1
|
Chauhan R, Chauhan V, Sonkar P, Dhaked RK. Identification of Inhibitors against Botulinum Neurotoxins: 8-Hydroxyquinolines Hold Promise. Mini Rev Med Chem 2019; 19:1694-1706. [PMID: 31490749 DOI: 10.2174/1389557519666190906120228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/13/2018] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic category A biological warfare agents. There is no therapeutics available for BoNT intoxication yet, necessitating the development of a medical countermeasure against these neurotoxins. The discovery of small molecule-based drugs has revolutionized in the last two decades resulting in the identification of several small molecule inhibitors of BoNTs. However, none progressed to clinical trials. 8-Hydroxyquinolines scaffold-based molecules are important 'privileged structures' that can be exploited as inhibitors of a diverse range of targets. In this review, our study of recent reports suggests the development of 8-hydroxyquinoline derived molecules as a potential drug may be on the horizon.
Collapse
Affiliation(s)
- Ritika Chauhan
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| | - Vinita Chauhan
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| | - Priyanka Sonkar
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| |
Collapse
|
2
|
Hendrickson A, Zhang C. Development of cone photoreceptors and their synapses in the human and monkey fovea. J Comp Neurol 2017; 527:38-51. [PMID: 28074469 DOI: 10.1002/cne.24170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 11/05/2022]
Abstract
During retinal development, ribbon synapse assembly in the photoreceptors is a crucial step involving numerous molecules. While the developmental sequence of plexiform layers in human retina has been characterized, the molecular steps of synaptogenesis remain largely unknown. In the present study, we focused on the central rod-free region of primate retina, the fovea, to specifically investigate the development of cone photoreceptor ribbon synapses. Immunocytochemistry and electron microscopy were utilized to track the expression of photoreceptor transduction proteins and ribbon and synaptic markers in fetal human and Macaca retina. Although the inner plexiform layer appears earlier than the outer plexiform layer, synaptic proteins, and ribbons are first reliably recognized in cone pedicles. Markers first appear at fetal week 9. Both short (S) and medium/long (M/L) wavelength-selective cones express synaptic markers in the same temporal sequence; this is independent of opsin expression which takes place in S cones a month before M/L cones. The majority of ribbon markers, presynaptic vesicular release and postsynaptic neurotransduction-related machinery is present in both plexiform layers by fetal week 13. By contrast, two crucial components for cone to bipolar cell glutamatergic transmission, the metabotropic glutamate receptor 6 and voltage-dependent calcium channel α1.4, are not detected until fetal week 22 when bipolar cell invagination is present in the cone pedicle. These results suggest an intrinsically programmed but nonsynchronous expression of molecules in cone synaptic development. Moreover, functional ribbon synapses and active neurotransmission at foveal cone pedicles are possibly present as early as mid-gestation in human retina.
Collapse
Affiliation(s)
- Anita Hendrickson
- Department of Ophthalmology, University of Washington, Seattle, Washington.,Department of Biological Structure, University of Washington, Seattle, Washington
| | - Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Atassi MZ. Molecular basis of immunogenicity to botulinum neurotoxins and uses of the defined antigenic regions. Toxicon 2015; 107:50-8. [PMID: 26086358 DOI: 10.1016/j.toxicon.2015.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/14/2022]
Abstract
Intensive research in this laboratory over the last 19 years has aimed at understanding the molecular bases for immune recognition of botulinum neurotoxin, types A and B and the role of anti-toxin immune responses in defense against the toxin. Using 92 synthetic 19-residue peptides that overlapped by 5 residues and comprised an entire toxin (A or B) we determined the peptides' ability to bind anti-toxin Abs of human, mouse, horse and chicken. We also localized the epitopes recognized by Abs of cervical dystonia patients who developed immunoresistance to correlate toxin during treatment with BoNT/A or BoNT/B. For BoNT/A, patients' blocking Abs bound to 13 regions (5 on L and 8 on H subunit) on the surface and the response to each region was under separate MHC control. The responses were defined by the structure of the antigen and by the MHC of the host. The antigenic regions coincided or overlapped with synaptosomes (SNPS) binding regions. Antibody binding blocked the toxin's ability to bind to neuronal cells. In fact selected synthetic peptides were able to inhibit the toxin's action in vivo. A combination of three synthetic strong antigenic peptides detected blocking Abs in 88% of immunoresistant patients' sera. Administration of selected epitopes, pre-linked at their N(α) group to monomethoxyployethylene glycol, into mice with ongoing blocking anti-toxin Abs, reduced blocking Ab levels in the recipients. This may be suitable for clinical applications. Defined epitopes should also be valuable in synthetic vaccines design.
Collapse
Affiliation(s)
- M Z Atassi
- Department of Biochemistry and Molecular Biology, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
4
|
The C-terminal heavy-chain domain of botulinum neurotoxin a is not the only site that binds neurons, as the N-terminal heavy-chain domain also plays a very active role in toxin-cell binding and interactions. Infect Immun 2015; 83:1465-76. [PMID: 25624352 DOI: 10.1128/iai.00063-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) possess unique specificity for nerve terminals. They bind to the presynaptic membrane and then translocate intracellularly, where the light-chain endopeptidase cleaves the SNARE complex proteins, subverting the synaptic exocytosis responsible for acetylcholine release to the synaptic cleft. This inhibits acetylcholine binding to its receptor, causing paralysis. Binding, an obligate event for cell intoxication, is believed to occur through the heavy-chain C-terminal (HC) domain. It is followed by toxin translocation and entry into the cell cytoplasm, which is thought to be mediated by the heavy-chain N-terminal (HN) domain. Submolecular mapping analysis by using synthetic peptides spanning BoNT serotype A (BoNT/A) and mouse brain synaptosomes (SNPs) and protective antibodies against toxin from mice and cervical dystonia patients undergoing BoNT/A treatment revealed that not only regions of the HC domain but also regions of the HN domain are involved in the toxin binding process. Based on these findings, we expressed a peptide corresponding to the BoNT/A region comprising HN domain residues 729 to 845 (HN729-845). HN729-845 bound directly to mouse brain SNPs and substantially inhibited BoNT/A binding to SNPs. The binding involved gangliosides GT1b and GD1a and a few membrane lipids. The peptide bound to human or mouse neuroblastoma cells within 1 min. Peptide HN729-845 protected mice completely against a lethal BoNT/A dose (1.05 times the 100% lethal dose). This protective activity was obtained at a dose comparable to that of the peptide from positions 967 to 1296 in the HC domain. These findings strongly indicate that HN729-845 and, by extension, the HN domain are fully programmed and equipped to bind to neuronal cells and in the free state can even inhibit the binding of the toxin.
