1
|
Ouzounidis VR, Green M, van Capelle CDC, Gebhardt C, Crellin H, Finlayson C, Prevo B, Cheerambathur DK. The outer kinetochore components KNL-1 and Ndc80 complex regulate axon and neuronal cell body positioning in the C. elegans nervous system. Mol Biol Cell 2024; 35:ar83. [PMID: 38656792 PMCID: PMC11238089 DOI: 10.1091/mbc.e23-08-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
The KMN (Knl1/Mis12/Ndc80) network at the kinetochore, primarily known for its role in chromosome segregation, has been shown to be repurposed during neurodevelopment. Here, we investigate the underlying neuronal mechanism and show that the KMN network promotes the proper axonal organization within the C. elegans head nervous system. Postmitotic degradation of KNL-1, which acts as a scaffold for signaling and has microtubule-binding activities at the kinetochore, led to disorganized ganglia and aberrant placement and organization of axons in the nerve ring - an interconnected axonal network. Through gene-replacement approaches, we demonstrate that the signaling motifs within KNL-1, responsible for recruiting protein phosphatase 1, and activating the spindle assembly checkpoint are required for neurodevelopment. Interestingly, while the microtubule-binding activity is crucial to KMN's neuronal function, microtubule dynamics and organization were unaffected in the absence of KNL-1. Instead, the NDC-80 microtubule-binding mutant displayed notable defects in axon bundling during nerve ring formation, indicating its role in facilitating axon-axon contacts. Overall, these findings provide evidence for a noncanonical role for the KMN network in shaping the structure and connectivity of the nervous system in C. elegans during brain development.
Collapse
Affiliation(s)
- Vasileios R. Ouzounidis
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Mattie Green
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Charlotte de Ceuninck van Capelle
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Clara Gebhardt
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Helena Crellin
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Cameron Finlayson
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Dhanya K. Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
2
|
Iwanaga R, Yahagi N, Hakeda‐Suzuki S, Suzuki T. Cell adhesion and actin dynamics factors promote axonal extension and synapse formation in transplanted Drosophila photoreceptor cells. Dev Growth Differ 2024; 66:205-218. [PMID: 38403285 PMCID: PMC11457513 DOI: 10.1111/dgd.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Vision is formed by the transmission of light stimuli to the brain through axons extending from photoreceptor cells. Damage to these axons leads to loss of vision. Despite research on neural circuit regeneration through transplantation, achieving precise axon projection remains challenging. To achieve optic nerve regeneration by transplantation, we employed the Drosophila visual system. We previously established a transplantation method for Drosophila utilizing photoreceptor precursor cells extracted from the eye disc. However, little axonal elongation of transplanted cells into the brain, the lamina, was observed. We verified axonal elongation to the lamina by modifying the selection process for transplanted cells. Moreover, we focused on N-cadherin (Ncad), a cell adhesion factor, and Twinstar (Tsr), which has been shown to promote actin reorganization and induce axon elongation in damaged nerves. Overexpression of Ncad and tsr promoted axon elongation to the lamina, along with presynaptic structure formation in the elongating axons. Furthermore, overexpression of Neurexin-1 (Nrx-1), encoding a protein identified as a synaptic organizer, was found to not only promote presynapse formation but also enhance axon elongation. By introducing Ncad, tsr, and Nrx-1, we not only successfully achieved axonal projection of transplanted cells to the brain beyond the retina, but also confirmed the projection of transplanted cells into a deeper ganglion, the medulla. The present study offers valuable insights to realize regeneration through transplantation in a more complex nervous system.
Collapse
Affiliation(s)
- Riku Iwanaga
- School of Life Science and Technology, Tokyo Institute of TechnologyYokahamaJapan
| | - Nagisa Yahagi
- School of Life Science and Technology, Tokyo Institute of TechnologyYokahamaJapan
| | - Satoko Hakeda‐Suzuki
- School of Life Science and Technology, Tokyo Institute of TechnologyYokahamaJapan
- Research Initiatives and Promotion OrganizationYokohama National UniversityYokohamaJapan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of TechnologyYokahamaJapan
| |
Collapse
|
3
|
Huang H, Majumder T, Khot B, Suriyaarachchi H, Yang T, Shao Q, Tirukovalluru S, Liu G. The role of microtubule-associated protein tau in netrin-1 attractive signaling. J Cell Sci 2024; 137:jcs261244. [PMID: 38197773 PMCID: PMC10906489 DOI: 10.1242/jcs.261244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Direct binding of netrin receptors with dynamic microtubules (MTs) in the neuronal growth cone plays an important role in netrin-mediated axon guidance. However, how netrin-1 (NTN1) regulates MT dynamics in axon turning remains a major unanswered question. Here, we show that the coupling of netrin-1 receptor DCC with tau (MAPT)-regulated MTs is involved in netrin-1-promoted axon attraction. Tau directly interacts with DCC and partially overlaps with DCC in the growth cone of primary neurons. Netrin-1 induces this interaction and the colocalization of DCC and tau in the growth cone. The netrin-1-induced interaction of tau with DCC relies on MT dynamics and TUBB3, a highly dynamic β-tubulin isotype in developing neurons. Netrin-1 increased cosedimentation of DCC with tau and TUBB3 in MTs, and knockdown of either tau or TUBB3 mutually blocked this effect. Downregulation of endogenous tau levels by tau shRNAs inhibited netrin-1-induced axon outgrowth, branching and commissural axon attraction in vitro, and led to defects in spinal commissural axon projection in vivo. These findings suggest that tau is a key MT-associated protein coupling DCC with MT dynamics in netrin-1-promoted axon attraction.
Collapse
Affiliation(s)
- Huai Huang
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Tanushree Majumder
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Bhakti Khot
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Harindi Suriyaarachchi
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Tao Yang
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Qiangqiang Shao
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Shraddha Tirukovalluru
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Guofa Liu
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| |
Collapse
|
4
|
Amiri B, Heyn JCJ, Schreiber C, Rädler JO, Falcke M. On multistability and constitutive relations of cell motion on fibronectin lanes. Biophys J 2023; 122:753-766. [PMID: 36739476 PMCID: PMC10027452 DOI: 10.1016/j.bpj.2023.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Cell motility on flat substrates exhibits coexisting steady and oscillatory morphodynamics, the biphasic adhesion-velocity relation, and the universal correlation between speed and persistence (UCSP) as simultaneous observations common to many cell types. Their universality and concurrency suggest a unifying mechanism causing all three of them. Stick-slip models for cells on one-dimensional lanes suggest multistability to arise from the nonlinear friction of retrograde flow. This study suggests a mechanical mechanism controlled by integrin signaling on the basis of a biophysical model and analysis of trajectories of MDA-MB-231 cells on fibronectin lanes, which additionally explains the constitutive relations. The experiments exhibit cells with steady or oscillatory morphodynamics and either spread or moving with spontaneous transitions between the dynamic regimes, spread and moving, and spontaneous direction reversals. Our biophysical model is based on the force balance at the protrusion edge, the noisy clutch of retrograde flow, and a response function of friction and membrane drag to integrin signaling. The theory reproduces the experimentally observed cell states, characteristics of oscillations, and state probabilities. Analysis of experiments with the biophysical model establishes a stick-slip oscillation mechanism, and explains multistability of cell states and the statistics of state transitions. It suggests protrusion competition to cause direction reversal events, the statistics of which explain the UCSP. The effect of integrin signaling on drag and friction explains the adhesion-velocity relation and cell behavior at fibronectin density steps. The dynamics of our mechanism are nonlinear flow mechanics driven by F-actin polymerization and shaped by the noisy clutch of retrograde flow friction, protrusion competition via membrane tension, and drag forces. Integrin signaling controls the parameters of the mechanical system.
Collapse
Affiliation(s)
- Behnam Amiri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Johannes C J Heyn
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Christoph Schreiber
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Joachim O Rädler
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany.
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Physics, Humboldt University, Berlin, Germany.
| |
Collapse
|
5
|
Medina-Villalobos N, Avila R, Marsal M, Andilla J, Loza-Álvarez P, Ojeda-Ramírez MM, Tamariz E. Infrared Laser Effects on Cell Projection Depend on Irradiation Intermittence and Cell Activity. Cells 2023; 12:540. [PMID: 36831208 PMCID: PMC9954793 DOI: 10.3390/cells12040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/28/2023] [Indexed: 02/10/2023] Open
Abstract
Highly focused near-infrared (NIR) lasers have been used to induce fibroblast and neuron protrusions in a technique called optical guidance. However, little is known about the biochemical and biophysical effects that the laser provokes in the cell and optimal protocols of stimulation have not yet been established. Using intermittent NIR laser radiation and multivariate time series representations of cell leading edge movement, we analyzed the direction and velocity of cell protrusions. We found that the orientation and advance of PC12 neuron phenotype cells and 3T3 fibroblasts protrusions remain after the laser is turned off, but the observed increase in velocity stops when radiation ceases. For an increase in the speed and distance of cell protrusions by NIR laser irradiation, the cell leading edge needs to be advancing prior to the stimulation, and NIR irradiation does not enable the cell to switch between retracting and advancing states. Using timelapse imaging of actin-GFP, we observed that NIR irradiation induces a faster recruitment of actin, promoting filament formation at the induced cell protrusions. These results provide fresh evidence to understand the phenomenon of the optical guidance of cell protrusions.
