1
|
Sadri F, Hosseini SF, Rezaei Z, Fereidouni M. Hippo-YAP/TAZ signaling in breast cancer: Reciprocal regulation of microRNAs and implications in precision medicine. Genes Dis 2024; 11:760-771. [PMID: 37692482 PMCID: PMC10491881 DOI: 10.1016/j.gendis.2023.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/09/2022] [Accepted: 01/29/2023] [Indexed: 09/12/2023] Open
Abstract
Breast cancer is a molecularly heterogeneous disease and the most common female malignancy. In recent years, therapy approaches have evolved to accommodate molecular diversity, with a focus on more biologically based therapies to minimize negative consequences. To regulate cell fate in human breast cells, the Hippo signaling pathway has been associated with the alpha subtype of estrogen receptors. This pathway regulates tissue size, regeneration, and healing, as well as the survival of tissue-specific stem cells, proliferation, and apoptosis in a variety of organs, allowing for cell differentiation. Hippo signaling is mediated by the kinases MST1, MST2, LATS1, and LATS2, as well as the adaptor proteins SAV1 and MOB. These kinases phosphorylate the downstream effectors of the Hippo pathway, yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ), suppressing the expression of their downstream target genes. The Hippo signaling pathway kinase cascade plays a significant role in all cancers. Understanding the principles of this kinase cascade would prevent the occurrence of breast cancer. In recent years, small noncoding RNAs, or microRNAs, have been implicated in the development of several malignancies, including breast cancer. The interconnections between miRNAs and Hippo signaling pathway core proteins in the breast, on the other hand, remain poorly understood. In this review, we focused on highlighting the Hippo signaling system, its key parts, its importance in breast cancer, and its regulation by miRNAs and other related pathways.
Collapse
Affiliation(s)
- Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | | | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan 9816745785, Iran
| | - Mohammad Fereidouni
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| |
Collapse
|
2
|
Engin A. Obesity-Associated Breast Cancer: Analysis of Risk Factors and Current Clinical Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:767-819. [PMID: 39287872 DOI: 10.1007/978-3-031-63657-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
3
|
Guan L, Wang Y, Cheng J, Zhang J, Kang S. Expression and clinical significance of HER2/neu, aromatase P450 and adhesion molecule CD24 in endometrial cancer. Eur J Histochem 2023; 67:3655. [PMID: 37565251 PMCID: PMC10476532 DOI: 10.4081/ejh.2023.3655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
This study aimed at exploring the expression and clinical significance of aromatase P450, adhesion molecule CD24 and HER2/neu in endometrial cancer. The expression of aromatase P450, adhesion molecule CD24 and HER2/neu was detected by immunohistochemistry in 15 cases of endometrial hyperplasia group, 50 cases of endometrial adenocarcinoma and 3 cases of uterine papillary adenocarcinoma, with 15 cases of normal endometrium as control group. We detected no expression of aromatase P450, adhesion molecule CD24 or HER2/neu in control group. Aromatase P450 positive expression rate was 66.7% in endometrial hyperplasia group and 70.3% in endometrial carcinoma group, without significant difference (p>0.05). There was no significant difference (p>0.05) in the positive expression rate of aromatase P450 between different myometrial invasion groups of endometrial adenocarcinomas. CD24 positive expression rate was 40.0% in endometrial hyperplasia group and 79.6% in endometrial carcinoma group, with significant difference (p<0.05). HER2/neu positive expression rate was 26.7% in the endometrial hyperplasia group and 57% in endometrial carcinoma group, with significant difference (p<0.05). In conclusion, aromatase P450 may be one factor associated with endometrial cancer cell proliferation, while CD24 and HER2/neu may be important factors associated with the invasion and metastasis of endometrial cancer.
Collapse
Affiliation(s)
- Liyun Guan
- Department of Oncology, The Third Hospital of Shijiazhuang.
| | - Ying Wang
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang.
| | - Jianxin Cheng
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang.
| | - Jun Zhang
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang.
| | - Shan Kang
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang.
| |
Collapse
|
4
|
Walker OL, Dahn ML, Power Coombs MR, Marcato P. The Prostaglandin E2 Pathway and Breast Cancer Stem Cells: Evidence of Increased Signaling and Potential Targeting. Front Oncol 2022; 11:791696. [PMID: 35127497 PMCID: PMC8807694 DOI: 10.3389/fonc.2021.791696] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
Culprits of cancer development, metastasis, and drug resistance, cancer stem cells (CSCs) are characterized by specific markers, active developmental signaling pathways, metabolic plasticity, increased motility, invasiveness, and epithelial-mesenchymal transition. In breast cancer, these cells are often more prominent in aggressive disease, are amplified in drug-resistant tumors, and contribute to recurrence. For breast cancer, two distinct CSC populations exist and are typically defined by CD44+/CD24- cell surface marker expression or increased aldehyde dehydrogenase (ALDH) activity. These CSC populations share many of the same properties but also exhibit signaling pathways that are more active in CD44+/CD24- or ALDH+ populations. Understanding these CSC populations and their shared or specific signaling pathways may lead to the development of novel therapeutic strategies that will improve breast cancer patient outcomes. Herein, we review the current evidence and assess published patient tumor datasets of sorted breast CSC populations for evidence of heightened prostaglandin E2 (PGE2) signaling and activity in these breast CSC populations. PGE2 is a biologically active lipid mediator and in cancer PGE2 promotes tumor progression and poor patient prognosis. Overall, the data suggests that PGE2 signaling is important in propagating breast CSCs by enhancing inherent tumor-initiating capacities. Development of anti-PGE2 signaling therapeutics may be beneficial in inhibiting tumor growth and limiting breast CSC populations.
Collapse
Affiliation(s)
| | | | - Melanie R. Power Coombs
- Pathology, Dalhousie University, Halifax, NS, Canada
- Biology, Acadia University, Wolfville, NS, Canada
| | - Paola Marcato
- Pathology, Dalhousie University, Halifax, NS, Canada
- Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Paola Marcato,
| |
Collapse
|
5
|
Ngo QA, Thi THN, Pham MQ, Delfino D, Do TT. Antiproliferative and antiinflammatory coxib-combretastatin hybrids suppress cell cycle progression and induce apoptosis of MCF7 breast cancer cells. Mol Divers 2021; 25:2307-2319. [PMID: 32602075 DOI: 10.1007/s11030-020-10121-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
In our study, some newly synthesized aryl-substituted pyrazole derivatives mimicking cis-diphenylethylene scaffold of two apoptotic inducing agents celecoxib and combretastatin A-4 were found to have strong antiproliferative as well as antiinflammatory activities. Among these coxib-combretastatin hybrids, two lead compounds 8 and 6c simultaneously inhibited prostaglandin E2 (PGE2) production in LPS-activated murine macrophage RAW 264.7 cells and suppressed cell cycle progression of MCF7 cells at G2/M or G0/G1 phases, but only compound 8 induced apoptosis via caspase-3 activation. Both the lead compounds showed good docking energies with both protein targets COX-2 and tubulin in the molecule interaction modeling. The cis-diphenylethylene scaffold of celecoxib or combretastatin A-4 as well as functional groups such as the ethyl ester group and the sulfonamide could be considered as potential key features for the dual activity of studied compounds meanwhile the trimethoxybenzene remained the crucial characterization of the newly derived compounds of combretastatins.
Collapse
Affiliation(s)
- Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Thuy Hang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Domenico Delfino
- Department of Internal Medicine, Università degli Studi di Perugia, Perugia, Italy.
| | - Thi Thao Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
6
|
Phospholipase Signaling in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33983572 DOI: 10.1007/978-981-32-9620-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Breast cancer progression results from subversion of multiple intra- or intercellular signaling pathways in normal mammary tissues and their microenvironment, which have an impact on cell differentiation, proliferation, migration, and angiogenesis. Phospholipases (PLC, PLD and PLA) are essential mediators of intra- and intercellular signaling. They hydrolyze phospholipids, which are major components of cell membrane that can generate many bioactive lipid mediators, such as diacylglycerol, phosphatidic acid, lysophosphatidic acid, and arachidonic acid. Enzymatic processing of phospholipids by phospholipases converts these molecules into lipid mediators that regulate multiple cellular processes, which in turn can promote breast cancer progression. Thus, dysregulation of phospholipases contributes to a number of human diseases, including cancer. This review describes how phospholipases regulate multiple cancer-associated cellular processes, and the interplay among different phospholipases in breast cancer. A thorough understanding of the breast cancer-associated signaling networks of phospholipases is necessary to determine whether these enzymes are potential targets for innovative therapeutic strategies.
Collapse
|
7
|
Molehin D, Rasha F, Rahman RL, Pruitt K. Regulation of aromatase in cancer. Mol Cell Biochem 2021; 476:2449-2464. [PMID: 33599895 DOI: 10.1007/s11010-021-04099-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
The regulation of aromatase, an enzyme involved in the biosynthesis of estrogen in normal and cancer cells, has been associated with growth factor signaling and immune response modulation. The tissue-specific regulatory roles of these factors are of particular importance as local aromatase expression is strongly linked to cancer development/progression and disease outcomes in patients. Therefore, aromatase has become a chemotherapeutic target and aromatase inhibitors (AIs) are used in the clinic for treating hormone-dependent cancers. Although AIs have shown promising results in the treatment of cancers, the emerging increase in AI-resistance necessitates the development of new and improved targeted therapies. This review discusses the role of tumor and stromal-derived growth factors and immune cell modulators in regulating aromatase. Current single-agent and combination therapies with or without AIs targeting growth factors and immune checkpoints are also discussed. This review highlights recent studies that show new connections between growth factors, mediators of immune response, and aromatase regulation.
Collapse
Affiliation(s)
- Deborah Molehin
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA. .,Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|
8
|
Krauss K, Stickeler E. Endocrine Therapy in Early Breast Cancer. Breast Care (Basel) 2020; 15:337-346. [PMID: 32982643 DOI: 10.1159/000509362] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
Background Endocrine therapy with a standard duration of 5 years is well known as an effective treatment for endocrine-sensitive breast cancer. Summary In the adjuvant setting this treatment reduces the 15-year mortality rates by about 30 and 40% with tamoxifen and aromatase inhibitor, respectively. The well-known long-term recurrence risk of luminal cancers led to multiple trials examining the benefit of extended endocrine treatment for up to 15 years. Additional benefit with extended therapy was seen for patients with high recurrence risk. Also, additional ovarian suppression for premenopausal women exhibited a significant benefit for patients at higher risk. Key Messages The data of the last years will be summarized and discussed, also considering the side effects of the different treatment options.
