1
|
Zuo Y, Zhang R, Li S. Reviewing advancement in Mycoplasma pneumoniae P30 adhesin protein provides insights for future diagnosis and treatment. Front Microbiol 2024; 15:1515291. [PMID: 39735188 PMCID: PMC11671514 DOI: 10.3389/fmicb.2024.1515291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
Mycoplasma pneumoniae is a major pathogen that causes upper and lower respiratory tract infections in children, adolescents, and elderly individuals and can lead to pneumonia, intrapulmonary and extrapulmonary complications, and respiratory sequelae. M. pneumoniae must adhere to respiratory epithelial cells of a host for infection. The P1 and P30 proteins, as two adhesin proteins of M. pneumoniae, have attracted extensive attention from many researchers. In this paper, we present the latest research progress on the P30 protein in terms of structure and mutation typing, physiological function, clinical serological diagnosis and vaccine development in a literature review. This study deepens our knowledge on the pathogenesis of M. pneumoniae and is useful for diagnosing and preventing M. pneumoniae infection.
Collapse
Affiliation(s)
- Yingying Zuo
- Hengyang Medical School, University of South China, Hengyang, China
| | - Ru Zhang
- The Seventh Affiliated Hospital of University of South China, Changsha, China
| | - Shuihong Li
- Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Roterman I, Stapor K, Konieczny L. The Contribution of Hydrophobic Interactions to Conformational Changes of Inward/Outward Transmembrane Transport Proteins. MEMBRANES 2022; 12:membranes12121212. [PMID: 36557119 PMCID: PMC9784565 DOI: 10.3390/membranes12121212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 05/21/2023]
Abstract
Proteins transporting ions or other molecules across the membrane, whose proper concentration is required to maintain homeostasis, perform very sophisticated biological functions. The symport and antiport active transport can be performed only by the structures specially prepared for this purpose. In the present work, such structures in both In and Out conformations have been analyzed with respect to the hydrophobicity distribution using the FOD-M model. This allowed for identifying the role of individual protein chain fragments in the stabilization of the specific cell membrane environment as well as the contribution of hydrophobic interactions to the conformational changes between In/Out conformations.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University—Medical College Medyczna 7, 30-688 Kraków, Poland
- Correspondence:
| | - Katarzyna Stapor
- Department of Applied Informatics, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry—Jagiellonian University—Medical College, Kopernika 7, 31-034 Kraków, Poland
| |
Collapse
|
3
|
Verma SK, Kaur S, Tevetia A, Chatterjee S, Sharma PC. Structural characterization and functional annotation of microbial proteases mined from solid tannery waste metagenome. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00727-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Aisenbrey C, Rifi O, Bechinger B. Structure, membrane topology and influence of cholesterol of the membrane proximal region: transmembrane helical anchor sequence of gp41 from HIV. Sci Rep 2020; 10:22278. [PMID: 33335248 PMCID: PMC7746737 DOI: 10.1038/s41598-020-79327-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
During the first steps of HIV infection the Env subunit gp41 is thought to establish contact between the membranes and to be the main driver of fusion. Here we investigated in liquid crystalline membranes the structure and cholesterol recognition of constructs made of a gp41 external region carrying a cholesterol recognition amino acid consensus (CRAC) motif and a hydrophobic membrane anchoring sequence. CD- und ATR-FTIR spectroscopies indicate that the constructs adopt a high degree of helical secondary structure in membrane environments. Furthermore, 15N and 2H solid-state NMR spectra of gp41 polypeptides reconstituted into uniaxially oriented bilayers agree with the CRAC domain being an extension of the transmembrane helix. Upon addition of cholesterol the CRAC NMR spectra remain largely unaffected when being associated with the native gp41 transmembrane sequence but its topology changes when anchored in the membrane by a hydrophobic model sequence. The 2H solid-state NMR spectra of deuterated cholesterol are indicative of a stronger influence of the model sequence on this lipid when compared to the native gp41 sequence. These observations are suggestive of a strong coupling between the transmembrane and the membrane proximal region of gp41 possibly enforced by oligomerization of the transmembrane helical region.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Omar Rifi
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Burkhard Bechinger
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
5
|
Ahmad S, Tsang KK, Sachar K, Quentin D, Tashin TM, Bullen NP, Raunser S, McArthur AG, Prehna G, Whitney JC. Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones. eLife 2020; 9:e62816. [PMID: 33320089 PMCID: PMC7773334 DOI: 10.7554/elife.62816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Type VI secretion systems (T6SSs) deliver antibacterial effector proteins between neighboring bacteria. Many effectors harbor N-terminal transmembrane domains (TMDs) implicated in effector translocation across target cell membranes. However, the distribution of these TMD-containing effectors remains unknown. Here, we discover prePAAR, a conserved motif found in over 6000 putative TMD-containing effectors encoded predominantly by 15 genera of Proteobacteria. Based on differing numbers of TMDs, effectors group into two distinct classes that both require a member of the Eag family of T6SS chaperones for export. Co-crystal structures of class I and class II effector TMD-chaperone complexes from Salmonella Typhimurium and Pseudomonas aeruginosa, respectively, reveals that Eag chaperones mimic transmembrane helical packing to stabilize effector TMDs. In addition to participating in the chaperone-TMD interface, we find that prePAAR residues mediate effector-VgrG spike interactions. Taken together, our findings reveal mechanisms of chaperone-mediated stabilization and secretion of two distinct families of T6SS membrane protein effectors.
Collapse
Affiliation(s)
- Shehryar Ahmad
- Michael DeGroote Institute for Infectious Disease Research, McMaster UniversityHamiltonCanada
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
| | - Kara K Tsang
- Michael DeGroote Institute for Infectious Disease Research, McMaster UniversityHamiltonCanada
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
| | - Kartik Sachar
- Department of Microbiology, University of ManitobaWinnipegCanada
| | - Dennis Quentin
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Tahmid M Tashin
- Michael DeGroote Institute for Infectious Disease Research, McMaster UniversityHamiltonCanada
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
| | - Nathan P Bullen
- Michael DeGroote Institute for Infectious Disease Research, McMaster UniversityHamiltonCanada
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Andrew G McArthur
- Michael DeGroote Institute for Infectious Disease Research, McMaster UniversityHamiltonCanada
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- David Braley Centre for Antibiotic Discovery, McMaster UniversityHamiltonCanada
| | - Gerd Prehna
- Department of Microbiology, University of ManitobaWinnipegCanada
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster UniversityHamiltonCanada
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- David Braley Centre for Antibiotic Discovery, McMaster UniversityHamiltonCanada
| |
Collapse
|
6
|
Kumari R, Jahageerdar S, Panche AN, Kumar S. Fish tyrosinase enzyme involved in melanin biosynthesis: Insights from physicochemical characterization, homology modeling, and virtual screening studies. Anim Biotechnol 2020; 33:897-913. [DOI: 10.1080/10495398.2020.1846546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Riya Kumari
- ICAR-Central Institute of Fisheries Education, Mumbai, India
| | | | | | - Sanath Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
7
|
Ali A, Ahmad S, Wadood A, Rehman AU, Zahid H, Qayash Khan M, Nawab J, Rahman ZU, Alouffi AS. Modeling Novel Putative Drugs and Vaccine Candidates against Tick-Borne Pathogens: A Subtractive Proteomics Approach. Vet Sci 2020; 7:E129. [PMID: 32906620 PMCID: PMC7557734 DOI: 10.3390/vetsci7030129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ticks and tick-borne pathogens (TBPs) continuously causing substantial losses to the public and veterinary health sectors. The identification of putative drug targets and vaccine candidates is crucial to control TBPs. No information has been recorded on designing novel drug targets and vaccine candidates based on proteins. Subtractive proteomics is an in silico approach that utilizes extensive screening for the identification of novel drug targets or vaccine candidates based on the determination of potential target proteins available in a pathogen proteome that may be used effectively to control diseases caused by these infectious agents. The present study aimed to investigate novel drug targets and vaccine candidates by utilizing subtractive proteomics to scan the available proteomes of TBPs and predict essential and non-host homologous proteins required for the survival of these diseases causing agents. Subtractive proteome analysis revealed a list of fifteen essential, non-host homologous, and unique metabolic proteins in the complete proteome of selected pathogens. Among these therapeutic target proteins, three were excluded due to the presence in host gut metagenome, eleven were found to be highly potential drug targets, while only one was found as a potential vaccine candidate against TBPs. The present study may provide a foundation to design potential drug targets and vaccine candidates for the effective control of infections caused by TBPs.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (A.A.); (S.A.); (H.Z.); (M.Q.K.)
| | - Shabir Ahmad
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (A.A.); (S.A.); (H.Z.); (M.Q.K.)