Collapse
|
5
|
Cho S, von Gersdorff H. Ca(2+) influx and neurotransmitter release at ribbon synapses. Cell Calcium 2012; 52:208-16. [PMID: 22776680 DOI: 10.1016/j.ceca.2012.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/10/2012] [Accepted: 06/13/2012] [Indexed: 12/11/2022]
Abstract
Ca(2+) influx through voltage-gated Ca(2+) channels triggers the release of neurotransmitters at presynaptic terminals. Some sensory receptor cells in the peripheral auditory and visual systems have specialized synapses that express an electron-dense organelle called a synaptic ribbon. Like conventional synapses, ribbon synapses exhibit SNARE-mediated exocytosis, clathrin-mediated endocytosis, and short-term plasticity. However, unlike non-ribbon synapses, voltage-gated L-type Ca(2+) channel opening at ribbon synapses triggers a form of multiquantal release that can be highly synchronous. Furthermore, ribbon synapses appear to be specialized for fast and high throughput exocytosis controlled by graded membrane potential changes. Here we will discuss some of the basic aspects of synaptic transmission at different types of ribbon synapses, and we will emphasize recent evidence that auditory and retinal ribbon synapses have marked differences. This will lead us to suggest that ribbon synapses are specialized for particular operating ranges and frequencies of stimulation. We propose that different types of ribbon synapses transfer diverse rates of sensory information by expressing a particular repertoire of critical components, and by placing them at precise and strategic locations, so that a continuous supply of primed vesicles and Ca(2+) influx leads to fast, accurate, and ongoing exocytosis.
Collapse
Affiliation(s)
- Soyoun Cho
- The Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
6
|
Guo CH, Senzel A, Li K, Feng ZP. De novo protein synthesis of syntaxin-1 and dynamin-1 in long-term memory formation requires CREB1 gene transcription in Lymnaea stagnalis. Behav Genet 2010; 40:680-93. [PMID: 20563839 DOI: 10.1007/s10519-010-9374-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 05/27/2010] [Indexed: 11/25/2022]
Abstract
Consolidation of aversive operant conditioning into long-term memory (LTM) requires CREB-dependent de novo protein synthesis. The newly synthesized proteins are distributed to the synapses in neurons that are involved in memory formation and storage. Accumulating evidence indicates that the presynaptic release mechanisms also play a role in long-term synaptic plasticity. Our understanding of whether the presynaptic proteins undergo de novo synthesis during long-term memory formation is limited. In this study, we investigated the involvement of syntaxin-1, a presynaptic exocytotic protein, and dynamin-1, an endocytotic protein, in the formation of long-term memory. We took advantage of a well-established aversive operant conditioning model of aerial respiratory behavior in the fresh water pond snail Lymnaea stagnalis, and demonstrated that the LTM formation is associated with increased expression of syntaxin-1 and dynamin-1, coincident with elevated levels of CREB1. Partial knockdown of CREB1 gene by double stranded RNA inhibition (dsRNAi) prior to operant conditioning prevented snails from memory consolidation, and reduced the expression of syntaxin-1 and dynamin-1 at both mRNA and protein levels. These findings suggest that CREB1-mediated gene expression is required for the LTM-induced up-regulation of synaptic proteins, syntaxin-1 and dynamin-1, in L. stagnalis. Our study thus offers new insights into the molecular mechanisms that mediate CREB1-dependent long-term memory formation.
Collapse
Affiliation(s)
- Cong-Hui Guo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | |
Collapse
|
7
|
Hendrickson A, Troilo D, Djajadi H, Possin D, Springer A. Expression of synaptic and phototransduction markers during photoreceptor development in the marmoset monkey Callithrix jacchus. J Comp Neurol 2009; 512:218-31. [PMID: 19003975 DOI: 10.1002/cne.21893] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Marmoset photoreceptor development was studied to determine the expression sequence for synaptic, opsin, and phototransduction proteins. All markers appear first in cones within the incipient foveal center or in rods at the foveal edge. Recoverin appears in cones across 70% of the retina at fetal day (Fd) 88, indicating that it is expressed shortly after photoreceptors are generated. Synaptic markers synaptophysin, SV2, glutamate vesicular transporter 1, and CTBP2 label foveal cones at Fd 88 and cones at the retinal edge around birth. Cones and rods have distinctly different patterns of synaptic protein and opsin expression. Synaptic markers are expressed first in cones, with a considerable delay before they appear in rods at the same eccentricity. Cones express synaptic markers 2-3 weeks before they express opsin, but rods express opsin 2-4 weeks before rod synaptic marker labeling is detected. Medium/long-wavelength-selective (M&L) opsin appears in foveal cones and rod opsin in rods around the fovea at Fd 100. Very few cones expressing short-wavelength-selective (S) opsin are found in the Fd 105 fovea. Across peripheral retina, opsin appears first in rods, followed about 1 week later by M&L cone opsin. S cone opsin appears last, and all opsins reach the retinal edge by 1 week after birth. Cone transducin and rod arrestin are expressed concurrently with opsin, but cone arrestin appears slightly later. Marmoset photoreceptor development differs from that in Macaca and humans. It starts relatively late, at 56% gestation, compared with Macaca at 32% gestation. The marmoset opsin expression sequence is also different from that of either Macaca or human.
Collapse
Affiliation(s)
- Anita Hendrickson
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
8
|
Adelson RT. Botulinum neurotoxins: fundamentals for the facial plastic surgeon. Am J Otolaryngol 2007; 28:260-6. [PMID: 17606044 DOI: 10.1016/j.amjoto.2006.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
The most commonly performed nonsurgical cosmetic procedure in the facial plastic surgery armamentarium involves the various commercial preparations of botulinum neurotoxins. These drugs have undergone a transformation from public health scourge to near ubiquitous therapeutic modality across the entire medical spectrum. Herein, the history of botulinum neurotoxins is reviewed, including an exploration of their pharmacology, neuromuscular junction physiology, a description of the commercially available preparations, and the recent research concerning the practicalities of their clinical use.