Collapse
Affiliation(s)
- Katja Krauss
- Breast Center, Department of Gynecology and Obstetrics, RWTH University Hospital Aachen, Aachen, Germany
| | - Elmar Stickeler
- Breast Center, Department of Gynecology and Obstetrics, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
9
|
Hernández-Coronado CG, Guzmán A, Castillo-Juárez H, Zamora-Gutiérrez D, Rosales-Torres AM. Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. ANNALES D'ENDOCRINOLOGIE 2019; 80:263-272. [DOI: 10.1016/j.ando.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/06/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
|
10
|
Strasser-Weippl K, Higgins MJ, Chapman JAW, Ingle JN, Sledge GW, Budd GT, Ellis MJ, Pritchard KI, Clemons MJ, Badovinac-Crnjevic T, Han L, Gelmon KA, Rabaglio M, Elliott C, Shepherd LE, Goss PE. Effects of Celecoxib and Low-dose Aspirin on Outcomes in Adjuvant Aromatase Inhibitor-Treated Patients: CCTG MA.27. J Natl Cancer Inst 2019; 110:1003-1008. [PMID: 29554282 DOI: 10.1093/jnci/djy017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Celecoxib and low-dose aspirin might decrease risk of breast cancer recurrence. Methods In the Canadian Cancer Trials Group MA.27, postmenopausal hormone receptor-positive breast cancer patients were randomly assigned (2 × 2) to adjuvant exemestane or anastrozole, and celecoxib or placebo. Low-dose aspirin of 81 mg or less was a stratification factor. Due to concerns about cardiac toxicity, celecoxib use was stopped in December 2004, while stratification by aspirin use was removed through protocol amendment. We examined the effects of celecoxib and low-dose aspirin on event-free survival (EFS), defined as time from random assignment to time of locoregional or distant disease recurrence, new primary breast cancer, or death from any cause; distant disease-free survival (DDFS); and overall survival (OS). All statistical tests were two-sided. Results Random assignment to celecoxib (n = 811, 50.0%) or placebo (n = 811, 50.0%) was discontinued after 18 months (n = 1622). At a median of 4.1 years' follow-up, among 1622 patients, 186 (11.5%) patients had an EFS event: 80 (4.9%) had distant relapse, and 125 (7.7%) died from any cause. Celecoxib did not statistically significantly impact EFS, DDFS, or OS in univariate analysis (respectively, P = .92, P = .55, and P = .56) or multivariable analysis (respectively, P = .74, P = .60, and P = .76). Low-dose aspirin use (aspirin users n = 476, 21.5%; non-aspirin users n = 1733, 78.5%) was associated in univariate analyses with worse EFS (hazard ratio [HR] = 1.48, 95% confidence interval [CI] = 1.12 to 1.96, P = 0.006) and worse OS (HR = 1.87, 95% CI = 1.35 to 2.61, P < .001). After adjusting for baseline characteristics and treatment arm, aspirin use showed no statistical association with EFS (P = .08) and DDFS (P = .82), but was associated with statistically worse OS (HR = 1.67, 95% CI = 1.13 to 2.49, P = .01). Conclusion Random assignment to short-term (≤18 months) celecoxib as well as use of low-dose aspirin showed no effect on DDFS and EFS in multivariable analysis. Low-dose aspirin increased "all-cause" mortality, presumably because of higher preexisting cardiovascular risks.
Collapse
Affiliation(s)
| | | | | | - James N Ingle
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | | | - George T Budd
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX
| | | | - Mark J Clemons
- Division of Medical Oncology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | - Lei Han
- Center for Oncology, Hematology and Palliative Care, Wilhelminen Hospital, Vienna, Austria
| | | | - Manuela Rabaglio
- International Breast Cancer Study Group Coordinating Center, Inselspital, Berne, Switzerland
| | - Catherine Elliott
- Center for Oncology, Hematology and Palliative Care, Wilhelminen Hospital, Vienna, Austria
| | - Lois E Shepherd
- Center for Oncology, Hematology and Palliative Care, Wilhelminen Hospital, Vienna, Austria
| | - Paul E Goss
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Solanki R, Agrawal N, Ansari M, Jain S, Jindal A. COX-2 Expression in Breast Carcinoma with Correlation to Clinicopathological Parameters. Asian Pac J Cancer Prev 2018; 19:1971-1975. [PMID: 30051683 PMCID: PMC6165637 DOI: 10.22034/apjcp.2018.19.7.1971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/13/2018] [Indexed: 11/27/2022] Open
Abstract
Objective: Breast carcinoma is the most common malignant tumor and the leading cause of carcinoma deaths in women. Its etiology is multifactorial, implicating reproductive factors, hormonal imbalances and genetic predispositions. Studies have shown that Cycloxygenase-2 (COX-2) plays an important role in the carcinogenesis and increased expression has been regarded as a poor prognostic factor. The objective of our study is 1. To study COX-2 expression in normal breast tissue, DCIS and invasive breast cancer. 2. To determine COX-2 expression with clinicopathological prognostic parameters. Methods: Radical mastectomy specimens were studied for COX-2 expression by immunohistochemistry in 50 patients diagnosed as breast carcinoma. COX-2 expression is quantified as IHS Score and separately calculated for normal breast epithelium near the tumor, DCIS and invasive areas. Relationship between COX-2 expression with various clinicopathological parameters was evaluated. Result: The results of our study suggest an association of the expression of COX-2 to the factors associated with poor prognosis in breast cancer, such as larger tumor size, positive lymph node status, higher T stage and N stage and lymphovascular invasion. There was a higher COX-2 expression in the DCIS component as compared to the invasive ductal carcinoma component and the adjoining breast epithelium. Conclusion: Our study established the role of COX-2 in carcinogenesis and its association with adverse prognostic factors.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cyclooxygenase 2/metabolism
- Female
- Follow-Up Studies
- Humans
- Middle Aged
- Prognosis
Collapse
|
12
|
Buckner CA, Buckner AL, Koren SA, Persinger MA, Lafrenie RM. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells. Bioelectromagnetics 2017; 39:217-230. [PMID: 29125193 DOI: 10.1002/bem.22096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022]
Abstract
Exposure to specific electromagnetic field (EMF) patterns can affect a variety of biological systems. We have shown that exposure to Thomas-EMF, a low-intensity, frequency-modulated (25-6 Hz) EMF pattern, inhibited growth and altered cell signaling in malignant cells. Exposure to Thomas-EMF for 1 h/day inhibited the growth of malignant cells including B16-BL6 mouse melanoma cells, MDA-MB-231, MDA-MB-468, BT-20, and MCF-7 human breast cancer and HeLa cervical cancer cells but did not affect non-malignant cells. The Thomas-EMF-dependent changes in cell proliferation were mediated by adenosine 3',5'-cyclic monophosphate (cAMP) and extracellular-signal-regulated kinase (ERK) signaling pathways. Exposure of malignant cells to Thomas-EMF transiently changed the level of cellular cAMP and promoted ERK phosphorylation. Pharmacologic inhibitors (SQ22536) and activators (forskolin) of cAMP production both blocked the ability of Thomas-EMF to inhibit cell proliferation, and an inhibitor of the MAP kinase pathway (PD98059) was able to partially block Thomas-EMF-dependent inhibition of cell proliferation. Genetic modulation of protein kinase A (PKA) in B16-BL6 cells also altered the effect of Thomas-EMF on cell proliferation. Cells transfected with the constitutively active form of PKA (PKA-CA), which interfered with ERK phosphorylation, also interfered with the Thomas-EMF effect on cell proliferation. The non-malignant cells did not show any EMF-dependent changes in cAMP levels, ERK phosphorylation, or cell growth. These data indicate that exposure to the specific Thomas-EMF pattern can inhibit the growth of malignant cells in a manner dependent on contributions from the cAMP and MAP kinase pathways. Bioelectromagnetics. 39;217-230, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carly A Buckner
- Department of Biomolecular Sciences, Laurentian University, Sudbury, Ontario, Canada.,Regional Cancer Program, Health Sciences North, Sudbury, Ontario, Canada
| | - Alison L Buckner
- Department of Biomolecular Sciences, Laurentian University, Sudbury, Ontario, Canada.,Regional Cancer Program, Health Sciences North, Sudbury, Ontario, Canada
| | - Stan A Koren
- Department of Behavioural Neurosciences, Laurentian University, Sudbury, Ontario, Canada
| | - Michael A Persinger
- Department of Biomolecular Sciences, Laurentian University, Sudbury, Ontario, Canada.,Department of Behavioural Neurosciences, Laurentian University, Sudbury, Ontario, Canada
| | - Robert M Lafrenie
- Department of Biomolecular Sciences, Laurentian University, Sudbury, Ontario, Canada.,Regional Cancer Program, Health Sciences North, Sudbury, Ontario, Canada
| |
Collapse
|
13
|
Nunes C, Silva C, Correia-Branco A, Martel F. Lack of effect of the procarcinogenic 17β-estradiol on nutrient uptake by the MCF-7 breast cancer cell line. Biomed Pharmacother 2017; 90:287-294. [PMID: 28365520 DOI: 10.1016/j.biopha.2017.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/26/2022] Open
Abstract
Breast cancer is one of the most frequent cancers in the population, especially in older women. Estrogen is known to be a key hormone in the development and progression of mammary carcinogenesis. In this study, we investigated if the procarcinogenic effect of 17β-estradiol (E2) in breast cancer MCF-7 cells is dependent on changes in glucose or folic acid cellular uptake. The effect of E2 on uptake of 3H-deoxy-d-glucose, 3H-folic acid, cell proliferation (3-thymidine incorporation assay), culture growth (sulforhodamine B assay), viability (lactate dehydrogenase activity assay), lactate production and migration capacity (injury assay) was evaluated. E2 (48h; 100nM) increased culture growth (16%), proliferation rate (24%), cellular viability (36%) and lactate production (38%). In contrast, E2 did not significantly affect the migration capacity of MCF-7 cells. The pro-proliferative, but not the cytoprotective effect of E2 was found to be ERβ-dependent. The polyphenols rutin and caffeic acid were not able to counteract the effect of E2 upon cell proliferation and viability. Uptake of 3H-deoxy-d-glucose was not affected by E2, either in the absence or presence of GLUT inhibitors (cytochalasin B plus phloridzin). Moreover, E2 did not change GLUT1 mRNA levels. Finally, 3H-folic acid uptake was also not affected by E2, both in the absence and presence of the RFC1 inhibitor, methotrexate. The pro-proliferative and cytoprotective effects of E2 are not dependent neither of stimulation of glucose cellular uptake (both GLUT and non-GLUT-mediated) nor of stimulation of folic acid uptake (both RFC1-and non-RFC1-mediated).
