1
|
Contributions and therapeutic potential of tumor-derived microRNAs containing exosomes to cancer progression. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Alptekin A, Parvin M, Chowdhury HI, Rashid MH, Arbab AS. Engineered exosomes for studies in tumor immunology. Immunol Rev 2022; 312:76-102. [PMID: 35808839 DOI: 10.1111/imr.13107] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Exosomes are a type of extracellular vesicle (EV) with diameters of 30-150 nm secreted by most of the cells into the extracellular spaces and can alter the microenvironment through cell-to-cell interactions by fusion with the plasma membrane and subsequent endocytosis and release of the cargo. Because of their biocompatibility, low toxicity and immunogenicity, permeability (even through the blood-brain barrier (BBB)), stability in biological fluids, and ability to accumulate in the lesions with higher specificity, investigators have started making designer's exosomes or engineered exosomes to carry biologically active protein on the surface or inside the exosomes as well as using exosomes to carry drugs, micro RNA, and other products to the site of interest. In this review, we have discussed biogenesis, markers, and contents of various exosomes including exosomes of immune cells. We have also discussed the current methods of making engineered and designer's exosomes as well as the use of engineered exosomes targeting different immune cells in the tumors, stroke, as well as at peripheral blood. Genetic engineering and customizing exosomes create an unlimited opportunity to use in diagnosis and treatment. Very little use has been discovered, and we are far away to reach its limits.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Mahrima Parvin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | | | | | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
3
|
Shin H, Seo D, Choi Y. Extracellular Vesicle Identification Using Label-Free Surface-Enhanced Raman Spectroscopy: Detection and Signal Analysis Strategies. Molecules 2020; 25:E5209. [PMID: 33182340 PMCID: PMC7664897 DOI: 10.3390/molecules25215209] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) have been widely investigated as promising biomarkers for the liquid biopsy of diseases, owing to their countless roles in biological systems. Furthermore, with the notable progress of exosome research, the use of label-free surface-enhanced Raman spectroscopy (SERS) to identify and distinguish disease-related EVs has emerged. Even in the absence of specific markers for disease-related EVs, label-free SERS enables the identification of unique patterns of disease-related EVs through their molecular fingerprints. In this review, we describe label-free SERS approaches for disease-related EV pattern identification in terms of substrate design and signal analysis strategies. We first describe the general characteristics of EVs and their SERS signals. We then present recent works on applied plasmonic nanostructures to sensitively detect EVs and notable methods to interpret complex spectral data. This review also discusses current challenges and future prospects of label-free SERS-based disease-related EV pattern identification.
Collapse
Affiliation(s)
- Hyunku Shin
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Korea; (H.S.); (D.S.)
| | - Dongkwon Seo
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Korea; (H.S.); (D.S.)
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Korea; (H.S.); (D.S.)
- School of Biomedical Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|
4
|
Li Y, Li Q, Gu J, Qian D, Qin X, Li D. Exosomal prostate-specific G-protein-coupled receptor induces osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Transl Cancer Res 2020; 9:5857-5867. [PMID: 35117199 PMCID: PMC8798947 DOI: 10.21037/tcr-20-1858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/21/2020] [Indexed: 12/28/2022]
Abstract
Background Prostate cancer (PCa) is the second leading cause of cancer-related deaths worldwide. Prostate-specific G-protein-coupled receptor (PSGR) has been identified as a new potential biomarker and therapeutic target for PCa. However, the influence of exosomal PSGR on PCa metastasis remains unknown. This study aimed to identify the regulatory role of exosomal PSGR in the bone microenvironment, prior to metastasis of PCa and the underlying mechanism. Methods hFOB1.19 cells were co-cultured with PC-3 exosomes exhibiting PSGR overexpression. Alkaline phosphatase (ALP) and von Kossa staining methods were used to measure the osteogenesis of hFOB1.19 cells. RNA sequencing was used to screen the downstream target genes of PSGR and the signaling pathways involved. The expression of the candidate genes was verified using quantitative real-time polymerase chain reaction (qRT-PCR). Results ALP and von Kossa staining results showed that PC-3 exosomes with overexpressed PSGR enhanced osteogenesis of hFOB1.19 cells. A total of 853 mRNAs were differentially expressed in hFOB1.19 cells of the PSGR-overexpressing PC3 cell (PC3PSGR+ exosome) group compared to the negative exosome control (NC) group, among which 182 mRNAs were significantly upregulated and 671 were downregulated. The functional enrichment and pathway analysis showed that differentially expressed mRNAs were mainly involved in cellular responses to interleukin-1 (IL1), chemotaxis, inflammation, transcriptional misregulation in cancer, and MAKP and NF-κB signaling pathways. qRT-PCR showed that levels of intercellular adhesion molecule-1 (ICAM1), RELB proto-oncogene, NF-κB subunit (RELB), and IL1 beta (IL1B) were significantly decreased in hFOB1.19 cells of the PSGR-overexpression group. Conclusions This study suggests that PSGR may regulate the MAKP and NF-κB signaling pathways involved in the process of bony metastases by targeting ICAM1, RELB, and IL1B.
Collapse
Affiliation(s)
- Yao Li
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Urology, Changzheng Hospital Affiliated to Naval Military Medical University, Shanghai, China
| | - Quan Li
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jie Gu
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Duocheng Qian
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaojing Qin
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dujian Li
- Department of Urology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Huang MB, Xia M, Gao Z, Zhou H, Liu M, Huang S, Zhen R, Wu JY, Roth WW, Bond VC, Xiao J, Leng J. Characterization of Exosomes in Plasma of Patients with Breast, Ovarian, Prostate, Hepatic, Gastric, Colon, and Pancreatic Cancers. JOURNAL OF CANCER THERAPY 2019; 10:382-399. [PMID: 33833900 PMCID: PMC8025783 DOI: 10.4236/jct.2019.105032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Detection of circulating tumor-specific DNA, RNA or proteins can be difficult due to relative scarcity. Exosomes are extracellular vesicles, 30 - 150 nm in diameter derived from fusion of multivesicular bodies with the plasma membrane. They are composed of a lipid bilayer membrane and contain proteins, mRNA and miRNA. Exosomes are secreted by multiple cell types, including cancer cells. However, there is a relative lack of information concerning the contents of exosomes secreted by various tumor cell types. To examine exosomes in cancer, we collected blood plasma samples from patients with breast, ovarian, prostate, hepatic, gastric, colon, and pancreatic cancers. Exosomes were isolated from plasma and confirmed by AchE assay, transmission electron microscopy and expression of the CD63 exosomal marker. Expression of AFP, CA724, CA153, CEA, CA125, CA199 and PSA antigens were determined using an automated electro-chemiluminescence assay. Expression of the tumor-related chaperone protein, mortalin, was determined by Western blot analysis. Levels of exosome secretion were variable among the different tumor types. Both exosome levels and mortalin expression within tumor cell exosomes were higher than in healthy donors, except in pancreatic carcinoma, where exosomes were elevated but mortalin expression was not significantly different from healthy donors. Exosomes provide unique opportunities for the enrichment of tumor-specific materials and may be useful as biomarkers and possibly as tools of cancer therapies. Mortalin, which has been linked to cell proliferation and induction of epithelial-mesenchymal transition of cancer cells, may be useful as a prognostic bio-marker and as a possible therapeutic target.