Collapse
Affiliation(s)
| | - Remy Avila
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), A.P. 1-1010, Juriquilla 76000, Querétaro, Mexico
| | - María Marsal
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Pablo Loza-Álvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | | | - Elisa Tamariz
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico
| |
Collapse
|
6
|
Rawal P, Zhao L. Sialometabolism in Brain Health and Alzheimer's Disease. Front Neurosci 2021; 15:648617. [PMID: 33867926 PMCID: PMC8044809 DOI: 10.3389/fnins.2021.648617] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acids refer to a unique family of acidic sugars with a 9-carbon backbone that are mostly found as terminal residues in glycan structures of glycoconjugates including both glycoproteins and glycolipids. The highest levels of sialic acids are expressed in the brain where they regulate neuronal sprouting and plasticity, axon myelination and myelin stability, as well as remodeling of mature neuronal connections. Moreover, sialic acids are the sole ligands for microglial Siglecs (sialic acid-binding immunoglobulin-type lectins), and sialic acid-Siglec interactions have been indicated to play a critical role in the regulation of microglial homeostasis in a healthy brain. The recent discovery of CD33, a microglial Siglec, as a novel genetic risk factor for late-onset Alzheimer's disease (AD), highlights the potential role of sialic acids in the development of microglial dysfunction and neuroinflammation in AD. Apart from microglia, sialic acids have been found to be involved in several other major changes associated with AD. Elevated levels of serum sialic acids have been reported in AD patients. Alterations in ganglioside (major sialic acid carrier) metabolism have been demonstrated as an aggravating factor in the formation of amyloid pathology in AD. Polysialic acids are linear homopolymers of sialic acids and have been implicated to be an important regulator of neurogenesis that contributes to neuronal repair and recovery from neurodegeneration such as in AD. In summary, this article reviews current understanding of neural functions of sialic acids and alterations of sialometabolism in aging and AD brains. Furthermore, we discuss the possibility of looking at sialic acids as a promising novel therapeutic target for AD intervention.
Collapse
Affiliation(s)
- Punam Rawal
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
7
|
Driscoll TP, Ahn SJ, Huang B, Kumar A, Schwartz MA. Actin flow-dependent and -independent force transmission through integrins. Proc Natl Acad Sci U S A 2020; 117:32413-32422. [PMID: 33262280 PMCID: PMC7768777 DOI: 10.1073/pnas.2010292117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Integrin-dependent adhesions mediate reciprocal exchange of force and information between the cell and the extracellular matrix. These effects are attributed to the "focal adhesion clutch," in which moving actin filaments transmit force to integrins via dynamic protein interactions. To elucidate these processes, we measured force on talin together with actin flow speed. While force on talin in small lamellipodial adhesions correlated with actin flow, talin tension in large adhesions further from the cell edge was mainly flow-independent. Stiff substrates shifted force transfer toward the flow-independent mechanism. Flow-dependent force transfer required talin's C-terminal actin binding site, ABS3, but not vinculin. Flow-independent force transfer initially required vinculin and at later times the central actin binding site, ABS2. Force transfer through integrins thus occurs not through a continuous clutch but through a series of discrete states mediated by distinct protein interactions, with their ratio modulated by substrate stiffness.
Collapse
Affiliation(s)
- Tristan P Driscoll
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL 32310
| | - Sang Joon Ahn
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511
| | - Billy Huang
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511;
- Department of Cell Biology, Yale University, New Haven, CT 06511
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511
| |
Collapse
|
8
|
Manipulation of Axonal Outgrowth via Exogenous Low Forces. Int J Mol Sci 2020; 21:ijms21218009. [PMID: 33126477 PMCID: PMC7663625 DOI: 10.3390/ijms21218009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Neurons are mechanosensitive cells. The role of mechanical force in the process of neurite initiation, elongation and sprouting; nerve fasciculation; and neuron maturation continues to attract considerable interest among scientists. Force is an endogenous signal that stimulates all these processes in vivo. The axon is able to sense force, generate force and, ultimately, transduce the force in a signal for growth. This opens up fascinating scenarios. How are forces generated and sensed in vivo? Which molecular mechanisms are responsible for this mechanotransduction signal? Can we exploit exogenously applied forces to mimic and control this process? How can these extremely low forces be generated in vivo in a non-invasive manner? Can these methodologies for force generation be used in regenerative therapies? This review addresses these questions, providing a general overview of current knowledge on the applications of exogenous forces to manipulate axonal outgrowth, with a special focus on forces whose magnitude is similar to those generated in vivo. We also review the principal methodologies for applying these forces, providing new inspiration and insights into the potential of this approach for future regenerative therapies.
Collapse
|
9
|
Terzi A, Suter DM. The role of NADPH oxidases in neuronal development. Free Radic Biol Med 2020; 154:33-47. [PMID: 32370993 DOI: 10.1016/j.freeradbiomed.2020.04.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are critical for maintaining cellular homeostasis and function when produced in physiological ranges. Important sources of cellular ROS include NADPH oxidases (Nox), which are evolutionary conserved multi-subunit transmembrane proteins. Nox-mediated ROS regulate variety of biological processes including hormone synthesis, calcium signaling, cell migration, and immunity. ROS participate in intracellular signaling by introducing post-translational modifications to proteins and thereby altering their functions. The central nervous system (CNS) expresses different Nox isoforms during both development and adulthood. Here, we review the role of Nox-mediated ROS during CNS development. Specifically, we focus on how individual Nox isoforms contribute to signaling in neural stem cell maintenance and neuronal differentiation, as well as neurite outgrowth and guidance. We also discuss how ROS regulates the organization and dynamics of the actin cytoskeleton in the neuronal growth cone. Finally, we review recent evidence that Nox-derived ROS modulate axonal regeneration upon nervous system injury.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Dos-Santos Carvalho S, Moreau MM, Hien YE, Garcia M, Aubailly N, Henderson DJ, Studer V, Sans N, Thoumine O, Montcouquiol M. Vangl2 acts at the interface between actin and N-cadherin to modulate mammalian neuronal outgrowth. eLife 2020; 9:51822. [PMID: 31909712 PMCID: PMC6946565 DOI: 10.7554/elife.51822] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Dynamic mechanical interactions between adhesion complexes and the cytoskeleton are essential for axon outgrowth and guidance. Whether planar cell polarity (PCP) proteins, which regulate cytoskeleton dynamics and appear necessary for some axon guidance, also mediate interactions with membrane adhesion is still unclear. Here we show that Vangl2 controls growth cone velocity by regulating the internal retrograde actin flow in an N-cadherin-dependent fashion. Single molecule tracking experiments show that the loss of Vangl2 decreased fast-diffusing N-cadherin membrane molecules and increased confined N-cadherin trajectories. Using optically manipulated N-cadherin-coated microspheres, we correlated this behavior to a stronger mechanical coupling of N-cadherin with the actin cytoskeleton. Lastly, we show that the spatial distribution of Vangl2 within the growth cone is selectively affected by an N-cadherin-coated substrate. Altogether, our data show that Vangl2 acts as a negative regulator of axonal outgrowth by regulating the strength of the molecular clutch between N-cadherin and the actin cytoskeleton.
Collapse
Affiliation(s)
- Steve Dos-Santos Carvalho
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Maite M Moreau
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Yeri Esther Hien
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Mikael Garcia
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Aubailly
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Vincent Studer
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Olivier Thoumine
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| |
Collapse
|
11
|
Ye X, Qiu Y, Gao Y, Wan D, Zhu H. A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways. Neural Plast 2019; 2019:1719829. [PMID: 31097955 PMCID: PMC6487106 DOI: 10.1155/2019/1719829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023] Open
Abstract
A fundamental feature of both early nervous system development and axon regeneration is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. In the navigation process where the nerves grow toward their targets, the growth cones, which locate at the tips of axons, sense the environment surrounding them, including varies of attractive or repulsive molecular cues, then make directional decisions to adjust their navigation journey. The turning ability of a growth cone largely depends on its highly dynamic skeleton, where actin filaments and microtubules play a very important role in its motility. In this review, we summarize some possible mechanisms underlying growth cone motility, relevant molecular cues, and signaling pathways in axon guidance of previous studies and discuss some questions regarding directions for further studies.
Collapse
Affiliation(s)
- Xiyue Ye
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yan Qiu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yuqing Gao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Dong Wan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
12
|
Increase in Growth Cone Size Correlates with Decrease in Neurite Growth Rate. Neural Plast 2016; 2016:3497901. [PMID: 27274874 PMCID: PMC4870373 DOI: 10.1155/2016/3497901] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/03/2016] [Indexed: 11/18/2022] Open
Abstract
Several important discoveries in growth cone cell biology were made possible by the use of growth cones derived from cultured Aplysia bag cell neurons, including the characterization of the organization and dynamics of the cytoskeleton. The majority of these Aplysia studies focused on large growth cones induced by poly-L-lysine substrates at early stages in cell culture. Under these conditions, the growth cones are in a steady state with very little net advancement. Here, we offer a comprehensive cellular analysis of the motile behavior of Aplysia growth cones in culture beyond this pausing state. We found that average growth cone size decreased with cell culture time whereas average growth rate increased. This inverse correlation of growth rate and growth cone size was due to the occurrence of large growth cones with a peripheral domain larger than 100 μm(2). The large pausing growth cones had central domains that were less consistently aligned with the direction of growth and could be converted into smaller, faster-growing growth cones by addition of a three-dimensional collagen gel. We conclude that the significant lateral expansion of lamellipodia and filopodia as observed during these culture conditions has a negative effect on neurite growth.
