9652-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
|
15
|
Pan NC, Bai YF, Yang Y, Hökfelt T, Xu ZQD. Activation of galanin receptor 2 stimulates large conductance Ca2+-dependent K+ (BK) channels through the IP3 pathway in human embryonic kidney (HEK293) cells. Biochem Biophys Res Commun 2014; 446:316-21. [DOI: 10.1016/j.bbrc.2014.02.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 01/01/2023]
|
16
|
Abstract
Intracellular free Ca(2+) ([Ca(2+)]i) is a highly versatile second messenger that regulates a wide range of functions in every type of cell and tissue. To achieve this versatility, the Ca(2+) signaling system operates in a variety of ways to regulate cellular processes that function over a wide dynamic range. This is particularly well exemplified for Ca(2+) signals in the liver, which modulate diverse and specialized functions such as bile secretion, glucose metabolism, cell proliferation, and apoptosis. These Ca(2+) signals are organized to control distinct cellular processes through tight spatial and temporal coordination of [Ca(2+)]i signals, both within and between cells. This article will review the machinery responsible for the formation of Ca(2+) signals in the liver, the types of subcellular, cellular, and intercellular signals that occur, the physiological role of Ca(2+) signaling in the liver, and the role of Ca(2+) signaling in liver disease.
Collapse
Affiliation(s)
- Maria Jimena Amaya
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
17
|
Abstract
Gaucher disease is an inherited metabolic disease caused by the defective activity of the lysosomal enzyme, glucosylceramidase (GlcCerase), which is responsible for the last step in the degradation of complex glycosphingolipids. As a result, glucosylceramide (GlcCer) accumulates intracellularly. Little is known about the mechanisms by which GlcCer accumulation leads to Gaucher disease, particularly for the types of the disease in which severe neuropathology occurs. We now summarize recent advances in this area and in particular focus in the biochemical and cellular pathways that may cause neuronal defects. Most recent work has taken advantage of newly available mouse models, which mimic to a large extent human disease progression. Finally, we discuss observations of a genetic link between Gaucher disease and Parkinson's disease and discuss how this link has stimulated research into the basic biology of the previously underappreciated glycosphingolipid, GlcCer.
Collapse
Affiliation(s)
- Einat B Vitner
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
18
|
Kurokawa K, Mizuno K, Ohkuma S. Possible involvement of type 1 inositol 1,4,5-trisphosphate receptors up-regulated by dopamine D1 and D2 receptors in mouse nucleus accumbens neurons in the development of methamphetamine-induced place preference. Neuroscience 2012; 227:22-9. [DOI: 10.1016/j.neuroscience.2012.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/31/2012] [Accepted: 09/11/2012] [Indexed: 10/27/2022]
|
19
|
Haun S, Sun L, Hubrack S, Yule D, Machaca K. Phosphorylation of the rat Ins(1,4,5)P₃ receptor at T930 within the coupling domain decreases its affinity to Ins(1,4,5)P₃. Channels (Austin) 2012; 6:379-84. [PMID: 22878752 PMCID: PMC3508777 DOI: 10.4161/chan.21170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Ins(1,4,5)P3 receptor acts as a central hub for Ca2+ signaling by integrating multiple signaling modalities into Ca2+ release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P3-dependent Ca2+ release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P3 receptor results in decreased Ins(1,4,5)P3-dependent Ca2+ release and lowers the Ins(1,4,5)P3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P3-dependent Ca2+ release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P3 receptor function.
Collapse
Affiliation(s)
- Shirley Haun
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | |
Collapse
|
20
|
Turovskaya MV, Turovsky EA, Zinchenko VP, Levin SG, Godukhin OV. Interleukin-10 modulates [Ca2+]i response induced by repeated NMDA receptor activation with brief hypoxia through inhibition of InsP3-sensitive internal stores in hippocampal neurons. Neurosci Lett 2012; 516:151-5. [DOI: 10.1016/j.neulet.2012.03.084] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/25/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
|
21
|
Du H, Liu L, You L, Yang M, He Y, Li X, Xiong L. Characterization of an inositol 1,3,4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice. PLANT MOLECULAR BIOLOGY 2011; 77:547-63. [PMID: 22038091 DOI: 10.1007/s11103-011-9830-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 09/12/2011] [Indexed: 05/06/2023]
Abstract
Drought and salt stresses are major limiting factors for crop production. To identify critical genes for stress resistance in rice (Oryza sativa L.), we screened T-DNA mutants and identified a drought- and salt-hypersensitive mutant dsm3. The mutant phenotype was caused by a T-DNA insertion in a gene encoding a putative inositol 1,3,4-trisphosphate 5/6-kinase previously named OsITPK2 with unknown function. Under drought stress conditions, the mutant had significantly less accumulation of osmolytes such as proline and soluble sugar and showed significantly reduced root volume, spikelet fertility, biomass, and grain yield; however, malondialdehyde level was increased in the mutant. Interestingly, overexpression of DSM3 (OsITPK2) in rice resulted in drought- and salt-hypersensitive phenotypes and physiological changes similar to those in the mutant. Inositol trisphosphate (IP3) level was decreased in the overexpressors under normal condition and drought stress. A few genes related to osmotic adjustment and reactive oxygen species scavenging were down-regulated in the mutant and overexpression lines. The expression level of DSM3 promoter-driven β-glucuronidase (GUS) reporter gene in rice was induced by drought, salt and abscisic acid. Protoplast transient expression assay indicated that DSM3 is an endoplasmic reticulum protein. Sequence analysis revealed six putative ITPKs in rice. Transcript level analysis of OsITPK genes revealed that they had different tempo-spatial expression patterns, and the responses of DSM3 to abiotic stresses, including drought, salinity, cold, and high temperature, were distinct from the other five members in rice. These results together suggest that DSM3/OsITPK2 is an important member of the OsITPK family for stress responses, and an optimal expression level is essential for drought and salt tolerance in rice.