Collapse
Affiliation(s)
- Ming-Bo Huang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Meng Xia
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhao Gao
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hu Zhou
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Min Liu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Shan Huang
- Tumor hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Rong Zhen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jennifer Y. Wu
- Columbia College, Columbia University, New York, NY, USA
| | - William W. Roth
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Vincent C. Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Jian Xiao
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jing Leng
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
6
|
Proteome Profiling of Exosomes Purified from a Small Amount of Human Serum: The Problem of Co-Purified Serum Components. Proteomes 2019; 7:proteomes7020018. [PMID: 31035355 PMCID: PMC6630217 DOI: 10.3390/proteomes7020018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Untargeted proteomics analysis of extracellular vesicles (EVs) isolated from human serum or plasma remains a technical challenge due to the contamination of these vesicles with lipoproteins and other abundant serum components. Here we aimed to test a simple method of EV isolation from a small amount of human serum (<1 mL) using the size-exclusion chromatography (SEC) standalone for the discovery of vesicle-specific proteins by the untargeted LC–MS/MS shotgun approach. We selected the SEC fraction containing vesicles with the size of about 100 nm and enriched with exosome markers CD63 and CD81 (but not CD9 and TSG101) and analyzed it in a parallel to the subsequent SEC fraction enriched in the lipoprotein vesicles. In general, there were 267 proteins identified by LC–MS/MS in exosome-containing fraction (after exclusion of immunoglobulins), yet 94 of them might be considered as serum proteins. Hence, 173 exosome-related proteins were analyzed, including 92 proteins absent in lipoprotein-enriched fraction. In this set of exosome-related proteins, there were 45 species associated with the GO cellular compartment term “extracellular exosome”. Moreover, there were 31 proteins associated with different immune-related functions in this set, which putatively reflected the major role of exosomes released by immune cells present in the blood. We concluded that identified set of proteins included a bona fide exosomes components, yet the coverage of exosome proteome was low due to co-purified high abundant serum proteins. Nevertheless, the approach proposed in current work outperformed other comparable protocols regarding untargeted identification of exosome proteins and could be recommended for pilot exploratory studies when a small amount of a serum/plasma specimen is available.
Collapse
|
7
|
|
8
|
Immunotherapy for cervical cancer: Can it do another lung cancer? Curr Probl Cancer 2018; 42:148-160. [PMID: 29500076 DOI: 10.1016/j.currproblcancer.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/10/2017] [Indexed: 02/04/2023]
Abstract
Cervical cancer, although preventable, is still the second most common cancer among women worldwide. In developing countries like India, where screening for cervical cancer is virtually absent, most women seek treatment only at advanced stages of the disease. Although standard treatment is curative in more than 90% of women during the early stages, for stage IIIb and above this rate drops to 50% or less. Hence, novel therapeutic adjuvants are required to improve survival at advanced stages. Lung cancer has shown the way forward with the use of Immunotherapeutic interventions as standard line of treatment in advanced stages. In this review, we provide an overview of mechanisms of immune evasion, strategies that can be employed to boost the immune system in order to improve the overall survival of the patients and summarize briefly the clinical trials that have been completed or that are underway to bring therapeutic vaccines for cervical cancer to the clinics.
Collapse
|
9
|
Exosomes: novel implications in diagnosis and treatment of gastrointestinal cancer. Langenbecks Arch Surg 2016; 401:1097-1110. [PMID: 27342853 DOI: 10.1007/s00423-016-1468-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/16/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Amongst all cancer subtypes, gastrointestinal tumours are responsible for most cancer-related deaths. In most of the cases, the limitation of the prognosis of patients with malignant gastrointestinal tumours can be attributed to delayed diagnosis of the disease. In the last decade, secondary prevention strategies, in particular tumour screenings, have been identified to significantly improve the identification of patients with early-stage disease, leading to more effective therapeutic interventions. Therefore, new screening methods and further innovative treatment approaches may lead to an increase in progression-free and overall survival rates. PURPOSE Exosomes are small microvesicles with a size of 50-150 nm. They are formed in the endosomal system of many different cell types, where they are packed with nucleotides and proteins from the parental cell. After their release into the extracellular space, exosomes can deliver their cargo into recipient cells. By this mechanism, tumour cells can recruit and manipulate the adjacent and systemic microenvironment in order to support invasion and dissemination. Cancer-derived exosomes in the blood may provide detailed information about the tumour biology of each individual patient. Moreover, tumour-derived exosomes can be used as targetable factors and drug delivery agents in clinical practice. CONCLUSION In this review, we summarise new aspects about novel implications in the diagnosis and treatment of gastrointestinal cancer and show how circulating exosomes have come into the spotlight of research as a high potential source of 'liquid biopsies'.