Collapse
Affiliation(s)
- Robert Todd Adelson
- Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology, University of Florida, PO Box 100264, Gainesville, FL 32610, USA.
| |
Collapse
|
9
|
Harris L, Swatton J, Wengenroth M, Wayland M, Lockstone H, Holland A, Faull R, Lilley K, Bahn S. Differences in Protein Profiles in Schizophrenia Prefrontal Cortex Compared to Other Major Brain Disorders. ACTA ACUST UNITED AC 2007. [DOI: 10.3371/csrp.1.1.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Kajimoto T, Okada T, Yu H, Goparaju SK, Jahangeer S, Nakamura SI. Involvement of sphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Mol Cell Biol 2007; 27:3429-40. [PMID: 17325039 PMCID: PMC1899953 DOI: 10.1128/mcb.01465-06] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuronal activity greatly influences the formation and stabilization of synapses. Although receptors for sphingosine-1-phosphate (S1P), a lipid mediator regulating diverse cellular processes, are abundant in the central nervous system, neuron-specific functions of S1P remain largely undefined. Here, we report two novel actions of S1P using primary hippocampal neurons as a model system: (i) as a secretagogue where S1P triggers glutamate secretion and (ii) as an enhancer where S1P potentiates depolarization-evoked glutamate secretion. Sphingosine kinase 1 (SK1), a key enzyme for S1P production, was enriched in functional puncta of hippocampal neurons. Silencing SK1 expression by small interfering RNA as well as SK1 inhibition by dimethylsphingosine resulted in a strong inhibition of depolarization-evoked glutamate secretion. Fluorescence recovery after photobleaching analysis showed translocation of SK1 from cytosol to membranes at the puncta during depolarization, which resulted in subsequent accumulation of S1P within cells. Fluorescent resonance energy transfer analysis demonstrated that the S1P(1) receptor at the puncta was activated during depolarization and that depolarization-induced S1P(1) receptor activation was inhibited in SK1-knock-down cells. Importantly, exogenously added S1P at a nanomolar concentration by itself elicited glutamate secretion from hippocampal cells even when the Na(+)-channel was blocked by tetrodotoxin, suggesting that S1P acts on presynaptic membranes. Furthermore, exogenous S1P at a picomolar level potentiated depolarization-evoked secretion in the neurons. These findings indicate that S1P, through its autocrine action, facilitates glutamate secretion in hippocampal neurons both by secretagogue and enhancer actions and may be involved in mechanisms underlying regulation of synaptic transmission.
Collapse
Affiliation(s)
- Taketoshi Kajimoto
- Division of Biochemistry, Department of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Spencer GJ, McGrath CJ, Genever PG. Current perspectives on NMDA-type glutamate signalling in bone. Int J Biochem Cell Biol 2006; 39:1089-104. [PMID: 17188550 DOI: 10.1016/j.biocel.2006.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/29/2006] [Accepted: 11/05/2006] [Indexed: 11/21/2022]
Abstract
Bone is a complex, evolving tissue, architecturally defined by the activities of osteoclasts and osteoblasts that continually resorb and replace the mineralised matrix. Numerous regulatory mechanisms exist to control bone remodelling and the maintenance of bone mass. The consequences of inappropriate or uncoupled bone resorption and formation are significant and invariably lead to different disease states, the most prevalent being osteoporosis. In recent years, much attention has focused on unravelling the systemic and local signalling interactions that influence the differentiation and function of bone cells with a view to developing our understanding of bone biology and identifying potential new targets for therapeutic intervention. Several lines of evidence indicate that neurotransmitters and neuromodulators have influential roles to play in the regulation of bone remodelling and much of this research has involved analysis of the excitatory amino acid glutamate. This review will summarise current understanding of glutamate signalling in bone cells, addressing specifically the function of N-methyl-D-aspartate (NMDA)-type glutamate receptor signalling mechanisms, and will address the functional significance and future prospects for this area of research.
Collapse
Affiliation(s)
- Gary J Spencer
- Biomedical Tissue Research, Department of Biology (Area 9), University of York, York Y010 5YW, UK.
| | | | | |
Collapse
|
12
|
Dickerson TJ, Janda KD. The use of small molecules to investigate molecular mechanisms and therapeutic targets for treatment of botulinum neurotoxin A intoxication. ACS Chem Biol 2006; 1:359-69. [PMID: 17163773 DOI: 10.1021/cb600179d] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Botulinum neurotoxins (BoNTs) are agents responsible for botulism, a disease characterized by peripheral neuromuscular blockade and subsequent flaccid paralysis. The potent paralytic ability of these toxins has resulted in their use as a therapeutic; however, BoNTs are also classified by the Centers for Disease Control and Prevention as one of the six highest-risk threat agents of bioterrorism. Consequently, a thorough understanding of the molecular mechanism of BoNT toxicity is crucial before effective inhibitors and, ultimately, an approved drug can be developed. In this article, we systematically detail BoNT intoxication by examining each of the discrete steps in this process. Additionally, rationally designed strategies for combating the toxicity of the most potent BoNT serotype are evaluated.
Collapse
Affiliation(s)
- Tobin J Dickerson
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, and Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
13
|
Tsuboi T, Ravier MA, Xie H, Ewart MA, Gould GW, Baldwin SA, Rutter GA. Mammalian exocyst complex is required for the docking step of insulin vesicle exocytosis. J Biol Chem 2005; 280:25565-70. [PMID: 15878854 DOI: 10.1074/jbc.m501674200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose stimulates insulin secretion from pancreatic beta cells by inducing the recruitment and fusion of insulin vesicles to the plasma membrane. However, little is currently known about the mechanism of the initial docking or tethering of insulin vesicles prior to fusion. Here, we examined the role of the SEC6-SEC8 (exocyst) complex, implicated in trafficking of secretory vesicles to fusion sites in the plasma membrane in yeast and in regulating glucose-stimulated insulin secretion from pancreatic MIN6 beta cells. We show first that SEC6 is concentrated on insulin-positive vesicles, whereas SEC5 and SEC8 are largely confined to the cytoplasm and the plasma membrane, respectively. Overexpression of truncated, dominant-negative SEC8 or SEC10 mutants decreased the number of vesicles at the plasma membrane, whereas expression of truncated SEC6 or SEC8 inhibited overall insulin secretion. When single exocytotic events were imaged by total internal reflection fluorescence microscopy, the fluorescence of the insulin surrogate, neuropeptide Y-monomeric red fluorescent protein brightened, diffused, and then vanished with kinetics that were unaffected by overexpression of truncated SEC8 or SEC10. Together, these data suggest that the exocyst complex serves to selectively regulate the docking of insulin-containing vesicles at sites of release close to the plasma membrane.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
14
|
Schivell AE, Mochida S, Kensel-Hammes P, Custer KL, Bajjalieh SM. SV2A and SV2C contain a unique synaptotagmin-binding site. Mol Cell Neurosci 2005; 29:56-64. [PMID: 15866046 DOI: 10.1016/j.mcn.2004.12.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 12/22/2004] [Accepted: 12/31/2004] [Indexed: 10/25/2022] Open
Abstract
SV2 (Synaptic Vesicle Protein 2) is expressed in neurons and endocrine cells where it is required for normal calcium-evoked neurosecretion. In mammals, there are three SV2 genes, denoted SV2A, B and C. SV2A interacts with synaptotagmin, the prime candidate for the calcium sensor in exocytosis. Here, we report that all isoforms of native SV2 bind synaptotagmin and that binding is inhibited by calcium, indicating that all isoforms contain a common calcium-inhibited synaptotagmin-binding site. The isolated amino termini of SV2A and SV2C supported an additional interaction with synaptotagmin, and binding at this site was stimulated by calcium. The amino-terminal binding site was mapped to the first 57 amino acids of SV2A, and removal of this domain decreased calcium-mediated inhibition of binding to synaptotagmin, suggesting that it modulates calcium's effect on the SV2-synaptotagmin interaction. Introduction of the amino terminus of SV2A or SV2C into cultured superior cervical ganglion neurons inhibited neurotransmission, whereas the amino terminus of SV2B did not. These observations implicate the SV2-synaptotagmin interaction in regulated exocytosis and suggest that SV2A and SV2C, via their additional synaptotagmin binding site, function differently than SV2B.