Collapse
|
13
|
Kelly CM, Muzard J, Brooks BR, Lee GU, Buchete NV. Structure and dynamics of the fibronectin-III domains of Aplysia californica cell adhesion molecules. Phys Chem Chem Phys 2016; 17:9634-43. [PMID: 25729787 DOI: 10.1039/c4cp05307a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to their homophilic and heterophilic binding properties, cell adhesion molecules (CAMs) such as integrin, cadherin and the immunoglobulin superfamily CAMs are of primary importance in cell-cell and cell-substrate interactions, signalling pathways and other crucial biological processes. We study the molecular structures and conformational dynamics of the two fibronectin type III (Fn-III) extracellular domains of the Aplysia californica CAM (apCAM) protein, by constructing and probing an atomically-detailed structural model based on apCAM's homology with other CAMs. The stability and dynamic properties of the Fn-III domains, individually and in tandem, are probed and analysed using all-atom explicit-solvent molecular dynamics (MD) simulations and normal mode analysis of their corresponding elastic network models. The refined structural model of the Fn-III tandem of apCAM reveals a specific pattern of amino acid interactions that controls the stability of the β-sheet rich structure and could affect apCAM's response to physical or chemical changes of its environment. It also exposes the important role of several specific charged residues in modulating the structural properties of the linker segment connecting the two Fn-III domains, as well as of the inter-domain interface.
Collapse
Affiliation(s)
- Catherine M Kelly
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
14
|
O'Toole M, Lamoureux P, Miller KE. Measurement of subcellular force generation in neurons. Biophys J 2016; 108:1027-37. [PMID: 25762315 DOI: 10.1016/j.bpj.2015.01.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 11/24/2022] Open
Abstract
Forces are important for neuronal outgrowth during the initial wiring of the nervous system and after trauma, yet subcellular force generation over the microtubule-rich region at the rear of the growth cone and along the axon has never, to our knowledge, been directly measured. Because previous studies have indicated microtubule polymerization and the microtubule-associated proteins Kinesin-1 and dynein all generate forces that push microtubules forward, a major question is whether the net forces in these regions are contractile or expansive. A challenge in addressing this is that measuring local subcellular force generation is difficult. Here we develop an analytical mathematical model that describes the relationship between unequal subcellular forces arranged in series within the neuron and the net overall tension measured externally. Using force-calibrated towing needles to measure and apply forces, in combination with docked mitochondria to monitor subcellular strain, we then directly measure force generation over the rear of the growth cone and along the axon of chick sensory neurons. We find the rear of the growth cone generates 2.0 nN of contractile force, the axon generates 0.6 nN of contractile force, and that the net overall tension generated by the neuron is 1.3 nN. This work suggests that the forward bulk flow of the cytoskeletal framework that occurs during axonal elongation and growth-cone pauses arises because strong contractile forces in the rear of the growth cone pull material forward.
Collapse
Affiliation(s)
- Matthew O'Toole
- Department of Mathematics, Kettering University, Flint, Michigan
| | - Phillip Lamoureux
- Department of Zoology, Michigan State University, East Lansing, Michigan
| | - Kyle E Miller
- Department of Zoology, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
15
|
Nawaz S, Sánchez P, Schmitt S, Snaidero N, Mitkovski M, Velte C, Brückner BR, Alexopoulos I, Czopka T, Jung SY, Rhee JS, Janshoff A, Witke W, Schaap IA, Lyons DA, Simons M. Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell 2015; 34:139-151. [PMID: 26166299 PMCID: PMC4736019 DOI: 10.1016/j.devcel.2015.05.013] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/08/2015] [Accepted: 05/18/2015] [Indexed: 12/15/2022]
Abstract
During CNS development, oligodendrocytes wrap their plasma membrane around axons to generate multilamellar myelin sheaths. To drive growth at the leading edge of myelin at the interface with the axon, mechanical forces are necessary, but the underlying mechanisms are not known. Using an interdisciplinary approach that combines morphological, genetic, and biophysical analyses, we identified a key role for actin filament network turnover in myelin growth. At the onset of myelin biogenesis, F-actin is redistributed to the leading edge, where its polymerization-based forces push out non-adhesive and motile protrusions. F-actin disassembly converts protrusions into sheets by reducing surface tension and in turn inducing membrane spreading and adhesion. We identified the actin depolymerizing factor ADF/cofilin1, which mediates high F-actin turnover rates, as an essential factor in this process. We propose that F-actin turnover is the driving force in myelin wrapping by regulating repetitive cycles of leading edge protrusion and spreading.
Collapse
Affiliation(s)
- Schanila Nawaz
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| | - Paula Sánchez
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
- III. Physics Institute, Faculty of Physics, University of Göttingen, 37077 Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sebastian Schmitt
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| | - Nicolas Snaidero
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| | - Mišo Mitkovski
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Caroline Velte
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| | - Bastian R. Brückner
- Institute for Physical Chemistry, University of Göttingen, 37075 Göttingen, Germany
| | | | - Tim Czopka
- Centre for Neuroregeneration, Chancellor’s Building, GU 507B, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Sang Y. Jung
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Jeong S. Rhee
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Andreas Janshoff
- Institute for Physical Chemistry, University of Göttingen, 37075 Göttingen, Germany
| | - Walter Witke
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Iwan A.T. Schaap
- III. Physics Institute, Faculty of Physics, University of Göttingen, 37077 Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - David A. Lyons
- Centre for Neuroregeneration, Chancellor’s Building, GU 507B, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Mikael Simons
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
16
|
Alieva IB, Berezinskaya T, Borisy GG, Vorobjev IA. Centrosome nucleates numerous ephemeral microtubules and only few of them participate in the radial array. Cell Biol Int 2015; 39:1203-16. [PMID: 25998195 DOI: 10.1002/cbin.10492] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/16/2015] [Indexed: 11/10/2022]
Abstract
It is generally accepted that long microtubules (MTs) grow from the centrosome with their minus ends anchored there and plus ends directed towards cell membrane. However, recent findings show this scheme to be an oversimplification. To further analyze the relationship between the centrosome and the MT array we undertook a detailed study on the MTs growing from the centrosome after microinjection of Cy3 labeled tubulin and transfection of cells with EB1-GFP. To evaluate MTs around the centrosome two approaches were used: path photobleaching across the centrosome area (Komarova et al., ) and sequential image subtraction analysis (Vorobjev et al., ). We show that about 50% of MTs had been nucleated at the centrosome are short-living: their mean length was 1.8 ± 0.8 μm and their life span - 7 ± 2 s. MTs initiated from the centrosome also rarely reach cell margin, since their elongation was limited and growth after shortening (rescue) was rare. After initial growth all MTs associated with the centrosome converted to pause or shortening. After pause MTs associated with the centrosome mainly depolymerized via the plus end shortening. Stability of the minus ends of cytoplasmic MTs was the same as for centrosomal ones. We conclude that in fibroblasts (1) the default behavior of free MTs in the cell interior is biased dynamic instability (i.e., random walk of the plus ends with significant positive drift); (2) MTs born at the centrosome show "dynamic instability" type behavior with no boundary; and (3) that the extended radial array is formed predominantly by MTs not associated with the centrosome.
Collapse
Affiliation(s)
- Irina B Alieva
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Tatyana Berezinskaya
- Department of Cell Biology and Histology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Gary G Borisy
- Department of Microbiology, The Forsyth Institute Cambridge, Massachusetts, USA
| | - Ivan A Vorobjev
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Cell Biology and Histology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Abstract
The p21 activated kinases (Paks) are well known effector proteins for the Rho GTPases Cdc42 and Rac. The Paks contain 6 members, which fall into 2 families of proteins. The first family consists of Paks 1, 2, and 3, and the second consists of Paks 4, 5, and 6. While some of the Paks are ubiquitously expressed, others have more restrictive tissue specificity. All of them are found in the nervous system. Studies using cell culture, transgenic mice, and knockout mice, have revealed important roles for the Paks in cytoskeletal organization and in many aspects of cell growth and development. This review discusses the basic structures of the Paks, and their roles in cell growth, development, and in cancer.
Collapse
Affiliation(s)
- Chetan K Rane
- Susan Lehman Cullman Laboratory for Cancer Research; Department of Chemical Biology; Ernest Mario School of Pharmacy; Rutgers The State University of New Jersey; Piscataway, NJ USA
| | - Audrey Minden
- Susan Lehman Cullman Laboratory for Cancer Research; Department of Chemical Biology; Ernest Mario School of Pharmacy; Rutgers The State University of New Jersey; Piscataway, NJ USA
| |
Collapse
|
18
|
Abstract
The development of the nervous system has so far, to a large extent, been considered in the context of biochemistry, molecular biology and genetics. However, there is growing evidence that many biological systems also integrate mechanical information when making decisions during differentiation, growth, proliferation, migration and general function. Based on recent findings, I hypothesize that several steps during nervous system development, including neural progenitor cell differentiation, neuronal migration, axon extension and the folding of the brain, rely on or are even driven by mechanical cues and forces.
Collapse
Affiliation(s)
- Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
19
|
Mejean CO, Schaefer AW, Buck KB, Kress H, Shundrovsky A, Merrill JW, Dufresne ER, Forscher P. Elastic coupling of nascent apCAM adhesions to flowing actin networks. PLoS One 2013; 8:e73389. [PMID: 24039928 PMCID: PMC3765355 DOI: 10.1371/journal.pone.0073389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/22/2013] [Indexed: 01/13/2023] Open
Abstract
Adhesions are multi-molecular complexes that transmit forces generated by a cell's acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions' mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement.