Collapse
|
10
|
Ahadi A, Brennan S, Kennedy PJ, Hutvagner G, Tran N. Long non-coding RNAs harboring miRNA seed regions are enriched in prostate cancer exosomes. Sci Rep 2016; 6:24922. [PMID: 27102850 PMCID: PMC4840345 DOI: 10.1038/srep24922] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 03/21/2016] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) form the largest transcript class in the human transcriptome. These lncRNA are expressed not only in the cells, but they are also present in the cell-derived extracellular vesicles such as exosomes. The function of these lncRNAs in cancer biology is not entirely clear, but they appear to be modulators of gene expression. In this study, we characterize the expression of lncRNAs in several prostate cancer exosomes and their parental cell lines. We show that certain lncRNAs are enriched in cancer exosomes with the overall expression signatures varying across cell lines. These exosomal lncRNAs are themselves enriched for miRNA seeds with a preference for let-7 family members as well as miR-17, miR-18a, miR-20a, miR-93 and miR-106b. The enrichment of miRNA seed regions in exosomal lncRNAs is matched with a concomitant high expression of the same miRNA. In addition, the exosomal lncRNAs also showed an over representation of RNA binding protein binding motifs. The two most common motifs belonged to ELAVL1 and RBMX. Given the enrichment of miRNA and RBP sites on exosomal lncRNAs, their interplay may suggest a possible function in prostate cancer carcinogenesis.
Collapse
Affiliation(s)
- Alireza Ahadi
- Centre for Human Centred Technology Design, University of Technology, Sydney.,Centre for Health Technologies, Faculty of Engineering and Information Technology, University of Technology, Sydney
| | - Samuel Brennan
- School of Life Sciences, Faculty of Science, University of Technology, Sydney
| | - Paul J Kennedy
- Centre for Health Technologies, Faculty of Engineering and Information Technology, University of Technology, Sydney.,Centre for Quantum Computation and Intelligent Systems, University of Technology, Sydney
| | - Gyorgy Hutvagner
- Centre for Health Technologies, Faculty of Engineering and Information Technology, University of Technology, Sydney
| | - Nham Tran
- Centre for Health Technologies, Faculty of Engineering and Information Technology, University of Technology, Sydney.,The Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital, Australia
| |
Collapse
|
11
|
The Dichotomy of Tumor Exosomes (TEX) in Cancer Immunity: Is It All in the ConTEXt? Vaccines (Basel) 2015; 3:1019-51. [PMID: 26694473 PMCID: PMC4693230 DOI: 10.3390/vaccines3041019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/24/2015] [Accepted: 12/05/2015] [Indexed: 02/06/2023] Open
Abstract
Exosomes are virus-sized nanoparticles (30–130 nm) formed intracellularly as intravesicular bodies/intralumenal vesicles within maturing endosomes (“multivesicular bodies”, MVBs). If MVBs fuse with the cell’s plasma membrane, the interior vesicles may be released extracellularly, and are termed “exosomes”. The protein cargo of exosomes consists of cytosolic, membrane, and extracellular proteins, along with membrane-derived lipids, and an extraordinary variety of nucleic acids. As such, exosomes reflect the status and identity of the parent cell, and are considered as tiny cellular surrogates. Because of this closely entwined relationship between exosome content and the source/status of the parental cell, conceivably exosomes could be used as vaccines against various pathologies, as they contain antigens associated with a given disease, e.g., cancer. Tumor-derived exosomes (TEX) have been shown to be potent anticancer vaccines in animal models, driving antigen-specific T and B cell responses, but much recent literature concerning TEX strongly places the vesicles as powerfully immunosuppressive. This dichotomy suggests that the context in which the immune system encounters TEX is critical in determining immune stimulation versus immunosuppression. Here, we review literature on both sides of this immune coin, and suggest that it may be time to revisit the concept of TEX as anticancer vaccines in clinical settings.
Collapse
|
12
|
Abstract
Trafficking of biological material across membranes is an evolutionary conserved mechanism and is part of any normal cell homeostasis. Such transport is composed of active, passive, export through microparticles, and vesicular transport (exosomes) that collectively maintain proper compartmentalization of important micro- and macromolecules. In pathological states, such as cancer, aberrant activity of the export machinery results in expulsion of a number of key proteins and microRNAs resulting in their misexpression. Exosome-mediated expulsion of intracellular drugs could be another barrier in the proper action of most of the commonly used therapeutics, targeted agents, and their intracellular metabolites. Over the last decade, a number of studies have revealed that exosomes cross-talk and/or influence major tumor-related pathways, such as hypoxia-driven epithelial-to-mesenchymal transition, cancer stemness, angiogenesis, and metastasis involving many cell types within the tumor microenvironment. Emerging evidence suggests that exosome-secreted proteins can also propel fibroblast growth, resulting in desmoplastic reaction, a major barrier in effective cancer drug delivery. This comprehensive review highlights the advancements in the understanding of the biology of exosomes secretions and the consequence on cancer drug resistance. We propose that the successful combination of cancer treatments to tackle exosome-mediated drug resistance requires an interdisciplinary understanding of these cellular exclusion mechanisms, and how secreted biomolecules are involved in cellular cross-talk within the tumor microenvironment.
Collapse
Affiliation(s)
- Asfar S. Azmi
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Bin Bao
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Fazlul H. Sarkar
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
13
|
Abstract
Microvesicles are shed constitutively, or upon activation, from both normal and malignant cells. The process is dependent on an increase in cytosolic Ca2+, which activates different enzymes, resulting in depolymerization of the actin cytoskeleton and release of the vesicles. Drug resistance can be defined as the ability of cancer cells to survive exposure to a wide range of anti-cancer drugs, and anti-tumour chemotherapeutic treatments are often impaired by innate or acquired MDR (multidrug resistance). Microvesicles released upon chemotherapeutic agents prevent the drugs from reaching their targets and also mediate intercellular transport of MDR proteins.
Collapse
|
14
|
Sleeman JP, Nazarenko I, Thiele W. Do all roads lead to Rome? Routes to metastasis development. Int J Cancer 2011; 128:2511-26. [PMID: 21365648 DOI: 10.1002/ijc.26027] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/26/2010] [Indexed: 01/31/2023]
Abstract
Metastasis, the life-threatening aspect of cancer, is a systemic disease process. Considerable progress has been made in recent years regarding how tumor cells circulating in the blood and lymphatic systems interact with and extravasate into secondary sites, and what determines whether these disseminated tumors cells survive, remain dormant or go on to form macrometastases. New insights into the routes that tumor cells take once leaving the primary tumor have emerged. Novel concepts regarding early seeding of metastases coupled to parallel progression, self-seeding of primary tumors by circulating tumor cells and the induction of premetastatic niches in distant organs by primary tumors have come to the fore. The perceived role of the lymphatic system in determining patterns of metastasis formation in distant organs has been reassessed. Together these new insights have the potential to offer new therapeutic options. In particular, the regulation of tumor cell dormancy emerges as a key event in metastasis formation, and therapeutic control of dormancy holds the promise of rendering cancer a chronic rather than life-threatening disease.