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (A.W.); (A.U.R.)
| | - Ashfaq U. Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (A.W.); (A.U.R.)
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (A.A.); (S.A.); (H.Z.); (M.Q.K.)
| | - Muhammad Qayash Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (A.A.); (S.A.); (H.Z.); (M.Q.K.)
| | - Javed Nawab
- Department of Environmental Sciences, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan;
| | - Zia Ur Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan;
| | | |
Collapse
|
8
|
Isawi IH, Morales P, Sotudeh N, Hurst DP, Lynch DL, Reggio PH. GPR6 Structural Insights: Homology Model Construction and Docking Studies. Molecules 2020; 25:molecules25030725. [PMID: 32046081 PMCID: PMC7037797 DOI: 10.3390/molecules25030725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 01/14/2023] Open
Abstract
GPR6 is an orphan G protein-coupled receptor that has been associated with the cannabinoid family because of its recognition of a sub-set of cannabinoid ligands. The high abundance of GPR6 in the central nervous system, along with high constitutive activity and a link to several neurodegenerative diseases make GPR6 a promising biological target. In fact, diverse research groups have demonstrated that GPR6 represents a possible target for the treatment of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Several patents have claimed the use of a wide range of pyrazine derivatives as GPR6 inverse agonists for the treatment of Parkinson's disease symptoms and other dyskinesia syndromes. However, the full pharmacological importance of GPR6 has not yet been fully explored due to the lack of high potency, readily available ligands targeting GPR6. The long-term goal of the present study is to develop such ligands. In this paper, we describe our initial steps towards this goal. A human GPR6 homology model was constructed using a suite of computational techniques. This model permitted the identification of unique GPR6 structural features and the exploration of the GPR6 binding crevice. A subset of patented pyrazine analogs were docked in the resultant GPR6 inactive state model to validate the model, rationalize the structure-activity relationships from the reported patents and identify the key residues in the binding crevice for ligand recognition. We will take this structural knowledge into the next phase of GPR6 project, in which scaffold hopping will be used to design new GPR6 ligands.
Collapse
Affiliation(s)
- Israa H. Isawi
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (I.H.I.); (D.P.H.); (D.L.L.)
| | - Paula Morales
- Instituto de Química Medica (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Noori Sotudeh
- Department of Physiology and Biophysics, The State University of New York at Buffalo, Buffalo, NY 14260, USA;
| | - Dow P. Hurst
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (I.H.I.); (D.P.H.); (D.L.L.)
| | - Diane L. Lynch
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (I.H.I.); (D.P.H.); (D.L.L.)
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (I.H.I.); (D.P.H.); (D.L.L.)
- Correspondence:
| |
Collapse
|
9
|
Pannwitt S, Stangl M, Schneider D. Lipid Binding Controls Dimerization of the Coat Protein p24 Transmembrane Helix. Biophys J 2019; 117:1554-1562. [PMID: 31627840 DOI: 10.1016/j.bpj.2019.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 10/25/2022] Open
Abstract
Coat protein (COP) I and COP II complexes are involved in the transport of proteins between the endoplasmic reticulum and the Golgi apparatus in eukaryotic cells. The formation of COP I/II complexes at membrane surfaces is an early step in vesicle formation and is mastered by p24, a type I transmembrane protein. Oligomerization of p24 monomers was suggested to be mediated and/or stabilized via interactions within the transmembrane domain, and the p24 transmembrane helix appears to selectively bind a single sphingomyelin C18:0 molecule. Furthermore, a potential cholesterol-binding sequence has also been predicted in the p24 transmembrane domain. Thus, sphingomyelin and/or cholesterol binding to the transmembrane domain might directly control the oligomeric state of p24 and, thus, COP vesicle formation. In this study, we show that sequence-specific dimerization of the p24 transmembrane helix is mediated by a LQ7 motif, with Gln187 being of special importance. Whereas cholesterol has no direct impact on p24 dimerization, binding of the sphingolipid can clearly control dimerization of p24 in rigid membrane regions. We suggest that specific binding of a sphingolipid to the p24 transmembrane helix affects p24 dimerization in membranes with increased cholesterol contents. A clearly defined p24 dimerization propensity likely is crucial for the p24 activity, which involves shuttling in between the endoplasmic reticulum and the Golgi membrane, in which cholesterol and SM C18:0 concentrations differ.
Collapse
Affiliation(s)
- Stefanie Pannwitt
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Stangl
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dirk Schneider
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
10
|
Computational Approach for Structural Feature Determination of Grapevine NHX Antiporters. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1031839. [PMID: 30729118 PMCID: PMC6343165 DOI: 10.1155/2019/1031839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Plant NHX antiporters are responsible for monovalent cation/H+ exchange across cellular membranes and play therefore a critical role for cellular pH regulation, Na+ and K+ homeostasis, and salt tolerance. Six members of grapevine NHX family (VvNHX1-6) have been structurally characterized. Phylogenetic analysis revealed their organization in two groups: VvNHX1-5 belonging to group I (vacuolar) and VvNHX6 belonging to group II (endosomal). Conserved domain analysis of these VvNHXs indicates the presence of different kinds of domains. Out of these, two domains function as monovalent cation-proton antiporters and one as the aspartate-alanine exchange; the remaining are not yet with defined function. Overall, VvNHXs proteins are typically made of 11-13 putative transmembrane regions at their N-terminus which contain the consensus amiloride-binding domain in the 3rd TM domain and a cation-binding site in between the 5th and 6th TM domain, followed by a hydrophilic C-terminus that is the target of several and diverse regulatory posttranslational modifications. Using a combination of primary structure analysis, secondary structure alignments, and the tertiary structural models, the VvNHXs revealed mainly 18 α helices although without β sheets. Homology modeling of the 3D structure showed that VvNHX antiporters are similar to the bacterial sodium proton antiporters MjNhaP1 (Methanocaldococcus jannaschii) and PaNhaP (Pyrococcus abyssi).
Collapse
|
11
|
Maheepala DC, Emerling CA, Rajewski A, Macon J, Strahl M, Pabón-Mora N, Litt A. Evolution and Diversification of FRUITFULL Genes in Solanaceae. FRONTIERS IN PLANT SCIENCE 2019; 10:43. [PMID: 30846991 PMCID: PMC6394111 DOI: 10.3389/fpls.2019.00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/11/2019] [Indexed: 05/12/2023]
Abstract
Ecologically and economically important fleshy edible fruits have evolved from dry fruit numerous times during angiosperm diversification. However, the molecular mechanisms that underlie these shifts are unknown. In the Solanaceae there has been a major shift to fleshy fruits in the subfamily Solanoideae. Evidence suggests that an ortholog of FRUITFULL (FUL), a transcription factor that regulates cell proliferation and limits the dehiscence zone in the silique of Arabidopsis, plays a similar role in dry-fruited Solanaceae. However, studies have shown that FUL orthologs have taken on new functions in fleshy fruit development, including regulating elements of tomato ripening such as pigment accumulation. FUL belongs to the core eudicot euFUL clade of the angiosperm AP1/FUL gene lineage. The euFUL genes fall into two paralogous clades, euFULI and euFULII. While most core eudicots have one gene in each clade, Solanaceae have two: FUL1 and FUL2 in the former, and MBP10 and MBP20 in the latter. We characterized the evolution of the euFUL genes to identify changes that might be correlated with the origin of fleshy fruit in Solanaceae. Our analyses revealed that the Solanaceae FUL1 and FUL2 clades probably originated through an early whole genome multiplication event. By contrast, the data suggest that the MBP10 and MBP20 clades are the result of a later tandem duplication event. MBP10 is expressed at weak to moderate levels, and its atypical short first intron lacks putative transcription factor binding sites, indicating possible pseudogenization. Consistent with this, our analyses show that MBP10 is evolving at a faster rate compared to MBP20. Our analyses found that Solanaceae euFUL gene duplications, evolutionary rates, and changes in protein residues and expression patterns are not correlated with the shift in fruit type. This suggests deeper analyses are needed to identify the mechanism underlying the change in FUL ortholog function.