Collapse
Affiliation(s)
- C Nunes
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health Sciences (I3S), University of Porto, Porto, Portugal
| | - C Silva
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health Sciences (I3S), University of Porto, Porto, Portugal
| | - A Correia-Branco
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health Sciences (I3S), University of Porto, Porto, Portugal
| | - F Martel
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health Sciences (I3S), University of Porto, Porto, Portugal.
| |
Collapse
|
14
|
Engin A. Obesity-associated Breast Cancer: Analysis of risk factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:571-606. [PMID: 28585217 DOI: 10.1007/978-3-319-48382-5_25] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Furthermore, obese women are at higher risk of all-cause and breast cancer specific mortality when compared to non-obese women with breast cancer. In this context, increased levels of estrogens due to excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, hyperactivation of insulin-like growth factors (IGFs) pathways, adipocyte-derived adipokines, hypercholesterolemia and excessive oxidative stress contribute to the development of breast cancer in obese women. While higher breast cancer risk with hormone replacement therapy is particularly evident among lean women, in postmenopausal women who are not taking exogenous hormones, general obesity is a significant predictor for breast cancer. Moreover, increased plasma cholesterol leads to accelerated tumor formation and exacerbates their aggressiveness. In contrast to postmenopausal women, premenopausal women with high BMI are inversely associated with breast cancer risk. Nevertheless, life-style of women for breast cancer risk is regulated by avoiding the overweight and a high-fat diet. Estrogen-plus-progestin hormone therapy users for more than 5 years have elevated risks of both invasive ductal and lobular breast cancer. Additionally, these cases are more commonly node-positive and have a higher cancer-related mortality. Collectively, in this chapter, the impacts of obesity-related estrogen, cholesterol, saturated fatty acid, leptin and adiponectin concentrations, aromatase activity, leptin and insulin resistance on breast cancer patients are evaluated. Obesity-related prognostic factors of breast cancer also are discussed at molecular basis.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey. .,, Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
15
|
Increased association between endometriosis and endometrial cancer: a nationwide population-based retrospective cohort study. Int J Gynecol Cancer 2015; 25:447-52. [PMID: 25695548 PMCID: PMC4340602 DOI: 10.1097/igc.0000000000000384] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Objective Association between endometriosis and ovarian cancer has been well established. Nonetheless, endometriosis may also be associated with endometrial cancer because of shared etiological mechanisms of both estrogen stimulation and chronic inflammation; however, the association between these 2 disorders has rarely been investigated. Methods The National Health Insurance Research Databases in Taiwan were retrieved and analyzed. The case cohort consisted of patients with a diagnosis of endometriosis between January 1997 and December 2000 (N = 15,488). For the construction of control cohort, 8 age- and sex-matched control patients for every patient in the case cohort were selected using a random sampling method (n = 123,904). All subjects were tracked for 10 years from the date of entry to identify whether they had developed endometrial cancer. The Cox proportional hazards regression model was used to evaluate 10-year event occurrence of endometrial cancer. Results During the 10-year follow-up period, 392 participants developed endometrial cancer, with 104 (0.7%) distributed in the case cohort and 288 (0.2%) in the control cohort. Multivariable Cox regression modeling demonstrates a higher risk for developing endometrial cancer in the case cohort than in the control cohort (adjusted hazard ratio [aHR], 2.83; 95% confidence interval [CI], 1.495.35; P < 0.01). Age at diagnosis of endometriosis shows a moderator effect: when 40 years or younger, the risk for developing endometrial cancer was comparable between the case cohort and the control cohort (aHR, 1.42; 95% CI, 0.55–3.70; P = 0.226), whereas when older than 40 years, the risk for developing endometrial cancer was higher in the former group than in the latter group (aHR, 7.08; 95% CI, 2.33–21.55; P = 0.007). Conclusions Patients diagnosed with endometriosis may harbor an increased risk for developing endometrial cancer in their later life. Closer monitoring is advised for this patient population.
Collapse
|
16
|
Abstract
Tamoxifen has been shown to reduce the risk of developing estrogen receptor (ER)-positive breast cancer by at least 50%, in both pre- and postmenopausal women. The current challenge is to find new agents with fewer side effects and to find agents that are specifically suitable for premenopausal women with ER-negative breast cancer. Other selective estrogen receptor modulators (SERMs), such as raloxifene, arzoxifene, and lasofoxifene, have been shown to reduce the incidence of breast cancer by 50%-80%. SERMs are interesting agents for the prevention of breast cancer, but longer follow-up is needed for some of them for a complete risk-benefit profile of these drugs. Aromatase inhibitors have emerged as new drugs in the prevention setting for postmenopausal women. In the Mammary Prevention 3 (MAP3) trial, a 65% reduction in invasive breast cancer with exemestane was observed, and the Breast Cancer Intervention Study-II trial, which compared anastrozole with placebo, reported a 60% reduction in those cancers. Although SERMs and aromatase inhibitors have been proven to be excellent agents in the preventive setting specifically for postmenopausal women and ER-positive breast cancer, newer agents have to be found specifically for ER-negative breast cancers, which mostly occur in premenopausal women.
Collapse
Affiliation(s)
- Ivana Sestak
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
17
|
Volatile organic metabolites identify patients with breast cancer, cyclomastopathy, and mammary gland fibroma. Sci Rep 2014; 4:5383. [PMID: 24947160 PMCID: PMC4064322 DOI: 10.1038/srep05383] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/02/2014] [Indexed: 11/20/2022] Open
Abstract
The association between cancer and volatile organic metabolites in exhaled breaths has attracted increasing attention from researchers. The present study reports on a systematic study of gas profiles of metabolites in human exhaled breath by pattern recognition methods. Exhaled breath was collected from 85 patients with histologically confirmed breast disease (including 39 individuals with infiltrating ductal carcinoma, 25 individuals with cyclomastopathy and from 21 individuals with mammary gland fibroma) and 45 healthy volunteers. Principal component analysis and partial least squares discriminant analysis were used to process the final data. The volatile organic metabolites exhibited significant differences between breast cancer and normal controls, breast cancer and cyclomastopathy, and breast cancer and mammary gland fibroma; 21, 6, and 8 characteristic metabolites played decisive roles in sample classification, respectively (P < 0.05). Three volatile organic metabolites in the exhaled air, 2,5,6-trimethyloctane, 1,4-dimethoxy-2,3-butanediol, and cyclohexanone, distinguished breast cancer patients from healthy individuals, mammary gland fibroma patients, and patients with cyclomastopathy (P < 0.05). The identified three volatile organic metabolites associated with breast cancer may serve as novel diagnostic biomarkers.
Collapse
|
18
|
Role of Cyclooxygenase 2 (COX-2) in Prognosis of Breast Cancer. Indian J Surg Oncol 2014; 5:59-65. [PMID: 24669166 DOI: 10.1007/s13193-014-0290-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022] Open
Abstract
COX-2 regulates tumour growth, invasion and metastasis in breast cancer. This study investigated the association between COX-2 expression in human breast cancer versus the expression of ER, PR, HER-2/neu, as well as its association with other established prognostic indicators like age, menopausal status, tumour size, lymph nodal status, stage, grade, NPI and histological subtype, and aims to validate the role of overexpression of COX-2 as a prognostic marker in patients with breast cancer in Indian subcontinent. In this hospital based study of 123 breast cancer patients (Group-A) and 76 female patients with benign breast disease (Group-B) attending a Comprehensive Breast Clinic at a reputed institute in Eastern India, COX-2 protein expression was measured from breast tissue using the Western Blot Technique. COX-2 mRNA expression was measured by RT-PCR Technique. ER, PR and HER-2/neu status was measured by immunohistochemistry methods. COX-2 was not expressed in the control group. The proportion of COX-2 positive tumours was significantly higher in patients of age >50 years [52(91.2 %), p < 0.01], postmenopausal status [64(90.1 %), p < 0.01], advanced stage of disease (p < 0.01), higher grade (p < 0.01), larger tumors (p < 0.01), metastatic lymph nodes (p < 0.01) and NPI ≥ 5.4 (p < 0.01). COX-2 expression was seen in ER-negative [66(95.7 %), p < 0.01], PR-negative [76(92.7 %), p < 0.01], and HER-2/neu positive tumours [29(100.0 %), p < 0.01]. Risk of COX-2 positivity was found to be 2.74 times more for postmenopausal status, 6.90 times more for large size tumours (≥ 2.5), 34.37 times more for node positive tumours, 9.26 times more with ER negative patients and 5.88 times more for PR negative patients. COX-2 expression is associated with established indicators of poor prognosis such as postmenopausal status, age >50 year, advanced stage of disease, large tumour size, higher grade, lymph node metastasis, NPI ≥ 5.4, ER negativity, PR negativity and HER-2/neu positivity. Thus, COX-2 expression implies aggressive tumour biology, and may play an important role as a prognostic marker.