Collapse
Affiliation(s)
- Jonathan P Sleeman
- Medical Faculty Mannheim, University of Heidelberg, Mannheim D-68167, Germany.
| | | | | |
Collapse
|
15
|
Lesieur S, Gazeau F, Luciani N, Ménager C, Wilhelm C. Multifunctional nanovectors based on magnetic nanoparticles coupled with biological vesicles or synthetic liposomes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10487j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Temchura VV, Tenbusch M, Nchinda G, Nabi G, Tippler B, Zelenyuk M, Wildner O, Uberla K, Kuate S. Enhancement of immunostimulatory properties of exosomal vaccines by incorporation of fusion-competent G protein of vesicular stomatitis virus. Vaccine 2008; 26:3662-72. [PMID: 18538453 PMCID: PMC7115564 DOI: 10.1016/j.vaccine.2008.04.069] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/28/2008] [Accepted: 04/28/2008] [Indexed: 01/07/2023]
Abstract
Exosomes have been proposed as candidates for therapeutic immunization. The present study demonstrates that incorporation of the G protein of vesicular stomatitis virus (VSV-G) into exosome-like vesicles (ELVs) enhances their uptake and induces the maturation of dendritic cells. Targeting of VSV-G and ovalbumin as a model antigen to the same ELVs increased the cross-presentation of ovalbumin via an endosomal acidification mechanism. Immunization of mice with VSV-G and ovalbumin containing ELVs led to an increased IgG2a antibody response, expansion of antigen-specific CD8 T cells, strong in vivo CTL responses, and protection from challenge with ovalbumin expressing tumor cells. Thus, incorporation of VSV-G and targeting of antigens to ELVs are attractive strategies to improve exosomal vaccines.
Collapse
Affiliation(s)
- Vladimir V Temchura
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum D-44780, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Megjugorac NJ, Jacobs ES, Izaguirre AG, George TC, Gupta G, Fitzgerald-Bocarsly P. Image-based study of interferongenic interactions between plasmacytoid dendritic cells and HSV-infected monocyte-derived dendritic cells. Immunol Invest 2008; 36:739-61. [PMID: 18161527 DOI: 10.1080/08820130701715845] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plasmacytoid dendritic cells (pDC) are well-known for their ability to produce large quantities of interferon-alpha (IFN-alpha) in response to viruses. In addition, pDC produce IFN-alpha in response to HSV-infected cells. We demonstrate that both tonsil and PBMC contain pDC that respond to stimulation with HSV either in suspension or in tonsil tissue-fragment culture. We hypothesized that other DC subsets acquire virus in the periphery and deliver the interferongenic signals to the pDC in the draining lymphoid tissue. As a model for pDC/myeloid DC interaction, we studied the interaction of pDC derived from blood with HSV-infected and uninfected monocyte derived dendritic cells (MDDC). Infected, but not uninfected, MDDC induced IFN-alpha in pDC. To further study pDC/infected MDDC interactions, we labeled MDDC with fluorescent cell trackers PKH67 or CFSE prior to infection with HSV and co-cultured with pDC. Cells were then analyzed using conventional and imaging flow cytometry. In addition, we infected MDDC with a GFP-expressing HSV prior to co-culture with pDC. Using traditional flow cytometry, we observed that pDC became fluorescent after co-incubation with uninfected or infected, fluorescently labeled MDDC, indicating that MDDC transferred fluorescent protein and membrane to pDC. By imaging flow cytometry, we observed formation of conjugates between pDC and MDDC as well as transfer and internalization of cellular components from the labeled MDDC by pDC, with preferential uptake from, and association with, infected vs. uninfected MDDC. These studies demonstrate that MDDC infected with HSV are able to stimulate IFN-alpha and chemokine production by pDC through the transfer of cellular materials from the HSV-infected MDDC to the pDC. Together, these observations indicate that heterogeneous populations of DC interact to generate an effective IFN-alpha response.
Collapse
Affiliation(s)
- Nicholas J Megjugorac
- UMDNJ-New Jersey Medical School-University Hospital Cancer Center, Newark, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Researchers have only just begun to elucidate the relationship between heat shock proteins (HSP) and Toll-like receptors (TLR). HSP were originally described as an intracellular molecular chaperone of naïve, aberrantly folded, or mutated proteins and primarily implicated as a cytoprotective protein when cells are exposed to stressful stimuli. However, recent studies have ascribed novel functions to the Hsp70 protein depending on its localization: Surface-bound Hsp70 specifically activate natural killer (NK) cells, while Hsp70 released into the extracellular milieu specifically bind to Toll-like receptors (TLR) 2 and 4 on antigen-presenting cells (APC) and exerts immunoregulatory effects, including upregulation of adhesion molecules, co-stimulatory molecule expression, and cytokine and chemokine release-a process known as the chaperokine activity of Hsp70. This chapter discusses the most recent advances in the understanding of heat shock protein (HSP) and TLR interactions in general and highlights recent findings that demonstrate Hsp70 is a ligand for TLR and its biological significance.