Collapse
Affiliation(s)
- Dinusha C. Maheepala
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Christopher A. Emerling
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, École Pratique des Hautes Études, Montpellier, France
| | - Alex Rajewski
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jenna Macon
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Maya Strahl
- The New York Botanical Garden, Bronx, NY, United States
| | | | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Amy Litt,
| |
Collapse
|
12
|
Ros U, Carretero GPB, Paulino J, Crusca E, Pazos F, Cilli EM, Lanio ME, Schreier S, Alvarez C. Self-association and folding in membrane determine the mode of action of peptides from the lytic segment of sticholysins. Biochimie 2018; 156:109-117. [PMID: 30326255 DOI: 10.1016/j.biochi.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/11/2018] [Indexed: 01/09/2023]
Abstract
Sticholysin I and II (Sts: St I and St II) are proteins of biomedical interest that form pores upon the insertion of their N-terminus in the plasma membrane. Peptides spanning the N-terminal residues of StI (StI1-31) or StII (StII1-30) can mimic the permeabilizing ability of these toxins, emerging as candidates to rationalize their potential biomedical applications. These peptides have different activities that correlate with their hydrophobicity. However, it is not clear how this property contributes to peptide folding in solution or upon binding to membranes. Here we compared the conformational properties of these peptides and shorter versions lacking the hydrophobic segment 1-11 of StI (StI12-31) or 1-10 of StII (StII11-30). Folding of peptides was assessed in solution and in membrane mimetic systems and related with their ability to bind to membranes and to permeabilize lipid vesicles. Our results suggest that the differences in activity among peptides could be ascribed to their different folding propensity and different membrane binding properties. In solution, StII1-30 tends to acquire α-helical conformation coexisting with self-associated structures, while StI1-31 remains structureless. Both peptides fold as α-helix in membrane; but StII1-30 also self-associates in the lipid environment, a process that is favored by its higher affinity for membrane. We stress the contribution of the non-polar/polar balance of the 1-10 amino acid sequence of the peptides as a determining factor for different self-association capabilities. Such difference in hydrophobicity seems to determine the molecular path of peptides folding upon binding to membranes, with an impact in their permeabilizing activity. This study contributes to a better understanding of the molecular mechanisms underlying the permeabilizing activity of Sts N-terminal derived peptides, with connotation for the exploitation of these small molecules as alternative of the full-length toxins in clinical settings.
Collapse
Affiliation(s)
- Uris Ros
- Center for Protein Studies, Biology Faculty, University of Havana, Havana, Cuba
| | - Gustavo P B Carretero
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Joana Paulino
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Edson Crusca
- Department of Biochemistry, Institute of Chemistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Fabiola Pazos
- Center for Protein Studies, Biology Faculty, University of Havana, Havana, Cuba
| | - Eduardo M Cilli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria E Lanio
- Center for Protein Studies, Biology Faculty, University of Havana, Havana, Cuba
| | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carlos Alvarez
- Center for Protein Studies, Biology Faculty, University of Havana, Havana, Cuba.
| |
Collapse
|
13
|
Molecular analysis of inherited cardiomyopathy using next generation semiconductor sequencing technologies. J Transl Med 2018; 16:241. [PMID: 30165862 PMCID: PMC6117967 DOI: 10.1186/s12967-018-1605-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/13/2018] [Indexed: 01/16/2023] Open
Abstract
Background Cardiomyopathies are the most common clinical and genetic heterogeneity cardiac diseases, and genetic contribution in particular plays a major role in patients with primary cardiomyopathies. The aim of this study is to investigate cases of inherited cardiomyopathy (IC) for potential disease-causing mutations in 64 genes reported to be associated with IC. Methods A total of 110 independent cases or families diagnosed with various primary cardiomyopathies, including hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, left ventricular non-compaction, and undefined cardiomyopathy, were collected after informed consent. A custom designed panel, including 64 genes, was screened using next generation sequencing on the Ion Torrent PGM platform. The best candidate disease-causing variants were verified by Sanger sequencing. Results A total of 78 variants in 73 patients were identified. After excluding the variants predicted to be benign and VUS, 26 pathogenic or likely pathogenic variants were verified in 26 probands (23.6%), including a homozygous variant in the SLC25A4 gene. Of these variants, 15 have been reported in the Human Gene Mutation Database or ClinVar database, while 11 are novel. The majority of variants were observed in the MYH7 (8/26) and MYBPC3 (6/26) gene. Titin (TTN) truncating mutations account for 13% in our dilated cardiomyopathy cases (3/23). Conclusions This study provides an overview of the genetic aberrations in this cohort of Chinese IC patients and demonstrates the power of next generation sequencing in IC. Genetic results can provide precise clinical diagnosis and guidance regarding medical care for some individuals. Electronic supplementary material The online version of this article (10.1186/s12967-018-1605-5) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
The Third Transmembrane Domain of EscR Is Critical for Function of the Enteropathogenic Escherichia coli Type III Secretion System. mSphere 2018; 3:3/4/e00162-18. [PMID: 30045964 PMCID: PMC6060343 DOI: 10.1128/msphere.00162-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many Gram-negative bacterial pathogens that cause life-threatening diseases employ a type III secretion system (T3SS) for their virulence. The T3SS comprises several proteins that assemble into a syringe-like structure dedicated to the injection of bacterial virulence factors into the host cells. Although many T3SS proteins are transmembrane proteins, our knowledge of these proteins is limited mostly to their soluble domains. In this study, we found that the third transmembrane domain (TMD) of EscR, a central protein of the T3SS in enteropathogenic E. coli, contributes to protein self-oligomerization. Moreover, we demonstrated that a single aspartic acid residue, located at the core of this TMD, is critical for the activity of the full-length protein and the function of the entire T3SS, possibly due to its involvement in mediating TMD-TMD interactions. Our findings should encourage the mapping of the entire interactome of the T3SS components, including interactions mediated through their TMDs. Many Gram-negative bacterial pathogens utilize a specialized protein delivery system, called the type III secretion system (T3SS), to translocate effector proteins into the host cells. The translocated effectors are crucial for bacterial infection and survival. The base of the T3SS transverses both bacterial membranes and contains an export apparatus that comprises five membrane proteins. Here, we study the export apparatus of enteropathogenic Escherichia coli (EPEC) and characterize its central component, called the EscR protein. We found that the third transmembrane domain (TMD) of EscR mediates strong self-oligomerization in an isolated genetic reporter system. Replacing this TMD sequence with an alternative hydrophobic sequence within the full-length protein resulted in a complete loss of function of the T3SS, further suggesting that the EscR TMD3 sequence has another functional role in addition to its role as a membrane anchor. Moreover, we found that an aspartic acid residue, located at the core of EscR TMD3, is important for the oligomerization propensity of TMD3 and that a point mutation of this residue within the full-length protein abolishes the T3SS activity and the ability of the bacteria to translocate effectors into host cells. IMPORTANCE Many Gram-negative bacterial pathogens that cause life-threatening diseases employ a type III secretion system (T3SS) for their virulence. The T3SS comprises several proteins that assemble into a syringe-like structure dedicated to the injection of bacterial virulence factors into the host cells. Although many T3SS proteins are transmembrane proteins, our knowledge of these proteins is limited mostly to their soluble domains. In this study, we found that the third transmembrane domain (TMD) of EscR, a central protein of the T3SS in enteropathogenic E. coli, contributes to protein self-oligomerization. Moreover, we demonstrated that a single aspartic acid residue, located at the core of this TMD, is critical for the activity of the full-length protein and the function of the entire T3SS, possibly due to its involvement in mediating TMD-TMD interactions. Our findings should encourage the mapping of the entire interactome of the T3SS components, including interactions mediated through their TMDs.