Collapse
Affiliation(s)
- Amanda E Schivell
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
15
|
Mozrzymas JW. Dynamism of GABAA receptor activation shapes the “personality” of inhibitory synapses. Neuropharmacology 2004; 47:945-60. [PMID: 15555630 DOI: 10.1016/j.neuropharm.2004.07.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 06/15/2004] [Accepted: 06/30/2004] [Indexed: 11/24/2022]
Abstract
The kinetics of synaptic currents is largely determined by the postsynaptic receptor gating and the concentration time course of synaptic neurotransmitter. While the analysis of current responses to rapid agonist application provides the means to study the ligand-gated receptor gating, no direct tools are available to measure the neurotransmitter transient at GABAergic and glutamatergic synapses. Several lines of evidence indicate that the synaptic agonist transient is very brief suggesting that the activation of postsynaptic receptors occurs in conditions of extreme non-equilibrium. Such a dynamic pattern of activation has a crucial impact not only on the kinetics of synaptic currents but also on their susceptibility to pharmacological modulation. Thus, changes in the synaptic agonist waveform due to, for example modulation of the release machinery or uptake system may considerably alter both kinetics and pharmacology of synaptic currents. The use of modifiers of GABA(A) receptor gating and low-affinity antagonists provides a tool to estimate the time course of the agonist transient revealing that synaptic neurotransmitter is not saturating and that the agonist clearance occurs at a sub-millisecond time scale. It is proposed that dynamic conditions of synaptic receptor activation assure a broad spectrum of performance rendering the synapse extremely susceptible to a variety of modulatory processes.
Collapse
Affiliation(s)
- Jerzy W Mozrzymas
- Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 10, 50-368 Wroclaw, Poland.
| |
Collapse
|
16
|
Vik-Mo EO, Oltedal L, Hoivik EA, Kleivdal H, Eidet J, Davanger S. Sec6 is localized to the plasma membrane of mature synaptic terminals and is transported with secretogranin II-containing vesicles. Neuroscience 2003; 119:73-85. [PMID: 12763070 DOI: 10.1016/s0306-4522(03)00065-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The sec6/8 (exocyst) complex is implicated in targeting of vesicles for regulated exocytosis in various cell types and is believed to play a role in synaptogenesis and brain development. We show that the subunits sec6 and sec8 are present at significant levels in neurons of adult rat brain, and that immunoreactivity for the two subunits has a differential subcellular distribution. We show that in developing as well as mature neurons sec6 is concentrated at the inside of the presynaptic plasma membrane, while sec8 immunoreactivity shows a diffuse cytoplasmic distribution. Among established, strongly synaptophysin-positive neuronal boutons, sec6 displays highly differential concentrations, indicating a role for the complex independent of the ongoing synaptic-vesicle release activity. Sec6 is transported along neurites on secretogranin II-positive vesicles, while sec6-negative/secretogranin II-positive vesicles stay in the cell body. In PC12 cells, sec6-positive vesicles accumulate at the plasma membrane at sites of cell-cell contact. Neuronal induction of the PC12 cells with nerve growth factor shows that sec8 is not freely soluble, but may probably interact with cytoskeletal elements. The complex may facilitate the targeting of membrane material to presynaptic sites and may possibly shuttle vesicles from the cytoskeletal transport machinery to presynaptic membrane sites. Thus, we suggest that the exocyst complex serves to modulate exocytotic activity, by targeting membrane material to its presynaptic destination.
Collapse
Affiliation(s)
- E O Vik-Mo
- Department of Anatomy and Cell Biology, University of Bergen, Arstadveien 19, 5009 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
17
|
Guiheneuc P. [Neuromuscular synapse: molecular mechanisms of acetylcholine vesicular exocytosis]. ANNALES DE READAPTATION ET DE MEDECINE PHYSIQUE : REVUE SCIENTIFIQUE DE LA SOCIETE FRANCAISE DE REEDUCATION FONCTIONNELLE DE READAPTATION ET DE MEDECINE PHYSIQUE 2003; 46:276-80. [PMID: 12928129 DOI: 10.1016/s0168-6054(03)00110-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transmission of excitation from motor neurones to muscle fibers at the neuromuscular junction is made through liberation of acetylcholine. This is concentrated into vesicles according to an exchange with H(+) ions. Increase of intracellular calcium concentration leads some vesicles to mobilise and target with the neuron plasma membrane, where they are docked and preconditioned via the formation of a SNARE complex between vesicular proteins and plasma membrane proteins. Energy and control of these transports and reactions are provided by several kinds of enzymes and chaperone molecules. Arrival of an action potential causes depolarisation of the motoneurone axon terminal and opening of large conductance calcium channels. The last step, directly linked to calcium input, leads the membranes to fuse and acetylcholine to immediately leave the neuron towards the synaptic space.
Collapse
Affiliation(s)
- P Guiheneuc
- Laboratoire de neurophysiologie clinique, CHU Nantes Hôtel-Dieu, 44035 Nantes cedex 01, France.
| |
Collapse
|
18
|
Poulain B, Humeau Y. [Mode of action of botulinum neurotoxin: pathological, cellular and molecular aspect]. ANNALES DE READAPTATION ET DE MEDECINE PHYSIQUE : REVUE SCIENTIFIQUE DE LA SOCIETE FRANCAISE DE REEDUCATION FONCTIONNELLE DE READAPTATION ET DE MEDECINE PHYSIQUE 2003; 46:265-75. [PMID: 12928128 DOI: 10.1016/s0168-6054(03)00114-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several bacteria of the Clostridium genus (C. botulinum) produce 150 kDa di-chainal protein toxins referred as botulinum neurotoxins or BoNTs. They associate with non-toxic companion proteins and form a complex termed botulinum toxin or BoTx. The latter is used in clinic for therapeutic purpose. BoNTs affect cholinergic nerve terminals in periphery where they block acetylcholine release, thereby causing dysautonomia and motorparalysis (i.e. botulism). The cellular action of BoNTs can be depicted according to a three steps model: binding, internalisation and intraneuronal action. The toxins heavy chain mediates binding to specific receptors followed by endocytotic internalisation of BoNT/receptor complex. BoNT receptors may comprise gangliosides and synaptic vesicle-associated proteins as synaptotagmins. Vesicle recycling induces BoNT internalisation. Upon acidification of vesicles, the light chain of the neurotoxin is translocated into the cytosol. Here, this zinc-endopeptidase cleaves one or two among three synaptic proteins (VAMP-synaptobrevin, SNAP25, and syntaxin). As the three protein targets of BoNT play major role in fusion of synaptic vesicles at the release sites, their cleavage is followed by blockage of neurotransmitter exocytosis. The duration of the paralytic effect of the BoNTs is determined by 1) the turnover of their protein target; 2) the time-life of the toxin light chain in the cytosol, and 3) the sprouting of new nerve-endings that are retracted when the poisoned nerve terminal had recovered its full functionality.