Collapse
|
19
|
Modeling of non-steroidal anti-inflammatory drug effect within signaling pathways and miRNA-regulation pathways. PLoS One 2013; 8:e72477. [PMID: 23967306 PMCID: PMC3743815 DOI: 10.1371/journal.pone.0072477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/10/2013] [Indexed: 12/31/2022] Open
Abstract
To date, it is widely recognized that Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) can exert considerable anti-tumor effects regarding many types of cancers. The prolonged use of NSAIDs is highly associated with diverse side effects. Therefore, tailoring down the NSAID application onto individual patients has become a necessary and relevant step towards personalized medicine. This study conducts the systemsbiological approach to construct a molecular model (NSAID model) containing a cyclooxygenase (COX)-pathway and its related signaling pathways. Four cancer hallmarks are integrated into the model to reflect different developmental aspects of tumorigenesis. In addition, a Flux-Comparative-Analysis (FCA) based on Petri net is developed to transfer the dynamic properties (including drug responsiveness) of individual cellular system into the model. The gene expression profiles of different tumor-types with available drug-response information are applied to validate the predictive ability of the NSAID model. Moreover, two therapeutic developmental strategies, synthetic lethality and microRNA (miRNA) biomarker discovery, are investigated based on the COX-pathway. In conclusion, the result of this study demonstrates that the NSAID model involving gene expression, gene regulation, signal transduction, protein interaction and other cellular processes, is able to predict the individual cellular responses for different therapeutic interventions (such as NS-398 and COX-2 specific siRNA inhibition). This strongly indicates that this type of model is able to reflect the physiological, developmental and pathological processes of an individual. The approach of miRNA biomarker discovery is demonstrated for identifying miRNAs with oncogenic and tumor suppressive functions for individual cell lines of breast-, colon- and lung-tumor. The achieved results are in line with different independent studies that investigated miRNA biomarker related to diagnostics of cancer treatments, therefore it might shed light on the development of biomarker discovery at individual level. Particular results of this study might contribute to step further towards personalized medicine with the systemsbiological approach.
Collapse
|
20
|
Nuvoli B, Galati R. Cyclooxygenase-2, epidermal growth factor receptor, and aromatase signaling in inflammation and mesothelioma. Mol Cancer Ther 2013; 12:844-52. [PMID: 23729401 DOI: 10.1158/1535-7163.mct-12-1103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant mesothelioma or mesothelioma is a rare form of cancer that develops from transformed cells originating in the mesothelium, the protective lining that covers many of the internal organs of the body. It is directly linked to asbestos exposure, which acts as a carcinogen by initiating the carcinogenic process. Because of their shape, asbestos fibers can cross the membrane barriers inside the body and cause inflammatory and fibrotic reactions. Such reactions are believed to be the mechanism by which asbestos fibers may trigger malignant mesothelioma in the pleural membrane around the lungs. Carcinogens are known to modulate the transcription factors, antiapoptotic proteins, proapoptotic proteins, protein kinases, cell-cycle proteins, cell adhesion molecules, COX-2, and growth factor signaling pathways. This article reviews recent studies regarding some malignant mesothelioma molecular targets not only for cancer prevention but also for cancer therapy.
Collapse
Affiliation(s)
- Barbara Nuvoli
- Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | | |
Collapse
|
21
|
Mishra B, Leishangthem GD, Gill K, Singh AK, Das S, Singh K, Xess I, Dinda A, Kapil A, Patro IK, Dey S. A novel antimicrobial peptide derived from modified N-terminal domain of bovine lactoferrin: Design, synthesis, activity against multidrug-resistant bacteria and Candida. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:677-86. [DOI: 10.1016/j.bbamem.2012.09.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/13/2012] [Accepted: 09/21/2012] [Indexed: 11/25/2022]
|
22
|
Syntheses and biological activities of sulfoximine-based acyclic triaryl olefins. Bioorg Med Chem Lett 2012; 22:4307-9. [DOI: 10.1016/j.bmcl.2012.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 01/03/2023]
|
23
|
Distribution of cyclooxygenases 1 and 2 in the uterus and breast of cynomolgus monkeys-effects of hormone treatment. Menopause 2011; 18:1001-9. [PMID: 21540754 DOI: 10.1097/gme.0b013e3182127c9b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The aim of this study was to compare the distribution and immunoreactivity of cyclooxygenase (COX) 1 and COX-2 in normal uterus and breast after long-term hormone therapy in postmenopausal monkeys. METHODS Female adult cynomolgus macaques were bilaterally ovariectomized 3 months before the initiation of hormone treatment. The animals were either treated (experiment 1) with conjugated equine estrogens (CEE), medroxyprogesterone acetate (MPA), CEE + MPA, or tamoxifen or designated as controls (C). In experiment 2, the animals were either treated with CEE, CEE + MPA, or tibolone or designated as C. Breast tissue and uteri were collected, fixed, and paraffin embedded. Immunohistochemistry assays for COX-1 and COX-2 were performed. RESULTS COX-1 immunostaining was decreased by tamoxifen and CEE treatment in the endometrial stroma and by CEE + MPA in the myometrium. COX-1 immunostaining of the breast epithelia was down-regulated by CEE + MPA, whereas other cell types in the breast seem to be less affected by hormone treatment.COX-2 immunoreactivity in the endometrial stroma was increased by CEE + MPA. In the glandular epithelium, CEE + MPA and tibolone treatment increased COX-2 immunostaining compared with CEE treatment only and no treatment at all (C). No effect from hormone treatment on COX-2 immunostaining was found in the myometrium. COX-2 immunostaining in the glandular epithelium of the breast was, in experiment 2, increased after CEE treatment compared with no treatment (C). No other effects by hormone therapy on COX-2 expression were found in the breast. CONCLUSIONS Our results show that COX-1 and COX-2 are differently distributed and regulated by hormones in the normal uterus and breast of ovariectomized macaques. COX-1 is prevailing in the uterus, whereas COX-2 is dominant in the mammary gland.
Collapse
|
24
|
Fu XS, Li PP. Shu-Gan-Liang-Xue Decoction Simultaneously Down-regulates Expressions of Aromatase and Steroid Sulfatase in Estrogen Receptor Positive Breast Cancer Cells. Chin J Cancer Res 2011; 23:208-13. [PMID: 23467843 DOI: 10.1007/s11670-011-0208-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/17/2011] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE Estradiol (E2) plays an important role in the development of breast cancer. In postmenopausal women, the estrogen can be synthesized via aromatase (CYP19) pathway and steroid-sulfatase (STS) pathway in peripheral tissues, when the production in ovary has ceased. The objective of our study was to explore the effects of Shu-Gan-Liang-Xue Decoction (SGLXD) on the expressions of CYP19 and STS in estrogen receptor positive breast cancer MCF-7 and T47D cells. METHODS The effects of SGLXD on the cell viability of MCF-7 and T47D were analyzed by MTT assay. By quantitative real-time RT-PCR and Western blot, we evaluated the mRNA and protein expressions of CYP19 and STS in MCF-7 and T47D cells after SGLXD treatment. RESULTS By MTT assay, the cell viability rates of MCF-7 and T47D were significantly inhibited by SGLXD in a dose-dependent manner, the IC50 values were 40.07 mg/ml for MCF-7 cells and 25.62 mg/ml for T47D cells, respectively. As evidenced by real-time PCR and Western blot, the high concentrations of SGLXD significantly down-regulated the expressions of CYP19 and STS both in the transcript level and the protein level. CONCLUSION The results suggest that SGLXD is a potential dual aromatase-sulfatase inhibitor by simultaneously down-regulating the expressions of CYP19 and STS in MCF-7 and T47D cells.
Collapse
Affiliation(s)
- Xue-Song Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integrated Traditional Chinese and Western Medicine, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| | | |
Collapse
|
25
|
Aromatase Inhibitor Exemestane has Antiproliferative Effects on Human Mesothelioma Cells. J Thorac Oncol 2011; 6:583-91. [DOI: 10.1097/jto.0b013e31820cdd6f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Bocca C, Bozzo F, Bassignana A, Miglietta A. Antiproliferative effects of COX-2 inhibitor celecoxib on human breast cancer cell lines. Mol Cell Biochem 2010; 350:59-70. [PMID: 21140284 DOI: 10.1007/s11010-010-0682-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 12/02/2010] [Indexed: 01/02/2023]
Abstract
The inducible COX-2 enzyme is over-expressed in human breast cancer and its over-expression generally correlates with angiogenesis, deregulation of apoptosis and worse prognosis. This observation may explain the beneficial effect of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors on breast cancer treatment. Here, we evaluated the antiproliferative activity of celecoxib, a selective COX-2 inhibitor, and its nitro-oxy derivative on human breast cancer cells characterized by low and high COX-2 expression, respectively. In ERα(+) MCF-7 cells celecoxib and its derivative induce a strong inhibition of cell growth, inhibition that is associated with the reduction of ERα expression and activation. These effects may be directly associated with ERK and Akt suppression and with PP2A and PTEN induction. In this cell line the drugs exert only weak effect on COX-2 level while they are able to reduce aromatase expression. On the contrary, in ERα(-) MDA-MB-231 cells, both drugs induce a marked inhibition of COX-2, inhibition that is associated with the reduction of aromatase expression and of cell proliferation. In both cell lines the effects of the drugs are associated with the suppression of cell invasion.
Collapse
Affiliation(s)
- Claudia Bocca
- Department of Experimental Medicine and Oncology, University of Torino, Turin, Italy.
| | | | | | | |
Collapse
|
27
|
Lin Y, Tang X, Zhu Y, Shu T, Han X. Identification of PARP-1 as one of the transcription factors binding to the repressor element in the promoter region of COX-2. Arch Biochem Biophys 2010; 505:123-9. [PMID: 20868648 DOI: 10.1016/j.abb.2010.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 09/01/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
Cyclooxygenase-2 (COX-2) plays important roles in the development of many disease conditions, including pancreatic β-cell dysfunction. Although the processes involved in the transcriptional regulation of COX-2 are well documented, some key elements, especially inhibitory elements, are still unknown. In our previous study, we identified a novel repressor element located in promoter region of mouse COX-2. In this study, we isolated several DNA-binding proteins from NIT-1 cells via DNA affinity chromatography; the most prominent among these proteins was poly (ADP-ribose) polymerase-1 (PARP-1). In this study, gel-supershift assays and chromatin immunoprecipitation assays showed that PARP-1 can bind to the inhibitory element -655/-632 in the promoter region of mouse COX-2 both in vitro and in vivo. Furthermore, overexpression of PARP-1 significantly inhibited promoter activity and decreased COX-2 expression. Conversely, repression of PARP-1 by RNAi upregulated COX-2 expression. These data suggest that PARP-1 plays an important role in the regulation of COX-2 expression via binding to the inhibitory element. Collectively, our findings provide new important information on the transcriptional regulation of COX-2 in pancreatic β-cells.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Clinical Diabetes Centre of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | | | | | | | | |
Collapse
|
28
|
Giovannini M, Aldrighetti D, Zucchinelli P, Belli C, Villa E. Antiangiogenic strategies in breast cancer management. Crit Rev Oncol Hematol 2010; 76:13-35. [PMID: 20702105 DOI: 10.1016/j.critrevonc.2009.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/28/2009] [Accepted: 12/17/2009] [Indexed: 01/13/2023] Open
Abstract
Angiogenesis is considered one of the key mechanisms of tumour growth and survival. Therefore it represents an ideal pharmaceutical target. Many antiangiogenic agents have been developed so far in several solid tumours and also in breast cancer. Vascular endothelial growth factor (VEFG) is the main target and both monoclonal antibodies and small molecules belonging to the tyrosine kinase inhibitors directed against VEGF(R) have been developed. Some other therapeutic approaches have shown to exert some antiangiogenic activity, such as hormonal agents, metronomic chemotherapy, bisphosphonates and others. In this paper we provide an introduction of the current data supporting the angiogenesis in breast cancer and a review of the most relevant antiagiogenic therapies which have been investigated so far.
