1
|
Liu H, Gu X, Meng J, Gu Y, Shen L, Li J, Lv Y, Wang X, Chen B, Yin J, Li A. Knockdown of HSF1 inhibits invasion, metastasis, and proliferation of endometrial carcinoma cells while promoting apoptosis. Cancer Biomark 2025; 42:18758592241311191. [PMID: 40235068 DOI: 10.1177/18758592241311191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
BackgroundHeat shock factor 1 (HSF1), the principal transcriptional regulator of cellular stress responses, has been exhibited to play a role in the progression of various human cancer types. However, the function of HSF1 in endometrial cancer (EC) has not yet been evaluated.ObjectiveThis study examined the expression and role of HSF1 in EC.MethodsImmunohistochemistry was performed to explore HSF1 level in 135 endometrial tissue specimens. The relationship between HSF1 level and EC patients' clinicopathological characteristics was analyzed. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blotting were employed to explore HSF1 expression level in tissues in vitro. Small interfering RNA (siRNA) was employed to suppress HSF1 expression level. The invasion and migration capacities were evaluated using transwell and wound healing assays. Cell cycle arrest and apoptosis were assessed by flow cytometric analysis.ResultsEC tissues exhibited higher HSF1 expression level compared with normal endometrial and atypical endometrial hyperplasia tissues. High HSF1 expression level was associated with histological grade, muscular invasion, lymph node metastasis, and estrogen receptor (ER) expression level in EC tissues and cells. Kaplan-Meier analysis indicated that EC patients with elevated HSF1 expression level had poorer overall survival. Knockdown of HSF1 in EC cells resulted in cell cycle arrest, increased apoptosis, and inhibited EC cell proliferation, invasion, and migration.ConclusionThe results demonstrated that HSF1 could function as an oncogene in EC. HSF1 could play a notable role in EC progression. HSF1 may be a potential molecular target for both the treatment and prognosis of patients with EC.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Liao Cheng People's Hospital, Liaocheng, Shandong Province, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiao Gu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Jinlai Meng
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yongzhong Gu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Liang Shen
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Liao Cheng People's Hospital, Liaocheng, Shandong Province, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Jia Li
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yanhong Lv
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Biliang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Obstetrics and Gynecology, Xi'an People's Hospital (Xi 'an Fourth Hospital), Xi'an, Shaanxi Province, China
| | - Junbin Yin
- Department of Neurology, The 960th Hospital of PLA, Jinan, Shandong Province, China
| | - Aihua Li
- Department of Obstetrics and Gynecology, Liao Cheng People's Hospital, Liaocheng, Shandong Province, China
| |
Collapse
|
2
|
Imran M, Sachdeva G, Menon S, Das D, Davuluri S, Acharya K, Chaudhari U. Therapeutic metformin concentrations positively regulate proliferation in endometrial epithelial cells via mTOR activation and augmented mitochondrial strength. Can J Physiol Pharmacol 2023; 101:52-64. [PMID: 36322951 DOI: 10.1139/cjpp-2022-0307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metformin, an antidiabetic drug, has recently been repositioned in the treatment of several nondiabetic disorders, including reproductive disorders such as polycystic ovarian syndrome, where it improves endometrial functions. In vitro studies employing supratherapeutic concentrations (5-20 mmol/L) of metformin have reported antiproliferative effects on endometrial epithelial and stromal cells. However, animal and human studies have revealed that therapeutic serum concentrations of metformin range between 20 and 70 µmol/L. In the present study, the effect of therapeutic concentrations of metformin was studied on endometrial epithelial cells (EECs). Therapeutic concentrations of metformin induced proliferation in Ishikawa and HEC-1A cells. The proliferation of EECs was found to be mammalian target of rapamycin (mTOR) dependent. Interestingly, therapeutic metformin concentrations were not able to activate the classical AMP-activated protein kinase (AMPK) signaling. On the contrary, supratherapeutic metformin concentration (10 mmol/L) inhibited mTOR and activated AMPK signaling. Microarray analysis of metformin-treated HEC-1A cells revealed dose-dependent differential effects on biological pathways associated with translation, ribosomal RNA processing, mitochondrial translation, and cell proliferation. Therapeutic concentrations of metformin upregulated mitochondrial number as demonstrated by increased MitoTracker™ Red staining and enhanced succinate dehydrogenase expression; however, higher concentration (10 mmol/L) abrogated the same. Our results suggest that therapeutic concentrations of metformin augment mitochondrial strength and induce mTOR-dependent endometrial cell proliferation.
Collapse
Affiliation(s)
- M Imran
- Cell Physiology and Pathology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| | - Geetanjali Sachdeva
- Cell Physiology and Pathology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| | - Shyla Menon
- Stem Cell Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| | - Dhanjit Das
- Stem Cell Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| | | | - Kshitish Acharya
- Shodhaka Life Sciences Pvt. Ltd., Bengaluru, Karnataka, India.,Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Uddhav Chaudhari
- Cell Physiology and Pathology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Kuźmycz O, Kowalczyk A, Stączek P. Biological Activity of fac-[Re(CO) 3(phen)(aspirin)], fac-[Re(CO) 3(phen)(indomethacin)] and Their Original Counterparts against Ishikawa and HEC-1A Endometrial Cancer Cells. Int J Mol Sci 2022; 23:ijms231911568. [PMID: 36232870 PMCID: PMC9569891 DOI: 10.3390/ijms231911568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are inhibitors of cyclooxygenase enzyme (COX) and were found to have positive effects in reducing the risk of developing gynecological cancers. However, long-term administration of NSAIDs carries the risk of various side effects, including those in the digestive and circulatory systems. Therefore, there is a constant need to develop new NSAID derivatives. In this work, we investigated rhenium NSAIDs, comparing their effects on endometrial cancer cells with original NSAIDs, demonstrating the high activity of aspirin and indomethacin derivatives. The cytotoxic activity of rhenium derivatives against the Ishikawa and HEC-1A cancer cell lines was higher than that of the original NSAIDs. The IC50 after 24-h incubation of Ishikawa and HEC-1A were 188.06 µM and 394.06 µM for rhenium aspirin and 228.6 µM and 1459.3 µM for rhenium indomethacin, respectively. At the same time, IC50 of aspirin and indomethacin were 10,024.42 µM and 3295.3 µM for Ishikawa, and 27,255.8 µM and 5489.3 µM for HEC-1A, respectively. Moreover, these derivatives were found to inhibit the proliferation of both cell lines in a time- and state-dependent manner. The Ishikawa cell proliferation was strongly inhibited by rhenium aspirin and rhenium indomethacin after 72-h incubation (*** = p < 0.001), while the HEC-1A proliferation was inhibited by the same agents already after 24-h incubation (*** = p < 0.001). Furthermore, the ROS level in the mitochondria of the tested cells generated in the presence of rhenium derivatives was higher than the original NSAIDs. That was associated with rhenium indomethacin exclusively, which had a significant effect (*** = p < 0.001) on both Ishikawa and HEC-1A cancer cells. Rhenium aspirin had a significant effect (*** = p < 0.001) on the mitochondrial ROS level of Ishikawa cells only. Overall, the research revealed a high potential of the rhenium derivatives of aspirin and indomethacin against endometrial cancer cells compared with the original NSAIDs.