Collapse
Affiliation(s)
- Hao Du
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Kurokawa K, Mizuno K, Shibasaki M, Ohkuma S. Regulation of type 1 inositol 1,4,5-triphosphate receptor by dopamine receptors in cocaine-induced place conditioning. Synapse 2011; 66:180-6. [DOI: 10.1002/syn.20997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/26/2011] [Accepted: 09/28/2011] [Indexed: 01/28/2023]
|
23
|
Ochi N, Tanasanvimon S, Matsuo Y, Tong Z, Sung B, Aggarwal BB, Sinnett-Smith J, Rozengurt E, Guha S. Protein kinase D1 promotes anchorage-independent growth, invasion, and angiogenesis by human pancreatic cancer cells. J Cell Physiol 2011; 226:1074-1081. [PMID: 20857418 DOI: 10.1002/jcp.22421] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Novel molecularly targeted therapies are urgently needed. Here, we extended our studies on the role of protein kinase D1 (PKD1) in PDAC cell lines. Given that Panc-1 express moderate levels of PKD1, we used retroviral-mediated gene transfer to create a Panc-1 derivative that stably over-expresses PKD1 (Panc-1-PKD1). Reciprocally, we used shRNA targeting PKD1 in Panc-28 to produce a PKD1 under-expressing Panc-28 derivative (Panc-28-shPKD1). Our results demonstrate that Panc-1-PKD1 cells exhibit significantly increased anchorage-independent growth in soft agar and increased in vitro invasion compared with Panc-1-mock. Reciprocally, Panc-28-shPKD1 cells show a significant decrease in anchorage-independent growth and invasiveness, as compared with Panc-28-mock cells. The selective PKD family inhibitor CRT0066101 markedly decreased colony-forming ability and invasiveness by either Panc-1-PKD1 or Panc-28-mock cells. Secretion of the pro-angiogenic factors vascular endothelial growth factor (VEGF) and CXC chemokines (CXCL8) was significantly elevated by PKD1 over-expression in Panc-1 cells and reduced either by depletion of PKD1 via shRNA in Panc-28 cells or by addition of CRT0066101 to either Panc-1-PKD1 or Panc-28-mock cells. Furthermore, human umbilical vein endothelial cell (HUVEC) tube formation was significantly enhanced by co-culture with Panc-1-PKD1 compared with Panc-1-mock in an angiogenesis assay in vitro. Conversely, PKD1 depletion in Panc-28 cells decreased their ability to induce endotube formation by HUVECs. PDAC-induced angiogenesis in vitro and in vivo was markedly inhibited by CRT0066101. Our results lend further support to the hypothesis that PKD family members provide a novel target for PDAC therapy.
Collapse
Affiliation(s)
- Nobuo Ochi
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Guha S, Tanasanvimon S, Sinnett-Smith J, Rozengurt E. Role of protein kinase D signaling in pancreatic cancer. Biochem Pharmacol 2010; 80:1946-54. [PMID: 20621068 PMCID: PMC2974013 DOI: 10.1016/j.bcp.2010.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 11/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with dismal survival rates. Its intransigence to conventional therapy renders PDAC an aggressive disease with early metastatic potential. Thus, novel targets for PDAC therapy are urgently needed. Multiple signal transduction pathways are implicated in progression of PDAC. These pathways stimulate production of intracellular messengers in their target cells to modify their behavior, including the lipid-derived diacylglycerol (DAG). One of the prominent intracellular targets of DAG is the protein kinase C (PKC) family. However, the mechanisms by which PKC-mediated signals are decoded by the cell remain incompletely understood. Protein kinase D1 (PKD or PKD1, initially called atypical PKCμ), is the founding member of a novel protein kinase family that includes two additional protein kinases that share extensive overall homology with PKD, termed PKD2, and PKD3. The PKD family occupies a unique position in the signal transduction pathways initiated by DAG and PKC. PKD lies downstream of PKCs in a novel signal transduction pathway implicated in the regulation of multiple fundamental biological processes. We and others have shown that PKD-mediated signaling pathways promote mitogenesis and angiogenesis in PDAC. Our recent observations demonstrate that PKD also potentiates chemoresistance and invasive potential of PDAC cells. This review will briefly highlight diverse biological roles of PKD family in multiple neoplasias including PDAC. Further, this review will underscore our latest advancement with the development of a potent PKD family inhibitor and its effect both in vitro and in vivo in PDAC.
Collapse
Affiliation(s)
- Sushovan Guha
- Department of Gastroenetrology, Hepatology, and Nutrition, the UT MD Anderson Cancer Center, Unit 1466, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
25
|
Hours MC, Mery L. The N-terminal domain of the type 1 Ins(1,4,5)P3 receptor stably expressed in MDCK cells interacts with myosin IIA and alters epithelial cell morphology. J Cell Sci 2010; 123:1449-59. [PMID: 20375063 DOI: 10.1242/jcs.057687] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytosolic Ca(2+) controls a wide range of cellular events. The versatility of this second messenger depends on its ability to form diverse spatial and temporal patterns, including waves and oscillations. Ca(2+)-signaling patterns are thought to be determined in part by the subcellular distribution of inositol (1,4,5)-trisphosphate receptors [Ins(1,4,5)P(3)Rs] but little is currently known about how the localization of the Ins(1,4,5)P(3)R itself is regulated. Here, we report that the recruitment of GFP-tagged Ins(1,4,5)P(3)Rs in the vicinity of tight junctions in Madin-Darby canine kidney (MDCK) cells requires the N-terminal domain. Stable expression of this domain in polarized MDCK cells induced a flattened morphology, affected cytokinesis, accelerated cell migration in response to monolayer wounding and interfered with the cortical targeting of myosin IIA. In addition, downregulation of myosin IIA in polarized MDCK cells was found to mimic the effects of stable expression of the N-terminal part of Ins(1,4,5)P(3)R on cell shape and to alter localization of endogenous Ins(1,4,5)P(3)Rs. Taken together, these results support a model in which the recruitment of Ins(1,4,5)P(3)Rs at the apex of the lateral membrane in polarized MDCK cells, involves myosin IIA and might be important for the regulation of cortical actin dynamics.