Collapse
|
15
|
Rotem E, Faingold O, Charni M, Klug YA, Harari D, Shmuel-Galia L, Nudelman A, Rotter V, Shai Y. The HTLV-1 gp21 fusion peptide inhibits antigen specific T-cell activation in-vitro and in mice. PLoS Pathog 2018; 14:e1007044. [PMID: 29727445 PMCID: PMC5955599 DOI: 10.1371/journal.ppat.1007044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 04/18/2018] [Indexed: 11/17/2022] Open
Abstract
The ability of the Lentivirus HIV-1 to inhibit T-cell activation by its gp41 fusion protein is well documented, yet limited data exists regarding other viral fusion proteins. HIV-1 utilizes membrane binding region of gp41 to inhibit T-cell receptor (TCR) complex activation. Here we examined whether this T-cell suppression strategy is unique to the HIV-1 gp41. We focused on T-cell modulation by the gp21 fusion peptide (FP) of the Human T-lymphotropic Virus 1 (HTLV-1), a Deltaretrovirus that like HIV infects CD4+ T-cells. Using mouse and human in-vitro T-cell models together with in-vivo T-cell hyper activation mouse model, we reveal that HTLV-1's FP inhibits T-cell activation and unlike the HIV FP, bypasses the TCR complex. HTLV FP inhibition induces a decrease in Th1 and an elevation in Th2 responses observed in mRNA, cytokine and transcription factor profiles. Administration of the HTLV FP in a T-cell hyper activation mouse model of multiple sclerosis alleviated symptoms and delayed disease onset. We further pinpointed the modulatory region within HTLV-1's FP to the same region previously identified as the HIV-1 FP active region, suggesting that through convergent evolution both viruses have obtained the ability to modulate T-cells using the same region of their fusion protein. Overall, our findings suggest that fusion protein based T-cell modulation may be a common viral trait.
Collapse
Affiliation(s)
- Etai Rotem
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Omri Faingold
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Meital Charni
- Department of molecular cell biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yoel A Klug
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Harari
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Liraz Shmuel-Galia
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Alon Nudelman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of molecular cell biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Pollard AM, Sourjik V. Transmembrane region of bacterial chemoreceptor is capable of promoting protein clustering. J Biol Chem 2017; 293:2149-2158. [PMID: 29259129 DOI: 10.1074/jbc.m117.796722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/06/2017] [Indexed: 11/06/2022] Open
Abstract
Many membrane proteins are known to form higher-order oligomers, but the degree to which membrane regions could facilitate protein complex assembly remains largely unclear. Clusters of chemotaxis receptors are among the most prominent structures in the bacterial cell membrane, and they play important functions in processing of chemotactic signals. Although much work has been done to elucidate mechanisms of cluster formation, it almost exclusively focused on cytoplasmic interactions among receptors and other chemotaxis proteins, whereas involvement of membrane-mediated interactions was only hypothesized. Here we used imaging of constructs composed of only a fluorescent protein and the TM helices of Tar to demonstrate that interactions between the lipid bilayer and transmembrane (TM) helices of Escherichia coli chemoreceptors alone are sufficient to mediate clustering. We found that the ability to cluster depends on the sequence or length of the TM helices, implying that certain conformations of these helices facilitate clustering, whereas others do not. Notably, observed sequence specificity was apparently consistent with differences in clustering between native E. coli receptors, with the TM sequence of better-clustering high-abundance receptors being more efficient in promoting membrane-mediated complex formation. These results indicate that being more than just membrane anchors, TM helices could play an important role in the clustering and organization of membrane proteins in bacteria.
Collapse
Affiliation(s)
- Abiola M Pollard
- From the Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| | - Victor Sourjik
- From the Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| |
Collapse
|
17
|
Abstract
The Reggio group has constructed computer models of the inactive and G-protein-activated states of the cannabinoid CB1 and CB2 receptors, as well as, several orphan receptors that recognize a subset of cannabinoid compounds, including GPR55 and GPR18. These models have been used to design ligands, mutations, and covalent labeling studies. The resultant second-generation models have been used to design ligands with improved affinity, efficacy, and subtype selectivity. Herein, we provide a guide for the development of GPCR models using the most recent orphan receptor studied in our lab, GPR3. GPR3 is an orphan receptor that belongs to the Class A family of G-protein-coupled receptors. It shares high sequence similarity with GPR6, GPR12, the lysophospholipid receptors, and the cannabinoid receptors. GPR3 is predominantly expressed in mammalian brain and oocytes and it is known as a Gαs-coupled receptor activated constitutively in cells. GPR3 represents a possible target for the treatment of different pathological conditions such as Alzheimer's disease, oocyte maturation, or neuropathic pain. However, the lack of potent and selective GPR3 ligands is delaying the exploitation of this promising therapeutic target. In this context, we aim to develop a homology model that helps us to elucidate the structural determinants governing ligand-receptor interactions at GPR3. In this chapter, we detail the methods and rationale behind the construction of the GPR3 active-and inactive-state models. These homology models will enable the rational design of novel ligands, which may serve as research tools for further understanding of the biological role of GPR3.
Collapse
Affiliation(s)
- Paula Morales
- University of North Carolina at Greensboro, Greensboro, NC, United States.
| | - Dow P Hurst
- University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Patricia H Reggio
- University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
18
|
Schmidt V, Sturgis JN. Making Monomeric Aquaporin Z by Disrupting the Hydrophobic Tetramer Interface. ACS OMEGA 2017; 2:3017-3027. [PMID: 31457635 PMCID: PMC6641176 DOI: 10.1021/acsomega.7b00261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/14/2017] [Indexed: 05/31/2023]
Abstract
The assembly of integral membrane proteins depends on the packing of hydrophobic interfaces. The forces driving this packing remain unclear. In this study, we have investigated the effect of mutations in these hydrophobic interfaces on the structure and function of the tetrameric Escherichia coli water channel aquaporin Z (AqpZ). Among the variants, we have constructed several fail to form tetramers and are monomeric. In particular, both of the mutants which are expected to create interfacial cavities become monomeric. Furthermore, one of the mutations can be compensated by a second-site mutation. We suggest that the constraints imposed by the nature of the lipid solvent result in interfaces that respond differently to modifications of residues. Specifically, the large size and complex conformations of lipid molecules are unable to fill small interfacial holes. Further, we observe in AqpZ that there is a link between the oligomeric state and the water channel activity. This despite the robustness of both protein folding and topology, both of which remain unchanged by the mutations we introduce. We propose that this linkage may result from the specific modes of structural flexibility in the monomeric protein.
Collapse
|
19
|
Therien JPD, Baenziger JE. Pentameric ligand-gated ion channels exhibit distinct transmembrane domain archetypes for folding/expression and function. Sci Rep 2017; 7:450. [PMID: 28348412 PMCID: PMC5428567 DOI: 10.1038/s41598-017-00573-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/03/2017] [Indexed: 11/17/2022] Open
Abstract
Although transmembrane helix-helix interactions must be strong enough to drive folding, they must still permit the inter-helix movements associated with conformational change. Interactions between the outermost M4 and adjacent M1 and M3 α-helices of pentameric ligand-gated ion channels have been implicated in folding and function. Here, we evaluate the role of different physical interactions at this interface in the function of two prokaryotic homologs, GLIC and ELIC. Strikingly, disruption of most interactions in GLIC lead to either a reduction or a complete loss of expression and/or function, while analogous disruptions in ELIC often lead to gains in function. Structural comparisons suggest that GLIC and ELIC represent distinct transmembrane domain archetypes. One archetype, exemplified by GLIC, the glycine and GABA receptors and the glutamate activated chloride channel, has extensive aromatic contacts that govern M4-M1/M3 interactions and that are essential for expression and function. The other archetype, exemplified by ELIC and both the nicotinic acetylcholine and serotonin receptors, has relatively few aromatic contacts that are detrimental to function. These archetypes likely have evolved different mechanisms to balance the need for strong M4 "binding" to M1/M3 to promote folding/expression, and the need for weaker interactions that allow for greater conformational flexibility.