Collapse
|
4
|
Ciou HH, Lee TH, Wang HC, Ding YR, Tseng CJ, Wang PH, Tsai MH, Tzeng SL. Repurposing gestrinone for tumor suppressor through P21 reduction regulated by JNK in gynecological cancer. Transl Res 2022; 243:21-32. [PMID: 34921996 DOI: 10.1016/j.trsl.2021.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Endometriosis has been shown to increase the risk of gynecological cancers. However, the effect of gestrinone, a clinical endometriosis drug, on gynecological cancers remains unclear. This study aimed to understand the effect of gestrinone on gynecological cancers. A retrospective study was conducted using the Longitudinal Health Insurance Database 2000 of the Taiwan National Health Insurance Research Database (NHIRD) to observe the risk of gynecological cancers. Medication records from the Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital CSMUH and cancer records from the Taiwan Cancer Registry were collected to analyze the correlation between gestrinone use and gynecological cancers. Subsequently, human cell lines were used to investigate the effect of gestrinone on gynecological cancers. A total of 8330 endometriosis patients were enrolled, and analyses revealed that endometriosis patients had a higher risk of developing ovarian and endometrial cancer. However, the rate of cervical cancer was not statistically different (P = 0.249). Analyses of both the NHIRD and CSMUH databases revealed that gestrinone may reduce the risk of gynecological cancer. Cellular experiments verified the anticancer effects of gestrinone, which effectively and specifically inhibited the growth of HeLa cervical cancer cells, decreased P21 expression via JNK phosphorylation, and induced apoptosis. Combining the results of clinical database analysis and cell experiments, our findings prove that gestrinone has the potential to protect against cancer through regulation of the JNK-P21 axis. Repurposing the anticancer efficacy of gestrinone may be a strategy for targeted therapy in the future.
Collapse
Affiliation(s)
- Huai-How Ciou
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan
| | - Tsung-Hsien Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan; Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan
| | - Hsin-Chieh Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan
| | - You-Ren Ding
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan
| | - Chih-Jen Tseng
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan; Medical Information Department, Chung Shan Medical University Hospital, Taichung 40203, Taiwan; School of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan; Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan
| | - Meng-Hsiun Tsai
- Department of Management Information Systems, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Ling Tzeng
- Institute of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40203, Taiwan.
| |
Collapse
|
5
|
Ingaramo P, Alarcón R, Muñoz-de-Toro M, Luque EH. Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility? Mol Cell Endocrinol 2020; 518:110934. [PMID: 32659439 DOI: 10.1016/j.mce.2020.110934] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Numerous evidences have alerted on the toxic effects of the exposure to glyphosate on living organisms. Glyphosate is the herbicide most used in crops such as maize and soybean worldwide, which implies that several non-target species are at a high risk of exposure. Although the Environmental Protection Agency (EPA-USA) has reaffirmed that glyphosate is safe for users, there are controversial studies that question this statement. Some of the reported effects are due to exposure to high doses; however, recent evidences have shown that exposure to low doses could also alter the development of the female reproductive tract, with consequences on fertility. Different animal models of exposure to glyphosate or glyphosate-based herbicides (GBHs) have shown that the effects on the female reproductive tract may be related to the potential and/or mechanisms of actions of an endocrine-disrupting compound. Studies have also demonstrated that the exposure to GBHs alters the development and differentiation of ovarian follicles and uterus, affecting fertility when animals are exposed before puberty. In addition, exposure to GBHs during gestation could alter the development of the offspring (F1 and F2). The main mechanism described associated with the endocrine-disrupting effect of GBHs is the modulation of estrogen receptors and molecules involved in the estrogenic pathways. This review summarizes the endocrine-disrupting effects of exposure to glyphosate and GBHs at low or "environmentally relevant" doses in the female reproductive tissues. Data suggesting that, at low doses, GBHs may have adverse effects on the female reproductive tract fertility are discussed.
Collapse
Affiliation(s)
- Paola Ingaramo
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Ramiro Alarcón
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina.
| |
Collapse
|
6
|
Madanhire T, Pereira MC, Davids H, Hosten EC, Abrahams A. Lanthanide(III) complexes with N-(2,6-dimethylphenyl)oxamate and 1,10-phenanthroline: Synthesis, characterisation and cytotoxicity against MCF-7, HEC-1A and THP-1 cell lines. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Madanhire T, Davids H, Pereira MC, Hosten EC, Abrahams A. Synthesis, characterisation and anticancer activity screening of lanthanide(III) acetate complexes with benzohydrazone and nicotinohydrazone ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Zhu Y, Klausen C, Zhou J, Guo X, Zhang Y, Zhu H, Li Z, Cheng JC, Xie S, Yang W, Li Y, Leung PCK. Novel dihydroartemisinin dimer containing nitrogen atoms inhibits growth of endometrial cancer cells and may correlate with increasing intracellular peroxynitrite. Sci Rep 2019; 9:15528. [PMID: 31664127 PMCID: PMC6820742 DOI: 10.1038/s41598-019-52108-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/13/2019] [Indexed: 12/13/2022] Open
Abstract
In the present study, a novel dimer, SM1044, selected from a series of dihydroartemisinin (DHA) derivatives containing nitrogen atoms comprising simple aliphatic amine linkers, showed strong growth inhibition in six types of human endometrial cancer (EC) cells, with half maximal inhibitory concentration (IC50) and 95% confidence interval (CI) < 3.6 (1.16~11.23) μM. SM1044 evoked apoptosis and activated caspase-3, -8 and -9 in a concentration- and time-dependent manner, and these effects were manifested early in RL95-2 compared to KLE cells, possibly correlated with the induction of intracellular ONOO-. Catalase and uric acid attenuated the growth inhibitory effects of SM1044 on EC cells, but sodium pyruvate did not. In vivo, the average xenograft tumour growth inhibition rates ranged from 35.8% to 49.9%, respectively, after 2.5 and 5.0 mg/kg SM1044 intraperitoneal treatment, and no obvious behavioural and histopathological abnormalities were observed in SM1044-treated mice in this context. SM1044 predominantly accumulated in the uteri of mice after a single injection. SM1044 displayed efficacy as a tumour suppressor with distinct mechanism of action and unique tissue distribution, properties that distinguish it from other artemisinin analogues. Our findings provide a new clue for artemisinin analogue against cancer.