Collapse
|
26
|
Li L, Cao Z, Jia P, Wang Z. Calcium signals and caspase-12 participated in paraoxon-induced apoptosis in EL4 cells. Toxicol In Vitro 2010; 24:728-36. [DOI: 10.1016/j.tiv.2010.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 12/08/2009] [Accepted: 01/11/2010] [Indexed: 10/20/2022]
|
27
|
Tsui MM, York JD. Roles of inositol phosphates and inositol pyrophosphates in development, cell signaling and nuclear processes. ACTA ACUST UNITED AC 2009; 50:324-37. [PMID: 20006638 DOI: 10.1016/j.advenzreg.2009.12.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marco M Tsui
- Department of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Box 3813, Durham, NC 27710, USA
| | | |
Collapse
|
28
|
Galeotti N, Vivoli E, Norcini M, Bartolini A, Ghelardini C. An antidepressant behaviour in mice carrying a gene-specific InsP3R1, InsP3R2 and InsP3R3 protein knockdown. Neuropharmacology 2008; 55:1156-64. [PMID: 18708078 DOI: 10.1016/j.neuropharm.2008.07.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 07/10/2008] [Accepted: 07/12/2008] [Indexed: 11/26/2022]
Abstract
Evidence has accumulated for the involvement of Ca(2+) in the pathophysiology of mood disorders. Elevations in both resting and stimulated intracellular Ca(2+) levels in patients with affective disorders have been reported. The role of inositol-1,4,5-trisphosphate receptors (InsP3Rs), which allow mobilization of intracellular Ca(2+) stores, was, then, investigated in the mouse forced swimming test. InsP3R antagonists (heparin, xestospongin C) as well as an inositol monophosphatase inhibitor (LiCl) showed an antidepressant activity of intensity comparable to clinically used antidepressants. InsP3Rl, InsP3R2 and InsP3R3 knockdown mice were obtained to investigate the role of InsP3R isoforms. We generated mice carrying a cerebral knockdown of InsP3Rl, InsP3R2 and InsP3R3 proteins by administering antisense oligonucleotides complementary to the sequence of InsP3Rl, InsP3R2 and InsP3R3. These antisense-treated mice showed a specific InsP3R protein level reduction in the mouse cerebral cortex and hippocampus, demonstrated by immunoblotting, immunoprecipitation and immunocytochemistry experiments. Knockdown mice for each InsP3R isoforms showed an antidepressant behaviour and the induced phenotype was reversible disappearing 7 days after the end of the treatment. The absence of impairment of locomotor activity and spontaneous mobility in InsP3R knockdown mice was revealed. These results indicate the involvement of the InsP3R-mediated pathway in the modulation of depressive conditions and may be useful for the development of new therapeutical strategies for the treatment of mood disorders.
Collapse
Affiliation(s)
- N Galeotti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G. Pieraccini 6, I-50139 Florence, Italy.
| | | | | | | | | |
Collapse
|
29
|
Abstract
The onset of development in most species studied is triggered by one of the largest and longest calcium transients known to us. It is the most studied and best understood aspect of the calcium signals that accompany and control development. Its properties and mechanisms demonstrate what embryos are capable of and thus how the less-understood calcium signals later in development may be generated. The downstream targets of the fertilization calcium signal have also been identified, providing some pointers to the probable targets of calcium signals further on in the process of development. In one species or another, the fertilization calcium signal involves all the known calcium-releasing second messengers and many of the known calcium-signalling mechanisms. These calcium signals also usually take the form of a propagating calcium wave or waves. Fertilization causes the cell cycle to resume, and therefore fertilization signals are cell-cycle signals. In some early embryonic cell cycles, calcium signals also control the progress through each cell cycle, controlling mitosis. Studies of these early embryonic calcium-signalling mechanisms provide a background to the calcium-signalling events discussed in the articles in this issue.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell and Molecular Biology, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
30
|
Galeotti N, Quattrone A, Vivoli E, Bartolini A, Ghelardini C. Type 1 and type 3 ryanodine receptors are selectively involved in muscarinic antinociception in mice: an antisense study. Neuroscience 2008; 153:814-22. [PMID: 18403125 DOI: 10.1016/j.neuroscience.2008.01.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/31/2008] [Accepted: 01/31/2008] [Indexed: 11/16/2022]
Abstract
The importance of an intracellular calcium content increase to obtain cholinergic antinociception was demonstrated. The physiological and pathological role of ryanodine receptors (RyRs), receptors involved in the mobilization of intracellular calcium stores, at the CNS level is poorly understood. The aim of the present study was, therefore, to investigate the role of supraspinal endoplasmic type 1, 2 and 3 RyR subtypes in muscarinic antinociception in conditions of acute thermal (hotplate test) and inflammatory (abdominal constriction test) pain. In the absence of isoform selective RyR antagonists, types 1, 2 and 3 RyR knockdown mice were obtained. Western blotting experiments were performed to quantify the RyR isoform protein levels in knockdown mice demonstrating a selective protein level reduction in knockdown animals. I.c.v. pretreatment with an antisense oligonucleotide (aODN) against type 1 or type 3 RyR prevented cholinergic antinociception in the hotplate test shifting to the right of the physostigmine dose-response curve. This antagonistic effect disappeared 7 days after the end of the aODN administration. Conversely, the physostigmine analgesia remained unmodified in type 2 RyR knockdown mice. Similar results were obtained in the abdominal constriction test. Mice undergoing aODN treatments showed neither alteration of animals' gross behavior nor locomotor impairment (rota-rod and hole board tests). These results elucidate the intracellular mechanism underlying muscarinic antinociception. A selective involvement of RyR1 and RyR3 in supraspinal muscarinic analgesia was demonstrated whereas RyR2 appears not to play an essential role in acute thermal and inflammatory pain.
Collapse
Affiliation(s)
- N Galeotti
- Department of Preclinical and Clinical Pharmacology, Viale G. Pieraccini 6, I-50139 Florence, Italy.
| | | | | | | | | |
Collapse
|
31
|
Amaral MD, Pozzo-Miller L. BDNF induces calcium elevations associated with IBDNF, a nonselective cationic current mediated by TRPC channels. J Neurophysiol 2007; 98:2476-82. [PMID: 17699689 PMCID: PMC2806849 DOI: 10.1152/jn.00797.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has potent actions on hippocampal neurons, but the mechanisms that initiate its effects are poorly understood. We report here that localized BDNF application to apical dendrites of CA1 pyramidal neurons evoked transient elevations in intracellular Ca(2+) concentration, which are independent of membrane depolarization and activation of N-methyl-d-aspartate receptors (NMDAR). These Ca(2+) signals were always associated with I(BDNF), a slow and sustained nonselective cationic current mediated by transient receptor potential canonical (TRPC3) channels. BDNF-induced Ca(2+) elevations required functional Trk and inositol-tris-phosphate (IP(3)) receptors, full intracellular Ca(2+) stores as well as extracellular Ca(2+), suggesting the involvement of TRPC channels. Indeed, the TRPC channel inhibitor SKF-96365 prevented BDNF-induced Ca(2+) elevations and the associated I(BDNF). Thus TRPC channels emerge as novel mediators of BDNF-induced intracellular Ca(2+) elevations associated with sustained cationic membrane currents in hippocampal pyramidal neurons.