Collapse
Affiliation(s)
- J P Daniel Therien
- Department of Biochemistry, Microbiology, and Immunology University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
20
|
Steindorf D, Schneider D. In vivo selection of heterotypically interacting transmembrane helices: Complementary helix surfaces, rather than conserved interaction motifs, drive formation of transmembrane hetero-dimers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:245-256. [DOI: 10.1016/j.bbamem.2016.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
|
21
|
Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes. Proc Natl Acad Sci U S A 2016; 114:310-315. [PMID: 28028215 DOI: 10.1073/pnas.1612322114] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bcl-2 (B-cell lymphoma 2) protein Bax (Bcl-2 associated X, apoptosis regulator) can commit cells to apoptosis via outer mitochondrial membrane permeabilization. Bax activity is controlled in healthy cells by prosurvival Bcl-2 proteins. C-terminal Bax transmembrane domain interactions were implicated recently in Bax pore formation. Here, we show that the isolated transmembrane domains of Bax, Bcl-xL (B-cell lymphoma-extra large), and Bcl-2 can mediate interactions between Bax and prosurvival proteins inside the membrane in the absence of apoptotic stimuli. Bcl-2 protein transmembrane domains specifically homooligomerize and heterooligomerize in bacterial and mitochondrial membranes. Their interactions participate in the regulation of Bcl-2 proteins, thus modulating apoptotic activity. Our results suggest that interactions between the transmembrane domains of Bax and antiapoptotic Bcl-2 proteins represent a previously unappreciated level of apoptosis regulation.
Collapse
|
22
|
The Topology of the l-Arginine Exporter ArgO Conforms to an Nin-Cout Configuration in Escherichia coli: Requirement for the Cytoplasmic N-Terminal Domain, Functional Helical Interactions, and an Aspartate Pair for ArgO Function. J Bacteriol 2016; 198:3186-3199. [PMID: 27645388 DOI: 10.1128/jb.00423-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/10/2016] [Indexed: 02/04/2023] Open
Abstract
ArgO and LysE are members of the LysE family of exporter proteins and ordinarily mediate the export of l-arginine (Arg) in Escherichia coli and l-lysine (Lys) and Arg in Corynebacterium glutamicum, respectively. Under certain conditions, ArgO also mediates Lys export. To delineate the arrangement of ArgO in the cytoplasmic membrane of E. coli, we have employed a combination of cysteine accessibility in situ, alkaline phosphatase fusion reporters, and protein modeling to arrive at a topological model of ArgO. Our studies indicate that ArgO assumes an Nin-Cout configuration, potentially forming a five-transmembrane helix bundle flanked by a cytoplasmic N-terminal domain (NTD) comprising roughly its first 38 to 43 amino acyl residues and a short periplasmic C-terminal region (CTR). Mutagenesis studies indicate that the CTR, but not the NTD, is dispensable for ArgO function in vivo and that a pair of conserved aspartate residues, located near the opposing edges of the cytoplasmic membrane, may play a pivotal role in facilitating transmembrane Arg flux. Additional studies on amino acid substitutions that impair ArgO function in vivo and their derivatives bearing compensatory amino acid alterations indicate a role for intramolecular interactions in the Arg export mechanism, and some interactions are corroborated by normal-mode analyses. Lastly, our studies suggest that ArgO may exist as a monomer in vivo, thus highlighting the requirement for intramolecular interactions in ArgO, as opposed to interactions across multiple ArgO monomers, in the formation of an Arg-translocating conduit. IMPORTANCE The orthologous proteins LysE of C. glutamicum and ArgO of E. coli function as exporters of the basic amino acids l-arginine and l-lysine and the basic amino acid l-arginine, respectively, and LysE can functionally substitute for ArgO when expressed in E. coli Notwithstanding this functional equivalence, studies reported here show that ArgO possesses a membrane topology that is distinct from that reported for LysE, with substantial variation in the topological arrangement of the proximal one-third portions of the two exporters. Additional genetic and in silico studies reveal the importance of (i) the cytoplasmic N-terminal domain, (ii) a pair of conserved aspartate residues, and (iii) potential intramolecular interactions in ArgO function and indicate that an Arg-translocating conduit is formed by a monomer of ArgO.
Collapse
|
23
|
Klug YA, Rotem E, Schwarzer R, Shai Y. Mapping out the intricate relationship of the HIV envelope protein and the membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:550-560. [PMID: 27793589 DOI: 10.1016/j.bbamem.2016.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023]
Abstract
The HIV gp160 envelope fusion protein is situated in the viral membrane and mediates virus entry into its host cell. Increasing evidence suggests that virtually all parts of the HIV envelope are structurally and functionally dependent on membranes. Protein-lipid interactions and membrane properties influence the dynamics of a manifold of gp160 biological activities such as membrane fusion, immune suppression and gp160 incorporation into virions during HIV budding and assembly. In the following we will summarize our current understanding of this interdependence between membrane interaction, structural conformation and functionality of the different gp160 domains. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Yoel A Klug
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Etai Rotem
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Roland Schwarzer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
24
|
Graaf CD, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ, Ahn JM, Liao J, Fletcher MM, Yang D, Brown AJH, Zhou C, Deng J, Wang MW. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol Rev 2016; 68:954-1013. [PMID: 27630114 PMCID: PMC5050443 DOI: 10.1124/pr.115.011395] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain-binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders.
Collapse
Affiliation(s)
- Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Dan Donnelly
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Denise Wootten
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jesper Lau
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Patrick M Sexton
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Laurence J Miller
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jung-Mo Ahn
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jiayu Liao
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Madeleine M Fletcher
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Dehua Yang
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Alastair J H Brown
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Caihong Zhou
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jiejie Deng
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Ming-Wei Wang
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| |
Collapse
|
25
|
Lee J, Im W. Implementation and application of helix-helix distance and crossing angle restraint potentials. J Comput Chem 2016; 28:669-80. [PMID: 17195157 DOI: 10.1002/jcc.20614] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Based on the definition of helix-helix distance and crossing angle introduced by Chothia et al. (J Mol Biol 1981, 145, 215), we have developed the restraint potentials by which the distance and crossing angle of two selected helices can be maintained around target values during molecular dynamics simulations. A series of assessments show that calculated restraint forces are numerically accurate. Since the restraint forces are only exerted on atoms which define the helical principal axes, each helix can rotate along its helical axis, depending on the helix-helix intermolecular interactions. Such a restraint potential enables us to characterize the helix-helix interactions at atomic details by sampling their conformational space around specific distance and crossing angle with (restraint) force-dependent fluctuations. Its efficacy is illustrated by calculating the potential of mean force as a function of helix-helix distance between two transmembrane helical peptides in an implicit membrane model.
Collapse
Affiliation(s)
- Jinhyuk Lee
- Department of Molecular Biosciences, Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
26
|
Wootten D, Miller LJ, Koole C, Christopoulos A, Sexton PM. Allostery and Biased Agonism at Class B G Protein-Coupled Receptors. Chem Rev 2016; 117:111-138. [PMID: 27040440 DOI: 10.1021/acs.chemrev.6b00049] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Class B G protein-coupled receptors (GPCRs) respond to paracrine or endocrine peptide hormones involved in control of bone homeostasis, glucose regulation, satiety, and gastro-intestinal function, as well as pain transmission. These receptors are targets for existing drugs that treat osteoporosis, hypercalcaemia, Paget's disease, type II diabetes, and obesity and are being actively pursued as targets for numerous other diseases. Exploitation of class B receptors has been limited by difficulties with small molecule drug discovery and development and an under appreciation of factors governing optimal therapeutic efficacy. Recently, there has been increasing awareness of novel attributes of GPCR function that offer new opportunity for drug development. These include the presence of allosteric binding sites on the receptor that can be exploited as drug binding pockets and the ability of individual drugs to enrich subpopulations of receptor conformations to selectively control signaling, a phenomenon termed biased agonism. In this review, current knowledge of biased signaling and small molecule allostery within class B GPCRs is discussed, highlighting areas that have progressed significantly over the past decade, in addition to those that remain largely unexplored with respect to these phenomena.
Collapse
Affiliation(s)
- Denise Wootten
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Scottsdale, Arizona 85259, United States
| | - Cassandra Koole
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia.,Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , New York, New York 10065, United States
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia
| |
Collapse
|
27
|
Wootten D, Reynolds CA, Koole C, Smith KJ, Mobarec JC, Simms J, Quon T, Coudrat T, Furness SGB, Miller LJ, Christopoulos A, Sexton PM. A Hydrogen-Bonded Polar Network in the Core of the Glucagon-Like Peptide-1 Receptor Is a Fulcrum for Biased Agonism: Lessons from Class B Crystal Structures. Mol Pharmacol 2016; 89:335-47. [PMID: 26700562 PMCID: PMC4767408 DOI: 10.1124/mol.115.101246] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022] Open
Abstract
The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60(190), N3.43(240), Q7.49(394), and H6.52(363) as key residues involved in peptide-mediated biased agonism, with R2.60(190), N3.43(240), and Q7.49(394) predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53(364)A, N3.43(240)Q, Q7.49(394)N, and N3.43(240)Q/Q7.49(394)N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53(364) and R2.60(190) was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49(394), but not R2.60(190)/E6.53(364) was critical for calcium mobilization for all three peptides. Mutation of N3.43(240) and Q7.49(394) had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events.