Collapse
Affiliation(s)
- Yan Zhu
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China. .,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jieyun Zhou
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Xiangjie Guo
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Yu Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Zhao Li
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Shuwu Xie
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Wenjie Yang
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Ying Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
9
|
Bian Y, Li Y, Shrestha G, Wen X, Cai B, Wang K, Wan X. ITE, an endogenous aryl hydrocarbon receptor ligand, suppresses endometrial cancer cell proliferation and migration. Toxicology 2019; 421:1-8. [PMID: 30953668 DOI: 10.1016/j.tox.2019.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/16/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Identification of new molecular targets for the treatment of endometrial cancer (EC) is an important clinical goal, especially for the patients which were resistant to conventional therapies. The aryl hydrocarbon receptor (AhR) is a ligand- activated transcription factor known primarily as the mediator of dioxin toxicity. However, the AhR can also inhibit cellular proliferation in a ligand-dependent manner and act as a tumor suppressor in mice, thus may be a potential anticancer target. In this study, we investigated if the endogenous AhR ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) regulated proliferation and migration of EC cells via AhR. METHODS We used quantitative real-time PCR and western blot to assess the expression of AhR in EC tissues and paired adjacent normal tissues. In addition, we conducted transwell assay to test whether the treatment of ITE altered the locomotive potential and proliferation of EC cells. Next, we conducted mouse xenograft models to further explore the in vivo effect of ITE. RESULTS We found that the AhR protein and RNA levels were increased mildly in EC tissues relative to the para-tumor normal endometrial tissues. Besides, ITE suppressed EC cells proliferation and migration in vitro, and also suppressed EC cells xenograft growth in mice. CONCLUSIONS Our results strongly supported the possibility of using the ITE as a small molecular compound for the treatment of EC.
Collapse
Affiliation(s)
- Yiding Bian
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yiran Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Garima Shrestha
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaoli Wen
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Bailian Cai
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China.
| |
Collapse
|
10
|
Zhang W, Chen JH, Aguilera-Barrantes I, Shiau CW, Sheng X, Wang LS, Stoner GD, Huang YW. Urolithin A suppresses the proliferation of endometrial cancer cells by mediating estrogen receptor-α-dependent gene expression. Mol Nutr Food Res 2016; 60:2387-2395. [PMID: 27342949 DOI: 10.1002/mnfr.201600048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 12/14/2022]
Abstract
SCOPE Obese and overweight women are at high risk of developing endometrial cancer; indeed, many of endometrial cancer patients are obese. The increased number and size of adipocytes due to obesity elevate levels of circulating estrogens that stimulate cell proliferation in the endometrium. However, black raspberries are a promising approach to preventing endometrial cancer. METHODS AND RESULTS We examined 17 black raspberry constituents and metabolites (10 μM or 10 μg/mL, 48 h) for their ability to prevent endometrial cancer cells from proliferating. Urolithin A (UA) was most able to suppress proliferation in a time- and dose-dependent manner (p < 0.05). It arrested the G2/M phase of the cell cycle by upregulating cyclin-B1, cyclin-E2, p21, phospho-cdc2, and CDC25B. UA also acted as an estrogen agonist by modulating estrogen receptor-α (ERα) dependent gene expression in ER-positive endometrial cancer cells. UA enhanced the expression of ERβ, PGR, pS2, GREB1 while inhibiting the expression of ERα and GRIP1. Coincubating UA-treated cells with the estrogen antagonist ICI182,780 abolished UA's estrogenic effects. Knocking down ERα suppressed PGR, pS2, and GREB gene expression but increased GRIP1 expression. Thus, UA's actions appear to be mediated through ERα. CONCLUSION This study suggests that UA modulates ERα-dependent gene expression, thereby inhibiting endometrial cancer proliferation.
Collapse
Affiliation(s)
- Wei Zhang
- School of Medicine and life Science, University of Jinan-Shandong Academy of Medical Science, Jinan, Shandong, China.,Department of Gynecology Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Jo-Hsin Chen
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Xiugui Sheng
- Department of Gynecology Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gary D Stoner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
11
|
Important roles of the AKR1C2 and SRD5A1 enzymes in progesterone metabolism in endometrial cancer model cell lines. Chem Biol Interact 2014; 234:297-308. [PMID: 25463305 DOI: 10.1016/j.cbi.2014.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/29/2014] [Accepted: 11/17/2014] [Indexed: 11/27/2022]
Abstract
Endometrial cancer is the most frequently diagnosed gynecological malignancy. It is associated with prolonged exposure to estrogens that is unopposed by progesterone, whereby enhanced metabolism of progesterone may decrease its protective effects, as it can deprive progesterone receptors of their active ligand. Furthermore, the 5α-pregnane metabolites formed can stimulate proliferation and may thus contribute to carcinogenesis. The aims of our study were to: (1) identify and quantify progesterone metabolites formed in the HEC-1A and Ishikawa model cell lines of endometrial cancer; and (2) pinpoint the enzymes involved in progesterone metabolism, and delineate their roles. Progesterone metabolism studies combined with liquid chromatography-tandem mass spectrometry enabled identification and quantification of the metabolites formed in these cells. Further quantitative PCR analysis and small-interfering-RNA-mediated gene silencing identified individual progesterone metabolizing enzymes and their relevant roles. In Ishikawa and HEC-1A cells, progesterone was metabolized mainly to 20α-hydroxy-pregn-4-ene-3-one, 20α-hydroxy-5α-pregnane-3-one, and 5α-pregnane-3α/β,20α-diol. The major difference between these cell lines was rate of progesterone metabolism, which was faster in HEC-1A cells. In the Ishikawa and HEC-1A cells, expression of AKR1C2 was 110-fold and 6800-fold greater, respectively, than expression of AKR1C1, which suggests that 20-ketosteroid reduction of 5α-pregnanes and 4-pregnenes is catalyzed mainly by AKR1C2. AKR1C1/AKR1C2 gene silencing showed decreased progesterone metabolism in both cell lines, thus further supporting the significant role of AKR1C2. SRD5A1 was also expressed in these cells, and its silencing confirmed that 5α-reduction is catalyzed by 5α-reductase type 1. Silencing of SRD5A1 also had the most pronounced effects, with decreased rate of progesterone metabolism, and consequently higher concentrations of unmetabolized progesterone. Our data confirm that in model cell lines of endometrial cancer, AKR1C2 and SRD5A1 have crucial roles in progesterone metabolism, and may represent novel targets for treatment.