Collapse
Affiliation(s)
- Michelle D Amaral
- Department of Neurobiology, Civitan International Research Center and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | |
Collapse
|
32
|
Galeotti N, Quattrone A, Vivoli E, Bartolini A, Ghelardini C. Knockdown of the type 2 and 3 inositol 1,4,5-trisphosphate receptors suppresses muscarinic antinociception in mice. Neuroscience 2007; 149:409-20. [PMID: 17890015 DOI: 10.1016/j.neuroscience.2007.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 06/29/2007] [Accepted: 07/04/2007] [Indexed: 11/25/2022]
Abstract
The involvement of central endoplasmic inositol 1,4,5-trisphosphate receptors (IP3R) in muscarinic antinociception was investigated in the mouse hot plate test. Selective knockdown of type 1, 2 and 3 IP3R was obtained by means of an antisense oligonucleotide (aODN) strategy. A selective IP3R protein level reduction of approximately 30-50% produced by aODN administration for each receptor subtype investigated was demonstrated by Western blotting experiments. I.c.v. pretreatment with an aODN complementary to the sequence of the type 2 IP3R (0.1-3 nmol per mouse i.c.v.) prevented the antinociception induced by physostigmine (0.15 mg kg(-1) s.c.) and oxotremorine (60 microg kg(-1) s.c.). Similarly, an aODN against type 3 IP3R (0.1-3 nmol per mouse i.c.v.) antagonized cholinergic antinociception. A shift to the right of the physostigmine dose-response curve was obtained after anti-type 2 IP3R2 and anti-type 3 IP3R treatments. Conversely, pretreatment with an aODN complementary to the sequence of type 1 IP3R (0.1-5 nmol per mouse i.c.v.) did not modify the antinociception induced by physostigmine and oxotremorine. Mice undergoing treatment with aODNs did not show any impairment of the locomotor activity, spontaneous motility and exploratory activity as revealed by the rota-rod and hole board tests. These results indicate a selective involvement of type 2 and 3 IP3R in central muscarinic antinociception in mice.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Exploratory Behavior/drug effects
- Injections, Intraventricular
- Inositol 1,4,5-Trisphosphate Receptors/biosynthesis
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- Male
- Membranes/drug effects
- Membranes/metabolism
- Mice
- Motor Activity/drug effects
- Motor Activity/physiology
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Nociceptors/drug effects
- Nociceptors/physiology
- Oligonucleotides, Antisense/pharmacology
- Oxotremorine/pharmacology
- Pain Measurement/drug effects
- Physostigmine/pharmacology
- Postural Balance/drug effects
- RNA, Messenger/genetics
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
Collapse
Affiliation(s)
- N Galeotti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G. Pieraccini 6, I-50139 Florence, Italy.
| | | | | | | | | |
Collapse
|
33
|
Amaral MD, Pozzo-Miller L. TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 2007; 27:5179-89. [PMID: 17494704 PMCID: PMC2806846 DOI: 10.1523/jneurosci.5499-06.2007] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 02/14/2007] [Accepted: 02/21/2007] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) exerts prominent effects on hippocampal neurons, but the mechanisms that initiate its actions are poorly understood. We report here that BDNF evokes a slowly developing and sustained nonselective cationic current (I(BDNF)) in CA1 pyramidal neurons. These responses require phospholipase C, IP3 receptors, Ca2+ stores, and Ca2+ influx, suggesting the involvement of transient receptor potential canonical subfamily (TRPC) channels. Indeed, I(BDNF) is absent after small interfering RNA-mediated TRPC3 knockdown. The sustained kinetics of I(BDNF) appears to depend on phosphatidylinositol 3-kinase-mediated TRPC3 membrane insertion, as shown by surface biotinylation assays. Slowly emerging membrane currents after theta burst stimulation are sensitive to the scavenger TrkB-IgG and TRPC inhibitors, suggesting I(BDNF) activation by evoked released of endogenous, native BDNF. Last, TRPC3 channels are necessary for BDNF to increase dendritic spine density. Thus, TRPC channels emerge as novel mediators of BDNF-mediated dendritic remodeling through the activation of a slowly developing and sustained membrane depolarization.
Collapse
Affiliation(s)
- Michelle D. Amaral
- Department of Neurobiology, Civitan International Research Center and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
34
|
Sato M, Ueda Y, Shibuya M, Umezawa Y. Locating inositol 1,4,5-trisphosphate in the nucleus and neuronal dendrites with genetically encoded fluorescent indicators. Anal Chem 2007; 77:4751-8. [PMID: 16053285 DOI: 10.1021/ac040195j] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inositol 1,4,5-trisphosphate (InsP3) is a key second messenger in many cell types and also in distinct subcellular regions of single living cells; however, little is examined about the subcellular dynamics of InsP3 in a variety of cell types. We have developed fluorescent indicators to locate InsP3 dynamics in single living cells based on an intramolecular fluorescence resonance energy transfer. Our indicator has visualized InsP3 dynamics in the cytoplasm of cultured cells and even in single thin dendrites of hippocampal neurons, which has been unseen previously. We have further localized the present indicator in the nucleus and pinpointed nuclear InsP3 dynamics. The observation with our nuclear InsP3 indicator has solved a question on nuclear propagation of InsP3 from the cytoplasm and has drawn a conclusion that the nuclear InsP3 dynamics synchronously occurs with cytosolic InsP3 dynamics evoked by agonist stimulations. The present approach contributes to the understanding of when, where, and how InsP3 is generated and removed in a variety of living cells.