Collapse
Affiliation(s)
- Cecile O. Mejean
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, United States of America
| | - Andrew W. Schaefer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Kenneth B. Buck
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Holger Kress
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, United States of America
| | - Alla Shundrovsky
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jason W. Merrill
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
| | - Eric R. Dufresne
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University, New Haven, Connecticut, United States of America
| | - Paul Forscher
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
20
|
Lee CW, Vitriol EA, Shim S, Wise AL, Velayutham RP, Zheng JQ. Dynamic localization of G-actin during membrane protrusion in neuronal motility. Curr Biol 2013; 23:1046-56. [PMID: 23746641 PMCID: PMC3712510 DOI: 10.1016/j.cub.2013.04.057] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Actin-based cell motility is fundamental for development, function, and malignant events in eukaryotic organisms. During neural development, axonal growth cones depend on rapid assembly and disassembly of actin filaments (F-actin) for their guided extension to specific targets for wiring. Monomeric globular actin (G-actin) is the building block for F-actin but is not considered to play a direct role in spatiotemporal control of actin dynamics in cell motility. RESULTS Here we report that a pool of G-actin dynamically localizes to the leading edge of growth cones and neuroblastoma cells to spatially elevate the G-/F-actin ratio that drives membrane protrusion and cell movement. Loss of G-actin localization leads to the cessation and retraction of membrane protrusions. Moreover, G-actin localization occurs asymmetrically in growth cones during attractive turning. Finally, we identify the actin monomer-binding proteins profilin and thymosin β4 as key molecules that localize actin monomers to the leading edge of lamellipodia for their motility. CONCLUSIONS Our results suggest that dynamic localization of G-actin provides a novel mechanism to regulate the spatiotemporal actin dynamics underlying membrane protrusion in cell locomotion and growth cone chemotaxis.
Collapse
Affiliation(s)
- Chi Wai Lee
- Departments of Cell Biology and Neurology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Eric A. Vitriol
- Departments of Cell Biology and Neurology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Sangwoo Shim
- Departments of Cell Biology and Neurology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Ariel L. Wise
- Departments of Cell Biology and Neurology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Radhi P. Velayutham
- Department of Neurosurgery, Winship Cancer Center, Emory University School of Medicine, Atlanta, GA 30322
| | - James Q. Zheng
- Departments of Cell Biology and Neurology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
21
|
Schwingel M, Bastmeyer M. Force mapping during the formation and maturation of cell adhesion sites with multiple optical tweezers. PLoS One 2013; 8:e54850. [PMID: 23372781 PMCID: PMC3556026 DOI: 10.1371/journal.pone.0054850] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/17/2012] [Indexed: 01/19/2023] Open
Abstract
Focal contacts act as mechanosensors allowing cells to respond to their biomechanical environment. Force transmission through newly formed contact sites is a highly dynamic process requiring a stable link between the intracellular cytoskeleton and the extracellular environment. To simultaneously investigate cellular traction forces in several individual maturing adhesion sites within the same cell, we established a custom-built multiple trap optical tweezers setup. Beads functionalized with fibronectin or RGD-peptides were placed onto the apical surface of a cell and trapped with a maximum force of 160 pN. Cells form adhesion contacts around the beads as demonstrated by vinculin accumulation and start to apply traction forces after 30 seconds. Force transmission was found to strongly depend on bead size, surface density of integrin ligands and bead location on the cell surface. Highest traction forces were measured for beads positioned on the leading edge. For mouse embryonic fibroblasts, traction forces acting on single beads are in the range of 80 pN after 5 minutes. If two beads were positioned parallel to the leading edge and with a center-to-center distance less than 10 µm, traction forces acting on single beads were reduced by 40%. This indicates a spatial and temporal coordination of force development in closely related adhesion sites. We also used our setup to compare traction forces, retrograde transport velocities, and migration velocities between two cell lines (mouse melanoma and fibroblasts) and primary chick fibroblasts. We find that maximal force development differs considerably between the three cell types with the primary cells being the strongest. In addition, we observe a linear relation between force and retrograde transport velocity: a high retrograde transport velocity is associated with strong cellular traction forces. In contrast, migration velocity is inversely related to traction forces and retrograde transport velocity.
Collapse
Affiliation(s)
- Melanie Schwingel
- Karlsruhe Institute of Technology (KIT), Zoological Institute, Cell- and Neurobiology, Karlsruhe, Germany
- DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Martin Bastmeyer
- Karlsruhe Institute of Technology (KIT), Zoological Institute, Cell- and Neurobiology, Karlsruhe, Germany
- DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
22
|
Huber F, Schnauß J, Rönicke S, Rauch P, Müller K, Fütterer C, Käs J. Emergent complexity of the cytoskeleton: from single filaments to tissue. ADVANCES IN PHYSICS 2013; 62:1-112. [PMID: 24748680 PMCID: PMC3985726 DOI: 10.1080/00018732.2013.771509] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 01/11/2013] [Indexed: 05/17/2023]
Abstract
Despite their overwhelming complexity, living cells display a high degree of internal mechanical and functional organization which can largely be attributed to the intracellular biopolymer scaffold, the cytoskeleton. Being a very complex system far from thermodynamic equilibrium, the cytoskeleton's ability to organize is at the same time challenging and fascinating. The extensive amounts of frequently interacting cellular building blocks and their inherent multifunctionality permits highly adaptive behavior and obstructs a purely reductionist approach. Nevertheless (and despite the field's relative novelty), the physics approach has already proved to be extremely successful in revealing very fundamental concepts of cytoskeleton organization and behavior. This review aims at introducing the physics of the cytoskeleton ranging from single biopolymer filaments to multicellular organisms. Throughout this wide range of phenomena, the focus is set on the intertwined nature of the different physical scales (levels of complexity) that give rise to numerous emergent properties by means of self-organization or self-assembly.
Collapse
Affiliation(s)
- F. Huber
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - J. Schnauß
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - S. Rönicke
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - P. Rauch
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - K. Müller
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - C. Fütterer
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - J. Käs
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| |
Collapse
|
23
|
Forward transport of proteins in the plasma membrane of migrating cerebellar granule cells. Proc Natl Acad Sci U S A 2012; 109:E3558-67. [PMID: 23213239 DOI: 10.1073/pnas.1219203110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Directional flow of membrane components has been detected at the leading front of fibroblasts and the growth cone of neuronal processes, but whether there exists global directional flow of plasma membrane components over the entire migrating neuron remains largely unknown. By analyzing the trajectories of antibody-coated single quantum dots (QDs) bound to two membrane proteins, overexpressed myc-tagged synaptic vesicle-associated membrane protein VAMP2 and endogenous neurotrophin receptor TrkB, we found that these two proteins exhibited net forward transport, which is superimposed upon Brownian motion, in both leading and trailing processes of migrating cerebellar granule cells in culture. Furthermore, no net directional transport of membrane proteins was observed in nonmigrating cells with either growing or stalling leading processes. Analysis of the correlation of motion direction between two QDs on the same process in migrating neurons also showed a higher frequency of correlated forward than rearward movements. Such correlated QD movements were markedly reduced in the presence of myosin II inhibitor blebbistatin,suggesting the involvement of myosin II-dependent active transport processes. Thus, a net forward transport of plasma membrane proteins exists in the leading and trailing processes of migrating neurons, in line with the translocation of the soma.
Collapse
|
24
|
Zhang XF, Hyland C, Van Goor D, Forscher P. Calcineurin-dependent cofilin activation and increased retrograde actin flow drive 5-HT-dependent neurite outgrowth in Aplysia bag cell neurons. Mol Biol Cell 2012; 23:4833-48. [PMID: 23097492 PMCID: PMC3521690 DOI: 10.1091/mbc.e12-10-0715] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neurite outgrowth in response to soluble growth factors often involves changes in intracellular Ca(2+); however, mechanistic roles for Ca(2+) in controlling the underlying dynamic cytoskeletal processes have remained enigmatic. Bag cell neurons exposed to serotonin (5-hydroxytryptamine [5-HT]) respond with a threefold increase in neurite outgrowth rates. Outgrowth depends on phospholipase C (PLC) → inositol trisphosphate → Ca(2+) → calcineurin signaling and is accompanied by increased rates of retrograde actin network flow in the growth cone P domain. Calcineurin inhibitors had no effect on Ca(2+) release or basal levels of retrograde actin flow; however, they completely suppressed 5-HT-dependent outgrowth and F-actin flow acceleration. 5-HT treatments were accompanied by calcineurin-dependent increases in cofilin activity in the growth cone P domain. 5-HT effects were mimicked by direct activation of PLC, suggesting that increased actin network treadmilling may be a widespread mechanism for promoting neurite outgrowth in response to neurotrophic factors.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
25
|
Martines E, Zhong J, Muzard J, Lee A, Akhremitchev B, Suter D, Lee G. Single-molecule force spectroscopy of the Aplysia cell adhesion molecule reveals two homophilic bonds. Biophys J 2012; 103:649-57. [PMID: 22947926 PMCID: PMC3443774 DOI: 10.1016/j.bpj.2012.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022] Open
Abstract
Aplysia californica neurons comprise a powerful model system for quantitative analysis of cellular and biophysical properties that are essential for neuronal development and function. The Aplysia cell adhesion molecule (apCAM), a member of the immunoglobulin superfamily of cell adhesion molecules, is present in the growth cone plasma membrane and involved in neurite growth, synapse formation, and synaptic plasticity. apCAM has been considered to be the Aplysia homolog of the vertebrate neural cell adhesion molecule (NCAM); however, whether apCAM exhibits similar binding properties and neuronal functions has not been fully established because of the lack of detailed binding data for the extracellular portion of apCAM. In this work, we used the atomic force microscope to perform single-molecule force spectroscopy of the extracellular region of apCAM and show for the first time (to our knowledge) that apCAM, like NCAM, is indeed a homophilic cell adhesion molecule. Furthermore, like NCAM, apCAM exhibits two distinct bonds in the trans configuration, although the kinetic and structural parameters of the apCAM bonds are quite different from those of NCAM. In summary, these single-molecule analyses further indicate that apCAM and NCAM are species homologs likely performing similar functions.