Collapse
Affiliation(s)
- Denise Wootten
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Christopher A Reynolds
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Cassandra Koole
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Kevin J Smith
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Juan C Mobarec
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - John Simms
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Tezz Quon
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Thomas Coudrat
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Sebastian G B Furness
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Laurence J Miller
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Arthur Christopoulos
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Patrick M Sexton
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| |
Collapse
|
28
|
Rotem E, Reuven EM, Klug YA, Shai Y. The Transmembrane Domain of HIV-1 gp41 Inhibits T-Cell Activation by Targeting Multiple T-Cell Receptor Complex Components through Its GxxxG Motif. Biochemistry 2016; 55:1049-57. [PMID: 26828096 DOI: 10.1021/acs.biochem.5b01307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To successfully infect and persist within its host, HIV-1 utilizes several immunosuppressive motifs within its gp41 envelope glycoprotein to manipulate and evade the immune system. The transmembrane domain (TMD) of gp41 downregulates T-cell receptor (TCR) signaling through a hitherto unknown mechanism. Interactions between TMDs within the membrane milieu have been shown to be typically mediated by particular amino acids, such as interactions between basic and acidic residues and dimerization motifs as GxxxG. The HIV-1 TMD exhibits both a polar arginine (Arg(696)) residue and a GxxxG motif, making them ideal candidates for mediators of TMD-TCR interaction. Using a primary T-cell activation assay and biochemical and biophysical methods, we demonstrate that the gp41 TMD directly interacts with TMDs of the TCR and the CD3 coreceptors (δ, γ, and ε) within the membrane, presumably leading to impairment of complex assembly. Additionally, we reveal that although Arg(696) does not affect TMD immunosuppression, the GxxxG motif is crucial in mediating gp41's TMD interaction with the CD3 coreceptors of the TCR. These findings suggest that compared with other gp41 immunosuppressive motifs, the gp41 TMD has multiple targets within the TCR complex, suggesting less susceptibility to evolutionary pressure and consequently being advantageous for the virus over the host immune response. Furthermore, as the GxxxG motif mediates interactions of the gp41 TMD with multiple receptors, it emerges as an attractive drug target. This multitarget inhibitory mechanism might be a strategy utilized by HIV to interfere with the function of additional host receptors.
Collapse
Affiliation(s)
- Etai Rotem
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot 76100, Israel
| | - Eliran Moshe Reuven
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot 76100, Israel
| | - Yoel A Klug
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot 76100, Israel
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
29
|
Gonzalez F, Bengtsson JM, Walker WB, Sousa MFR, Cattaneo AM, Montagné N, de Fouchier A, Anfora G, Jacquin-Joly E, Witzgall P, Ignell R, Bengtsson M. A Conserved Odorant Receptor Detects the Same 1-Indanone Analogs in a Tortricid and a Noctuid Moth. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Nishizawa M, Nishizawa K. Free energy of helical transmembrane peptide dimerization in OPLS-AA/Berger force field simulations: inaccuracy and implications for partner-specific Lennard-Jones parameters between peptides and lipids. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Nishizawa M, Nishizawa K. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations. J Chem Phys 2015; 141:075101. [PMID: 25149815 DOI: 10.1063/1.4891932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Interaction of transmembrane (TM) proteins is important in many biological processes. Large-scale computational studies using coarse-grained (CG) simulations are becoming popular. However, most CG model parameters have not fully been calibrated with respect to lateral interactions of TM peptide segments. Here, we compare the potential of mean forces (PMFs) of dimerization of TM helices obtained using a MARTINI CG model and an atomistic (AT) Berger lipids-OPLS/AA model (AT(OPLS)). For helical, tryptophan-flanked, leucine-rich peptides (WL15 and WALP15) embedded in a parallel configuration in an octane slab, the AT(OPLS) PMF profiles showed a shallow minimum (with a depth of approximately 3 kJ/mol; i.e., a weak tendency to dimerize). A similar analysis using the CHARMM36 all-atom model (AT(CHARMM)) showed comparable results. In contrast, the CG analysis generally showed steep PMF curves with depths of approximately 16-22 kJ/mol, suggesting a stronger tendency to dimerize compared to the AT model. This CG > AT discrepancy in the propensity for dimerization was also seen for dilauroylphosphatidylcholine (DLPC)-embedded peptides. For a WL15 (and WALP15)/DLPC bilayer system, AT(OPLS) PMF showed a repulsive mean force for a wide range of interhelical distances, in contrast to the attractive forces observed in the octane system. The change from the octane slab to the DLPC bilayer also mitigated the dimerization propensity in the CG system. The dimerization energies of CG (AALALAA)3 peptides in DLPC and dioleoylphosphatidylcholine bilayers were in good agreement with previous experimental data. The lipid headgroup, but not the length of the lipid tails, was a key causative factor contributing to the differences between octane and DLPC. Furthermore, the CG model, but not the AT model, showed high sensitivity to changes in amino acid residues located near the lipid-water interface and hydrophobic mismatch between the peptides and membrane. These findings may help interpret CG and AT simulation results on membrane proteins.
Collapse
Affiliation(s)
- Manami Nishizawa
- Teikyo University School of Medical Technology, Itabashi, Tokyo, Japan
| | | |
Collapse
|
32
|
Lipid insertion domain unfolding regulates protein orientational transition behavior in a lipid bilayer. Biophys Chem 2015; 206:22-39. [PMID: 26164502 DOI: 10.1016/j.bpc.2015.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/02/2023]
Abstract
We have used coarse-grained (CG) and united atom (UA) molecular dynamics simulations to explore the mechanisms of protein orientational transition of a model peptide (Aβ42) in a phosphatidylcholine/cholesterol (PC/CHO) lipid bilayer. We started with an inserted state of Aβ42 containing a folded (I) or unfolded (II) K28-A42 lipid insertion domain (LID), which was stabilized by the K28-snorkeling and A42-anchoring to the PC polar groups in the lipid bilayer. After a UA-to-CG transformation and a 1000ns-CG simulation for enhancing the sampling of protein orientations, we discovered two transitions: I-to-"deep inserted" state with disrupted K28-snorkeling and II-to-"deep surface" state with disrupted A42-anchoring. The new states remained stable after a CG-to-UA transformation and a 200ns-UA simulation relaxation. Significant changes in the cholesterol-binding domain of Aβ42 and protein-induced membrane disruptions were evident after the transitions. We propose that the conformation of the LID regulates protein orientational transitions in the lipid membrane.