Collapse
Affiliation(s)
- Alexzander Asea
- Division of Investigative Pathology,Texas A&M University System Health Science Center College of Medicine, 1901 South 1st Street, Temple, TX 76504, USA.
| |
Collapse
|
19
|
Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, Foster LJ, Reiner NE. Proteomic analysis of the secretome of Leishmania donovani. Genome Biol 2008; 9:R35. [PMID: 18282296 PMCID: PMC2374696 DOI: 10.1186/gb-2008-9-2-r35] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Revised: 01/22/2008] [Accepted: 02/18/2008] [Indexed: 12/21/2022] Open
Abstract
Analysis of Leishmania-conditioned medium resulted in the identification of 151 proteins apparently secreted by the parasitic protozoan Leishmania donovani and suggested a vesicle-based secretion system. Background Leishmania and other intracellular pathogens have evolved strategies that support invasion and persistence within host target cells. In some cases the underlying mechanisms involve the export of virulence factors into the host cell cytosol. Previous work from our laboratory identified one such candidate leishmania effector, namely elongation factor-1α, to be present in conditioned medium of infectious leishmania as well as within macrophage cytosol after infection. To investigate secretion of potential effectors more broadly, we used quantitative mass spectrometry to analyze the protein content of conditioned medium collected from cultures of stationary-phase promastigotes of Leishmania donovani, an agent of visceral leishmaniasis. Results Analysis of leishmania conditioned medium resulted in the identification of 151 proteins apparently secreted by L. donovani. Ratios reflecting the relative amounts of each leishmania protein secreted, as compared to that remaining cell associated, revealed a hierarchy of protein secretion, with some proteins secreted to a greater extent than others. Comparison with an in silico approach defining proteins potentially exported along the classic eukaryotic secretion pathway suggested that few leishmania proteins are targeted for export using a classic eukaryotic amino-terminal secretion signal peptide. Unexpectedly, a large majority of known eukaryotic exosomal proteins was detected in leishmania conditioned medium, suggesting a vesicle-based secretion system. Conclusion This analysis shows that protein secretion by L. donovani is a heterogeneous process that is unlikely to be determined by a classical amino-terminal secretion signal. As an alternative, L. donovani appears to use multiple nonclassical secretion pathways, including the release of exosome-like microvesicles.
Collapse
Affiliation(s)
- J Maxwell Silverman
- Department of Medicine (Division of Infectious Diseases), University of British Columbia, Faculty of Medicine, 2733 Heather St, Vancouver, British Columbia, V5Z 3J5, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Panepinto J, Komperda K, Frases S, Park YD, Djordjevic JT, Casadevall A, Williamson PR. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol 2008; 71:1165-76. [PMID: 19210702 DOI: 10.1111/j.1365-2958.2008.06588.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell wall of pathogenic fungi such as Cryptococcus neoformans, provides a formidable barrier to secrete virulence factors that produce host cell damage. To study secretion of virulence factors to the cell periphery, sec6 RNAi mutant strains of C. neoformans were tested for virulence factor expression. The studies reported here show that SEC6 RNAi mutant strains were defective in a number of virulence factors including laccase, urease as well as soluble polysaccharide and demonstrated attenuated virulence in mice. Further analysis by transmission electron microscopy detected the production of abundant extracellular exosomes in wild-type strains containing empty plasmid, but a complete absence in the iSEC6 strain. In addition, a green fluorescent protein-laccase fusion protein demonstrated aberrant localization within cytoplasmic vesicles in iSEC6 strains. In contrast, iSEC6 strains retained normal growth at 37 degrees C, as well as substantially normal capsule formation, phospholipase activity and total secreted protein. These results provide the first molecular evidence for the existence of fungal exosomes and associate these vesicles with the virulence of C. neoformans.
Collapse
Affiliation(s)
- John Panepinto
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Currently two mechanisms are recognized by which heat shock proteins (HSP) are released from cells; a passive release mechanism, including necrotic cell death, severe blunt trauma, surgery and following infection with lytic viruses, and an active release mechanism which involves the non classical protein release pathway. HSPs are released both as free HSP and within exosomes. This review covers recent findings on the mechanism by which stress induces the release of HSP72 into the circulation and the biological significance of circulating HSP72 to host defense against disease.
Collapse
Affiliation(s)
- Alexzander Asea
- Division of Investigative Pathology, Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine, 2401 South 31st Street, Temple, TX 76508, USA.
| |
Collapse
|
22
|
Millimaggi D, Mari M, D'Ascenzo S, Carosa E, Jannini EA, Zucker S, Carta G, Pavan A, Dolo V. Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells. Neoplasia 2007; 9:349-57. [PMID: 17460779 PMCID: PMC1854851 DOI: 10.1593/neo.07133] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 02/23/2007] [Accepted: 02/26/2007] [Indexed: 11/18/2022] Open
Abstract
Matrix metalloproteinase (MMP) degradation of extracellular matrix is thought to play an important role in invasion, angiogenesis, tumor growth, and metastasis. Several studies have demonstrated that CD147/extracellular MMP inducer, a membrane-spanning molecule highly expressed in tumor cells, may be involved in the progression of malignancies by regulating expression of MMP in peritumoral stromal cells. In the present study we show that CD147 is expressed in microvesicles derived from epithelial ovarian cancer cells and that CD147-positive vesicles may promote an angiogenic phenotype in endothelial cells in vitro. Vesicles shed by human ovarian carcinoma cell lines OVCAR3, SKOV3, and A2780 expressed different levels of CD147 and stimulated proangiogenic activities of human umbilical vein endothelial cells (HUVECs) in a CD147-dependent fashion (OVCAR3 > SKOV3 > A2780). Moreover, vesicles shed by ovarian carcinoma cell line CABA I with low CD147 expression had no significant effect on the development of angiogenic phenotype in HUVECs. The treatment of OVCAR3 cells with small interfering RNA against CD147 suppressed the angiogenic potential of OVCAR3-derived microvesicles. However, transfection of CD147 cDNA into the CABA I cell line enabled CABA I-derived vesicles to induce angiogenesis and to promote MMP genes expression in HUVECs. We therefore conclude that vesicles shed by ovarian cancer cells may induce proangiogenic activities of HUVECs by a CD147-mediated mechanism.