Collapse
Affiliation(s)
- B Poulain
- Neurotransmission et sécrétion neuroendocrine, UPR 2356 du CNRS, IFR 37 des neurosciences, 5, rue Blaise-Pascal, 67084 Strasbourg cedex, France.
| | | |
Collapse
|
19
|
Song H, Nie L, Rodriguez-Contreras A, Sheng ZH, Yamoah EN. Functional interaction of auxiliary subunits and synaptic proteins with Ca(v)1.3 may impart hair cell Ca2+ current properties. J Neurophysiol 2003; 89:1143-9. [PMID: 12574487 DOI: 10.1152/jn.00482.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed the functional determinants of the properties of L-type Ca(2+) currents in hair cells by co-expressing the pore-forming Ca(V)1.3alpha(1) subunit with the auxiliary subunits beta(1A) and/or alpha(2delta). Because Ca(2+) channels in hair cells are poised to interact with synaptic proteins, we also co-expressed the Ca(V)1.3alpha(1) subunit with syntaxin, vesicle-associated membrane protein (VAMP), and synaptosome associated protein of 25 kDa (SNAP25). Expression of the Ca(V)1.3alpha(1) subunit in human embryonic kidney cells (HEK 293) produced a dihydropyridine (DHP)-sensitive Ca(2+) current (peak current density -2.0 +/- 0.2 pA/pF; n = 11). Co-expression with beta(1A) and alpha(2delta) subunits enhanced the magnitude of the current (peak current density: Ca(V)1.3alpha(1) + beta(1A) = -4.3 +/- 0.8 pA/pF, n = 10; Ca(V)1.3alpha(1) + beta(1A) + alpha(2delta) = -4.1 +/- 0.6 pA/pF, n = 9) and produced a leftward shift of approximately 9 mV in the voltage-dependent activation of the currents. Furthermore, co-expression of Ca(V)1.3alpha(1) with syntaxin/VAMP/SNAP resulted in at least a twofold increase in the peak current density (-4.7 +/- 0.2 pA/pF; n = 11) and reduced the extent of inactivation of the Ca(2+) currents. Botulinum toxin, an inhibitor of syntaxin, accelerated the inactivation profile of Ca(2+) currents in hair cells. Immunocytochemical data also indicated that the Ca(2+) channels and syntaxin are co-localized in hair cells, suggesting there is functional interaction of the Ca(V)1.3alpha(1) with auxiliary subunits and synaptic proteins, that may contribute to the distinct properties of the DHP-sensitive channels in hair cells.
Collapse
Affiliation(s)
- Haitao Song
- Center for Neuroscience, Department of Otolaryngology, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
20
|
Turton K, Chaddock JA, Acharya KR. Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. Trends Biochem Sci 2002; 27:552-8. [PMID: 12417130 DOI: 10.1016/s0968-0004(02)02177-1] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The toxic products of the anaerobic bacteria Clostridium botulinum, Clostridium butyricum, Clostridium barati and Clostridium tetani are the causative agents of botulism and tetanus. The ability of botulinum neurotoxins to disrupt neurotransmission, often for prolonged periods, has been exploited for use in several medical applications and the toxins, as licensed pharmaceutical products, now represent the therapeutics of choice for the treatment for several neuromuscular conditions. Research into the structures and activities of botulinum and tetanus toxins has revealed features of these proteins that might be useful in the design of improved vaccines, effective inhibitors and novel biopharmaceuticals. Here, we discuss the relationships between structure, mechanism of action and therapeutic use.
Collapse
Affiliation(s)
- Kathryn Turton
- Dept of Biology and Biochemistry, University of Bath, Claverton Down, UK BA2 7AY
| | | | | |
Collapse
|
21
|
Xue M, Zhang B. Do SNARE proteins confer specificity for vesicle fusion? Proc Natl Acad Sci U S A 2002; 99:13359-61. [PMID: 12374848 PMCID: PMC129673 DOI: 10.1073/pnas.232565999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mingshan Xue
- Section of Neurobiology, Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
22
|
Abstract
Most CNS synapses investigated thus far contain a large number of vesicles docked at the active zone, possibly forming individual release sites. At the present time, it is unclear whether these vesicles can be discharged independently of one another. To investigate this problem, we recorded miniature excitatory currents by whole-cell and single-synapse recordings from CA3-CA1 hippocampal neurons and analyzed their stochastic properties. In addition, spontaneous release was investigated by ultrastructural analysis of quickly frozen synapses, revealing vesicle intermediates in docking and spontaneous fusion states. In these experiments, no signs of inhibitory interactions between quanta could be detected up to 1 msec from the previous discharge. This suggests that exocytosis at one site does not per se inhibit vesicular fusion at neighboring sites. At longer intervals, the output of quanta diverged from a random memoryless Poisson process because of the presence of a bursting component. The latter, which could not be accounted for by random coincidences, was independent of Ca2+ elevations in the cytosol, whether from Ca2+ flux through the plasma membrane or release from internal stores. Results of these experiments, together with the observation of spontaneous pairs of omega profiles at the active zone, suggest that multimodal release is produced by an enduring activation of an integrated cluster of release sites.