Collapse
Affiliation(s)
- Moritoshi Sato
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
35
|
Seeds AM, Frederick JP, Tsui MMK, York JD. Roles for inositol polyphosphate kinases in the regulation of nuclear processes and developmental biology. ADVANCES IN ENZYME REGULATION 2007; 47:10-25. [PMID: 17467778 PMCID: PMC3258027 DOI: 10.1016/j.advenzreg.2006.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | - John D. York
- Departments of Pharmacology and Cancer Biology and of Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Box 3813, Durham, NC 27710 USA
| |
Collapse
|
36
|
York JD. Regulation of nuclear processes by inositol polyphosphates. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:552-9. [PMID: 16781889 DOI: 10.1016/j.bbalip.2006.04.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 04/18/2006] [Indexed: 11/18/2022]
Abstract
Inositide signaling pathways represent a multifaceted ensemble of cellular switches capable of regulating a number of processes, for example, intracellular calcium release, membrane trafficking, chemotaxis, ion channel activity and several nuclear functions. Over 30 inositide messengers are found in eukaryotic cells that may be grouped into two classes: (1) inositol lipids, phosphatidylinositols or phosphoinositides (PIPs) and (2) water-soluble inositol polyphosphates (IPs). This review will focus on inositol polyphosphate kinases (IPK) and inositol pyrophosphate synthases (IPS) responsible for the cellular production of IP(4), IP(5) IP(6) and PP-IPs. Of interest, IPK and IPS proteins localize, in part, within the nucleus and their activities are necessary for proper regulation of gene expression, mRNA export, DNA repair and telomere maintenance. The breadth of nuclear processes regulated and the evolutionary conservation of the genes involved in their synthesis have sparked renewed interest in inositide messengers derived from sequential phosphorylation of inositol 1,4,5-trisphosphate.
Collapse
Affiliation(s)
- John D York
- Departments of Pharmacology and Cancer Biology and of Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Box 3813, Durham, NC 27710, USA.
| |
Collapse
|
37
|
Elsaesser R, Paysan J. Morituri te salutant? Olfactory signal transduction and the role of phosphoinositides. ACTA ACUST UNITED AC 2006; 34:97-116. [PMID: 16374712 DOI: 10.1007/s11068-005-5050-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 08/11/2005] [Accepted: 08/11/2005] [Indexed: 10/25/2022]
Abstract
During the past 150 years, researchers have investigated the cellular, physiological, and molecular mechanisms underlying the sense of smell. Based on these efforts, a conclusive model of olfactory signal transduction in the vertebrate's nose is now available, spanning from G-protein-mediated odorant receptors to ion channels, which are linked by a cyclic adenosine 3',5'-monophosphate-mediated signal transduction cascade. Here we review some historical milestones in the chronology of olfactory research, particularly emphasising the role of cyclic nucleotides and inositol trisphosphate as alternative second messengers in olfactory cells. We will describe the functional anatomy of the nose, outline the cellular composition of the olfactory epithelium, and describe the discovery of the molecular backbone of the olfactory signal transduction cascade. We then summarize our current model, in which cyclic adenosine monophosphate is the sole excitatory second messenger in olfactory sensory neurons. Finally, a possible significance of microvillous olfactory epithelial cells and inositol trisphosphate in olfaction will be discussed.
Collapse
Affiliation(s)
- Rebecca Elsaesser
- School of Medicine, Johns Hopkins University, 725 N. Wolfe St., 408 WBSB, Baltimore, MD 21205, USA
| | | |
Collapse
|
38
|
Galeotti N, Bartolini A, Ghelardini C. Blockade of intracellular calcium release induces an antidepressant-like effect in the mouse forced swimming test. Neuropharmacology 2006; 50:309-16. [PMID: 16249008 DOI: 10.1016/j.neuropharm.2005.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 09/06/2005] [Accepted: 09/08/2005] [Indexed: 11/15/2022]
Abstract
The role of intracellular calcium in the modulation of a depressant-like condition was investigated in the mouse forced swimming test. I.c.v. administration of TMB-8 (0.23-46.3 nmol per mouse), a blocker of Ca2+ release from intracellular stores, decreased the mouse immobility time. I.c.v. injection of thapsigargin (0.003-3 nmol per mouse), compound which selectively inhibits Ca2+ uptake into the endoplasmic reticulum, produced, 60 min after administration, a depressant-like condition. Xestospongin C (1-100 pmol per mouse i.c.v.), an InsP3-receptor antagonist, decreased the mouse immobility time. By contrast, d-myo-inositol (5.4-540 pmol per mouse i.c.v.), compound which produces InsP3, resulted in a depressant-like effect. Similarly, ryanodine (0.1-600 pmol per mouse i.c.v.), an RyR antagonist, decreased the immobility time values whereas the administration of 4-chloro-m-cresol (0.1-100 pmol per mouse i.c.v.), an RyR agonist, showed an opposite effect. The antidepressant-like effects observed with TMB-8, xestospongin C and ryanodine were comparable to that produced by the antidepressant drugs amitriptyline and clomipramine. The treatments employed did not produce any behavioural impairment of mice as revealed by the rota-rod and hole board tests indicating that the antidepressant- and depressant-like effects were not due to a compromised locomotor activity and spontaneous motility of the treated animals. These results indicate that a central variation in intracellular calcium contents is involved in the modulation of a depressive-like condition in the mouse forced swimming test. In particular, the blockade of both InsP3Rs and RyRs appears to play an important role in the induction of an antidepressant-like effect, whereas the stimulation of these receptors is involved in a depressant-like response of mice.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G. Pieraccini 6, I-50139 Florence, Italy.
| | | | | |
Collapse
|
39
|
Yu HG, Schäfer H, Mergler S, Müerköster S, Cramer T, Höcker M, Herzig KH, Schmidt WE, Schmitz F. Valine-286 residue in the third intracellular loop of the cholecystokinin 2 receptor exerts a pivotal role in cholecystokinin 2 receptor mediated intracellular signal transduction in human colon cancer cells. Cell Signal 2005; 17:1505-1515. [PMID: 15951156 DOI: 10.1016/j.cellsig.2005.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 03/04/2005] [Indexed: 12/26/2022]
Abstract
Although expression of the gastrin/cholecystokinin-2 receptor (CCK2R) is widely reported in human colorectal cancer, little is known on its role in mediating mature amidated gastrin (gastrin-17 amide, G-17) induced intracellular signal transduction in colon cancer cells. The purpose of this study was to explore the intracellular events of colorectal cancer cells after gastrin binding to CCK2R. Meanwhile, the influence of a natural point mutation 286V-->F in the third intracellular loop of CCK2R on gastrin-envoked intracellular signal transduction was also investigated. Firstly, Colo320 cells were stably transfected with wild type (Colo320 WT) and mutant CCK2R (Colo320 M), respectively. The intracellular signal transduction events in response to gastrin were investigated in both Colo320 WT and Colo320 M cells. In Colo320 WT cells, G-17 induced formation of intracellular cyclic AMP and inositol 1,4,5-trisphosphate, and stimulated intracellular calcium mobilization. G-17 also stimulated tyrosine phosphorylation of ERKl/2, p38, FAK, and paxillin, and up-regulated the mRNA expression of early response gene c-Jun and c-Fos. However, G-17 inhibited proliferation and induced apoptosis in Colo320 WT cells. Mutation 286V-->F in the third intracellular loop of CCK2R blocked G-17 induced biological without affecting binding affinity of CCK2R to G-17. Our results suggest that activation of CCK2R by gastrin stimulates heterotrimeric G-protein Gq and G(12/13) mediated intracellular signal transduction pathway in colon cancer cells. The valine-287 residue in third intracellular loop of CCK2R plays a pivotal role in CCK2R mediated intracellular signal transduction.