Collapse
|
12
|
CUEVAS MARIAE, LINDEMAN TRACEYE. In vitro cytotoxicity of 4′-OH-tamoxifen and estradiol in human endometrial adenocarcinoma cells HEC-1A and HEC-1B. Oncol Rep 2014; 33:464-70. [DOI: 10.3892/or.2014.3565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/29/2014] [Indexed: 11/06/2022] Open
|
13
|
Zhang L, Li X, Zhao L, Zhang L, Zhang G, Wang J, Wei L. Nongenomic effect of estrogen on the MAPK signaling pathway and calcium influx in endometrial carcinoma cells. J Cell Biochem 2009; 106:553-62. [PMID: 19160418 DOI: 10.1002/jcb.22017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
17beta-Estradiol (E2) is well known to interact with intracellular receptors that act as nuclear transcription factors. However, abundant evidence now indicates that E2 can also rapidly induce several nongenomic effects through signaling pathways related to cell growth, preservation, and differentiation. We studied the nongenomic effects of E2 in two human endometrial carcinoma cell lines, Ishikawa (estrogen receptor (ER) positive) and Hec-1A (ER negative or low) by cultivating them with either E2 or its membrane-impermeable conjugate, E2-BSA. We found that phosphorylation of Erk1/2 could be induced by either E2 or E2-BSA in Ishikawa cells. In Hec-1A cells, only E2 was able to induce Erk1/2 phosphorylation. Although the existence of a nongenomic component to the response was indicated by the finding that it could not be completely inhibited by the ER antagonist ICI182780,and it can also be inhibited by calcium inhibitor Nifedipine partly. Phosphorylation of Akt could not be induced, either by E2 or E2-BSA, in either cell line. Both E2 and E2-BSA elicited calcium influx in Ishikawa cells. In contrast to these nongenomic effects, only E2 was able to stimulate expression of the anti-apoptotic-protein Bcl-2. Taken together, these data indicate that nongenomic effects such as Erk1/2 phosphorylation and calcium influx can be initiated from the membrane in Ishikawa cell, and calcium can activate Erk1/2 phosphorylation. Except for ER, there must be other binding location of estrogen in endometrial cancer cells, and the nongenomic effects of estrogen initiated from plasma membrane by E2-BSA cannot lead to transcriptional effect of Bcl-2 expression.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Gynecology, Peking University People's Hospital, Xi Cheng District, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Davis AM, Mao J, Naz B, Kohl JA, Rosenfeld CS. Comparative effects of estradiol, methyl-piperidino-pyrazole, raloxifene, and ICI 182 780 on gene expression in the murine uterus. J Mol Endocrinol 2008; 41:205-17. [PMID: 18632874 PMCID: PMC6697483 DOI: 10.1677/jme-08-0029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Selective estrogen receptor modulators (SERMs) are potentially useful in treating various endometrial disorders, including endometrial cancer, as they block some of the detrimental effects of estrogen. It remains unclear whether each SERM regulates a unique subset of genes and, if so, whether the combination of a SERM and 17beta-estradiol has an additive or synergistic effect on gene expression. We performed microarray analysis with Affymetrix Mouse Genome 430 2.0 short oligomer arrays to determine gene expression changes in uteri of ovariectomized mice treated with estradiol (low and high dose), methyl-piperidino-pyrazole (MPP), ICI 182 780, raloxifene, and combinations of high dose of estradiol with one of the SERM and dimethyl sulfoxide (DMSO) vehicle control. The nine treatments clustered into two groups, with MPP, raloxifene, and high dose of estradiol in one, and low dose of estradiol, ICI + estradiol, ICI, MPP + estradiol, and raloxifene + estradiol in the second group. Surprisingly, combining a high dose of estradiol with a SERM markedly increased (P<0.02) the number of regulated genes compared with each individual treatment. Analysis of expression for selected genes in uteri of estradiol and SERM-treated mice by quantitative (Q)RT-PCR generally supported the microarray results. For some cancer-associated genes, including Klk1, Ihh, Cdc45l, and Cdca8, administration of MPP or raloxifene with estradiol resulted in greater expression than estradiol alone (P<0.05). By contrast, ICI 182 780 suppressed more genes governing DNA replication compared with MPP and raloxifene treatments. Therefore, ICI 182 780 might be superior to MPP and raloxifene to treat estrogen-induced endometrial cancer in women.
Collapse
Affiliation(s)
- Angela M Davis
- Department of Biomedical Sciences, 440F Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
15
|
Bläuer M, Heinonen PK, Rovio P, Ylikomi T. Effects of tamoxifen and raloxifene on normal human endometrial cells in an organotypic in vitro model. Eur J Pharmacol 2008; 592:13-8. [PMID: 18638473 DOI: 10.1016/j.ejphar.2008.06.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/16/2008] [Accepted: 06/27/2008] [Indexed: 11/17/2022]
Abstract
The selective estrogen receptor modulator tamoxifen is widely used in breast cancer therapy though its use is associated with an elevated risk of endometrial carcinoma. An organotypic culture model was employed here to examine the effects of tamoxifen and raloxifene, a related compound with no known adverse uterine effects, on epithelial cells of the premenopausal human endometrium. Changes in the expression levels of the proliferation marker Ki67, and estrogen and progesterone receptors were evaluated. No change in the Ki67 index compared to untreated controls was detected in cultures exposed to tamoxifen or tamoxifen+estradiol. In response to tamoxifen, the level of progesterone receptor-expressing organoids was shown to vary markedly between individual samples, whereas no change in estrogen receptor expression could be demonstrated. A significant decrease in Ki67 expression was observed in raloxifene-exposed cultures. Raloxifene or raloxifene+estradiol had no effect on progesterone receptor expression. The expression of estrogen receptor was markedly inhibited in response to raloxifene or raloxifene+estradiol in all but two samples displaying an intense estrogen receptor labelling. The present observations add to current clinical data on the respective estrogen receptor agonist and antagonist activities of tamoxifen and raloxifene on the human uterus by providing novel insights into the interindividual variation in cellular responses. Our organotypic model may have uses as an alternative to animal experimentation in preclinical screening of the endometrial effects of selective estrogen receptor modulators and may serve as a tool in personalized medicine by identifying patients with an increased risk of developing endometrial pathologies.
Collapse
Affiliation(s)
- Merja Bläuer
- Department of Cell Biology, FI-33014, University of Tampere, Finland.
| | | | | | | |
Collapse
|
16
|
Martin LC, Veney SL. The specific estrogen receptor antagonist ICI 182,780 masculinizes development of the zebra finch syrinx. Gen Comp Endocrinol 2008; 156:434-9. [PMID: 18280473 DOI: 10.1016/j.ygcen.2008.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 12/19/2007] [Accepted: 01/02/2008] [Indexed: 11/29/2022]
Abstract
In zebra finches, the vocal organ (syrinx) is larger in males compared to females. The exact mechanism responsible for this sex difference is not known, but it may be related to steroid hormones. Previous studies have demonstrated that treatment with estradiol feminizes the mass as well as fiber size of the two largest syrinx muscles (ventralis and dorsalis) in males. Treating females with the aromatase inhibitor fadrozole, however, does not induce masculinization. As an alternative approach to further clarify this paradoxical effect of estrogens on syrinx development, we administered the specific estrogen receptor antagonist ICI 182,780 during the first 25 days post-hatching. Daily injections of this drug significantly increased ventralis and dorsalis muscle fiber size in both sexes. Data also demonstrate that in males, the ventralis muscle makes an earlier contribution to the sex difference in syrinx mass by becoming dimorphic prior to dorsalis. Taken together, these data suggest that estrogens can influence development of the syrinx by feminizing morphology of this tissue. However, the lack of reported sex differences during development in steroid receptors, plasma steroid levels, and aromatase enzyme, indicate that hormones are not solely responsible for sex differences in this organ. Thus, similar to the neural forebrain regions that control song, complete sexual differentiation of the zebra finch syrinx likely involves additional factors.