Collapse
|
23
|
Eybalin M, Renard N, Aure F, Safieddine S. Cysteine-string protein in inner hair cells of the organ of Corti: synaptic expression and upregulation at the onset of hearing. Eur J Neurosci 2002; 15:1409-20. [PMID: 12028351 DOI: 10.1046/j.1460-9568.2002.01978.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cysteine-string protein is a vesicle-associated protein that plays a vital function in neurotransmitter release. We have studied its expression and regulation during cochlear maturation. Both the mRNA and the protein were found in primary auditory neurons and the sensory inner hair cells. More importantly, cysteine-string protein was localized on synaptic vesicles associated with the synaptic ribbon in inner hair cells and with presynaptic differentiations in lateral and medial olivocochlear terminals -- the cell bodies of which lie in the auditory brainstem. No cysteine-string protein was expressed by the sensory outer hair cells suggesting that the distinct functions of the two cochlear hair cell types imply different mechanisms of neurotransmitter release. In developmental studies in the rat, we observed that cysteine-string protein was present beneath the inner hair cells at birth and beneath outer hair cells by postnatal day 2 only. We found no expression in the inner hair cells before about postnatal day 12, which corresponds to the period during which the first cochlear action potentials could be recorded. In conclusion, the close association of cysteine-string protein with synaptic vesicles tethered to synaptic ribbons in inner hair cells and its synchronized expression with the appearance and maturation of the cochlear potentials strongly suggest that this protein plays a fundamental role in sound-evoked glutamate release by inner hair cells. This also suggests that this role may be common to ribbon synapses and conventional central nervous system synapses.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Animals, Newborn
- Cell Differentiation/physiology
- Gene Expression Regulation, Developmental/genetics
- Guinea Pigs
- HSP40 Heat-Shock Proteins
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/growth & development
- Hair Cells, Auditory, Inner/metabolism
- Hearing/physiology
- Immunohistochemistry
- Membrane Proteins/genetics
- Membrane Proteins/isolation & purification
- Membrane Proteins/metabolism
- Microscopy, Electron
- Molecular Sequence Data
- Neurotransmitter Agents/metabolism
- Organ of Corti/metabolism
- Organ of Corti/ultrastructure
- Parvalbumins/metabolism
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- RNA, Messenger/metabolism
- Rats
- Sequence Homology, Amino Acid
- Spiral Ganglion/metabolism
- Spiral Ganglion/ultrastructure
- Synapses/metabolism
- Synapses/ultrastructure
- Synaptic Transmission/physiology
- Synaptic Vesicles/metabolism
- Synaptic Vesicles/ultrastructure
- Synaptophysin/metabolism
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Michel Eybalin
- INSERM U. 254 and Université Montpellier 1, 34090 Montpellier, France.
| | | | | | | |
Collapse
|
24
|
Xu T, Bajjalieh SM. SV2 modulates the size of the readily releasable pool of secretory vesicles. Nat Cell Biol 2001; 3:691-8. [PMID: 11483953 DOI: 10.1038/35087000] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The exocytosis of neurotransmitters is regulated by calcium and is plastic - features that suggest specialized regulation of the basic membrane trafficking process. Here we show that Synaptic Vesicle Protein 2 (SV2), a protein specific to neurons and endocrine cells, is required to maintain a pool of vesicles available for calcium-stimulated exocytosis. Direct measures of exocytosis in adrenal chromaffin cells showed that the calcium-induced exocytotic burst, which operationally defines the readily releasable pool of vesicles, was significantly reduced in mice lacking SV2A. Burst kinetics were normal in cells from SV2A knockout animals, however, indicating that SV2 functions before the final events of fusion. Analyses of SDS-resistant SNARE (soluble NSF (N-ethylmaleimide-sensitive fusion) attachment protein receptor) complexes in brain tissue showed that loss of SV2A was associated with fewer SDS-resistant complexes. Our observations indicate that SV2 may modulate the formation of protein complexes required for fusion and therefore the progression of vesicles to a fusion-competent state.
Collapse
Affiliation(s)
- T Xu
- Department of Physiology and Biophysics, University of Washington, Seattle Washington 98195-7280, USA
| | | |
Collapse
|
25
|
Abstract
Regulated intercellular signaling is essential for the maintenance of bone mass. In recent work we described how osteoblasts and osteoclasts express functional receptors for the excitatory amino acid, glutamate, indicating that a signaling pathway analogous to synaptic neurotransmission exists in bone. Here, we show that osteoblasts also express the essential molecular framework for regulated glutamate exocytosis to occur as is present in presynaptic neurons. A combination of reverse transcription-polymerase chain reaction (RT-PCR) and northern and western blotting is used to show expression of the target membrane-SNARE (soluble NSF attachment protein receptor), proteins SNAP-25 and syntaxin 4 and the vesicular-SNARE protein VAMP (synaptobrevin), the minimum molecular requirements for core exocytotic complex formation. Immunofluorescent localizations reveal peripheral SNAP-25 expression on osteoblastic cells, particularly at intercellular contact sites, colocalizing with immunoreactive glutamate and the synaptic vesicle-specific protein, synapsin I. We also identify multiple accessory proteins associated with vesicle trafficking, including munc18, rSec8, DOC2, syntaxin 6, and synaptophysin, which have varied roles in regulated glutamate exocytosis. mRNA for the putative Ca(2+)-dependent regulators of vesicle recycling activity, synaptotagmin I (specialized for fast Ca(2+)-dependent exocytosis as seen in synaptic neurotransmission), and the GTP-binding protein Rab3A are also identified by northern blot analysis. Finally, we demonstrate that osteoblastic cells actively release glutamate in a differentiation-dependent manner. These data provide compelling evidence that osteoblasts are able to direct glutamate release by regulated vesicular exocytosis, mimicking presynaptic glutamatergic neurons, showing that a process with striking similarity to synaptic neurotransmission occurs in bone.
Collapse
Affiliation(s)
- P S Bhangu
- Department of Biology, University of York, York, UK
| | | | | | | | | |
Collapse
|
26
|
Atlas D. Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism. J Neurochem 2001; 77:972-85. [PMID: 11359862 DOI: 10.1046/j.1471-4159.2001.00347.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The secretion of neurotransmitters is a rapid Ca(2+)-regulated process that brings about vesicle fusion with the plasma membrane. This rapid process (< 100 microseconds) involves multiple proteins located at the plasma and vesicular membranes. Because of their homology to proteins participating in constitutive secretion and protein trafficking, they have been characterized extensively. The sequential events that lead these proteins to vesicle docking and fusion are still unclear. We will review recent studies that demonstrate the operative role played by voltage-sensitive Ca(2+) channels and discuss the relevance for the process of evoked transmitter release. The regulation of Ca(2+) influx by syntaxin, synaptosome-associated protein of 25 kDa (SNAP-25) and synaptotagmin, and the reciprocity of these proteins in controlling the kinetic properties of the channel will be discussed. Calcium channel and synaptic proteins expressed in Xenopus oocytes demonstrate a strong functional interaction, which could be pertinent to the mechanism of secretion. First, the voltage-sensitive Ca(2+) channels are negatively modulated by syntaxin: this inhibition is reversed by synaptotagmin. Second, the modulation of N-type Ca(2+) channel activation kinetics strongly suggests that the vesicle could be docked at the plasma membrane through direct interaction with synaptotagmin. Finally, these interactions provide evidence for the assembly of the voltage-sensitive Ca(2+) channel with syntaxin 1A, SNAP-25 and synaptotagmin into an excitosome complex: a putative fusion complex with a potential role in the final stages of secretion. Studies suggest that cross-talk between the synaptic proteins and the channel in a tightly organized complex may enable a rapid secretory response to an incoming signal such as membrane depolarization.