Collapse
Affiliation(s)
- Hong-Gang Yu
- Laboratory for Experimental Gastroenterology, Department of Medicine I, St. Josef-Hospital, Ruhr-University of Bochum, Gudrunstr. 56, D-44791 Bochum
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dellen BK, Barber MJ, Ristig ML, Hescheler J, Sauer H, Wartenberg M. oscillations in a model of energy-dependent uptake by the endoplasmic reticulum. J Theor Biol 2005; 237:279-90. [PMID: 15975599 DOI: 10.1016/j.jtbi.2005.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 04/01/2005] [Accepted: 04/22/2005] [Indexed: 10/25/2022]
Abstract
Active Ca2+ transport in living cells necessitates controlled supply of metabolic energy. Direct coupling between sarco/endoplasmic reticulum (ER) Ca2+ ATPases (SERCA) and intracellular energy-generation sites has been well established experimentally. On the basis of these experimental findings we propose a pump-driven model to investigate complex dynamic properties of a cell system. The model describes the pump process both by the Ca2+ ATPase itself and by a suitable description of the glycolysis. The associated set of differential equations shows a rich behavior, the solutions ranging from simple periodic oscillations to complex patterns such as bursting and spiking. Recent experimental results on calcium oscillations in Xenopus laevis oocytes and on dynamic patterns of intracellular Ca2+ concentrations in electrically non-excitable cells are well described by corresponding theoretical results derived within the proposed model. The simulation results are further compared to spontaneous [Ca2+] oscillations in primitive endodermal cells.
Collapse
Affiliation(s)
- B K Dellen
- Institut für Theoretische Physik, Universität zu Köln, D-50937 Köln, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Vanoevelen J, Raeymaekers L, Dode L, Parys JB, De Smedt H, Callewaert G, Wuytack F, Missiaen L. Cytosolic Ca2+ signals depending on the functional state of the Golgi in HeLa cells. Cell Calcium 2005; 38:489-95. [PMID: 16122795 DOI: 10.1016/j.ceca.2005.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 05/30/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
The Golgi apparatus is, like the endoplasmic reticulum, an inositol-1,4,5-trisphosphate-sensitive Ca2+ store, but its role in setting up Ca2+ signals is not well understood. We have now measured histamine-induced Ca2+ signals in HeLa cells pretreated with brefeldin A, a fungal metabolite that leads to the fragmentation and subsequent disappearance of the Golgi apparatus by its reabsorption within the endoplasmic reticulum. Ca2+ responses in which the free cytoplasmic Ca2+ concentration returned to resting levels during the histamine stimulation (mainly baseline Ca2+ oscillations or a single Ca2+ peak) occurred more often in brefeldin A pretreated cells, resulting in a lower Ca2+ plateau in population measurements. The latencies before the onset of the Ca2+ signals were longer after brefeldin A pretreatment. These results suggest that the integrity of the Golgi apparatus contributes to the shaping of intracellular Ca2+ signals.
Collapse
Affiliation(s)
- J Vanoevelen
- Afdeling Fysiologie, K.U. Leuven Campus Gasthuisberg O/N-802, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sneyd J, Falcke M. Models of the inositol trisphosphate receptor. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 89:207-45. [PMID: 15950055 DOI: 10.1016/j.pbiomolbio.2004.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The inositol (1,4,5)-trisphosphate receptor (IPR) plays a crucial role in calcium dynamics in a wide range of cell types, and is often a central feature in quantitative models of calcium oscillations and waves. We review deterministic and stochastic mathematical models of the IPR, from the earliest ones of the 1970s and 1980s, to the most recent. The effects of IPR stochasticity on Ca2+ dynamics are briefly discussed.
Collapse
Affiliation(s)
- J Sneyd
- Department of Mathematics, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
43
|
Galeotti N, Bartolini A, Ghelardini C. Ryanodine receptors are involved in muscarinic antinociception in mice. Behav Brain Res 2005; 164:165-71. [PMID: 16051378 DOI: 10.1016/j.bbr.2005.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/09/2005] [Accepted: 06/10/2005] [Indexed: 11/18/2022]
Abstract
The role of ryanodine receptors (RyRs) in the induction of muscarinic antinociception was investigated in a condition of acute thermal pain by means of the mouse hot-plate test. I.c.v. administration of non-hyperalgesic doses of ryanodine (0.001-0.06 nmol per mouse i.c.v.), an antagonist of ryanodine receptors (RyRs), dose-dependently prevented the antinociception induced by both physostigmine (100-150 microgkg(-1) s.c.) and oxotremorine (40-70 microgkg(-1) s.c.). A shift to the right of the dose-response curve of both cholinomimetic compounds was observed. Pretreatment with non-analgesic doses of 4-chloro-m-cresol (4-Cmc; 0.003-0.3 nmol per mouse i.c.v.), an agonist of RyRs, reversed in a dose-dependent manner the antagonistic effect produced by ryanodine of muscarinic antinociception. The pharmacological treatments employed neither modified the animals' gross behavior nor produced any behavioral impairment of mice as revealed by the rota-rod and hole-board tests. These results indicate that a variation of intracellular calcium contents at the central nervous system level is involved in muscarinic antinociception. In particular, the stimulation of RyRs appears to play an important role in the increase of the pain threshold produced by physostigmine and oxotremorine in mice.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G. Pieraccini 6, I-50139 Florence, Italy.