Collapse
Affiliation(s)
- Lo'Rell C Martin
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | |
Collapse
|
17
|
Acconcia F, Barnes CJ, Kumar R. Estrogen and tamoxifen induce cytoskeletal remodeling and migration in endometrial cancer cells. Endocrinology 2006; 147:1203-12. [PMID: 16339197 DOI: 10.1210/en.2005-1293] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Much research effort has been directed toward understanding how estrogen [17beta-estradiol (E2)] regulates cell proliferation and motility through the rapid, direct activation of cytoplasmic signaling cascades (i.e. nongenomic signaling). Cell migration is critical to cancer cell invasion and metastasis and involves dynamic filamentous actin cytoskeletal remodeling and disassembly of focal adhesion sites. Although estrogen is recognized to induce cell migration in some model systems, very little information is available regarding the underlying pathways and potential influence of selective estrogen receptor modulators such as 4-hydroxytamoxifen on these processes. Using the human endometrial cancer cell lines Hec 1A and Hec 1B as model systems, we have investigated the effects of E2 and Tam on endometrial nongenomic signaling, cytoskeletal remodeling, and cell motility. Results indicate that both E2 and Tam triggered rapid activation of ERK1/2, c-Src, and focal adhesion kinase signaling pathways and filamentous actin cytoskeletal changes. These changes included dissolution of stress fibers, dynamic actin accumulation at the cell periphery, and formation of lamellipodia, filopodia, and membrane spikes. Longer treatments with either agent induced cell migration in wound healing and Boyden chamber assays. Agent-induced cytoskeletal remodeling and cell migration were blocked by a Src inhibitor. These findings define cytoskeletal remodeling and cell migration as processes regulated by E2 and 4-hydroxytamoxifen nongenomic signaling in endometrial cancer. This new information may serve as the foundation for the development of new clinical therapeutic strategies.
Collapse
Affiliation(s)
- Filippo Acconcia
- University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
18
|
Vivacqua A, Bonofiglio D, Recchia AG, Musti AM, Picard D, Andò S, Maggiolini M. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol Endocrinol 2005; 20:631-46. [PMID: 16239258 DOI: 10.1210/me.2005-0280] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The growth of both normal and transformed epithelial cells of the female reproductive system is stimulated by estrogens, mainly through the activation of estrogen receptor alpha (ERalpha), which is a ligand-regulated transcription factor. The selective ER modulator tamoxifen (TAM) has been widely used as an ER antagonist in breast tumor; however, long-term treatment is associated with an increased risk of endometrial cancer. To provide new insights into the potential mechanisms involved in the agonistic activity exerted by TAM in the uterus, we evaluated the potential of 4-hydroxytamoxifen (OHT), the active metabolite of TAM, to transactivate wild-type ERalpha and its splice variant expressed in Ishikawa and HEC1A endometrial tumor cells, respectively. OHT was able to antagonize only the activation of ERalpha by 17beta-estradiol (E2) in Ishikawa cells, whereas it up-regulated c-fos expression in a rapid manner similar to E2 and independently of ERalpha in both cell lines. This stimulation occurred through the G protein-coupled receptor named GPR30 and required Src-related and epidermal growth factor receptor tyrosine kinase activities, along with the activation of both ERK1/2 and phosphatidylinositol 3-kinase/AKT pathways. Most importantly, OHT, like E2, stimulated the proliferation of Ishikawa as well as HEC1A cells. Transfecting a GPR30 antisense expression vector in both endometrial cancer cell lines, OHT was no longer able to induce growth effects, whereas the proliferative response to E2 was completely abrogated only in HEC1A cells. Furthermore, in the presence of the inhibitors of MAPK and phosphatidylinositol 3-kinase pathways, PD 98059 and wortmannin, respectively, E2 and OHT did not elicit growth stimulation. Our data demonstrate a new mode of action of E2 and OHT in endometrial cancer cells, contributing to a better understanding of the molecular mechanisms involved in their uterine agonistic activity.
Collapse
Affiliation(s)
- Adele Vivacqua
- Department of Pharmaco-Biology, University of Calabria, 87030 Rende (CS), Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Shah YM, Al-Dhaheri M, Dong Y, Ip C, Jones FE, Rowan BG. Selenium disrupts estrogen receptor α signaling and potentiates tamoxifen antagonism in endometrial cancer cells and tamoxifen-resistant breast cancer cells. Mol Cancer Ther 2005; 4:1239-49. [PMID: 16093440 DOI: 10.1158/1535-7163.mct-05-0046] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tamoxifen, a selective estrogen receptor (ER) modulator, is the most widely prescribed hormonal therapy treatment for breast cancer. Despite the benefits of tamoxifen therapy, almost all tamoxifen-responsive breast cancer patients develop resistance to therapy. In addition, tamoxifen displays estrogen-like effects in the endometrium increasing the incidence of endometrial cancer. New therapeutic strategies are needed to circumvent tamoxifen resistance in breast cancer as well as tamoxifen toxicity in endometrium. Organic selenium compounds are highly effective chemopreventive agents with well-documented benefits in reducing total cancer incidence and mortality rates for a number of cancers. The present study shows that the organic selenium compound methylseleninic acid (MSA, 2.5 micromol/L) can potentiate growth inhibition of 4-hydroxytamoxifen (10(-7) mol/L) in tamoxifen-sensitive MCF-7 and T47D breast cancer cell lines. Remarkably, in tamoxifen-resistant MCF-7-LCC2 and MCF7-H2Delta16 breast cancer cell lines and endometrial-derived HEC1A and Ishikawa cells, coincubation of 4-hydroxytamoxifen with MSA resulted in a marked growth inhibition that was substantially greater than MSA alone. Growth inhibition by MSA and MSA + 4-hydroxytamoxifen in all cell lines was preceded by a specific decrease in ER(alpha) mRNA and protein without an effect on ER(beta) levels. Estradiol and 4-hydroxytamoxifen induction of endogenous ER-dependent gene expression (pS2 and c-myc) as well as ER-dependent reporter gene expression (ERE(2)e1b-luciferase) was also attenuated by MSA in all cell lines before effect on growth inhibition. Taken together, these data strongly suggest that specific decrease in ER(alpha) levels by MSA is required for both MSA potentiation of the growth inhibitory effects of 4-hydroxytamoxifen and resensitization of tamoxifen-resistant cell lines.