Collapse
Affiliation(s)
- D Atlas
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
27
|
McFadden SC, Bobich JA, Zheng Q. A double-labeled preparation for simultaneous measurement of [3H]-noradrenaline and [14C]-glutamic acid exocytosis from streptolysin-O (SLO)-perforated synaptosomes. J Neurosci Methods 2001; 107:39-46. [PMID: 11389940 DOI: 10.1016/s0165-0270(01)00350-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a novel method to examine [3H]-noradrenaline and [14C]-glutamate release from the same sample of streptolysin-O (SLO) perforated rat cortical synaptosomes. Ca2+ -dependent [3H]-noradrenaline and [14C]-glutamate release was examined at different temperatures and was found to be greater at 30 degrees C than at 25 degrees C. Ca2+ -dependent release of [3H]-noradrenaline is more ATP dependent than Ca2+ -dependent release of [14C]-glutamate. No significant reuptake of either neurotransmitter by the perforated synaptosomes was detected, indicating all the synaptosomes were indeed perforated. Incubations with 1 mM ouabain, a specific Na+,K+ -ATPase inhibitor, slightly increased Ca2+ -dependent release of both neurotransmitters. [3H]-noradrenaline is released from large dense-core vesicles and [14C]-glutamate is released from small clear synaptic vesicles, so one can directly compare and contrast neurotransmitter release mechanisms between large dense-core vesicles and small clear synaptic vesicles using this preparation.
Collapse
Affiliation(s)
- S C McFadden
- Department of Chemistry, Texas Christian University, Forth Worth, TX 76129, USA.
| | | | | |
Collapse
|
28
|
Mackler JM, Reist NE. Mutations in the second C2 domain of synaptotagmin disrupt synaptic transmission atDrosophila neuromuscular junctions. J Comp Neurol 2001. [DOI: 10.1002/cne.1049] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28:53-67. [PMID: 11086983 DOI: 10.1016/s0896-6273(00)00085-4] [Citation(s) in RCA: 644] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microarray expression profiling of prefrontal cortex from matched pairs of schizophrenic and control subjects and hierarchical data analysis revealed that transcripts encoding proteins involved in the regulation of presynaptic function (PSYN) were decreased in all subjects with schizophrenia. Genes of the PSYN group showed a different combination of decreased expression across subjects. Over 250 other gene groups did not show altered expression. Selected PSYN microarray observations were verified by in situ hybridization. Two of the most consistently changed transcripts in the PSYN functional gene group, N-ethylmaleimide sensitive factor and synapsin II, were decreased in ten of ten and nine of ten subjects with schizophrenia, respectively. The combined data suggest that subjects with schizophrenia share a common abnormality in presynaptic function. We set forth a predictive, testable model.
Collapse
Affiliation(s)
- K Mirnics
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA. karoly+@pitt.edu
| | | | | | | | | |
Collapse
|
30
|
Sone M, Suzuki E, Hoshino M, Hou D, Kuromi H, Fukata M, Kuroda S, Kaibuchi K, Nabeshima Y, Hama C. Synaptic development is controlled in the periactive zones of Drosophila synapses. Development 2000; 127:4157-68. [PMID: 10976048 DOI: 10.1242/dev.127.19.4157] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cell-adhesion molecule fasciclin 2 (FAS2), which is required for synaptic growth and still life (SIF), an activator of RAC, were found to localize in the surrounding region of the active zone, defining the periactive zone in Drosophila neuromuscular synapses. BetaPS integrin and discs large (DLG), both involved in synaptic development, also decorated the zone. However, shibire (SHI), the Drosophila dynamin that regulates endocytosis, was found in the distinct region. Mutant analyses showed that sif genetically interacted with Fas2 in synaptic growth and that the proper localization of SIF required FAS2, suggesting that they are components in related signaling pathways that locally function in the periactive zones. We propose that neurotransmission and synaptic growth are primarily regulated in segregated subcellular spaces, active zones and periactive zones, respectively.
Collapse
Affiliation(s)
- M Sone
- Department of Molecular Genetics, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Regulated beta -granule exocytosis is critical for the ability of the beta -cell to finely control body glucose homeostasis. This is now understood to be a multistage process whereby beta -granules are transported from biosynthetic/storage sites in the cell cytoplasm and targeted to specific regions of the plasma membrane. Exocytosis is achieved when these granules are triggered to fuse with the membrane by an elevated cytosolic Ca(2+). Dramatic advances have been made recently in our understanding of the protein-protein interactions and regulatory signals that govern intracellular transport and fusion. Although best understood for exocytosis from neurons and neuroendocrine cells, similar processes are thought to be conserved in the beta -cell.
Collapse
Affiliation(s)
- R A Easom
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107-2699, USA.
| |
Collapse
|
32
|
Pyle RA, Schivell AE, Hidaka H, Bajjalieh SM. Phosphorylation of synaptic vesicle protein 2 modulates binding to synaptotagmin. J Biol Chem 2000; 275:17195-200. [PMID: 10747945 DOI: 10.1074/jbc.m000674200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic vesicle protein 2 (SV2) is a component of all synaptic vesicles that is required for normal neurotransmission. Here we report that in intact synaptic terminals SV2 is a phosphoprotein. Phosphopeptide mapping studies indicate that a major site of phosphorylation is located on the cytoplasmic amino terminus. SV2 is phosphorylated on serine and threonine but not on tyrosine residues, indicating that it is a substrate for serine/threonine kinases. Phosphopeptide mapping, in gel kinase assays, and surveys of kinase inhibitors suggest that casein kinase I is a primary SV2 kinase. The amino terminus of SV2 was previously shown to mediate its interaction with synaptotagmin, a calcium-binding protein also required for normal neurotransmission. Comparison of synaptotagmin binding with phosphorylated and unphosphorylated SV2 amino-terminal peptides reveals an increase in binding with phosphorylation. These results suggest that the affinity of SV2 for synaptotagmin is modulated by phosphorylation of SV2.
Collapse
Affiliation(s)
- R A Pyle
- Molecular and Cellular Biology Program, Graduate Program in Neurobiology and Behavior, and Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Representations of optic flow are encoded in fly tangential neurons by pooling the signals of many retinotopically organized local motion-sensitive inputs as well as of other tangential cells originating in the ipsi- and contralateral half of the brain. In the so called HSE cell, a neuron involved in optomotor course control, two contralateral input elements, the H1 and H2 cells, mediate distinct EPSPs. These EPSPs frequently elicit spike-like depolarizations in the HSE cell. The synaptic transmission between the H2 and the HSE cell is analysed in detail and shown to be very reliable with respect to the amplitude and time-course of the postsynaptic potential. As a consequence of its synaptic input, the HSE cell responds best to wide-field motion, such as that generated on the eyes when the animal turns about its vertical body axis. It is shown that the specificity of the HSE cell for this type of optic flow is much enhanced if rapid membrane depolarizations, such as large-amplitude EPSPs or spike-like depolarizations, are taken into account rather than the average membrane potential.