| | | | | |
Collapse
|
44
|
Wang XJ, Yang J, Cang H, Zou YQ, Yi J. Gene expression alteration during redox-dependent enhancement of arsenic cytotoxicity by emodin in HeLa cells. Cell Res 2005; 15:511-22. [PMID: 16045814 DOI: 10.1038/sj.cr.7290321] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) could enhance the sensitivity of tumor cells to arsenic trioxide (As2O3)-induced apoptosis via generation of ROS, but the molecular mechanism has not been elucidated. Here, we carried out cDNA microarray-based global transcription profiling of HeLa cells in response to As2O3/emodin cotreatment, comparing with As2O3-only treatment. The results showed that the expression of a number of genes was substantially altered at two time points. These genes are involved in different aspects of cell function. In addition to redox regulation and apoptosis, ROS affect genes encoding proteins associated with cell signaling, organelle functions, cell cycle, cytoskeleton, etc. These data suggest that based on the cytotoxicity of As2O3, emodin mobilize every genomic resource through which the As2O3-induced apoptosis is facilitated.
Collapse
Affiliation(s)
- Xiao Jing Wang
- Department of Cell Biology, Shanghai Second Medical University, 280 Chongqing Road, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
45
|
Parry H, McDougall A, Whitaker M. Microdomains bounded by endoplasmic reticulum segregate cell cycle calcium transients in syncytial Drosophila embryos. J Cell Biol 2005; 171:47-59. [PMID: 16216922 PMCID: PMC2171230 DOI: 10.1083/jcb.200503139] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 09/01/2005] [Indexed: 01/09/2023] Open
Abstract
Cell cycle calcium signals are generated by the inositol trisphosphate (InsP3)-mediated release of calcium from internal stores (Ciapa, B., D. Pesando, M. Wilding, and M. Whitaker. 1994. Nature. 368:875-878; Groigno, L., and M. Whitaker. 1998. Cell. 92:193-204). The major internal calcium store is the endoplasmic reticulum (ER); thus, the spatial organization of the ER during mitosis may be important in shaping and defining calcium signals. In early Drosophila melanogaster embryos, ER surrounds the nucleus and mitotic spindle during mitosis, offering an opportunity to determine whether perinuclear localization of ER conditions calcium signaling during mitosis. We establish that the nuclear divisions in syncytial Drosophila embryos are accompanied by both cortical and nuclear localized calcium transients. Constructs that chelate InsP3 also prevent nuclear division. An analysis of nuclear calcium concentrations demonstrates that they are differentially regulated. These observations demonstrate that mitotic calcium signals in Drosophila embryos are confined to mitotic microdomains and offer an explanation for the apparent absence of detectable global calcium signals during mitosis in some cell types.
Collapse
Affiliation(s)
- Huw Parry
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne Medical School, Newcastle upon Tyne NE2 4HH, England, UK
| | | | | |
Collapse
|
46
|
Visochek L, Steingart RA, Vulih-Shultzman I, Klein R, Priel E, Gozes I, Cohen-Armon M. PolyADP-ribosylation is involved in neurotrophic activity. J Neurosci 2005; 25:7420-8. [PMID: 16093393 PMCID: PMC6725295 DOI: 10.1523/jneurosci.0333-05.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/31/2005] [Accepted: 06/30/2005] [Indexed: 01/25/2023] Open
Abstract
PolyADP-ribosylation is a transient posttranslational modification of proteins, mainly catalyzed by poly(ADP-ribose)polymerase-1 (PARP-1). This highly conserved nuclear protein is activated rapidly in response to DNA nick formation and promotes a fast DNA repair. Here, we examine a possible association between polyADP-ribosylation and the activity of neurotrophins and neuroprotective peptides taking part in life-or-death decisions in mammalian neurons. The presented results indicate an alternative mode of PARP-1 activation in the absence of DNA damage by neurotrophin-induced signaling mechanisms. PARP-1 was activated in rat cerebral cortical neurons briefly exposed to NGF-related nerve growth factors and to the neuroprotective peptides NAP (the peptide NAPVSIPQ, derived from the activity-dependent neuroprotective protein ADNP) and ADNF-9 (the peptide SALLRSIPA, derived from the activity-dependent neurotrophic factor ADNF) In addition, polyADP-ribosylation was involved in the neurotrophic activity of NGF-induced and NAP-induced neurite outgrowth in differentiating pheochromocytoma 12 cells as well as in the neuroprotective activity of NAP in neurons treated with the Alzheimer's disease neurotoxin beta-amyloid. A fast loosening of the highly condensed chromatin structure by polyADP-ribosylation of histone H1, which renders DNA accessible to transcription and repair, may underlie the role of polyADP-ribosylation in neurotrophic activity.
Collapse
Affiliation(s)
- Leonid Visochek
- The Neufeld Cardiac Research Institute, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
47
|
Shmygol A, Wray S. Modulation of agonist-induced Ca2+ release by SR Ca2+ load: direct SR and cytosolic Ca2+ measurements in rat uterine myocytes. Cell Calcium 2005; 37:215-23. [PMID: 15670868 DOI: 10.1016/j.ceca.2004.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Revised: 10/02/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Release of Ca2+ from sarcoplasmic reticulum (SR) is one of the most important mechanisms of smooth muscle stimulation by a variety of physiologically active substances. Agonist-induced Ca2+ release is considered to be dependent on the Ca2+ content of the SR, although the mechanism underlying this dependence is unclear. In the present study, the effect of SR Ca2+ load on the amplitude of [Ca2+]i transients elicited by application of the purinergic agonist ATP was examined in uterine smooth muscle cells isolated from pregnant rats. Measurement of intraluminal Ca2+ level ([Ca2+]L) using a low affinity Ca indicator, mag-fluo-4, revealed that incubation of cells in a high-Ca2+ (10 mM) extracellular solution leads to a substantial increase in [Ca2+]L (SR overload). However, despite increased SR Ca2+ content this did not potentiate ATP-induced [Ca2+]i transients. Repetitive applications of ATP in the absence of extracellular Ca2+, as well as prolonged incubation in Ca2+-free solution without agonist, depleted the [Ca2+]L (SR overload). In contrast to overload, partial depletion of the SR substantially reduced the amplitude of Ca2+ release. ATP-induced [Ca2+]i transients were completely abolished when SR Ca2+ content was decreased below 80% of its normal value indicating a steep dependence of the IP3-mediated Ca2+ release on the Ca2+ load of the store. Our results suggest that in uterine smooth muscle cells decrease in the SR Ca2+ load below its normal resting level substantially reduces the IP3-mediated Ca2+ release, while Ca2+ overload of the SR has no impact on such release.