Collapse
Affiliation(s)
- E. Martines
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - J. Zhong
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - J. Muzard
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - A.C. Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - B.B. Akhremitchev
- Chemistry Department, Florida Institute of Technology, Melbourne, Florida
| | - D.M. Suter
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - G.U. Lee
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Johnson DM, Abi-Mansour JP, Maurer JA. Spatial confinement instigates environmental determination of neuronal polarity. Integr Biol (Camb) 2012; 4:1034-7. [PMID: 22796968 DOI: 10.1039/c2ib20126g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we used patterned self-assembled monolayer (SAM) chemistry to explore the role of spatial confinement on the growth and proliferation of a developing neuron. Despite extensive previous work on the molecular mechanisms controlling these processes, classical biological approaches have not been able to clearly distinguish whether differentiation is predetermined or environmentally determined.
Collapse
Affiliation(s)
- Dawn M Johnson
- Washington University in St. Louis, Department of Chemistry and Center for Materials Innovation, Campus Box 1134, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
27
|
Vitriol EA, Zheng JQ. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 2012; 73:1068-81. [PMID: 22445336 DOI: 10.1016/j.neuron.2012.03.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of the neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to reach their targets. Research in the past two decades has also gained significant insight into the ways in which growth cones translate extracellular signals into directional migration. This review aims to examine new progress toward understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically, we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones.
Collapse
Affiliation(s)
- Eric A Vitriol
- Department of Cell Biology and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
28
|
Logue JS, Whiting JL, Tunquist B, Sacks DB, Langeberg LK, Wordeman L, Scott JD. AKAP220 protein organizes signaling elements that impact cell migration. J Biol Chem 2011; 286:39269-81. [PMID: 21890631 PMCID: PMC3234751 DOI: 10.1074/jbc.m111.277756] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell movement requires the coordinated reception, integration, and processing of intracellular signals. We have discovered that the protein kinase A anchoring protein AKAP220 interacts with the cytoskeletal scaffolding protein IQGAP1 to influence cell motility. AKAP220/IQGAP1 networks receive and integrate calcium and cAMP second messenger signals and position signaling enzymes near their intended substrates at leading edges of migrating cells. IQGAP1 supports calcium/calmodulin-dependent association of factors that modulate microtubule dynamics. AKAP220 suppresses GSK-3β and positions this kinase to allow recruitment of the plus-end microtubule tracking protein CLASP2. Gene silencing of AKAP220 alters the rate of microtubule polymerization and the lateral tracking of growing microtubules and retards cell migration in metastatic human cancer cells. This reveals an unappreciated role for this anchored kinase/microtubule effector protein network in the propagation of cell motility.
Collapse
Affiliation(s)
- Jeremy S Logue
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kim SM, Bae J, Cho IH, Choi KY, Park YJ, Ryu JH, Chun JS, Song WK. Control of growth cone motility and neurite outgrowth by SPIN90. Exp Cell Res 2011; 317:2276-87. [PMID: 21763308 DOI: 10.1016/j.yexcr.2011.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 01/08/2023]
Abstract
SPIN90 is an F-actin binding protein thought to play important roles in regulating cytoskeletal dynamics. It is known that SPIN90 is expressed during the early stages of neuronal development, but details of its localization and function in growth cones have not been fully investigated. Our immunocytochemical data show that SPIN90 is enriched throughout growth cones and neuronal shafts in young hippocampal neurons. We also found that its localization correlates with and depends upon the presence of F-actin. Detailed observation of primary cultures of hippocampal neurons revealed that SPIN90 knockout reduces both growth cone areas and in the numbers of filopodia, as compared to wild-type neurons. In addition, total neurite length, the combined lengths of the longest (axonal) and shorter (dendritic) neurites, was smaller in SPIN90 knockout neurons than wild-type neurons. Finally, Cdc42 activity was down-regulated in SPIN90 knockout neurons. Taken together, our findings suggest that SPIN90 plays critical roles in controlling growth cone dynamics and neurite outgrowth.
Collapse
Affiliation(s)
- Seon-Myung Kim
- Cell Dynamics and Bioimaging Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Suter DM, Miller KE. The emerging role of forces in axonal elongation. Prog Neurobiol 2011; 94:91-101. [PMID: 21527310 PMCID: PMC3115633 DOI: 10.1016/j.pneurobio.2011.04.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/18/2011] [Accepted: 04/06/2011] [Indexed: 11/26/2022]
Abstract
An understanding of how axons elongate is needed to develop rational strategies to treat neurological diseases and nerve injury. Growth cone-mediated neuronal elongation is currently viewed as occurring through cytoskeletal dynamics involving the polymerization of actin and tubulin subunits at the tip of the axon. However, recent work suggests that axons and growth cones also generate forces (through cytoskeletal dynamics, kinesin, dynein, and myosin), forces induce axonal elongation, and axons lengthen by stretching. This review highlights results from various model systems (Drosophila, Aplysia, Xenopus, chicken, mouse, rat, and PC12 cells), supporting a role for forces, bulk microtubule movements, and intercalated mass addition in the process of axonal elongation. We think that a satisfying answer to the question, "How do axons grow?" will come by integrating the best aspects of biophysics, genetics, and cell biology.
Collapse
Affiliation(s)
- Daniel M. Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907-2054
| | - Kyle E. Miller
- Department of Zoology, Michigan State University, East Lansing, MI 48824-1115
| |
Collapse
|
31
|
Bloom OE, Morgan JR. Membrane trafficking events underlying axon repair, growth, and regeneration. Mol Cell Neurosci 2011; 48:339-48. [PMID: 21539917 DOI: 10.1016/j.mcn.2011.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 12/31/2022] Open
Abstract
Two central challenges for the field of neurobiology are to understand how axons grow and make proper synaptic connections under normal conditions and how they repair their membranes and mount regenerative responses after injury. At the most reductionist level, the first step toward addressing these challenges is to delineate the cellular and molecular processes by which an axon extends from its cell body. Underlying axon extension are questions of appropriate timing and mechanisms that establish or maintain the axon's polarity, initiate growth cone formation, and promote axon outgrowth and synapse formation. After injury, the problem is even more complicated because the neuron must also repair its damaged membrane, redistribute or manufacture what it needs in order to survive, and grow and form new synapses within a more mature, complex environment. While other reviews have focused extensively on the signaling events and cytoskeletal rearrangements that support axon outgrowth and regeneration, we focus this review instead on the underlying membrane trafficking events underlying these processes. Though the mechanisms are still under active investigation, the key roles played by membrane trafficking events during axon repair, growth, and regeneration have been elucidated through elegant comparative studies in both invertebrate and vertebrate organisms. Taken together, a model emerges indicating that the critical requirements for ensuring proper membrane sealing and axon extension include iterative bouts of SNARE mediated exocytosis, endocytosis, and functional links between vesicles and the actin cytoskeleton, similar to the mechanisms utilized during synaptic transmission. This article is part of a Special Issue entitled 'Neuronal Function'.
Collapse
Affiliation(s)
- Ona E Bloom
- The Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | | |
Collapse
|
32
|
Kelly TAN, Katagiri Y, Vartanian KB, Kumar P, Chen II, Rosoff WJ, Urbach JS, Geller HM. Localized alteration of microtubule polymerization in response to guidance cues. J Neurosci Res 2010; 88:3024-33. [PMID: 20806407 PMCID: PMC2948467 DOI: 10.1002/jnr.22478] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inhibition of microtubule dynamic instability prevents growth cone turning in response to guidance cues, yet specific changes in microtubule polymerization as growth cones encounter boundaries have not been investigated. In this study, we examined the rate and direction of microtubule polymerization in response to soluble nerve growth factor (NGF) and immobilized chondroitin sulfate proteoglycans (CSPGs) by expressing enhanced GFP-EB3 in rat pheochromocytoma (PC12) cells. GFP-EB3 comets were monitored in live cells using time-lapse epifluorescent microscopy. With an automated tracking system, the rate of microtubule polymerization was calculated as the frame-to-frame displacement of EB3 comets. Our results demonstrate that the rate of microtubule polymerization is increased following NGF treatment, whereas contact with CSPGs decreases microtubule polymerization rates. This reduction in microtubule polymerization rates was specifically localized to neurites in direct contact with CSPGs and not at noncontacting neurites. Additionally, we found an increase in the percentage of microtubules polymerizing in the retrograde direction in neurites at CSPG boundaries, with a concomitant decrease in the rate of retrograde microtubule polymerization. These results implicate localized changes in microtubule dynamics as an important component of the growth cone response to guidance cues.