Collapse
Affiliation(s)
- Danilo Millimaggi
- Department of Experimental Medicine, L'Aquila University, L'Aquila, Italy
| | - Marianna Mari
- Department of Experimental Medicine, L'Aquila University, L'Aquila, Italy
| | - Sandra D'Ascenzo
- Department of Experimental Medicine, L'Aquila University, L'Aquila, Italy
| | - Eleonora Carosa
- Department of Experimental Medicine, L'Aquila University, L'Aquila, Italy
| | | | - Stanley Zucker
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Gaspare Carta
- Department of Surgical Science, L'Aquila University, L'Aquila, Italy
| | - Antonio Pavan
- Department of Experimental Medicine, L'Aquila University, L'Aquila, Italy
- Department of Experimental Medicine, University of Rome, “La Sapienza”
| | - Vincenza Dolo
- Department of Experimental Medicine, L'Aquila University, L'Aquila, Italy
| |
Collapse
|
23
|
Zanoni I, Granucci F, Foti M, Ricciardi-Castagnoli P. Self-tolerance, dendritic cell (DC)-mediated activation and tissue distribution of natural killer (NK) cells. Immunol Lett 2007; 110:6-17. [PMID: 17451813 DOI: 10.1016/j.imlet.2007.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that exert a potent function against infected and tumor cells. Although NK cells were originally defined by their capacity to lyse target cells and produce interferon (IFN)-gamma without prior activation, more recent studies found that NK cells display also a potent regulatory function. Following engagement of surface receptors by other cells or signalling by soluble molecules, NK cells release cytokines able to influence the outcome of an immune response. Since their discovery in the 1970s, the biology of NK cells has been deeply investigated; nevertheless some aspects of their maturation process, activation mechanisms, and tissue distribution remain still obscure. These review will focus on three major issues regarding NK cell regulation. In particular we aim to discuss: (i) how NK cells become tolerant to self-tissues during their maturation; (ii) how NK cells become activated, with a particular attention to dendritic cell (DC)-mediated mechanisms of NK cell priming; (iii) where NK cells play their functions and how NK cell tissue distribution can favour their capacity to skew T cell responses.
Collapse
Affiliation(s)
- Ivan Zanoni
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, P.zza della Scienza 2, 20126 Milan, Italy.
| | | | | | | |
Collapse
|
24
|
Taraboletti G, D'Ascenzo S, Giusti I, Marchetti D, Borsotti P, Millimaggi D, Giavazzi R, Pavan A, Dolo V. Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia 2006; 8:96-103. [PMID: 16611402 PMCID: PMC1578512 DOI: 10.1593/neo.05583] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tumor angiogenesis is regulated by a dynamic cross-talk between tumor cells and the host microenvironment. Because membrane vesicles shed by tumor cells are known to mediate several tumor-host interactions, we determined whether vesicles might also stimulate angiogenesis. Vesicles shed by human ovarian carcinoma cell lines CABA I and A2780 stimulated the motility and invasiveness of endothelial cells in vitro. Enzyme-linked immunosorbent assay and Western blot analysis revealed relevant amounts of vascular endothelial growth factor (VEGF) and the two matrix metalloproteinases MMP-2 and MMP-9, but not fibroblast growth factor-2, contained in shed vesicles. An A2780 cell-derived clone transfected to overexpress VEGF shed the same amount of vesicles as did a control clone, but contained significantly more VEGF within the vesicles. Despite a greater amount of VEGF in vesicles of the overexpressing clone, vesicles of both clones stimulated endothelial cell motility to comparable levels, suggesting that VEGF was stored within the vesicle and was unavailable. Only following vesicle burst induced by acidic pH (a characteristic of the tumor microenvironment) was VEGF released, leading to significantly higher stimulation of cell motility. Thus, tumor-shed membrane vesicles carry VEGF and release it in a bioactive form in conditions typical of the tumor microenvironment.
Collapse
Affiliation(s)
- Giulia Taraboletti
- Department of Oncology, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Sandra D'Ascenzo
- Department of Experimental Medicine, L'Aquila University, L'Aquila 67100, Italy
| | - Ilaria Giusti
- Department of Experimental Medicine, L'Aquila University, L'Aquila 67100, Italy
| | - Daniela Marchetti
- Department of Experimental Medicine, L'Aquila University, L'Aquila 67100, Italy
| | - Patrizia Borsotti
- Department of Oncology, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Danilo Millimaggi
- Department of Experimental Medicine, L'Aquila University, L'Aquila 67100, Italy
| | - Raffaella Giavazzi
- Department of Oncology, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Antonio Pavan
- Department of Experimental Medicine, L'Aquila University, L'Aquila 67100, Italy
| | - Vincenza Dolo
- Department of Experimental Medicine, L'Aquila University, L'Aquila 67100, Italy
| |
Collapse
|
25
|
Asea A. Initiation of the Immune Response by Extracellular Hsp72: Chaperokine Activity of Hsp72. ACTA ACUST UNITED AC 2006; 2:209-215. [PMID: 17502920 PMCID: PMC1868403 DOI: 10.2174/157339506778018514] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Heat shock proteins exert their beneficial effects via basically two modes of action depending on their relative location within the host. Intracellular heat shock proteins found within cells serve a cytoprotective role by chaperoning naïve, misfolded and/or denatured proteins in response to stressful stimuli by a process known as the stress response. However, stressful stimuli also induce the release of intracellular heat shock proteins into the extracellular milieu and circulation. The extracellular heat shock protein proteins serve a cytostimulatory role by initiating immune responses designed to fend off microbial infection and destroy neoplastic transformed cells. This review will briefly cover recent advances into elucidating the mechanism(s) by which stress induces the release of heat shock proteins into the circulation, how it initiates immune responses and suggest the possible biological significance of circulating Hsp to the host.