Collapse
Affiliation(s)
- Yatrik M Shah
- Department of Structural and Cellular Biology, SL49, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
20
|
Gossett DR, Bradley MS, Jin X, Lin J. 17-Allyamino-17-demethoxygeldanamycin and 17-NN-dimethyl ethylene diamine-geldanamycin have cytotoxic activity against multiple gynecologic cancer cell types. Gynecol Oncol 2005; 96:381-8. [PMID: 15661225 DOI: 10.1016/j.ygyno.2004.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Indexed: 11/20/2022]
Abstract
OBJECTIVE HSP90 is a cellular chaperone that is overexpressed in many cancers. HSP90 assists in proper folding of a variety of clients, many of which are oncoproteins. HSP90 has been shown to be elevated in endometrial, ovarian, and breast cancer. Furthermore, HSP90 is known to stabilize the oncoprotein Akt; disruptions of the Akt pathway are common in gynecologic malignancies. We sought to evaluate the effectiveness of HSP90 inhibitors in gynecologic cancer. METHODS We tested two HSP90 inhibitors, 17-AAG and 17-DMAG, against gynecologic cancer cell lines (four endometrial, one cervical, one ovarian, and one breast cancer line). We performed Western blots to determine effects of treatment on levels of HSP90 client proteins and PARP cleavage. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to assess cell viability, and flow cytometry to quantitate cell-cycle distribution and apoptosis. RESULTS After treatment with 17-AAG or 17-DMAG, we detected no decrease in HSP90 levels. Levels of other oncoproteins did decrease with treatment: phosphorylated and total Akt, and Met. One cell line underwent G(1) arrest, and five showed G(2) arrest. All showed some level of apoptotic cell death, which was confirmed by detection of PARP cleavage. Sensitivity to the drugs varied among cell lines, ranging from 20% to 90% apoptosis after treatment. Our data suggest that 17-DMAG may be more potent than 17-AAG. CONCLUSIONS HSP90 inhibitors are effective cytotoxic agents in gynecologic cancer cells. Further testing in in vivo model systems is warranted, with the goal of eventual translation to clinical trials in gynecologic oncology patients.
Collapse
Affiliation(s)
- Dana R Gossett
- Department of Obstetrics and Gynecology, University of Michigan Medical Center, Med. Sci. II, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0618, USA.
| | | | | | | |
Collapse
|
21
|
Hatzoglou C, Gourgoulianis KI, Hatzoglou A, Castanas E, Molyvdas PA. Rapid effects of 17beta-estradiol and progesterone on sheep visceral and parietal pleurae via a nitric oxide pathway. J Appl Physiol (1985) 2002; 93:752-8. [PMID: 12133888 DOI: 10.1152/japplphysiol.00425.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effects of 17beta-estradiol and progesterone on transepithelial electrical resistance (R(TE)) in sheep visceral and parietal pleurae. Specimens of intact pleurae from adult female sheep were used. The samples were transferred to the laboratory within 30 min after death of the animal in a Krebs-Ringer solution at 4 degrees C. The pleura was then mounted as a planar sheet in Ussing-type chambers, and electrical measurements were made. There was an increase in R(TE) in all of the samples examined after addition of 17beta-estradiol and progesterone in visceral and parietal pleurae. This increase was rapid within 1 min, lasted for ~15 min, returned to the basal level within 30-45 min, and was dose dependent. Tamoxifen, an estrogen receptor antagonist, did not significantly eliminate the effect of 17beta-estradiol. Furthermore, no steroid receptors were identified in cytosolic preparations of visceral and parietal pleura with ligand binding assays. The estrogen- and progesterone-induced increase in R(TE) in both visceral and parietal pleurae was affected by addition of an inhibitor of nitric oxide synthase. Indeed, previous administration of N(omega)-nitro-L-arginine methyl ester prevented the increase in R(TE) by 17beta-estradiol and progesterone. These results suggest that 17beta-estradiol and progesterone induce an increase in R(TE) in both visceral and parietal pleura and thus alter the transepithelial permeability. The effect of steroids may be accounted for by rapid release of nitric oxide in pleura.
Collapse
Affiliation(s)
- C Hatzoglou
- Department of Physiology, Medical School, University of Thessaly, Greece
| | | | | | | | | |
Collapse
|
22
|
Dardes RC, Schafer JM, Pearce ST, Osipo C, Chen B, Jordan VC. Regulation of estrogen target genes and growth by selective estrogen-receptor modulators in endometrial cancer cells. Gynecol Oncol 2002; 85:498-506. [PMID: 12051881 DOI: 10.1006/gyno.2002.6659] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Tamoxifen has mixed agonist/antagonist activities, leading to tissue-specific estrogen-like actions and endometrial cancer. The purpose of this study was to evaluate the effects of antiestrogens on the growth of estrogen receptor (ER)-positive ECC-1 endometrial cancer cells in vitro and in vivo. METHODS We performed growth studies and luciferase assays using ERE-tK and AP-1 reporters. ERalpha protein expression was measured by Western blot after antiestrogen treatments. We investigated the actions of antiestrogens on the transcription of the pS2 gene in situ measured by Northern blot and the actions of antiestrogens on the VEGF protein secreted by ELISA. ERalpha, ERbeta, EGFR, and HER2/neu mRNAs were determined by RT-PCR. Last, ECC-1 tumors were developed by inoculation of cells into ovariectomized athymic mice and treated with estradiol (E2), tamoxifen, raloxifene, and a combination. RESULTS E2 induced cell proliferation while antiestrogens did not. E2 and raloxifene down regulated ERalpha protein; in contrast, 4OHT did not. ICI182,780 completely degraded the receptor. ECC-1 cells express ERbeta at insignificant levels. Luciferase assays did not show any induction in ERE- nor AP-1-mediated transcription by antiestrogens. E2 caused a concentration-dependent increase in pS2 mRNA but antiestrogens did not. E2 increased VEGF expression in a dose-dependent manner and antiestrogens blocked E2 action. E2 down regulated HER2/neu while 4OHT and raloxifene did not change HER2/neu levels compared to control. In addition, EGFR mRNA was down regulated by E2 but raloxifene did not change it. Tamoxifen and raloxifene did not promote tumor growth in vivo. However, raloxifene (1.5 mg daily) only partially blocked E2-stimulated growth. CONCLUSION Tamoxifen and raloxifene are antiproliferative agents and antiestrogens in ECC-1 endometrial cells in vitro and in vivo. The observation that selective estrogen-receptor modulators do not down regulate EGFR and HER2/neu mRNA may provide a potential role for these oncogenes in the development of raloxifene- or tamoxifen-stimulated endometrial cancer. The ECC-1 cell line could provide important new clues about the evolution of drug resistance to tamoxifen and raloxifene.