Collapse
Affiliation(s)
- Terri-Ann N. Kelly
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Department of Physics, Georgetown University, Washington, DC
| | - Yasuhiro Katagiri
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Keri B. Vartanian
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Pramukta Kumar
- Department of Physics, Georgetown University, Washington, DC
| | - Inn-Inn Chen
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | - Herbert M. Geller
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
33
|
Halstead JR, Savaskan NE, van den Bout I, Van Horck F, Hajdo-Milasinovic A, Snell M, Keune WJ, ten Klooster JP, Hordijk PL, Divecha N. Rac controls PIP5K localisation and PtdIns(4,5)P2 synthesis, which modulates vinculin localisation and neurite dynamics. J Cell Sci 2010; 123:3535-46. [DOI: 10.1242/jcs.062679] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In N1E-115 cells, neurite retraction induced by neurite remodelling factors such as lysophosphatidic acid, sphingosine 1-phosphate and semaphorin 3A require the activity of phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks). PIP5Ks synthesise the phosphoinositide lipid second messenger phosphatidylinositol(4,5)bisphosphate [PtdIns(4,5)P2], and overexpression of active PIP5K is sufficient to induce neurite retraction in both N1E-115 cells and cerebellar granule neurones. However, how PIP5Ks are regulated or how they induce neurite retraction is not well defined. Here, we show that neurite retraction induced by PIP5Kβ is dependent on its interaction with the low molecular weight G protein Rac. We identified the interaction site between PIP5Kβ and Rac1 and generated a point mutant of PIP5Kβ that no longer interacts with endogenous Rac. Using this mutant, we show that Rac controls the plasma membrane localisation of PIP5Kβ and thereby the localised synthesis of PtdIns(4,5)P2 required to induce neurite retraction. Mutation of this residue in other PIP5K isoforms also attenuates their ability to induce neurite retraction and to localise at the membrane. To clarify how increased levels of PtdIns(4,5)P2 induce neurite retraction, we show that mutants of vinculin that are unable to interact with PtdIns(4,5)P2, attenuate PIP5K- and LPA-induced neurite retraction. Our findings support a role for PtdIns(4,5)P2 synthesis in the regulation of vinculin localisation at focal complexes and ultimately in the regulation of neurite dynamics.
Collapse
Affiliation(s)
- Jonathan R. Halstead
- Division of Cell Biology, The Netherlands Cancer Institute Amsterdam, Amsterdam, 1066 CX, The Netherlands
| | - Nicolai E. Savaskan
- Division of Cell Biology, The Netherlands Cancer Institute Amsterdam, Amsterdam, 1066 CX, The Netherlands
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, D-10115 Berlin, Germany
| | - Iman van den Bout
- The CRUK Inositide Laboratory, The Paterson Institute for Cancer Research, Wilmslow Road, Manchester M20 4BX, UK
| | - Francis Van Horck
- Department of Physiology, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Amra Hajdo-Milasinovic
- Division of Cell Biology, The Netherlands Cancer Institute Amsterdam, Amsterdam, 1066 CX, The Netherlands
| | - Mireille Snell
- Division of Cell Biology, The Netherlands Cancer Institute Amsterdam, Amsterdam, 1066 CX, The Netherlands
| | - Willem-Jan Keune
- Division of Cell Biology, The Netherlands Cancer Institute Amsterdam, Amsterdam, 1066 CX, The Netherlands
- The CRUK Inositide Laboratory, The Paterson Institute for Cancer Research, Wilmslow Road, Manchester M20 4BX, UK
| | - Jean-Paul ten Klooster
- Sanquin Research at CLB and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, 1066 CX, The Netherlands
| | - Peter L. Hordijk
- Sanquin Research at CLB and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, 1066 CX, The Netherlands
| | - Nullin Divecha
- Division of Cell Biology, The Netherlands Cancer Institute Amsterdam, Amsterdam, 1066 CX, The Netherlands
- The CRUK Inositide Laboratory, The Paterson Institute for Cancer Research, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
34
|
Marsick BM, Flynn KC, Santiago-Medina M, Bamburg JR, Letourneau PC. Activation of ADF/cofilin mediates attractive growth cone turning toward nerve growth factor and netrin-1. Dev Neurobiol 2010; 70:565-88. [PMID: 20506164 PMCID: PMC2908028 DOI: 10.1002/dneu.20800] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proper neural circuitry requires that growth cones, motile tips of extending axons, respond to molecular guidance cues expressed in the developing organism. However, it is unclear how guidance cues modify the cytoskeleton to guide growth cone pathfinding. Here, we show acute treatment with two attractive guidance cues, nerve growth factor (NGF) and netrin-1, for embryonic dorsal root ganglion and temporal retinal neurons, respectively, results in increased growth cone membrane protrusion, actin polymerization, and filamentous actin (F-actin). ADF/cofilin (AC) family proteins facilitate F-actin dynamics, and we found the inactive phosphorylated form of AC is decreased in NGF- or netrin-1-treated growth cones. Directly increasing AC activity mimics addition of NGF or netrin-1 to increase growth cone protrusion and F-actin levels. Extracellular gradients of NGF, netrin-1, and a cell-permeable AC elicit attractive growth cone turning and increased F-actin barbed ends, F-actin accumulation, and active AC in growth cone regions proximal to the gradient source. Reducing AC activity blunts turning responses to NGF and netrin. Our results suggest that gradients of NGF and netrin-1 locally activate AC to promote actin polymerization and subsequent growth cone turning toward the side containing higher AC activity.
Collapse
Affiliation(s)
- Bonnie M. Marsick
- Department of Neuroscience, University of Minnesota, Minneapolis MN 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis MN 55455
| | - Kevin C. Flynn
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins CO 80521
| | | | - James R. Bamburg
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins CO 80521
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins
| | - Paul C. Letourneau
- Department of Neuroscience, University of Minnesota, Minneapolis MN 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis MN 55455
| |
Collapse
|
35
|
Expression of a dominant-negative Rho-kinase promotes neurite outgrowth in a microenvironment mimicking injured central nervous system. Acta Pharmacol Sin 2010; 31:531-9. [PMID: 20383168 DOI: 10.1038/aps.2010.35] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To investigate whether lentiviral vector (LV)-mediated expression of a dominant negative mutant Rho-kinase (DNROCK) could inhibit activation of the Rho/ROCK signaling pathway and promote neurite outgrowth in a hostile microenvironment mimicking the injured central nervous system (CNS) in vitro. METHODS Lentiviral stock was produced using the three-plasmid system by transfecting HEK293 cells. Myelin prepared from rat brain was purified by two rounds of discontinuous density gradient centrifugation and osmotic disintegration. Differentiated PC12 cells and dissociated adult rat dorsal root ganglion (DRG) neurons were transduced with either LV/DNROCK or LV/green fluorescent protein (GFP) and seeded on solubilized myelin proteins. The effect of DNROCK on growth cone morphology was tested by rhodamine-conjugated phalloidin staining. Expression of DNROCK was determined by immunoblotting. The length of the longest neurite, the percentage of neurite-bearing neurons, or the total process outgrowth for all transduced neurons were measured by using the Scion image analysis program. RESULTS Transduction of DNROCK inhibited serum-induced stress fiber formation in NIH 3T3 cells and induced enlargement of cell bodies and decreased the phosphorylation levels of MYPT1 in HeLa cells. LV/DNROCK blocked myelin-induced increase in ROCK translocation from cytosol to membrane in LV/GFP-treated PC12 cells. DNROCK promotes neurite outgrowth of differentiated PC12 cells and DRG neurons on myelin protein. LV/DNROCK-transduced PC12 cells had longer neurites than LV/GFP-transduced cells (39.18+/-2.19 microm vs 29.32+/-1.7 microm, P<0.01) on myelin-coated coverslips. Furthermore, a significantly higher percentage of LV/DNROCK-transduced cells had extended neurites than LV/GFP-transduced cells (63.75%+/-8.03% vs 16.3%+/-3.70%, P<0.01). LV/DNROCK-transduced DRG neurons had longer neurite length (325.22+/-10.8 microm vs 202.47+/-9.3 microm, P<0.01) and more primary neurites per cell than those in LV/GFP-transduced cells plated on myelin and laminin (7.8+/-1.25 vs 4.84+/-1.45, P<0.01) or on laminin alone (5.2+/-1.88). LV/DNROCK-transduced cells had significantly larger growth cones (33.12+/-1.06 microm(2)) than LV/GFP-pretreated cells (23.72+/-1.22 microm(2)). CONCLUSION These results indicate that blocking the RhoA/ROCK signaling pathway by expression of DNROCK is effective in facilitating neurite outgrowth in a microenvironment mimicking injury of central nervous system.
Collapse
|
36
|
OKEYO KO, ADACHI T, HOJO M. Mechanical Regulation of Actin Network Dynamics in Migrating Cells. ACTA ACUST UNITED AC 2010. [DOI: 10.1299/jbse.5.186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Taiji ADACHI
- Department of Mechanical Engineering and Science, Kyoto University
- Computational Cell Biomechanics Team, VCAD System Research Program, RIKEN
| | - Masaki HOJO
- Department of Mechanical Engineering and Science, Kyoto University
| |
Collapse
|
37
|
Giannone G, Mège RM, Thoumine O. Multi-level molecular clutches in motile cell processes. Trends Cell Biol 2009; 19:475-86. [PMID: 19716305 DOI: 10.1016/j.tcb.2009.07.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 01/09/2023]
Abstract
To trigger cell motility, forces generated by the cytoskeleton must be transmitted physically to the external environment through transmembrane adhesion molecules. One model put forward twenty years ago to describe this process is the molecular clutch by which a modular interface of adaptor proteins mediates a dynamic mechanical connection between the actin flow and cell adhesion complexes. Recent optical imaging experiments have identified key clutch molecules linked to specific chemical and mechanical signal transduction pathways, particularly regarding integrins in migrating cells, IgCAMs in neuronal growth cones, and cadherins at intercellular junctions. We propose here the concept of a multi-level clutch as a useful analogy to grasp the complexity of the dynamic molecular interactions involved in a panel of motile behaviors and shapes.