Collapse
Affiliation(s)
- Anatoly Shmygol
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | | |
Collapse
|
48
|
Seeds AM, Bastidas RJ, York JD. Molecular Definition of a Novel Inositol Polyphosphate Metabolic Pathway Initiated by Inositol 1,4,5-Trisphosphate 3-Kinase Activity in Saccharomyces cerevisiae. J Biol Chem 2005; 280:27654-61. [PMID: 15944147 DOI: 10.1074/jbc.m505089200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The production of inositol polyphosphate (IPs) and pyrophosphates (PP-IPs) from inositol 1,4,5-trisphosphate (I(1,4,5)P3) requires the 6-/3-/5-kinase activity of Ipk2 (also known as Arg82 and inositol polyphosphate multikinase). Here, we probed the distinct roles for I(1,4,5)P3 6- versus 3-kinase activities in IP metabolism and cellular functions reported for Ipk2. Expression of either I(1,4,5)P3 6- or 3-kinase activity rescued growth of ipk2-deficient yeast at high temperatures, whereas only 6-kinase activity enabled growth on ornithine as the sole nitrogen source. Analysis of IP metabolism revealed that the 3-kinase initiated the synthesis of novel pathway consisting of over eleven IPs and PP-IPs. This pathway was present in wild-type and ipk2 null cells, albeit at low levels as compared with inositol hexakisphosphate synthesis. The primary route of synthesis was: I(1,4,5)P3 --> I(1,3,4,5)P4 --> I(1,2,3,4,5)P5 --> PP-IP4 --> PP2-IP3 and required Kcs1 (or possibly Ipk2), Ipk1, a novel inositol pyrophosphate synthase, and then Kcs1 again, respectively. Mutation of kcs1 ablated this pathway in ipk2 null cells and overexpression of Kcs1 in ipk2 mutant cells phenocopied IP3K expression, confirming it harbors a novel 3-kinase activity. Our work provides a revised genetic map of IP metabolism in yeast and evidence for dosage compensation between IPs and PP-IPs downstream of I(1,4,5)P3 in the regulation of nucleocytoplasmic processes.
Collapse
Affiliation(s)
- Andrew M Seeds
- Department of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
49
|
Camandola S, Cutler RG, Gary DS, Milhavet O, Mattson MP. Suppression of calcium release from inositol 1,4,5-trisphosphate-sensitive stores mediates the anti-apoptotic function of nuclear factor-kappaB. J Biol Chem 2005; 280:22287-96. [PMID: 15814613 DOI: 10.1074/jbc.m410923200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The activation of the transcription factor nuclear factor-kappaB (NF-kappaB) by growth factors, cytokines, and cellular stress can prevent apoptosis, but the underlying mechanism is unknown. Here we provide evidence for an action of NF-kappaB on calcium signaling that accounts for its anti-apoptotic function. Embryonic fibroblasts lacking the transactivating subunit of NF-kappaB RelA (p65) exhibit enhanced inositol 1,4,5-trisphosphate (IP(3)) receptor-mediated calcium release and increased sensitivity to apoptosis, which are restored upon re-expression of RelA. The size of the endoplasmic reticulum (ER) calcium pool and the number of IP(3) receptors per cell are decreased in response to stimuli that activate NF-kappaB and are increased when NF-kappaB activity is suppressed. The selective antagonism of IP(3) receptors blocks apoptosis in RelA-deficient cells, whereas activation of NF-kappaB in normal cells leads to decreased levels of the type 1 IP(3) receptor and decreased calcium release. Overexpression of Bcl-2 normalizes ER calcium homeostasis and prevents calcium-mediated apoptosis in RelA-deficient cells. These findings establish an ER calcium channel as a pivotal target for NF-kappaB-mediated cell survival signaling.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Apoptosis
- Blotting, Western
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium-Transporting ATPases/metabolism
- Cell Survival
- Ceramides/pharmacology
- Cytosol/metabolism
- DNA/metabolism
- Endoplasmic Reticulum/metabolism
- Immunoblotting
- Immunohistochemistry
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Lipid Metabolism
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- Microsomes/metabolism
- NF-kappa B/chemistry
- NF-kappa B/metabolism
- Oligonucleotides, Antisense/chemistry
- Oxidative Stress
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoplasmic Reticulum Calcium-Transporting ATPases
- Signal Transduction
- Time Factors
- Transcription Factor RelA
- Transcriptional Activation
Collapse
Affiliation(s)
- Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging/NIH, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
50
|
Guillemette J, Caron AZ, Regimbald-Dumas Y, Arguin G, Mignery GA, Boulay G, Guillemette G. Expression of a truncated form of inositol 1,4,5-trisphosphate receptor type III in the cytosol of DT40 triple inositol 1,4,5-trisphosphate receptor-knockout cells. Cell Calcium 2005; 37:97-104. [PMID: 15589990 DOI: 10.1016/j.ceca.2004.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/30/2004] [Accepted: 03/30/2004] [Indexed: 11/26/2022]
Abstract
In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ channel playing a major role in Ca2+ signaling. Three isoforms of IP3R have been identified and most cell types express different proportions of each isoform. The DT40 B lymphocyte cell line lacking all three IP3R isoforms (DT40IP3R-KO cells) represents an excellent model to re-express any recombinant IP3R and analyze its specific properties. In the study presented here, we confirmed that DT40IP3R-KO cells do not express any IP3-sensitive Ca2+ release channel. However, with an immunoblot approach and a [3H]IP3 binding approach we demonstrated the presence of a C-terminally truncated form of IP3R type III in the cytosolic fraction of DT40IP3R-KO cells. We further showed that this truncated IP3R retained the ability to couple to the Ca2+ entry channel TRPC6. Therefore, a word of caution is offered about the interpretation of results obtained in using DT40IP3R-KO cells to study the cellular mechanisms of Ca2+ entry.
Collapse
Affiliation(s)
- Joelle Guillemette
- Department of Pharmacology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Que., Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|