Collapse
Affiliation(s)
- R C Dardes
- Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Robertson JA, Zhang Y, Ing NH. ICI 182,780 acts as a partial agonist and antagonist of estradiol effects in specific cells of the sheep uterus. J Steroid Biochem Mol Biol 2001; 77:281-7. [PMID: 11457666 DOI: 10.1016/s0960-0760(01)00061-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We assessed the ability of ICI 182,780 (ICI) to block the estradiol (E2) responses of genes within the sheep uterus. Ovariectomized ewes in the 'ICI+E2' treatment group received a uterine infusion with 10(-7) M ICI for 14 h, an injection of 50 microg E2 6 h after the infusion started, and were hysterectomized 18 h postinjection. Other groups received only ICI or E2, or neither treatment ('Con'). Both E2 and ICI increased the wet weight of dissected endometrium: averaging 10.0+/-1.2 g for ICI+E2, ICI, and E2 groups compared to 6.8+/-0.6 g for Con. Slot blot analyses of endometrial RNA showed that estrogen receptor-alpha (ER), progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), cyclophilin, actin and c-fos mRNAs responded to E2 treatment: the first five increased an average of 60% while the last decreased 38%. In situ hybridization identified more subtle ICI effects: agonistic up-regulation of GAPDH mRNA in superficial endometrial cells, and antagonistic down-regulation of ER and PR mRNAs in the inner layer of the myometrium. Thus, we conclude that the agonist versus antagonist effects of ICI relative to those of E2 are a function of the gene examined as well as the specific cell within the uterus.
Collapse
Affiliation(s)
- J A Robertson
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | | | | |
Collapse
|
24
|
Stoner M, Wang F, Wormke M, Nguyen T, Samudio I, Vyhlidal C, Marme D, Finkenzeller G, Safe S. Inhibition of vascular endothelial growth factor expression in HEC1A endometrial cancer cells through interactions of estrogen receptor alpha and Sp3 proteins. J Biol Chem 2000; 275:22769-22779. [PMID: 10816575 DOI: 10.1074/jbc.m002188200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Treatment of HEC1A endometrial cancer cells with 10 nm 17beta-estradiol (E2) resulted in decreased vascular endothelial growth factor (VEGF) mRNA expression, and a similar response was observed using a construct, pVEGF1, containing a VEGF gene promoter insert from -2018 to +50. In HEC1A cells transiently transfected with pVEGF1 and a series of deletion plasmids, it was shown that E2-dependent down-regulation was dependent on wild-type estrogen receptor alpha (ERalpha) and reversed by the anti-estrogen ICI 182, 780, and this response was not affected by progestins. Deletion analysis of the VEGF gene promoter identified an overlapping G/GC-rich site between -66 to -47 that was required for decreased transactivation by E2. Protein-DNA binding studies using electrophoretic mobility shift and DNA footprinting assays showed that both Sp1 and Sp3 proteins bound this region of the VEGF promoter. Coimmunoprecipitation and pull-down assays demonstrated that Sp3 and ERalpha proteins physically interact, and the interacting domains of both proteins are different from those previously observed for interactions between Sp1 and ERalpha proteins. Using a dominant negative form of Sp3 and transcriptional activation assays in Schneider SL-2 insect cells, it was confirmed that ERalpha-Sp3 interactions define a pathway for E2-mediated inhibition of gene expression, and this represents a new mechanism for decreased gene expression by E2.
Collapse
Affiliation(s)
- M Stoner
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wormke M, Castro-Rivera E, Chen I, Safe S. Estrogen and aryl hydrocarbon receptor expression and crosstalk in human Ishikawa endometrial cancer cells. J Steroid Biochem Mol Biol 2000; 72:197-207. [PMID: 10822009 DOI: 10.1016/s0960-0760(00)00030-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ishikawa endometrial cancer cells express the estrogen receptor (ER), and this study investigates aryl hydrocarbon receptor (AhR) expression and inhibitory AhR-ER crosstalk in this cell line. Treatment of Ishikawa cells with the AhR agonist [3H]2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) gave a radiolabeled nuclear complex that sedimented at 6.0 S in sucrose density gradients, and Western blot analysis confirmed that Ishikawa cells expressed human AhR and AhR nuclear translocator (Arnt) proteins. Treatment of Ishikawa cells with 10 nM TCDD induced a 9.7-fold increase in CYP1A1-dependent ethoxyresorufin O-deethylase (EROD) activity and a 10.5-fold increase in chloramphenicol acetyltransferase (CAT) activity in cells transfected with pRNH11c containing an Ah-responsive human CYP1A1 gene promoter insert (-1142 to +2434). Inhibitory AhR-ER crosstalk was investigated in Ishikawa cells using E2-induced cell proliferation and transcriptional activation assays in cells transfected with E2-responsive constructs containing promoter inserts from the progesterone receptor and vitellogenin A2 genes. AhR agonists including TCDD, benzo[a]pyrene (BaP) and 6-methyl-1,3,8-trichlorodibenzofuran, inhibited 32-47% of the E2-induced responses. In contrast, neither estrogen nor progesterone inhibited EROD activity induced by TCDD in Ishikawa cells, whereas inhibitory ER-AhR crosstalk was observed in ECC-1 endometrial cells suggesting that these interactions were cell context-dependent.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Aryl Hydrocarbon Receptor Nuclear Translocator
- Benzo(a)pyrene/pharmacology
- Benzofurans/pharmacology
- Chloramphenicol O-Acetyltransferase/drug effects
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- Cytochrome P-450 CYP1A1/drug effects
- Cytochrome P-450 CYP1A1/genetics
- Cytochrome P-450 CYP1A1/metabolism
- DNA-Binding Proteins
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/metabolism
- Estradiol/pharmacology
- Female
- Humans
- Polychlorinated Dibenzodioxins/pharmacology
- Promoter Regions, Genetic
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/drug effects
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Transcription Factors/drug effects
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Wormke
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, TX 77843-4466, College Station, USA
| | | | | | | |
Collapse
|
26
|
Klinge CM, Bowers JL, Kulakosky PC, Kamboj KK, Swanson HI. The aryl hydrocarbon receptor (AHR)/AHR nuclear translocator (ARNT) heterodimer interacts with naturally occurring estrogen response elements. Mol Cell Endocrinol 1999; 157:105-19. [PMID: 10619402 DOI: 10.1016/s0303-7207(99)00165-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To determine the molecular mechanisms underlying the "cross talk" between the activity of 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD), which binds to arylhydrocarbon receptor (AHR) and estradiol (E2)-liganded estrogen receptor (ER), we first examined the initial step of estrogen action, ligand binding to ER. None of the AHR ligands tested, i.e. TCDD, benzo[a]pyrene, 3,3',4,4',5-pentachlorobiphenyl, beta-naphthoflavone, or alpha-naphthoflavone, bound to ER alpha. We report the first examination of TCDD interaction with ER beta: TCDD did not displace E2 from ER beta. We then examined a second possible mechanism, i.e. direct inhibition of ER alpha binding to estrogen response elements (EREs) by the AHR/AHR nuclear translocator (ARNT) complex. The AHR/ARNT heterodimer did not bind either a full or half-site ERE. However, AHR/ARNT bound specifically to oligomers containing naturally occurring EREs derived from the human c-fos, pS2, and progesterone receptor (PR) gene promoters that include xenobiotic response element (XRE)-like sequences. In contrast, neither purified E2-liganded-ER from calf uterus or recombinant human ER alpha bound a consensus XRE. TCDD inhibited E2-activated reporter gene activity from a consensus ERE and from EREs in the pS2, PR, and Fos genes in transiently transfected MCF-7 human breast cancer cells. However, this inhibition was not reciprocal since E2 did not inhibit TCDD-stimulated luciferase activity from the CYP1A1 promoter in transiently transfected MCF-7 or human endometrial carcinoma HEC-1A cells. We propose that at least part of the mechanism by which the AHR/ARNT complex inhibits estrogen action is by competitively inhibiting ER alpha binding to imperfect ERE sites, adjacent to or overlapping XREs.