Collapse
Affiliation(s)
- Grégory Giannone
- CNRS UMR 5091, Institut Magendie, Université Bordeaux 2, 33077 Bordeaux, France
| | | | | |
Collapse
|
38
|
Olofsson CS, Håkansson J, Salehi A, Bengtsson M, Galvanovskis J, Partridge C, SörhedeWinzell M, Xian X, Eliasson L, Lundquist I, Semb H, Rorsman P. Impaired insulin exocytosis in neural cell adhesion molecule-/- mice due to defective reorganization of the submembrane F-actin network. Endocrinology 2009; 150:3067-75. [PMID: 19213846 PMCID: PMC2703535 DOI: 10.1210/en.2008-0475] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 02/03/2009] [Indexed: 11/19/2022]
Abstract
The neural cell adhesion molecule (NCAM) is required for cell type segregation during pancreatic islet organogenesis. We have investigated the functional consequences of ablating NCAM on pancreatic beta-cell function. In vivo, NCAM(-/-) mice exhibit impaired glucose tolerance and basal hyperinsulinemia. Insulin secretion from isolated NCAM(-/-) islets is enhanced at glucose concentrations below 15 mM but inhibited at higher concentrations. Glucagon secretion from pancreatic alpha-cells evoked by low glucose was also severely impaired in NCAM(-/-) islets. The diminution of insulin secretion is not attributable to defective glucose metabolism or glucose sensing (documented as glucose-induced changes in intracellular Ca(2+) and K(ATP)-channel activity). Resting K(ATP) conductance was lower in NCAM(-/-) beta-cells than wild-type cells, and this difference was abolished when F-actin was disrupted by cytochalasin D (1 muM). In wild-type beta-cells, the submembrane actin network disassembles within 10 min during glucose stimulation (30 mM), an effect not seen in NCAM(-/-) beta-cells. Cytochalasin D eliminated this difference and normalized insulin and glucagon secretion in NCAM(-/-) islets. Capacitance measurements of exocytosis indicate that replenishment of the readily releasable granule pool is suppressed in NCAM(-/-) alpha- and beta-cells. Our data suggest that remodeling of the submembrane actin network is critical to normal glucose regulation of both insulin and glucagon secretion.
Collapse
Affiliation(s)
- Charlotta S Olofsson
- Lund University Diabetes Centre, Clinical Research Centre, SE20502 Malmö, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Le Clainche C, Carlier MF. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 2008; 88:489-513. [PMID: 18391171 DOI: 10.1152/physrev.00021.2007] [Citation(s) in RCA: 612] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To migrate, a cell first extends protrusions such as lamellipodia and filopodia, forms adhesions, and finally retracts its tail. The actin cytoskeleton plays a major role in this process. The first part of this review (sect. II) describes the formation of the lamellipodial and filopodial actin networks. In lamellipodia, the WASP-Arp2/3 pathways generate a branched filament array. This polarized dendritic actin array is maintained in rapid treadmilling by the concerted action of ADF, profilin, and capping proteins. In filopodia, formins catalyze the processive assembly of nonbranched actin filaments. Cell matrix adhesions mechanically couple actin filaments to the substrate to convert the treadmilling into protrusion and the actomyosin contraction into traction of the cell body and retraction of the tail. The second part of this review (sect. III) focuses on the function and the regulation of major proteins (vinculin, talin, tensin, and alpha-actinin) that control the nucleation, the binding, and the barbed-end growth of actin filaments in adhesions.
Collapse
Affiliation(s)
- Christophe Le Clainche
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
| | | |
Collapse
|
40
|
A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration. J Neurosci 2008; 28:5879-90. [PMID: 18524892 DOI: 10.1523/jneurosci.5331-07.2008] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The adhesion molecule N-cadherin plays important roles in the development of the nervous system, in particular by stimulating axon outgrowth, but the molecular mechanisms underlying this effect are mostly unknown. One possibility, the so-called "molecular clutch" model, could involve a direct mechanical linkage between N-cadherin adhesion at the membrane and intracellular actin-based motility within neuronal growth cones. Using live imaging of primary rat hippocampal neurons plated on N-cadherin-coated substrates and optical trapping of N-cadherin-coated microspheres, we demonstrate here a strong correlation between growth cone velocity and the mechanical coupling between ligand-bound N-cadherin receptors and the retrograde actin flow. This relationship holds by varying ligand density and expressing mutated N-cadherin receptors or small interfering RNAs to perturb binding to catenins. By restraining microsphere motion using optical tweezers or a microneedle, we further show slippage of cadherin-cytoskeleton bonds at low forces, and, at higher forces, local actin accumulation, which strengthens nascent N-cadherin contacts. Together, these data support a direct transmission of actin-based traction forces to N-cadherin adhesions, through catenin partners, driving growth cone advance and neurite extension.
Collapse
|
41
|
Hu F, Strittmatter SM. The N-terminal domain of Nogo-A inhibits cell adhesion and axonal outgrowth by an integrin-specific mechanism. J Neurosci 2008; 28:1262-9. [PMID: 18234903 PMCID: PMC2856844 DOI: 10.1523/jneurosci.1068-07.2008] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 11/16/2007] [Accepted: 12/19/2007] [Indexed: 11/21/2022] Open
Abstract
Myelin-derived Nogo-A protein limits axonal growth after CNS injury. One domain binds to the Nogo-66 receptor to inhibit axonal outgrowth, whereas a second domain, Amino-Nogo, inhibits axonal outgrowth and cell adhesion through unknown mechanisms. Here, we show that Amino-Nogo inhibition depends strictly on the composition of the extracellular matrix, suggesting that Amino-Nogo inhibits the function of certain integrins. Amino-Nogo inhibition can be partially overcome by antibodies that activate integrin beta1 or by the addition of Mn2+, an integrin activator. Furthermore, Amino-Nogo reduces focal adhesion kinase activation by fibronectin. Analysis of various cell lines reveals that alpha(v)beta3, alpha5, and alpha4 integrins are sensitive to Amino-Nogo, but alpha6 integrin is not. Both alpha(v) and alpha5 integrins have widespread expression in adult brain and are found in axonal growth cones. Thus, inhibition of integrin signaling by Amino-Nogo contributes to the failure of CNS axon regeneration.
Collapse
Affiliation(s)
- Fenghua Hu
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Stephen M. Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
42
|
Hearing development and spiral ganglion neurite growth in VASP deficient mice. Brain Res 2007; 1178:73-82. [PMID: 17920567 DOI: 10.1016/j.brainres.2007.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/27/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) has been found to be involved in intracellular signalling pathways and to play an important role in the actin associated organization and formation of the cytoskeleton. Since differential VASP expression was noted in inner ear tissues, the present study was performed to investigate the hearing development in VASP deficient mice. Hearing development in VASP-/- mice and wild type animals was investigated by auditory brain stem (ABR) measurements. In addition, inner ear tissues of wild type animals were tested for VASP expression using PCR, Western blot analysis, in situ hybridisation, and immunohistochemistry. To compare spiral ganglion (SG) neurite growth, SG explants from VASP-/- and wild type mice were analyzed under cell culture conditions. The electroacoustical results of the present study indicate that VASP deficient mice present with a later onset of hearing during postnatal development compared to wild type animals. Transient VASP expression was detected in neonatal SG of wild type mice. Tissue culture experiments with SG explants from VASP-/- animals revealed significant alterations in SG neurite extension compared to wild types. The present findings suggest a role for VASP during neonatal development of the mammalian cochlea and allow speculation on a possible delayed innervation of cochlear hair cells due to changes in SG neurite growth in VASP-deficient mice. Temporary VASP deficits in the neonatal inner ear may be compensated by related proteins like MENA leading to a delayed but complete development of hearing function in VASP-/- animals.
Collapse
|
43
|
Abstract
Most cells are polarized. Embryonic and stem cells can use their polarity to generate cell diversity by asymmetric cell division, whereas differentiated cells use their polarity to execute specific functions. For example, fibroblasts form an actin-rich leading edge required for cell migration, neurons form distinctive axonal and dendritic compartments important for directional signaling, and epithelial cells have apical and basolateral cortical domains necessary for maintaining tissue impermeability. It is well established that actin and actin-associated proteins are essential for generating molecular and morphological cell polarity, but only recently has it become accepted that microtubules can induce and/or maintain polarity. One common feature among different cell types is that microtubules can establish the position of cortical polarity, but are not required for cortical polarity per se. In this review, we discuss how different cell types utilize microtubules and microtubule-associated signaling pathways to generate cortical cell polarity, highlight common mechanisms, and discuss open questions for directing future research.