Collapse
|
33
|
Stangl M, Schneider D. Functional competition within a membrane: Lipid recognition vs. transmembrane helix oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1886-96. [PMID: 25791349 DOI: 10.1016/j.bbamem.2015.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
Abstract
Binding of specific lipids to large, polytopic membrane proteins is well described, and it is clear that such lipids are crucial for protein stability and activity. In contrast, binding of defined lipid species to individual transmembrane helices and regulation of transmembrane helix monomer-oligomer equilibria by binding of distinct lipids is a concept, which has emerged only lately. Lipids bind to single-span membrane proteins, both in the juxta-membrane region as well as in the hydrophobic membrane core. While some interactions counteract transmembrane helix oligomerization, in other cases lipid binding appears to enhance oligomerization. As reversible oligomerization is involved in activation of many membrane proteins, binding of defined lipids to single-span transmembrane proteins might be a mechanism to regulate and/or fine-tune the protein activity. But how could lipid binding trigger the activity of a protein? How can binding of a single lipid molecule to a transmembrane helix affect the structure of a transmembrane helix oligomer, and consequently its signaling state? These questions are discussed in the present article based on recent results obtained with simple, single-span transmembrane proteins. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Michael Stangl
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
34
|
Leman JK, Ulmschneider MB, Gray JJ. Computational modeling of membrane proteins. Proteins 2015; 83:1-24. [PMID: 25355688 PMCID: PMC4270820 DOI: 10.1002/prot.24703] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/01/2014] [Accepted: 10/18/2014] [Indexed: 02/06/2023]
Abstract
The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefited from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Martin B. Ulmschneider
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
35
|
Qiu L, Buie C, Cheng KH, Vaughn MW. Scaling and alpha-helix regulation of protein relaxation in a lipid bilayer. J Chem Phys 2014; 141:225101. [PMID: 25494768 PMCID: PMC4265037 DOI: 10.1063/1.4902229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/10/2014] [Indexed: 11/15/2022] Open
Abstract
Protein conformation and orientation in the lipid membrane plays a key role in many cellular processes. Here we use molecular dynamics simulation to investigate the relaxation and C-terminus diffusion of a model helical peptide: beta-amyloid (Aβ) in a lipid membrane. We observed that after the helical peptide was initially half-embedded in the extracelluar leaflet of phosphatidylcholine (PC) or PC/cholesterol (PC/CHOL) membrane, the C-terminus diffused across the membrane and anchored to PC headgroups of the cytofacial lipid leaflet. In some cases, the membrane insertion domain of the Aβ was observed to partially unfold. Applying a sigmoidal fit to the process, we found that the characteristic velocity of the C-terminus, as it moved to its anchor site, scaled with θu (-4/3), where θu is the fraction of the original helix that was lost during a helix to coil transition. Comparing this scaling with that of bead-spring models of polymer relaxation suggests that the C-terminus velocity is highly regulated by the peptide helical content, but that it is independent of the amino acid type. The Aβ was stabilized by the attachment of the positive Lys28 side chain to the negative phosphate of PC or 3β oxygen of CHOL in the extracellular lipid leaflet and of the C-terminus to its anchor site in the cytofacial lipid leaflet.
Collapse
Affiliation(s)
- Liming Qiu
- Department of Physics, Texas Tech University, Lubbock, Texas 79409, USA
| | - Creighton Buie
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Kwan Hon Cheng
- Department of Physics, Texas Tech University, Lubbock, Texas 79409, USA
| | - Mark W Vaughn
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
36
|
Folding energetics and oligomerization of polytopic α-helical transmembrane proteins. Arch Biochem Biophys 2014; 564:281-96. [DOI: 10.1016/j.abb.2014.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/26/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023]
|
37
|
Scharnagl C, Pester O, Hornburg P, Hornburg D, Götz A, Langosch D. Side-chain to main-chain hydrogen bonding controls the intrinsic backbone dynamics of the amyloid precursor protein transmembrane helix. Biophys J 2014; 106:1318-26. [PMID: 24655507 DOI: 10.1016/j.bpj.2014.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/28/2014] [Accepted: 02/07/2014] [Indexed: 01/19/2023] Open
Abstract
Many transmembrane helices contain serine and/or threonine residues whose side chains form intrahelical H-bonds with upstream carbonyl oxygens. Here, we investigated the impact of threonine side-chain/main-chain backbonding on the backbone dynamics of the amyloid precursor protein transmembrane helix. This helix consists of a N-terminal dimerization region and a C-terminal cleavage region, which is processed by γ-secretase to a series of products. Threonine mutations within this transmembrane helix are known to alter the cleavage pattern, which can lead to early-onset Alzheimer's disease. Circular dichroism spectroscopy and amide exchange experiments of synthetic transmembrane domain peptides reveal that mutating threonine enhances the flexibility of this helix. Molecular dynamics simulations show that the mutations reduce intrahelical amide H-bonding and H-bond lifetimes. In addition, the removal of side-chain/main-chain backbonding distorts the helix, which alters bending and rotation at a diglycine hinge connecting the dimerization and cleavage regions. We propose that the backbone dynamics of the substrate profoundly affects the way by which the substrate is presented to the catalytic site within the enzyme. Changing this conformational flexibility may thus change the pattern of proteolytic processing.
Collapse
Affiliation(s)
| | - Oxana Pester
- Munich Center for Integrated Protein Science (CIPS(M)) at Lehrstuhl Chemie der Biopolymere, Technische Universität München, Freising, Germany
| | - Philipp Hornburg
- Fakultät für Physik E14, Technische Universität München, Freising, Germany
| | - Daniel Hornburg
- Fakultät für Physik E14, Technische Universität München, Freising, Germany
| | - Alexander Götz
- Munich Center for Integrated Protein Science (CIPS(M)) at Lehrstuhl Chemie der Biopolymere, Technische Universität München, Freising, Germany
| | - Dieter Langosch
- Munich Center for Integrated Protein Science (CIPS(M)) at Lehrstuhl Chemie der Biopolymere, Technische Universität München, Freising, Germany
| |
Collapse
|
38
|
Klein N, Neumann J, O'Neil JD, Schneider D. Folding and stability of the aquaglyceroporin GlpF: Implications for human aqua(glycero)porin diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:622-33. [PMID: 25462169 DOI: 10.1016/j.bbamem.2014.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 01/22/2023]
Abstract
Aquaporins are highly selective polytopic transmembrane channel proteins that facilitate the permeation of water across cellular membranes in a large diversity of organisms. Defects in aquaporin function are associated with common diseases, such as nephrogenic diabetes insipidus, congenital cataract and certain types of cancer. In general, aquaporins have a highly conserved structure; from prokaryotes to humans. The conserved structure, together with structural dynamics and the structural framework for substrate selectivity is discussed. The folding pathway of aquaporins has been a topic of several studies in recent years. These studies revealed that a conserved protein structure can be reached by following different folding pathways. Based on the available data, we suggest a complex folding pathway for aquaporins, starting from the insertion of individual helices up to the formation of the tetrameric aquaporin structure. The consequences of some known mutations in human aquaporin-encoding genes, which most likely affect the folding and stability of human aquaporins, are discussed.
Collapse
Affiliation(s)
- Noreen Klein
- Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Jennifer Neumann
- Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Joe D O'Neil
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany.
| |
Collapse
|
39
|
Shelar A, Bansal M. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment. Proteins 2014; 82:3420-36. [PMID: 25257385 DOI: 10.1002/prot.24696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/05/2014] [Accepted: 09/16/2014] [Indexed: 11/09/2022]
Abstract
α-Helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α-helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α-helices in a high-resolution dataset of integral α-helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins.
Collapse
Affiliation(s)
- Ashish Shelar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | |
Collapse
|
40
|
General rules for the arrangements and gating motions of pore-lining helices in homomeric ion channels. Nat Commun 2014; 5:4641. [PMID: 25105557 PMCID: PMC4133698 DOI: 10.1038/ncomms5641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/09/2014] [Indexed: 12/20/2022] Open
Abstract
The pore-lining helix (PLH) bundles are central to the function of all ion channels,
as their conformational rearrangements dictate channel gating. Here we explore all
plausible oligomeric arrangements of the PLH bundles within homomeric ion channels
by building models using generic restraints. In particular, the distance between two
neighbouring PLHs was bounded both below and above in order to avoid steric clash
and allow proper packing. The resulting models provide a theoretical representation
of the accessible space for oligomeric arrangements. While the represented space is
confined, it encompasses nearly all the ion channel PLH bundles for which the
structures are currently known. For a multitude of channels, gating models suggested
by paths within the confined accessible space are in qualitative agreement with
those established in previous structural and computational studies. Rearrangements of the pore-lining helix (PLH) bundles of ion channels
are central to their gating mechanisms. Here, Dai et al. use a modelling approach
to define the general rules that govern the arrangements and gating motions of the PLHs
in homomeric ion channels.
Collapse
|
41
|
Walther TH, Ulrich AS. Transmembrane helix assembly and the role of salt bridges. Curr Opin Struct Biol 2014; 27:63-8. [DOI: 10.1016/j.sbi.2014.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
|
42
|
Pogozheva ID, Mosberg HI, Lomize AL. Life at the border: adaptation of proteins to anisotropic membrane environment. Protein Sci 2014; 23:1165-96. [PMID: 24947665 DOI: 10.1002/pro.2508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022]
Abstract
This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region-between double bonds and carbonyl groups of lipids. These "midpolar" regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein-lipid binding.