Collapse
Affiliation(s)
- Monica Giovannini
- Medical Oncology Unit, Oncology Dept, San Raffaele Scientific Institute-University Hospital, Milan, Italy.
| | | | | | | | | |
Collapse
|
29
|
Mishra B, Srivastava VK, Chaudhry R, Somvanshi RK, Singh AK, Gill K, Somvanshi R, Patro IK, Dey S. SD-8, a novel therapeutic agent active against multidrug-resistant Gram positive cocci. Amino Acids 2010; 39:1493-505. [PMID: 20473534 DOI: 10.1007/s00726-010-0618-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/28/2010] [Indexed: 11/28/2022]
Abstract
Anti-bacterial drug resistance is one of the most critical concerns among the scientist worldwide. The novel antimicrobial decapeptide SD-8 is designed and its minimal inhibitory concentration and therapeutic index (TI) was found in the range of 1-8 μg/ml and 45-360, respectively, against major group of Gram positive pathogens (GPP). The peptide was also found to be least hemolytic at a concentration of 180 μg/ml, i.e., nearly 77 times higher than its average effective concentration. The kinetics assay showed that the killing time is 120 min for methicillin-sensitive Staphylococcus aureus (MSSA) and 90 min for methicillin-resistant S. aureus (MRSA). Membrane permeabilization is the cause of peptide antimicrobial activity as shown by the transmission electron microscopy studies. The peptide showed the anti-inflammatory property by inhibiting COX-2 with a KD and Ki values of 2.36×10(-9) and 4.8×10(-8) M, respectively. The peptide was also found to be effective in vivo as derived from histopathological observations in a Staphylococcal skin infection rat model with MRSA as causative organism.
Collapse
Affiliation(s)
- Biswajit Mishra
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Phillips M, Cataneo RN, Saunders C, Hope P, Schmitt P, Wai J. Volatile biomarkers in the breath of women with breast cancer. J Breath Res 2010; 4:026003. [PMID: 21383471 DOI: 10.1088/1752-7155/4/2/026003] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We sought biomarkers of breast cancer in the breath because the disease is accompanied by increased oxidative stress and induction of cytochrome P450 enzymes, both of which generate volatile organic compounds (VOCs) that are excreted in breath. We analyzed breath VOCs in 54 women with biopsy-proven breast cancer and 204 cancer-free controls, using gas chromatography/mass spectroscopy. Chromatograms were converted into a series of data points by segmenting them into 900 time slices (8 s duration, 4 s overlap) and determining their alveolar gradients (abundance in breath minus abundance in ambient room air). Monte Carlo simulations identified time slices with better than random accuracy as biomarkers of breast cancer by excluding random identifiers. Patients were randomly allocated to training sets or test sets in 2:1 data splits. In the training sets, time slices were ranked according their C-statistic values (area under curve of receiver operating characteristic), and the top ten time slices were combined in multivariate algorithms that were cross-validated in the test sets. Monte Carlo simulations identified an excess of correct over random time slices, consistent with non-random biomarkers of breast cancer in the breath. The outcomes of ten random data splits (mean (standard deviation)) in the training sets were sensitivity = 78.5% (6.14), specificity = 88.3% (5.47), C-statistic = 0.89 (0.03) and in the test sets, sensitivity = 75.3% (7.22), specificity = 84.8 (9.97), C-statistic = 0.83 (0.06). A breath test identified women with breast cancer, employing a combination of volatile biomarkers in a multivariate algorithm.
Collapse
|
31
|
Lee JA, Bae JW, Woo SU, Kim H, Kim CH. Correlation between COX-2 Expression and Hormone Receptors in Invasive Ductal Breast Cancer. JOURNAL OF THE KOREAN SURGICAL SOCIETY 2010. [DOI: 10.4174/jkss.2010.78.3.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jung Ah Lee
- Department of Breast and Endocrine Surgery, Korea University Hospital, Seoul, Korea
| | - Jeoung Won Bae
- Department of Breast and Endocrine Surgery, Korea University Hospital, Seoul, Korea
| | - Sang Uk Woo
- Department of Breast and Endocrine Surgery, Korea University Hospital, Seoul, Korea
| | - Hyunchul Kim
- Department of Pathology, Korea University Hospital, Seoul, Korea
| | - Chul Hwan Kim
- Department of Pathology, Korea University Hospital, Seoul, Korea
| |
Collapse
|
32
|
Krishnan AV, Swami S, Peng L, Wang J, Moreno J, Feldman D. Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy. Endocrinology 2010; 151:32-42. [PMID: 19906814 PMCID: PMC2803154 DOI: 10.1210/en.2009-0855] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aromatase, the enzyme that catalyzes estrogen synthesis, is critical for the progression of estrogen receptor-positive breast cancer (BCa) in postmenopausal women. We show that calcitriol, the hormonally active form of vitamin D, regulates the expression of aromatase in a tissue-selective manner. Calcitriol significantly decreased aromatase expression in human BCa cells and adipocytes and caused substantial increases in human osteosarcoma cells (a bone cell model exhibiting osteoblast phenotype in culture) and modest increases in ovarian cancer cells. Calcitriol administration to immunocompromised mice bearing human BCa xenografts decreased aromatase mRNA levels in the tumors and the surrounding mammary adipose tissue but did not alter ovarian aromatase expression. In BCa cells, calcitriol also reduced the levels of prostaglandins (PGs), major stimulators of aromatase transcription, by suppressing the expression of cyclooxygenase-2 (which catalyzes PG synthesis) and increasing that of 15-hydroxyprostaglandin dehydrogenase (which catalyzes PG degradation). The mechanism of aromatase down-regulation by calcitriol in BCa cells is therefore 2-fold: a direct repression of aromatase transcription via promoter II through the vitamin D-response elements identified in this promoter and an indirect suppression by reducing the levels of PGs. Combinations of calcitriol with three different aromatase inhibitors (AIs) caused enhanced inhibition of BCa cell growth. The combination of calcitriol and an AI may have potential benefits for BCa therapy. In addition to augmenting the ability of AIs to inhibit BCa growth, calcitriol acting as a selective aromatase modulator that increases aromatase expression in bone would reduce the estrogen deprivation in bone caused by the AIs, thus ameliorating the AI-induced side effect of osteoporosis.
Collapse
Affiliation(s)
- Aruna V Krishnan
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305-5103, USA
| | | | | | | | | | | |
Collapse
|
33
|
Galbraith H. Hormones in international meat production: biological, sociological and consumer issues. Nutr Res Rev 2009; 15:293-314. [PMID: 19087409 DOI: 10.1079/nrr200246] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Beef and its products are an important source of nutrition in many human societies. Methods of production vary and include the use of hormonal compounds ('hormones') to increase growth and lean tissue with reduced fat deposition in cattle. The hormonal compounds are naturally occurring in animals or are synthetically produced xenobiotics and have oestrogenic (oestradiol-17beta and its esters; zeranol), androgenic (testosterone and esters; trenbolone acetate) or progestogenic (progesterone; melengestrol acetate) activity. The use of hormones as production aids is permitted in North American countries but is no longer allowed in the European Union (EU), which also prohibits the importation of beef and its products derived from hormone-treated cattle. These actions have resulted in a trade dispute between the two trading blocs. The major concern for EU authorities is the possibility of adverse effects on human consumers of residues of hormones and metabolites. Methods used to assess possible adverse effects are typical of those used by international agencies to assess acceptability of chemicals in human food. These include analysis of quantities present in the context of known biological activity and digestive, absorptive, post-absorptive and excretory processes. Particular considerations include the low quantities of hormonal compounds consumed in meat products and their relationships to endogenous production particularly in prepubertal children, enterohepatic inactivation, cellular receptor- and non-receptor-mediated effects and potential for interference with growth, development and physiological function in consumers. There is particular concern about the role of oestradiol-17beta as a carcinogen in certain tissues. Now subject to a 'permanent' EU ban, current evidence suggests that certain catechol metabolites may induce free-radical damage of DNA in cell and laboratory animal test systems. Classical oestrogen-receptor mediation is considered to stimulate proliferation in cells maintaining receptivity. Mathematical models describing quantitative relationships between consumption of small amounts of oestrogens in meat in addition to greater concentrations from endogenous production, chemical stoichiometry at cellular level and human pathology have not been developed. Such an approach will be necessary to establish 'molecular materiality' of the additional hormone intake as a component of relative risk assessment. The other hormones, although generally less well researched, are similarly subject to a range of tests to determine potentially adverse effects. The resulting limited international consensus relates to the application of the 'precautionary principle' and non-acceptance by the European Commission of the recommendations of the Codex Alimentarius Commission, which determined that meat from cattle, hormone-treated according to good practice, was safe for human consumers. The present review considers the hormone issue in the context of current international social methodology and regulation, recent advances in knowledge of biological activity of hormones and current status of science-based evaluation of food safety and risk for human consumers.