Collapse
Affiliation(s)
- Sarah E Siegrist
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
44
|
Shi P, Shen K, Kam LC. Local presentation of L1 and N-cadherin in multicomponent, microscale patterns differentially direct neuron functionin vitro. Dev Neurobiol 2007; 67:1765-76. [PMID: 17659593 DOI: 10.1002/dneu.20553] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ability to pattern multiple bioactive cues on a surface is valuable for understanding how neurons interact with their complex extracellular environment. In this report, we introduce a set of methods for creating such surfaces, with the goals of understanding how developing neurons integrate multiple biologically relevant signals and as a tool for studying interactions between multiple neurons. Multiple microcontact printing steps are combined on a single surface to produce an array of polylysine nodes, interconnected by lines of proteins based on the extracellular domains of L1 or N-cadherin. Surprisingly, the N-cadherin protein could also be directly printed onto surfaces while retaining its biological activity. Rat hippocampal neurons selectively attached to the polylysine nodes, differentially extending axonal and dendritic processes along the patterns of L1 and N-cadherin, thus demonstrating control over neuron attachment and outgrowth. Combining these three biomolecules on a single surface revealed a highly complex pattern of protein recognition. Dendrites extended exclusively on N-cadherin patterns, while axons exhibited a very high degree of selectivity on L1 patterns, preferentially at distances greater than 55 mum from the cell body. At shorter distances, axonal processes recognized both L1 and N-cadherin, revealing a new aspect of neuron polarity and axon specification. This onset of L1 selectivity correlated with the establishment of intracellular L1 polarity, suggesting a functional outcome of the process of neuron polarization that has implications in development of neural tissues and creation of in vitro neuron networks.
Collapse
Affiliation(s)
- Peng Shi
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
45
|
Anderson M, Boström M, Pfaller K, Glueckert R, Schrott-Fischer A, Gerdin B, Rask-Andersen H. Structure and locomotion of adult in vitro regenerated spiral ganglion growth cones – A study using video microscopy and SEM. Hear Res 2006; 215:97-107. [PMID: 16684592 DOI: 10.1016/j.heares.2006.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 03/06/2006] [Accepted: 03/09/2006] [Indexed: 11/16/2022]
Abstract
Neuronal development and neurite regeneration depends on the locomotion and navigation of nerve growth cones (GCs). There are few detailed descriptions of the GC function and structure in the adult auditory system. In this study, GCs of adult dissociated and cultured spiral ganglion (SG) neurons were analyzed in vitro utilizing combined high resolution scanning electron microscopy (SEM) and time lapse video microscopy (TLVM). Axon kinesis was assessed on planar substratum with growth factors BDNF, NT-3 and GDNF. At the nano-scale level, lamellipodial abdomen of the expanding GC was found to be decorated with short surface specializations, which at TLVM were considered to be related to their crawling capacity. Filopodia were devoid of these surface structures, supporting its generally described sensory role. Microspikes appearing on lamellipodia and axons, showed circular adhesions, which at TLVM were found to provide anchorage of the navigating and turning axon. Neurons and GCs expressed the DCC-receptor for the guidance molecule netrin-1. Asymmetric ligand-based stimulation initiated turning responses suggest that this attractant cue influences steering of GC in adult regenerating auditory neurites. Hopefully, these findings may be used for ensuing tentative navigation of spiral ganglion neurons to induce regenerative processes in the human ear.
Collapse
Affiliation(s)
- Malin Anderson
- Department of Surgical Sciences, Unit of Otosurgery, Uppsala University Hospital, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The cytoskeleton is the major intracellular structure that determines the morphology of a neuron. Thus, mechanisms that ensure a precisely regulated assembly of cytoskeletal elements in time and space have an important role in the development from a morphologically simple neuronal precursor cell to a complex polarized neuron that can establish contacts to several hundreds of other cells. Here, cytoskeletal mechanisms that underlie the formation of neurites, directed elongation and stabilization of neuronal processes are summarized. It has become evident that different cytoskeletal elements are highly crosslinked with each other by several classes of specific linker proteins. Of these, microtubule-associated proteins (MAPs) appear to have an important role in connecting the microtubule skeleton to other cytoskeletal filaments and plasma membrane components during neuronal morphogenesis. Future experiments will have to elucidate the function and the regulation of the neuronal cytoskeleton in an authentic nervous system environment during development. Recent approaches are discussed at the end of this article.
Collapse
Affiliation(s)
- R Brandt
- Department of Neurobiology, IZN, University of Heidelberg, Germany.
| |
Collapse
|
47
|
Salaycik KJ, Fagerstrom CJ, Murthy K, Tulu US, Wadsworth P. Quantification of microtubule nucleation, growth and dynamics in wound-edge cells. J Cell Sci 2005; 118:4113-22. [PMID: 16118246 DOI: 10.1242/jcs.02531] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mammalian cells develop a polarized morphology and migrate directionally into a wound in a monolayer culture. To understand how microtubules contribute to these processes, we used GFP-tubulin to measure dynamic instability and GFP-EB1, a protein that marks microtubule plus-ends, to measure microtubule growth events at the centrosome and cell periphery. Growth events at the centrosome, or nucleation, do not show directional bias, but are equivalent toward and away from the wound. Cells with two centrosomes nucleated approximately twice as many microtubules/minute as cells with one centrosome. The average number of growing microtubules per microm2 at the cell periphery is similar for leading and trailing edges and for cells containing one or two centrosomes. In contrast to microtubule growth, measurement of the parameters of microtubule dynamic instability demonstrate that microtubules in the trailing edge are more dynamic than those in the leading edge. Inhibition of Rho with C3 transferase had no detectable effect on microtubule dynamics in the leading edge, but stimulated microtubule turnover in the trailing edge. Our data demonstrate that in wound-edge cells, microtubule nucleation is non-polarized, in contrast to microtubule dynamic instability, which is highly polarized, and that factors in addition to Rho contribute to microtubule stabilization.
Collapse
Affiliation(s)
- Kimberly J Salaycik
- Department of Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
An enormous literature has been developed on investigations of the growth and guidance of axons during development and after injury. In this review, we provide a guide to this literature as a resource for biomedical investigators. We first review briefly the molecular biology that is known to regulate migration of the growth cone and branching of axonal arbors. We then outline some important fundamental considerations that are important to the modeling of the phenomenology of these guidance effects and of what is known of their underlying internal mechanisms. We conclude by providing some thoughts on the outlook for future biomedical modeling in the field.
Collapse
Affiliation(s)
- Susan Maskery
- Biomedical Informatics, Windber Research Institute, Windber, PA 15963, USA.
| | | |
Collapse
|
49
|
Chan SA, Polo-Parada L, Landmesser LT, Smith C. Adrenal Chromaffin Cells Exhibit Impaired Granule Trafficking in NCAM Knockout Mice. J Neurophysiol 2005; 94:1037-47. [PMID: 15800072 DOI: 10.1152/jn.01213.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural cell adhesion molecule (NCAM) plays several critical roles in neuron path-finding and intercellular communication during development. In the clinical setting, serum NCAM levels are altered in both schizophrenic and autistic patients. NCAM knockout mice have been shown to exhibit deficits in neuronal functions including impaired hippocampal long term potentiation and motor coordination. Recent studies in NCAM null mice have indicated that synaptic vesicle trafficking and active zone targeting are impaired, resulting in periodic synaptic transmission failure under repetitive physiological stimulation. In this study, we tested whether NCAM plays a role in vesicle trafficking that is limited to the neuromuscular junction or whether it may also play a more general role in transmitter release from other cell systems. We tested catecholamine release from neuroendocrine chromaffin cells in the mouse adrenal tissue slice preparation. We utilize electrophysiological and electrochemical measures to assay granule recruitment and targeting in wild-type and NCAM −/− mice. Our data show that NCAM −/− mice exhibit deficits in normal granule trafficking between the readily releasable pool and the highly release-competent immediately releasable pool. This defect results in a decreased rate of granule fusion and thus catecholamine release under physiological stimulation. Our data indicate that NCAM plays a basic role in the transmitter release mechanism in neuroendocrine cells through mediation of granule recruitment and is not limited to the neuromuscular junction and central synapse active zones.
Collapse
Affiliation(s)
- Shyue-An Chan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | |
Collapse
|
50
|
Dalpé G, Brown L, Culotti JG. Vulva morphogenesis involves attraction of plexin 1-expressing primordial vulva cells to semaphorin 1a sequentially expressed at the vulva midline. Development 2005; 132:1387-400. [PMID: 15716342 DOI: 10.1242/dev.01694] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Vulva development in C. elegans involves cell fate specification followed by a morphogenesis phase in which homologous mirror image pairs within a linear array of primordial vulva cells form a crescent shape as they move sequentially towards a midline position within the array. The homologous pairs from opposite half vulvae in fixed sequence fuse with one another at their leading tips to form ring-shaped (toroidal) cells stacked in precise alignment one atop the other. Here, we show that the semaphorin 1a SMP-1, and its plexin receptor PLX-1, are required for the movement of homologous pairs of vulva cells towards this midline position. SMP-1 is upregulated on the lumen membrane of each primordial vulva cell as it enters the forming vulva and apparently attracts the next flanking homologous PLX-1-expressing vulva cells towards the lumen surface of the ring. Consequently, a new ring-shaped cell forms immediately ventral to the previously formed ring. This smp-1- and plx-1-dependent process repeats until seven rings are stacked along the dorsoventral axis, creating a common vulva lumen. Ectopic expression of SMP-1 suggests it has an instructive role in vulva cell migration. At least two parallel acting pathways are required for vulva formation: one requires SMP-1, PLX-1 and CED-10; and another requires the MIG-2 Rac GTPase and its putative activator UNC-73.
Collapse
Affiliation(s)
- Gratien Dalpé
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada
| | | | | |
Collapse
|