Collapse
Affiliation(s)
- Alexzander Asea
- Division of Investigative Pathology, Scott & White Clinic and Texas A&M University System Health Science Center College of Medicine, 2401 South 31 Street, Temple, TX 76508, USA
| |
Collapse
|
26
|
Quah BJC, O'Neill HC. The immunogenicity of dendritic cell-derived exosomes. Blood Cells Mol Dis 2005; 35:94-110. [PMID: 15975838 DOI: 10.1016/j.bcmd.2005.05.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 05/13/2005] [Indexed: 12/29/2022]
Abstract
Exosome production represents an alternate endocytic pathway for secretion. Multivesicular endosomes (MVE) fuse with the plasma membrane expelling internal vesicles or exosomes from cells. Exosome production has been recently described for immune cells including B cells, dendritic cells (DC), mast cells, macrophages and T cells. Exosomes derived from some DC populations stimulate T lymphocyte proliferation in vitro and have potent capacity to generate anti-tumour immune responses in vivo. These reported studies have involved in vitro grown mature DC expanded from precursors with cytokines. However, immature DC produce higher numbers of exosomes than mature DC and this is thought to be due to a reduction in endocytosis as DC mature, associated with reduced reformation of MVE and reduced exosome formation. This lab pioneered a method to generate immature DC in spleen long-term cultures (LTC). DC produced in cultures represent immature myeloid DC, highly endocytic but with weak capacity to stimulate T cells. LTC-DC produce exosomes and contain many MVE. This prompted a study of immunogenic potential with a view to the potential use of exosomes in vaccination and immunotherapy. DC produced in cultures represent immature myeloid DC, highly endocytic but with weak capacity to stimulate T cells. Exosomes were isolated by differential centrifugation from LTC-DC and shown by marker expression to arise by budding from the LAMP-1+ limiting endosomal membrane of MVE. These LTC-derived exosomes appear however to lack immunostimulatory markers like CD86, CD40, MHC-I and MHC-II. While LTC-DC can stimulate antigen-specific proliferation of CD4+ T cells, exosome preparations derived from antigen-pulsed DC were unable to stimulate purified naïve T cells in vitro. They were however found to weakly activate allogeneic CD8+ T cells in vitro. Tumour antigen-pulsed LTC-DC or their exosomes could induce a protective response in mice against growth of a transplanted tumour but could not induce a response to clear an existing tumour. Exosomes derived from immature DC can modulate immune responses, but do not function in direct T cell activation in vitro. Modulation of immune responses by exosomes produced by immature DC may be dependent on the presence of other antigen presenting DC subsets in the animal. The possible function of immature DC and their exosomes in maintenance of tolerance and in the induction of immunity is discussed.
Collapse
Affiliation(s)
- Ben J C Quah
- School of Biochemistry and Molecular Biology, Building 41, Linnaeus Way, Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
27
|
Bausero MA, Gastpar R, Multhoff G, Asea A. Alternative mechanism by which IFN-gamma enhances tumor recognition: active release of heat shock protein 72. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 175:2900-12. [PMID: 16116176 PMCID: PMC1762097 DOI: 10.4049/jimmunol.175.5.2900] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-gamma exhibits differential effects depending on the target and can induce cellular activation and enhance survival or mediate cell death via activation of apoptotic pathways. In this study, we demonstrate an alternative mechanism by which IFN-gamma enhances tumor recognition, mediated by the active release of Hsp72. We demonstrate that stimulation of 4T1 breast adenocarcinoma cells and K562 erythroleukemic cells with IFN-gamma triggers the cellular stress response, which results in the enhanced expression of total Hsp72 expression without a significant increase in cell death. Intracellular expression of Hsp72 was abrogated in cells stably transfected with a mutant hsf-1 gene. IFN-gamma-induced Hsp72 expression correlated with enhanced surface expression and consequent release of Hsp72 into the culture medium. Pretreatment of tumors with compounds known to the block the classical protein transport pathway, including monensin, brefeldin A, tunicamycin, and thapsigargin, did not significantly block Hsp72 release. However, pretreatment with intracellular calcium chelator BAPTA-AM or disruption of lipid rafts using methyl beta-cyclodextrin completely abrogated IFN-gamma-induced Hsp72 release. Biochemical characterization revealed that Hsp72 is released within exosomes and has the ability to up-regulate CD83 expression and stimulate IL-12 release by naive dendritic cells. Pretreatment with neutralizing mAb or depletion of Hsp72 completely abrogated its chaperokine function. Taken together, these findings are indicative of an additional previously unknown mechanism by which IFN-gamma promotes tumor surveillance and furthers our understanding of the central role of extracellular Hsp72 as an endogenous adjuvant and danger signal.
Collapse
Affiliation(s)
- Maria A Bausero
- Center for Molecular Stress Response, Boston University Medical Center and Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
28
|
Hegmans JPJJ, Bard MPL, Hemmes A, Luider TM, Kleijmeer MJ, Prins JB, Zitvogel L, Burgers SA, Hoogsteden HC, Lambrecht BN. Proteomic analysis of exosomes secreted by human mesothelioma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1807-15. [PMID: 15111327 PMCID: PMC1615654 DOI: 10.1016/s0002-9440(10)63739-x] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. Tumor exosomes may be involved in the sampling of antigens to antigen presenting cells or as decoys allowing the tumor to escape immune-directed destruction. The proteins present in exosomes secreted by tumor cells have been poorly defined. This study describes the protein composition of mesothelioma cell-derived exosomes in more detail. After electrophoresis of exosome preparations, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) was used to characterize the protein spots. MHC class I was found to be present together with the heat shock proteins HSC70 and HSP90. In addition, we found annexins and PV-1, proteins involved in membrane transport and function. Cytoskeleton proteins and their associated proteins ezrin, moesin, actinin-4, desmoplakin, and fascin were also detected. Besides the molecular motor kinesin-like protein, many enzymes were detected revealing the cytoplasmic orientation of exosomes. Most interesting was the detection of developmental endothelial locus-1 (DEL-1), which can act as a strong angiogenic factor and can increase the vascular development in the neighborhood of the tumor. In conclusion, mesothelioma cells release exosomes that express a discrete set of proteins involved in antigen presentation, signal transduction, migration, and adhesion. Exosomes may play an important role in the interaction between tumor cells and their environment.
Collapse
|
29
|
Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LAA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 2004; 31:114-21. [PMID: 14975938 DOI: 10.1165/rcmb.2003-0238oc] [Citation(s) in RCA: 322] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exosomes are membrane vesicles from endosomal origin secreted by various cells such as hematopoietic, epithelial, and tumor cells. Exosomes secreted by tumor cells contain specific antigens potentially useful for immunotherapeutic purposes. Our aim was to determine if exosomes are present in human cancerous pleural effusions and to identify their proteomic content. Exosomes were purified by sucrose gradient ultracentrifugation, and electron microscopy was used to check both concentration and purity of exosomes. Proteins were separated by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and protein bands were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and Western blotting. Exosomes were present in pleural fluid obtained from patients suffering from mesothelioma (n = 4), lung cancer (n = 2), breast cancer (n = 2), and ovarian cancer (n = 1). As previously reported by others, antigen-presenting molecules, cytoskeletal proteins, and signal transduction-involved proteins were present. Proteins not previously reported were identified (SNX25, BTG1, PEDF, thrombospondin 2). Different types of immunoglobulins and complement factors were abundantly present in the sucrose fractions containing exosomes. Exosome-directed specificity of these immunoglobulins was not observed. In conclusion, sucrose gradient ultracentrifugation allows isolation of exosomes from malignant pleural effusions. However, pleural fluid proteins and especially immunoglobulins are coisolated and may hamper the use of exosomes isolated from malignant effusion for immunotherapy programs.