Collapse
Affiliation(s)
- Hugh Galbraith
- Department of Agriculture and Forestry University of Aberdeen 581 King Street Aberdeen AB24 5UA, UK.
| |
Collapse
|
34
|
Catalano S, Barone I, Giordano C, Rizza P, Qi H, Gu G, Malivindi R, Bonofiglio D, Andò S. Rapid estradiol/ERalpha signaling enhances aromatase enzymatic activity in breast cancer cells. Mol Endocrinol 2009; 23:1634-45. [PMID: 19556341 DOI: 10.1210/me.2009-0039] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In situ estrogen production by aromatase conversion from androgens plays an important role in breast tumor promotion. Here, we show that 17beta-estradiol (E2) can rapidly enhance aromatase enzymatic activity through an increase of aromatase protein phosphorylation in breast cancer cell lines. In vivo labeling experiments and site-directed mutagenesis studies demonstrated that phosphorylation of the 361-tyrosine residue is crucial in the up-regulation of aromatase activity under E2 exposure. Our results demonstrated a direct involvement of nonreceptor tyrosine-kinase c-Src in E2-stimulated aromatase activity because inhibition of its signaling abrogated the up-regulatory effects induced by E2 on aromatase activity as well as phosphorylation of aromatase protein. In addition, from our data it emerges that aromatase is a target of cross talk between growth factor receptors and estrogen receptor alpha signaling. These findings show, for the first time, that tyrosine phosphorylation processes play a key role in the rapid changes induced by E2 in aromatase enzymatic activity, revealing the existence of a short nongenomic autocrine loop between E2 and aromatase in breast cancer cells.
Collapse
Affiliation(s)
- Stefania Catalano
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende (CS) 87030, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lykkesfeldt AE, Henriksen KL, Rasmussen BB, Sasano H, Evans DB, Møller S, Ejlertsen B, Mouridsen HT. In situ aromatase expression in primary tumor is associated with estrogen receptor expression but is not predictive of response to endocrine therapy in advanced breast cancer. BMC Cancer 2009; 9:185. [PMID: 19531212 PMCID: PMC2702392 DOI: 10.1186/1471-2407-9-185] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 06/16/2009] [Indexed: 12/02/2022] Open
Abstract
Background New, third-generation aromatase inhibitors (AIs) have proven comparable or superior to the anti-estrogen tamoxifen for treatment of estrogen receptor (ER) and/or progesterone receptor (PR) positive breast cancer. AIs suppress total body and intratumoral estrogen levels. It is unclear whether in situ carcinoma cell aromatization is the primary source of estrogen production for tumor growth and whether the aromatase expression is predictive of response to endocrine therapy. Due to methodological difficulties in the determination of the aromatase protein, COX-2, an enzyme involved in the synthesis of aromatase, has been suggested as a surrogate marker for aromatase expression. Methods Primary tumor material was retrospectively collected from 88 patients who participated in a randomized clinical trial comparing the AI letrozole to the anti-estrogen tamoxifen for first-line treatment of advanced breast cancer. Semi-quantitative immunohistochemical (IHC) analysis was performed for ER, PR, COX-2 and aromatase using Tissue Microarrays (TMAs). Aromatase was also analyzed using whole sections (WS). Kappa analysis was applied to compare association of protein expression levels. Univariate Wilcoxon analysis and the Cox-analysis were performed to evaluate time to progression (TTP) in relation to marker expression. Results Aromatase expression was associated with ER, but not with PR or COX-2 expression in carcinoma cells. Measurements of aromatase in WS were not comparable to results from TMAs. Expression of COX-2 and aromatase did not predict response to endocrine therapy. Aromatase in combination with high PR expression may select letrozole treated patients with a longer TTP. Conclusion TMAs are not suitable for IHC analysis of in situ aromatase expression and we did not find COX-2 expression in carcinoma cells to be a surrogate marker for aromatase. In situ aromatase expression in tumor cells is associated with ER expression and may thus point towards good prognosis. Aromatase expression in cancer cells is not predictive of response to endocrine therapy, indicating that in situ estrogen synthesis may not be the major source of intratumoral estrogen. However, aromatase expression in combination with high PR expression may select letrozole treated patients with longer TTP. Trial registration Sub-study of trial P025 for advanced breast cancer.
Collapse
Affiliation(s)
- Anne E Lykkesfeldt
- Department of Tumor Endocrinology, Institute of Cancer Biology, Danish Cancer Society, Copenhagen Ø, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jongen VHWM, Briët JM, de Jong RA, Joppe E, ten Hoor KA, Boezen HM, Evans DB, Hollema H, van der Zee AGJ, Nijman HW. Aromatase, cyclooxygenase 2, HER-2/neu, and p53 as prognostic factors in endometrioid endometrial cancer. Int J Gynecol Cancer 2009; 19:670-6. [PMID: 19509570 DOI: 10.1111/igc.0b013e3181a47c25] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The prognostic value of aromatase, cyclooxygenase 2 (COX-2), HER-2/neu, and p53 expression was determined in endometrioid endometrial cancer. Tissue microarrays were constructed comprising samples from 315 endometrioid endometrial cancer patients. Expression of aromatase, COX-2, HER-2/neu, and p53 was determined by immunostaining and related to classical clinicohistopathologic parameters, in addition to recurrence of disease and survival. Median follow-up time for all patients was 5.0 years. Patients were classified as Fédération Internationale de Gynécologie Obstétrique stage I (59.0%), stage II (17.1%), stage III (19.4%), and stage IV (4.1%). Sixty-five patients (20.6%) developed recurrent disease, and 38 (12.1%) died because of endometrial cancer. Aromatase, COX-2, HER-2/neu, and p53 expression was observed in 133 (42.2%), 107 (34.0%), 17 (5.4%), and 21 (6.7%) tumor cases, respectively. Aromatase expression in tumor cells was related to aromatase expression in stromal cells (P < 0.0001) and to HER-2/neu expression in tumor cells (P = 0.019). Aromatase expression in tumor as well as stromal cells was related to a low stage of disease (P = 0.02 and P = 0.001, respectively), whereas aromatase expression in stromal cells was also related to a low tumor grade (P = 0.021). P53 expression was related to a high stage and a high grade (P = 0.006 and P < 0.0001, respectively). In multivariate analysis, p53 overexpression was independently related to death because of the disease (P = 0.043; odds ratio 3.0; 95% confidence interval, 1.0-8.7). For COX-2, HER-2/neu, and aromatase, no relation with any other histopathologic parameter or survival was found. In conclusion, aromatase and p53 expression are related to tumor grade and stage of disease, whereas p53 is an independent prognostic factor in endometrioid endometrial cancer.
Collapse
Affiliation(s)
- Vincent H W M Jongen
- Department of Gynaecologic Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bulun SE, Utsunomiya H, Lin Z, Yin P, Cheng YH, Pavone ME, Tokunaga H, Trukhacheva E, Attar E, Gurates B, Milad MP, Confino E, Su E, Reierstad S, Xue Q. Steroidogenic factor-1 and endometriosis. Mol Cell Endocrinol 2009; 300:104-8. [PMID: 19150483 DOI: 10.1016/j.mce.2008.12.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/01/2008] [Accepted: 12/01/2008] [Indexed: 11/26/2022]
Abstract
Endometriosis is a common and chronic disease characterized by persistent pelvic pain and infertility. Estradiol is essential for growth and inflammation in endometriotic tissue. The complete cascade of steroidogenic proteins/enzymes including aromatase is present in endometriosis leading to de novo estradiol synthesis. PGE(2) induces the expression of the genes that encode these enzymes. Upon PGE(2) treatment, coordinate recruitment of the nuclear receptor SF-1 to the promoters of these steroidogenic genes is the key event for estradiol synthesis. SF-1 is the key factor determining that an endometriotic cell will respond to PGE(2) by increased estradiol formation. The presence of SF-1 in endometriosis and its absence in endometrium is determined primarily by the methylation of its promoter. The key steroidogenic enzyme in endometriosis is aromatase encoded by a single gene because its inhibition blocks all estradiol biosynthesis. Aromatase inhibitors diminish endometriotic implants and associated pain refractory to existing treatments in affected women.
Collapse
Affiliation(s)
- Serdar E Bulun
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 333 E. Superior Street, Suite 484, Chicago, IL 60611, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Miller TW, Shin I, Kagawa N, Evans DB, Waterman MR, Arteaga CL. Aromatase is phosphorylated in situ at serine-118. J Steroid Biochem Mol Biol 2008; 112:95-101. [PMID: 18822378 PMCID: PMC2856845 DOI: 10.1016/j.jsbmb.2008.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Revised: 08/26/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
Phosphorylation of the cytochrome P450 aromatase has been proposed as a switch to rapidly modulate enzymatic activity and estrogen biosynthesis. Herein, we demonstrate that aromatase serine-118 is a potential phosphorylation site in mammalian cells. The amino acid context surrounding S118 is highly conserved among diverse animal species and suggests that an AGC-like kinase may phosphorylate aromatase. Mutation of S118 to Ala blocked phosphorylation. Mutation of S118 to either Ala or Asp destabilized aromatase, indicating an important structural role for S118. The phosphomimetic S118D mutant showed decreased specific enzymatic activity, decreased Vmax, and increased Km, while the S118A phospho-inhibiting mutant showed opposite effects. Our findings suggest that phosphorylation of S118 may decrease aromatase activity, presenting a mechanism whereby kinase signaling may modulate estrogen production and hormone balance.
Collapse
Affiliation(s)
- Todd W. Miller
- Department of Medicine, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Incheol Shin
- Department of Medicine, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Norio Kagawa
- Department of Biochemistry, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Dean B. Evans
- Novartis Institutes for BioMedical Research Basel, Oncology Research, Basel, Switzerland
| | - Michael R. Waterman
- Department of Biochemistry, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Carlos L. Arteaga
- Department of Medicine, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Breast Cancer Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
39
|
Neil JR, Johnson KM, Nemenoff RA, Schiemann WP. Cox-2 inactivates Smad signaling and enhances EMT stimulated by TGF-beta through a PGE2-dependent mechanisms. Carcinogenesis 2008; 29:2227-35. [PMID: 18725385 DOI: 10.1093/carcin/bgn202] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although it is well established that mammary tumorigenesis converts transforming growth factor-beta (TGF-beta) from a tumor suppressor to a tumor promoter, the molecular, cellular and microenvironmental mechanisms underlying the dichotomous nature of TGF-beta in mammary epithelial cells (MECs) remains to be determined definitively. Aberrant upregulation of the inducible cyclooxygenase, Cox-2, occurs frequently in breast cancers and is associated with increasing disease severity and the acquisition of metastasis; however, the impact of Cox-2 expression on normal and malignant MEC response to TGF-beta remains unknown. We show here that TGF-beta induced Cox-2 expression in normal MECs during their acquisition of an epithelial-mesenchymal transition (EMT) phenotype. Moreover, stable Cox-2 expression in normal MECs stimulated their invasion, EMT and anchorage-independent growth and inhibited their activation of Smad2/3 by TGF-beta. Conversely, antagonizing TGF-beta signaling in malignant, metastatic MECs significantly reduced their expression of Cox-2 as well as enhanced their activation of Smad2/3 by TGF-beta. Along these lines, elevated Cox-2 expression elicited prostaglandin E(2) (PGE(2)) production and the autocrine activation of EP receptors, which antagonized Smad2/3 signaling in normal and malignant MECs. Importantly, rendering normal and malignant MECs Cox-2 deficient inhibited their production of PGE(2) and acquisition of an EMT morphology as well as potentiated their nuclear accumulation of Smad2/3 and transcription of plasminogen activator inhibitor-1 and p15 messenger RNA. Collectively, our findings establish Cox-2 as a novel antagonist of Smad2/3 signaling in normal and malignant MECs; they also suggest that chemotherapeutic targeting of Cox-2 may offer new inroads in restoring the tumor-suppressing activities of TGF-beta in malignant, metastatic breast cancers.