Collapse
Affiliation(s)
- C M Klinge
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, KY 40292, USA.
| | | | | | | | | |
Collapse
|
27
|
Jones PS, Parrott E, White IN. Activation of transcription by estrogen receptor alpha and beta is cell type- and promoter-dependent. J Biol Chem 1999; 274:32008-14. [PMID: 10542232 DOI: 10.1074/jbc.274.45.32008] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tamoxifen acts as a strong estrogen antagonist in human breast but as an estrogen agonist in the uterus. The action of tamoxifen is mediated through estrogen receptors (ERalpha and ERbeta), which bind to a variety of responsive elements, to activate transcription. To examine the role of these varied elements in the response to antiestrogens, we studied the activation of a panel of differing promoters, by these compounds, in human breast, bone, and endometrial derived cell lines. No agonistic activity was observed in breast cells, whereas all antiestrogens, particularly tamoxifen, exhibited agonistic effects in uterine cell lines. All antiestrogens studied were agonistic in co-transfections of a collagenase reporter gene and ERbeta, but tamoxifen alone was agonistic with ERalpha in (uterine) HEC-1-A cells. The ERalpha mediated, agonism of tamoxifen was not observed in primary cultures of human uterine stromal cells, whereas the ERbeta-mediated agonism of all selective estrogen receptor modulators was present. This suggests that the two receptors operate by distinct pathways and that the response of cells to antiestrogens is dependent on the ER subtypes expressed.
Collapse
Affiliation(s)
- P S Jones
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester, LE1 9HN, United Kingdom.
| | | | | |
Collapse
|
28
|
Van Den Bemd GJ, Kuiper GG, Pols HA, Van Leeuwen JP. Distinct effects on the conformation of estrogen receptor alpha and beta by both the antiestrogens ICI 164,384 and ICI 182,780 leading to opposite effects on receptor stability. Biochem Biophys Res Commun 1999; 261:1-5. [PMID: 10405313 DOI: 10.1006/bbrc.1999.0864] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tissue-specific effects of 17beta-estradiol (E(2)) and synthetic estrogen receptor (ER) ligands on target gene regulation might, at least partly, be explained by a selective ligand-induced conformational change of their receptors (ERalpha and ERbeta). In this study, the effects of E(2) and the synthetic ER ligands tamoxifen (TAM), ICI 164,384, and ICI 182,780 on the conformation of ERalpha and ERbeta were examined using limited proteolytic digestion analysis. We found that E(2) induced a conformational change of ERalpha resulting in the protection of a 30-kDa product, whereas TAM protected a 28-kDa fragment. Strikingly, the ERalpha conformational change induced by both ICI 164,384 and ICI 182,780 did not result in protection but rather seems to induce a ligand concentration-dependent increase in proteolytic degradation of the 30- and 28-kDa products. Incubation of ERbeta with E(2) resulted in an increased protection of a 30-kDa fragment, whereas with TAM protection of a 29-kDa fragment was observed. In contrast to the situation with ERalpha, ICI 164,384 and ICI 182,780 incubation induced the protection in a manner similar to 30-kDa fragment E(2). In addition, the ICI compounds also induced in a dose-dependent manner the preservation of a 32-kDa fragment. Our observations demonstrate that ICI 164,384 and ICI 182,780 have distinct effects on the conformation of ERalpha and ERbeta, resulting in receptor subtype-selective opposite effects on receptor stability in vitro.
Collapse
Affiliation(s)
- G J Van Den Bemd
- Department of Internal Medicine III, Erasmus Medical Center Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
29
|
Castro-Rivera E, Wormke M, Safe S. Estrogen and aryl hydrocarbon responsiveness of ECC-1 endometrial cancer cells. Mol Cell Endocrinol 1999; 150:11-21. [PMID: 10411295 DOI: 10.1016/s0303-7207(99)00041-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ECC-1 endometrial cancer cells express estrogen receptor alpha (ER(alpha)), and 17beta-estradiol (E2) induces cell proliferation, cathepsin D mRNA levels, and reporter gene activity in cells transiently transfected with constructs derived from the human cathepsin D and creatine kinase B (pCD and pCKB, respectively) gene promoters. The comparative antiestrogenic activity of aryl hydrocarbon receptor (AhR) agonists and ER(alpha) antagonists were also determined in these endometrial cancer cells. A functional AhR was expressed in ECC-1 cells and AhR agonists including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibited E2-induced cell proliferation and transactivation. This was comparable to inhibitory AhR-ER crosstalk in breast cancer cell lines. The pure ER antagonist ICI 182,780 also exhibited antiestrogenic activity in ECC-1 cells; however, the results obtained for 4'-hydroxytamoxifen were response-specific. 4'-Hydroxytamoxifen alone did not induce ECC-1 cell proliferation but completely inhibited E2-induced cell proliferation. 4'-Hydroxytamoxifen primarily exhibited ER antagonist activities in transactivation assays and this contrasted to the predominant ER agonist responses observed in other endometrial cancer cell lines. The unique cellular context of ECC-1 cells was confirmed using pCKB and constructs expressing wild-type ER or ER variants expressing activation function 1 (AF1) or AF2 (ER-AF1 and ER-AF2, respectively). 4'-Hydroxytamoxifen did not induce reporter gene activity in cells cotransfected with pCKB and ER-AF1 or ER-AF2; however, in cotreatment studies (4'-hydroxytamoxifen plus E2), 4'-hydroxytamoxifen inhibited E2-induced transcriptional activation by ER-AF1 or ER-AF2. Thus, the primarily antiestrogenic activity observed for 4'-hydroxytamoxifen in ECC-1 cells may be related to the inability to activate gene expression through AF1-dependent pathways.
Collapse
Affiliation(s)
- E Castro-Rivera
- Department of Veterinary Physiology and Pharmacology, Texas A and M University, College Station 77843-4466, USA
| | | | | |
Collapse
|