Collapse
Affiliation(s)
- Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109-1065
| | | | | |
Collapse
|
43
|
Mutational analysis of the Ve1 immune receptor that mediates Verticillium resistance in tomato. PLoS One 2014; 9:e99511. [PMID: 24911915 PMCID: PMC4049777 DOI: 10.1371/journal.pone.0099511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/15/2014] [Indexed: 12/13/2022] Open
Abstract
Pathogenic Verticillium species are economically important plant pathogens that cause vascular wilt diseases in hundreds of plant species. The Ve1 gene of tomato confers resistance against race 1 strains of Verticillium dahliae and V. albo-atrum. Ve1 encodes an extracellular leucine-rich repeat (eLRR) receptor-like protein (RLP) that serves as a cell surface receptor for recognition of the recently identified secreted Verticillium effector Ave1. To investigate recognition of Ave1 by Ve1, alanine scanning was performed on the solvent exposed β-strand/β-turn residues across the eLRR domain of Ve1. In addition, alanine scanning was also employed to functionally characterize motifs that putatively mediate protein-protein interactions and endocytosis in the transmembrane domain and the cytoplasmic tail of the Ve1 protein. Functionality of the mutant proteins was assessed by screening for the occurrence of a hypersensitive response upon co-expression with Ave1 upon Agrobacterium tumefaciens-mediated transient expression (agroinfiltration). In order to confirm the agroinfiltration results, constructs encoding Ve1 mutants were transformed into Arabidopsis and the transgenes were challenged with race 1 Verticillium. Our analyses identified several regions of the Ve1 protein that are required for functionality.
Collapse
|
44
|
Cohen EB, Jun SJ, Bears Z, Barrera FN, Alonso M, Engelman DM, DiMaio D. Mapping the homodimer interface of an optimized, artificial, transmembrane protein activator of the human erythropoietin receptor. PLoS One 2014; 9:e95593. [PMID: 24788775 PMCID: PMC4005772 DOI: 10.1371/journal.pone.0095593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/28/2014] [Indexed: 01/20/2023] Open
Abstract
Transmembrane proteins constitute a large fraction of cellular proteins, and specific interactions involving membrane-spanning protein segments play an important role in protein oligomerization, folding, and function. We previously isolated an artificial, dimeric, 44-amino acid transmembrane protein that activates the human erythropoietin receptor (hEPOR) in trans. This artificial protein supports limited erythroid differentiation of primary human hematopoietic progenitor cells in vitro, even though it does not resemble erythropoietin, the natural ligand of this receptor. Here, we used a directed-evolution approach to explore the structural basis for the ability of transmembrane proteins to activate the hEPOR. A library that expresses thousands of mutants of the transmembrane activator was screened for variants that were more active than the original isolate at inducing growth factor independence in mouse cells expressing the hEPOR. The most active mutant, EBC5-16, supports erythroid differentiation in human cells with activity approaching that of EPO, as assessed by cell-surface expression of glycophorin A, a late-stage marker of erythroid differentiation. EBC5-16 contains a single isoleucine to serine substitution at position 25, which increases its ability to form dimers. Genetic studies confirmed the importance of dimerization for activity and identified the residues constituting the homodimer interface of EBC5-16. The interface requires a GxxxG dimer packing motif and a small amino acid at position 25 for maximal activity, implying that tight packing of the EBC5-16 dimer is a crucial determinant of activity. These experiments identified an artificial protein that causes robust activation of its target in a natural host cell, demonstrated the importance of dimerization of this protein for engagement of the hEPOR, and provided the framework for future structure-function studies of this novel mechanism of receptor activation.
Collapse
Affiliation(s)
- Emily B. Cohen
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Susan J. Jun
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Zachary Bears
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Francisco N. Barrera
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Knoxville, Tennessee, United States of America
| | - Miriam Alonso
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Donald M. Engelman
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, New Haven, Connecticut, United States of America
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
45
|
Motohashi Y, Ohashi-Kobayashi A, Nakanishi-Matsui M, Fujimoto Y, Maeda M. Intracellular Localization of ABC Transporter TAPL Differs between Transient and Stable Expression. Cell 2014. [DOI: 10.4236/cellbio.2014.32006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Zhang Z, Thomma BPHJ. Structure-function aspects of extracellular leucine-rich repeat-containing cell surface receptors in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1212-23. [PMID: 23718712 DOI: 10.1111/jipb.12080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/23/2013] [Indexed: 05/08/2023]
Abstract
Plants exploit several types of cell surface receptors for perception of extracellular signals, of which the extracellular leucine-rich repeat (eLRR)-containing receptors form the major class. Although the function of most plant eLRR receptors remains unclear, an increasing number of these receptors are shown to play roles in innate immunity and a wide variety of developmental processes. Recent efforts using domain swaps, gene shuffling analyses, site-directed mutagenesis, interaction studies, and crystallographic analyses resulted in the current knowledge on ligand binding and the mechanism of activation of plant eLRR receptors. This review provides an overview of eLRR receptor research, specifically summarizing the recent understanding of interactions among plant eLRR receptors, their co-receptors and corresponding ligands. The functions of distinct eLRR receptor domains, and their role in structure, ligand perception and multimeric complex formation are discussed. [Figure: see text] Bart P.H.J. Thomma (Corresponding author).
Collapse
Affiliation(s)
- Zhao Zhang
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | |
Collapse
|
47
|
Smith EC, Smith SE, Carter JR, Webb SR, Gibson KM, Hellman LM, Fried MG, Dutch RE. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins: roles in protein folding, stability, and function. J Biol Chem 2013; 288:35726-35. [PMID: 24178297 DOI: 10.1074/jbc.m113.514554] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.
Collapse
Affiliation(s)
- Everett Clinton Smith
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Tani K, Fujiyoshi Y. Water channel structures analysed by electron crystallography. Biochim Biophys Acta Gen Subj 2013; 1840:1605-13. [PMID: 24120524 DOI: 10.1016/j.bbagen.2013.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules. SCOPE OF REVIEW The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids. MAJOR CONCLUSIONS Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function. GENERAL SIGNIFICANCE Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Cellular and Structural Physiology Institute, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan.
| |
Collapse
|
49
|
Lee CH, Chen YW, Huang YT, Pan YJ, Lee CH, Lin SM, Huang LK, Lo YY, Huang YF, Hsu YD, Yen SC, Hwang JK, Pan RL. Functional Investigation of Transmembrane Helix 3 in H+-Translocating Pyrophosphatase. J Membr Biol 2013; 246:959-66. [DOI: 10.1007/s00232-013-9599-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
50
|
Moore RH, Chothe P, Swaan PW. Transmembrane domain V plays a stabilizing role in the function of human bile acid transporter SLC10A2. Biochemistry 2013; 52:5117-24. [PMID: 23815591 PMCID: PMC3812428 DOI: 10.1021/bi400028q] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human apical sodium-dependent bile acid transporter (hASBT, SLC10A2), primarily expressed in the ileum, is involved in both the recycling of bile acids and cholesterol homeostasis. In this study, the structure-function relationship of transmembrane domain 5 (TM5) residues involved in transport is elucidated. Cysteine scanning mutagenesis of each consecutive residue on TM5 resulted in 96% of mutants having a significantly decreased transport activity, although each was expressed at the cell surface. Specifically, G197 and I208 were no longer functional, and G201 and G212 functioned at a level of <10% upon cysteine mutation. Interestingly, each of these exists along one face of the helix. Studies suggest that neither G201 nor G212 is on the substrate pathway. Conservative alanine mutations of the four residues displayed a higher activity in all but G197A, indicating its functional importance. G197 and G201 form a GxxxG motif, which has been found to be important in helix-helix interactions. According to our model, G197 and G201 face transmembrane domain 4 (TM4) residues G179 and P175, respectively. Similarly, G212 faces G237, which forms part of a GxxxG domain in transmembrane domain 6 (TM6). It is possible that these GxxxG domains and their interacting partners are responsible for maintaining the structure of the helices and their interactions with one another. I205 and I208 are both in positions to anchor the GxxxG domains and direct the change in interaction of TM5 from TM4 to TM6. Combined, the results suggest that residues along TM5 are critical for ASBT function but are not directly involved in substrate translocation.
Collapse
Affiliation(s)
- Robyn H. Moore
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201
| | - Paresh Chothe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201
| | - Peter W. Swaan
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201
| |
Collapse
|