Collapse
Affiliation(s)
- Jason R Neil
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
40
|
Li YF, Hu W, Fu SQ, Li JD, Liu JH, Kavanagh JJ. Aromatase inhibitors in ovarian cancer: is there a role? Int J Gynecol Cancer 2008; 18:600-14. [PMID: 17894799 DOI: 10.1111/j.1525-1438.2007.01075.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Estrogen plays a role in ovarian tumorigenesis. Aromatase is the enzyme required for the synthesis of estrogen via conversion of androgen to estrogen, which is the major source of estrogen in postmenopausal women. Aromatase is present in normal ovaries and other tissues (e.g., fat and muscle) as well as in 33-81% tumor tissues of ovarian cancer. Aromatase inhibitors (AIs) block estrogen synthesis by inhibiting aromatase activity. In patients with recurrent ovarian cancer, single-agent AI therapy has been shown to elicit clinical response rates of up to 35.7% and stable disease rates of 20-42%. Given the limited treatment options for recurrent ovarian cancer and the favorable safety profile and convenient use, AI is a rational option for prolonging platinum-free interval in recurrent ovarian cancer. Further studies are required to determine the efficacy of combination treatment with AIs and biological agents, determine the benefit of AIs for treating special types of ovarian cancer (e.g., endometrioid type), and identify biomarkers for targeted patient selection. This review summarizes the current epidemiologic, preclinical, and clinical data regarding estrogen's role in ovarian cancer, the expression and regulation of aromatase in this disease, the development and characteristics of the three generations of AIs, and the preclinical and clinical studies of AIs in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Y F Li
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77230, USA
| | | | | | | | | | | |
Collapse
|
41
|
From endometrial hyperplasia to endometrial cancer: insight into the biology and possible medical preventive measures. Eur J Cancer Prev 2008; 17:133-8. [PMID: 18287870 DOI: 10.1097/cej.0b013e32811080ce] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Controversies are still seen in the histological differential diagnosis of hyperplasia and well-differentiated endometrial carcinoma. Prediction of endometrial cancer in patients with hyperplasia with atypia, with the available markers has not been reliable yet. Hence these patients require more attention in the clinical management. Endometrial hyperplasia is proliferation of endometrial glands resulting in a higher gland : stroma ratio. Cytological atypia, which may progress to or co-exist with endometrial cancer and other pathological changes, result from estrogen stimulation unopposed by progesterone. Biomarkers whose expression is altered in cases of endometrial hyperplasia or cancer such as progesterone receptor, insulin-like growth factor I, retinaldehyde dehydrogenase type II, and secreted frizzled-related protein 4, seem to be promising to use as early-stage tumor markers. Mutation of PTEN is present in 83% of endometrial adenocarcinoma cases, making it the most frequent early molecular genetic alteration in type 1 endometrial tumors, which are generally associated with hyperplasia. p53 gene mutation is not found in endometrial hyperplasia, but researchers have detected this mutation in 20% of cases of endometrial carcinoma and 90% of cases of serous endometrial tumors. Cyclooxygenase-2 is important in tumorogenic transformation of hyperplasia. Expression of cyclooxygenase-2 decreases apoptosis, increases angiogenesis, and is related to invasiveness. Cyclooxygenase-2 expression increases significantly in cases of well-differentiated endometrial adenocarcinoma. Prostaglandin E2 is known to regulate aromatase gene expression and is the product of cyclooxygenase-2. The data about aromatase inhibitors are promising; in breast cancer patients, treatment with tamoxifen induces uterine abnormalities as early as 3 months after the initiation of therapy. In contrast, these abnormalities are not seen in patients who receive aromatase inhibitors and switched therapy after tamoxifen withdrawal may reverse tamoxifen-associated endometrial thickening.
Collapse
|
42
|
Yang X, Lin L, Zhang X, Ji Y, Lv J, Zhu Y, Yin Y, Sun Y, Han X. Identification of a novel repressor element in the cyclo-oxygenase-2 promoter and its nuclear binding protein. Clin Exp Pharmacol Physiol 2008; 35:1204-8. [PMID: 18518878 DOI: 10.1111/j.1440-1681.2008.04980.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclo-oxygenase-2 (COX-2) has important functions in many diseases. Although its transcriptional regulation has been investigated in considerable detail, some important elements remain unknown. The aim of the present study was to demonstrate the existence of a novel repressor element in the mouse COX-2 promoter and characterize some of its binding proteins. In order to identify the repressor element, the activity of the mouse COX-2 promoter was investigated in the pancreatic beta-cell line RINm5F using a series of deletion and mutant constructs. The ability of nuclear proteins to bind to this repressor element was then determined by an electrophoretic mobility shift assay and the proteins binding to this repressor element were purified and identified by mass spectrometry. One of the nuclear proteins identified was overexpressed to examine its inhibitory effect on COX-2 promoter activity. We found a novel repressor element located from nucleotides -655 to -632 of the mouse COX-2 promoter region. Some proteins from RINm5F cell nuclear extracts bound to this element, one of which was identified as non-POU-domain-containing, octamer-binding protein (NonO). Overexpression of NonO significantly inhibited wild-type COX-2 promoter activity, but had no effect when the repressor element was mutated. In conclusion, we have demonstrated that a regulatory 'spot' is present in the COX-2 promoter. This provides additional data on COX-2 gene regulation and may provide an insight into the clinical treatment of diseases where COX-2 is highly expressed.
Collapse
Affiliation(s)
- Xiaomin Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Expression of enzymes involved in the prostanoid metabolism by cortical astrocytes after LPS-induced inflammation. J Mol Neurosci 2008; 34:177-85. [PMID: 18172772 DOI: 10.1007/s12031-007-9028-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
Neuroinflammatory processes are a common epiphenomenon for a number of neurological and neurodegenerative diseases. Besides microglia, astrocytes are implicated in brain inflammation in response to harmful stimuli and pathological processes. Bacterial endotoxins can induce the synthesis and release of proinflammatory mediators, i.e., cytokines and chemokines, by astroglia. In this study, we have investigated the effect of lipopolysaccharide (LPS) treatment on the expression of enzymes of prostanoid synthesis and degradation in cultured mouse cortical astrocytes using an Affymetrix Gene Chip array, quantitative reverse transcriptase polymerase chain reaction (RT-PCR), and an enzyme-immunosorbent assay. LPS treatment induced an upregulation of enzymes responsible for prostaglandin E2 synthesis, a downregulation of enzymes that catalyzes prostaglandin E2 (PGE2) degradation and production of proinflammatory leukotrienes. Changes in enzyme expression were accompanied by a highly significant increase in extracellular PGE2. Our data demonstrate that astrocytes are directly involved in the complex regulation of proinflammatory prostanoids in the CNS under pathological processes, thus being of potential interest as targets for therapeutical interventions. Further studies are required to unravel the different roles and interactions between astroglia and other cells of the brain-intrinsic innate immune system during inflammation.
Collapse
|
44
|
Bulun SE, Simpson ER. Aromatase expression in women's cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 630:112-32. [PMID: 18637488 DOI: 10.1007/978-0-387-78818-0_8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Estrogen has been positively linked to the pathogenesis and growth of three common women's cancers (breast, endometrium and ovary). A single gene encodes the key enzyme for estrogen biosynthesis named aromatase, inhibition of which effectively eliminates estrogen production in the entire body. Aromatase inhibitors successfully treat breast cancer, whereas their roles in endometrial and ovarian cancers are less dear. Ovary, testis, adipose tissue, skin, hypothalamus and placenta express aromatase normally, whereas breast, endometrial and ovarian cancers overexpress aromatase and produce local estrogen exerting paracrine and intracrine effects. Tissue specific promoters distributed over a 93 kilobase regulatory region upstream of a common coding region alternatively control aromatase expression. A distinct set of transcription factors regulates each promoter in a signaling pathway- and tissue-specific manner. In cancers ofbreast, endometrium and ovary, aromatase expression is primarly regulated by increased activity of the proximally located promoter 1.3/II region. Promoters I.3 and II lie 215 bp from each other and are coordinately stimulated by PGE2 via a cAMP-PKA-dependent pathway. In breast adipose fibroblasts exposed to PGE2 secreted by malignant epithelial cells, activation of PKC potentiates cAMP-PKA-dependent induction ofaromatase. Thus, inflammatory substances such as PGE2 may play important roles in inducing local production of estrogen that promotes tumor growth.