Collapse
Affiliation(s)
- Martin P Bard
- Department of Pulmonary Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Dendritic cell (DC)-based vaccinations represent a promising approach for the immunotherapy of cancer and infectious diseases as DCs play an essential role in initiating cellular immune responses. A number of clinical trials using ex vivo-generated DCs have been performed so far and only minor toxicity has been reported. Both the induction of antigen-specific T cells and clinical responses have been observed in vaccinated cancer patients. Nevertheless, DC-based immunotherapy is still in its infancy and there are many issues to be addressed such as antigen loading procedures, DC source and maturational state, migration properties, route, frequency, and dosage of DC vaccination. The increasing knowledge of DC biology should be used to improve the efficacy of this new therapy.
Collapse
Affiliation(s)
- T G Berger
- Department of Dermatology, University of Erlangen, Hartmannstrasse 14, 91052 Erlangen, Germany
| | | |
Collapse
|
31
|
Murk JL, Stoorvogel W, Kleijmeer MJ, Geuze HJ. The plasticity of multivesicular bodies and the regulation of antigen presentation. Semin Cell Dev Biol 2002; 13:303-11. [PMID: 12243730 DOI: 10.1016/s1084952102000605] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multivesicular bodies (MVBs) are ubiquitous endocytic organelles containing numerous 50-80 nm vesicles. MVBs are very dynamic in shape and function. In antigen presenting cells (APCs), MVBs play a central role in the loading of major histocompatibility complex class II (MHC II) with antigenic peptides. How MHC II is transported from MVBs to the cell surface is only partly understood. One way involves direct fusion of MVBs with the plasma membrane. As a consequence, their internal vesicles are secreted as so-called exosomes. An alternative has been illustrated in maturing dendritic cells (DCs). Here, MVBs are reshaped into long tubules by back fusion of the internal vesicles with the MVB limiting membrane. Vesicles derived from the tips of these tubules then carry MHC II to the cell surface.
Collapse
Affiliation(s)
- Jean-Luc Murk
- Department of Cell Biology, Center for Biomedical Genetics and Institute of Biomembranes, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
32
|
Shahum E, Thérien HM. Effect of liposomal antigens on the priming and activation of the immune system by dendritic cells. Int Immunopharmacol 2002; 2:591-601. [PMID: 11962737 DOI: 10.1016/s1567-5769(02)00004-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DCs) are recognized as the sole professional antigen-presenting cells capable of priming naive T cells of the helper and cytotoxic phenotypes. This property is presently exploited with success in vaccinal strategies against pathogens or tumor cells that otherwise escape immune recognition, but the repeated infusions of ex vivo expanded and sensitized DCs are usually required to achieve protection. In this paper, we demonstrate that liposomal antigens can efficiently relay and propagate the action of DCs, inducing a strong long-term response against their associated antigen. Their effect is mainly achieved by improving the ex vivo loading of DCs and by efficiently channeling the activation stimulus into the induction of effector function. This is demonstrated by the sustained immunoglobulin production as well as by the sustained lymphoproliferation and the increased cytokine secretion that can be achieved upon restimulation of DC-primed immune cells with limited amount of liposomal antigenic material. Being well-tolerated and easily prepared, liposomal antigens could therefore be expected to significantly contribute to the efficiency and to a more general utilization of the highly promising but rather cumbersome DC-based immunotherapies.
Collapse
Affiliation(s)
- Eliane Shahum
- Groupe de Recherche en Biologie Médicale, Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Three Rivers, Canada
| | | |
Collapse
|
33
|
Abstract
Attempts to generate an anticancer immune response in vivo in patients with cancer have taken several forms. Although to date there have been relatively few published studies describing the effects of the approach in hematologic malignancy, that circumstance is expected to change rapidly during the next few years. In solid tumors, it is not known which, if any, of the approaches being explored will be able to produce responses of sufficient effectiveness and duration to be of general clinical value. Despite the documented increase in survival of patients developing an immune response to tumor immunization, no randomized clinical trial has been entirely convincing. As knowledge of the molecular basis of the immune response and of the immune defenses used by cancer cells improves, it is reasonable to expect to see increasing benefits from tumor vaccines, which are likely to complement, long before they replace, conventional therapies.
Collapse
Affiliation(s)
- Peter J. DeMaria
- Genitourinary Malignancies Branch, Center for Cancer Research, National
Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National
Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Abstract
Although the immune system evolved to protect the host from infection, what fires the popular imagination is its potential to recognise and destroy cancer. The immune system can generate potent cytotoxicity (eg transplant rejection), but can these mechanisms be harnessed for therapeutic benefit in patients with cancer? The discovery of an ever-increasing array of tumour antigens shows clearly that the targets exist. The challenge lies in generating a sufficiently potent response towards them. Central to the processes of antigen recognition, processing, and presentation to the immune system are dendritic cells. Understanding of the relation between these and the cellular immune response is crucial to elucidation of how to manipulate immune responses. The past 20 years have witnessed a dramatic expansion in this understanding and led to the first early-phase clinical trials of dendritic cells for the treatment of cancer. These studies have established the safety and feasibility of this approach and have produced encouraging evidence of therapeutic efficacy. This paper reviews the biology of dendritic cells and their use in clinical trials, as well as highlighting issues for future trial design.
Collapse
Affiliation(s)
- M Jefford
- Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
35
|
Abstract
Over the past several years, great strides have been made in our understanding of the mechanisms and functions of many signalling pathways involved in both development and oncogenesis. It is now clear that some proteins/genes essential for cell differentiation can also provide signals for growth control, suggesting that these genes may be mutated in tumours; this knowledge can help further the search for new targets for chemotherapy. However, many questions about how dysregulation of signalling pathways leads to neoplasia are still unanswered. With the dramatic increase in the number of researchers examining those questions, answers will not be far away.
Collapse
Affiliation(s)
- R Calvo
- Hospital Universitari Germans Trias i Pujol, Medical Oncology Service, Badalona, Barcelona, Spain
| | | |
Collapse
|