Collapse
Affiliation(s)
- W Horstmann
- Lehrstuhl für Neurobiologie, Fakultät für Biologie, Universität Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany
| | | | | |
Collapse
|
34
|
Abstract
Here we review evidence that actin and its binding partners are involved in the release of neurotransmitters at synapses. The spatial and temporal characteristics of neurotransmitter release are determined by the distribution of synaptic vesicles at the active zones, presynaptic sites of secretion. Synaptic vesicles accumulate near active zones in a readily releasable pool that is docked at the plasma membrane and ready to fuse in response to calcium entry and a secondary, reserve pool that is in the interior of the presynaptic terminal. A network of actin filaments associated with synaptic vesicles might play an important role in maintaining synaptic vesicles within the reserve pool. Actin and myosin also have been implicated in the translocation of vesicles from the reserve pool to the presynaptic plasma membrane. Refilling of the readily releasable vesicle pool during intense stimulation of neurotransmitter release also implicates synapsins as reversible links between synaptic vesicles and actin filaments. The diversity of actin binding partners in nerve terminals suggests that actin might have presynaptic functions beyond synaptic vesicle tethering or movement. Because most of these actin-binding proteins are regulated by calcium, actin might be a pivotal participant in calcium signaling inside presynaptic nerve terminals. However, there is no evidence that actin participates in fusion of synaptic vesicles.
Collapse
Affiliation(s)
- F Doussau
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
35
|
Doussau F, Gasman S, Humeau Y, Vitiello F, Popoff M, Boquet P, Bader MF, Poulain B. A Rho-related GTPase is involved in Ca(2+)-dependent neurotransmitter exocytosis. J Biol Chem 2000; 275:7764-70. [PMID: 10713089 DOI: 10.1074/jbc.275.11.7764] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho, Rac, and Cdc42 monomeric GTPases are well known regulators of the actin cytoskeleton and phosphoinositide metabolism and have been implicated in hormone secretion in endocrine cells. Here, we examine their possible implication in Ca(2+)-dependent exocytosis of neurotransmitters. Using subcellular fractionation procedures, we found that RhoA, RhoB, Rac1, and Cdc42 are present in rat brain synaptosomes; however, only Rac1 was associated with highly purified synaptic vesicles. To determine the synaptic function of these GTPases, toxins that impair Rho-related proteins were microinjected into Aplysia neurons. We used lethal toxin from Clostridium sordellii, which inactivates Rac; toxin B from Clostridium difficile, which inactivates Rho, Rac, and Cdc42; and C3 exoenzyme from Clostridium botulinum and cytotoxic necrotizing factor 1 from Escherichia coli, which mainly affect Rho. Analysis of the toxin effects on evoked acetylcholine release revealed that a member of the Rho family, most likely Rac1, was implicated in the control of neurotransmitter release. Strikingly, blockage of acetylcholine release by lethal toxin and toxin B could be completely removed in <1 s by high frequency stimulation of nerve terminals. Further characterization of the inhibitory action produced by lethal toxin suggests that Rac1 protein regulates a late step in Ca(2+)-dependent neuroexocytosis.
Collapse
Affiliation(s)
- F Doussau
- Laboratoire de Neurobiologie Cellulaire, CNRS, UPR 9009, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Crowder KM, Gunther JM, Jones TA, Hale BD, Zhang HZ, Peterson MR, Scheller RH, Chavkin C, Bajjalieh SM. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc Natl Acad Sci U S A 1999; 96:15268-73. [PMID: 10611374 PMCID: PMC24809 DOI: 10.1073/pnas.96.26.15268] [Citation(s) in RCA: 326] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic vesicle protein 2 (SV2) is a membrane glycoprotein common to all synaptic and endocrine vesicles. Unlike many proteins involved in synaptic exocytosis, SV2 has no homolog in yeast, indicating that it performs a function unique to secretion in higher eukaryotes. Although the structure and protein interactions of SV2 suggest multiple possible functions, its role in synaptic events remains unknown. To explore the function of SV2 in an in vivo context, we generated mice that do not express the primary SV2 isoform, SV2A, by using targeted gene disruption. Animals homozygous for the SV2A gene disruption appear normal at birth. However, they fail to grow, experience severe seizures, and die within 3 weeks, suggesting multiple neural and endocrine deficits. Electrophysiological studies of spontaneous inhibitory neurotransmission in the CA3 region of the hippocampus revealed that loss of SV2A leads to a reduction in action potential-dependent gamma-aminobutyric acid (GABA)ergic neurotransmission. In contrast, action potential-independent neurotransmission was normal. Analyses of synapse ultrastructure suggest that altered neurotransmission is not caused by changes in synapse density or morphology. These findings demonstrate that SV2A is an essential protein and implicate it in the control of exocytosis.
Collapse
Affiliation(s)
- K M Crowder
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zilberter Y, Kaiser KM, Sakmann B. Dendritic GABA release depresses excitatory transmission between layer 2/3 pyramidal and bitufted neurons in rat neocortex. Neuron 1999; 24:979-88. [PMID: 10624960 DOI: 10.1016/s0896-6273(00)81044-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GABAergic, somatostatin-containing bitufted interneurons in layer 2/3 of rat neocortex are excited via glutamatergic excitatory postsynaptic potentials (EPSPs) by pyramidal neurons located in the same cortical layer. Pair recordings showed that short bursts of backpropagating dendritic action potentials (APs) reduced the amplitude of unitary EPSPs. EPSP depression was dependent on a rise in dendritic [Ca2+]. The effect was blocked by the GABA(B) receptor (GABA(B)-R) antagonist CGP55845A and was mimicked by the GABA(B)-R agonist baclofen. As presynaptic GABA(B)-Rs were activated neither by somatostatin nor by GABA released from axon collaterals of the bitufted cell, we conclude that GABA(B)-Rs were activated by a retrograde messenger, most likely GABA, released from the dendrite. Because synaptic depression was prevented by loading bitufted neurons with GDP-beta-S, it is likely to be caused by exocytotic GABA release from dendrites.
Collapse
Affiliation(s)
- Y Zilberter
- Abteilung Zellphysiologie, Max-Plank-Institut für Medizinische Forschung, Heidelberg, Federal Republic of Germany.
| | | | | |
Collapse
|
38
|
Affiliation(s)
- M B Kennedy
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| |
Collapse
|