Collapse
Affiliation(s)
- Serdar E Bulun
- Department of Obstetric and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
45
|
Efficacy of sulforaphane is mediated by p38 MAP kinase and caspase-7 activations in ER-positive and COX-2-expressed human breast cancer cells. Eur J Cancer Prev 2007; 16:505-10. [DOI: 10.1097/01.cej.0000243856.97479.3b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Markaverich BM, Crowley J, Rodriquez M, Shoulars K, Thompson T. Tetrahydrofurandiol stimulation of phospholipase A2, lipoxygenase, and cyclooxygenase gene expression and MCF-7 human breast cancer cell proliferation. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1727-1731. [PMID: 18087590 PMCID: PMC2137134 DOI: 10.1289/ehp.10659] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 08/30/2007] [Indexed: 05/25/2023]
Abstract
BACKGROUND We characterized an endocrine disruptor from ground corncob bedding material that interferes with male and female sexual behavior and ovarian cyclicity in rats and stimulates estrogen receptor (ER)-positive and ER-negative breast cancer cell proliferation. The agents were identified as an isomeric mixture of tetrahydrofurandiols (THF-diols; 9,12-oxy-10,13-dihydroxy-octadecanoic acid and 10,13-oxy-9,12-dihydroxyoctadecanoic acid). Synthetic THF-diols inhibited rat male and female sexual behavior at oral concentrations of 0.5-1 ppm, and stimulated MCF-7 human breast cancer cell proliferation in vitro. OBJECTIVES Because THF-diols are derived from lipoxygenase and cyclooxygenase pathways, we suspected that these compounds may regulate cell proliferation by modulating specific enzymatic sites involved in linoleic acid metabolism including phospholipase A(2) (PLA2), lipoxygenases (LOX-5 and LOX-12), cyclooxygenases (COX-1 and COX-2), and closely coupled enzymes including aromatase (AROM). METHODS MCF-7 human breast cancer cells were treated with inhibitors for PLA2 (quinacrine), lipoxygenases (LOX-5 and LOX-12; baicalein, REV-5091, nordihydroguaiaretic acid), cyclooxygenases (COX-1, COX-2, indomethacin), and AROM (formestane). The effects of these enzyme inhibitors on cell proliferation in response to THF-diols or estradiol (E(2)) were assessed. THF-diol modulation of the expression (RNA and protein) of these enzymes was also evaluated by quantitative real-time PCR (QPCR) and Western blot analyses. RESULTS The enzyme inhibition and gene expression (RNA and protein) studies identified PLA2, LOX-5, LOX-12, COX-2, and perhaps AROM as likely sites of THF-diol regulation in MCF-7 cells. COX-1 was not affected by THF-diol treatment. DISCUSSION THF-diol stimulation of MCF-7 cell proliferation is mediated through effects on the expression of the PLA2, COX-2, LOX-5, and LOX-12 genes and/or their respective enzyme activities. The products of these enzymes, including prostaglandins, hydroxyeicosatetraenoic acids (HETEs) and hydroxyoctadecenoic acids (HODEs), are well-established mitogens in normal and malignant cells. Therefore, it is likely that these compounds are involved in the mechanism of action of THF-diols in breast cancer cells. Although the formestane inhibition studies suggested that AROM activity might be modulated by THF-diols, this was not confirmed by the gene expression studies.
Collapse
Affiliation(s)
- Barry M Markaverich
- Department of Molecular and Cellular Biology, Baylor Colloege of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
47
|
Licznerska BE, Wegman PP, Nordenskjöld B, Wingren S. In situ levels of oestrogen producing enzymes and its prognostic significance in postmenopausal breast cancer patients. Breast Cancer Res Treat 2007; 112:15-23. [PMID: 18030614 DOI: 10.1007/s10549-007-9819-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 11/24/2022]
Abstract
BACKGROUND The risk of developing breast cancer is strongly correlated with the overall exposure to oestrogen and most tumours are more or less dependent on oestrogen for their growth. A great majority of breast cancers occur after menopause when the ovaries have ceased to be functional, yet breast tumours in postmenopausal women maintain high intratumoural oestrogen concentrations, primarily through enzymatic conversion of androgenic precursors. PATIENTS with a hormone dependent tumour generally receive the anti-oestrogen tamoxifen that mediate its anti-tumour effect by competing with oestrogen for binding to the oestrogen-receptor (ER). We therefore propose that the levels of oestrogen producing enzymes may affect the prognosis in postmenopausal breast cancer patients treated with tamoxifen. METHODS We measured the mRNA and protein levels of aromatase and sulfatase by real-time PCR (n=161) and immunohistochemistry (n=131) in postmenopausal women with breast cancer. RESULTS A significant better recurrence-free survival was detected in patients with weak or high protein expression of stromal aromatase (P=0.0008), as also demonstrated by a decreased relative risk (RR=0.50, CI=0.33-0.76, P=0.003). When we combined patients with weak and high stromal aromatase and selected only ER-positive patients, the improved prognosis was even more evident (P=0.0000) and was shown to be a significant prognostic factor in a multivariate Cox-model (HR=0.15, CI=0.06-0.39, P=0.000). The mRNA expression of aromatase and sulfatase, as well as the protein expression of sulfatase revealed no prognostic significance. CONCLUSION Protein expression of stromal aromatase may serve as a significant prognostic marker in ER-positive patients.
Collapse
Affiliation(s)
- Barbara E Licznerska
- Institution of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences, Linköping University, Linkoping, Sweden
| | | | | | | |
Collapse
|
48
|
Nangia-Makker P, Tait L, Shekhar MPV, Palomino E, Hogan V, Piechocki MP, Funasaka T, Raz A. Inhibition of breast tumor growth and angiogenesis by a medicinal herb: Ocimum gratissimum. Int J Cancer 2007; 121:884-94. [PMID: 17437270 PMCID: PMC3613994 DOI: 10.1002/ijc.22733] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ocimum sp. is a traditionally used medicinal herb, which shows anti-oxidant, anti-carcinogenic, radio-protective and free radical scavenging properties. So far no detailed studies have been reported on its effects on human cancers. Thus, we analyzed its effects on human breast cancer utilizing in vitro and in vivo methodologies. Aqueous extracts were prepared from the mature leaves of Ocimum gratissimum (OG) cultivated devoid of pesticides. Tumor progression and angiogenesis related processes like chemotaxis, proliferation, apoptosis, 3D growth and morphogenesis, angiogenesis and tumor growth were studied in the presence or absence of the extract, and in some experiments a comparison was made with purified commercially available eugenol, apigenin and ursolic acid. Aqueous OG leaf extract inhibits proliferation, migration, anchorage independent growth, 3D growth and morphogenesis and induction of COX-2 protein in breast cancer cells. A comparative analysis with eugenol, apigenin and ursolic acid showed that the inhibitory effects on chemotaxis and 3D morphogenesis of breast cancer cells were specific to OG extract. In addition, OG extracts reduced tumor size and neoangiogenesis in a MCF10 DCIS.com xenograft model of human DCIS. This is the first detailed report showing that OG leaf extract may be of value as a breast cancer preventive and therapeutic agent and might be considered as additional additive in the arsenal of components aimed at combating breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Pratima Nangia-Makker
- Tumor Progression and Metastasis, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Watanabe M, Noda M, Nakajin S. Aromatase expression in a human osteoblastic cell line increases in response to prostaglandin E(2) in a dexamethasone-dependent fashion. Steroids 2007; 72:686-92. [PMID: 17614108 DOI: 10.1016/j.steroids.2007.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 05/24/2007] [Indexed: 11/15/2022]
Abstract
Recent progress supports the importance of local estrogen secretion in human bone tissue to increase and maintain bone-mineral density. In a previous report, we found that forskolin (FSK) synergistically induces aromatase (CYP19: a rate-limiting enzyme for estrogen synthesis) expression in dexamethasone (Dex) dependent manner in a human osteoblastic cell line, SV-HFO [Watanabe M, Ohno S, Nakajin S. Forskolin and dexamethasone synergistically induce aromatase (CYP19) expression in the human osteoblastic cell line SV-HFO. Eur J Endocrinol 2005;152:619-24]. In this report, we investigated whether prostaglandin (PG) E(2) induces estrogen production, in other words, if PGE(2) exerts the same effect as FSK because PGE(2) is the major prostanoid in the bone and is one of the key molecules in the osteoblast. We found PGE(2) up-regulates aromatase activity synergistically, but this up-regulation depends on Dex. CYP19 gene expression was also increased synergistically by Dex and PGE(2). Promoter I.4 was activated synergistically by PGE(2) and Dex. PGE(2) receptor, EP(1), EP(2) and EP(4) were involved in the up-regulation of aromatase activity in response to PGE(2) in a Dex-dependent manner. The cAMP-PKA pathway and Ca(2+) signaling pathway were involved in the up-regulation of aromatase activity in response to PGE(2). Furthermore, glucocorticoid response element on promoter I.4 sequence was an essential minimum requirement for its activity and synergism of PGE(2) and Dex. These findings are the first report on osteoblastic cell line which uses predominantly promoter I.4 to drive aromatase expression. These findings also suggest that endogenous PGE(2) produced in bone mainly may synergistically support local estrogen production in osteoblastic cells in the presence of glucocorticoid.
Collapse
Affiliation(s)
- M Watanabe
- Department of Biochemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | | | | |
Collapse
|
50
|
Bulun SE, Chen D, Lu M, Zhao H, Cheng Y, Demura M, Yilmaz B, Martin R, Utsunomiya H, Thung S, Su E, Marsh E, Hakim A, Yin P, Ishikawa H, Amin S, Imir G, Gurates B, Attar E, Reierstad S, Innes J, Lin Z. Aromatase excess in cancers of breast, endometrium and ovary. J Steroid Biochem Mol Biol 2007; 106:81-96. [PMID: 17590327 PMCID: PMC2766613 DOI: 10.1016/j.jsbmb.2007.05.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pathogenesis and growth of three common women's cancers (breast, endometrium and ovary) are linked to estrogen. A single gene encodes the key enzyme for estrogen biosynthesis named aromatase, inhibition of which effectively eliminates estrogen production in the entire body. Aromatase inhibitors successfully treat breast cancer, whereas their roles in endometrial and ovarian cancers are less clear. Ovary, testis, adipose tissue, skin, hypothalamus and placenta express aromatase normally, whereas breast, endometrial and ovarian cancers overexpress aromatase and produce local estrogen exerting paracrine and intracrine effects. Tissue-specific promoters distributed over a 93-kb regulatory region upstream of a common coding region alternatively control aromatase expression. A distinct set of transcription factors regulates each promoter in a signaling pathway- and tissue-specific manner. In cancers of breast, endometrium and ovary, aromatase expression is primarly regulated by increased activity of the proximally located promoter I.3/II region. Promoters I.3 and II lie 215 bp from each other and are coordinately stimulated by PGE(2) via a cAMP-PKA-dependent pathway. In breast adipose fibroblasts exposed to PGE(2) secreted by malignant epithelial cells, PKC is also activated, and this potentiates cAMP-PKA-dependent induction of aromatase. Thus, inflammatory substances such as PGE(2) may play important roles in inducing local production of estrogen that promotes tumor growth.
Collapse
Affiliation(s)
- Serdar E Bulun
- Robert H. Lurie Comprehensive Cancer Center and Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|