1
|
Liu S, Zhang Q, Zhang X, Du C, Chen J, Si S. Real-time monitoring of dephosphorylation process of phosphopeptide and rapid assay of PTP1B activity based on a 100 MHz QCM biosensing platform. Talanta 2024; 277:126399. [PMID: 38876030 DOI: 10.1016/j.talanta.2024.126399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
The misregulation of protein phosphatases is a key factor in the development of many human diseases, notably cancers. Here, based on a 100 MHz quartz crystal microbalance (QCM) biosensing platform, the dephosphorylation process of phosphopeptide (P-peptide) caused by protein tyrosine phosphatase 1B (PTP1B) was monitored in real time for the first time and PTP1B activity was assayed rapidly and sensitively. The QCM chip, coated with a gold (Au) film, was used to immobilized thiol-labeled single-stranded 5'-phosphate-DNAs (P-DNA) through Au-S bond. The P-peptide, specific to PTP1B, was then connected to the P-DNA via chelation between Zr4+ and phosphate groups. When PTP1B was injected into the QCM flow cell where the P-peptide/Zr4+/MCH/P-DNA/Au chip was placed, the P-peptide was dephosphorylated and released from the Au chip surface, resulting in an increase in the frequency of the QCM Au chip. This allowed the real-time monitoring of the P-peptide dephosphorylation process and sensitive detection of PTP1B activity within 6 min with a linear detection range of 0.01-100 pM and a detection limit of 0.008 pM. In addition, the maximum inhibitory ratios of inhibitors were evaluated using this proposed 100 MHz QCM biosensor. The developed 100 MHz QCM biosensing platform shows immense potential for early diagnosis of diseases related to protein phosphatases and the development of drugs targeting protein phosphatases.
Collapse
Affiliation(s)
- Shuping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Qingqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Shihui Si
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
2
|
Babkov DA, Zhukovskaya ON, Brigadirova AA, Prilepskaya DR, Kolodina AA, Abbas AHS, Morkovnik AS, Sobhia ME, Ghosh K, Spasov AA. Discovery and evaluation of biphenyl derivatives of 2-iminobenzimidazoles as prototype dual PTP1B inhibitors and AMPK activators with in vivo antidiabetic activity. Chem Biol Drug Des 2023; 101:896-914. [PMID: 36546307 DOI: 10.1111/cbdd.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
This work describes the synthesis of series hydrobromides of N-(4-biphenyl)methyl-N'-dialkylaminoethyl-2-iminobenzimidazoles, which, due to the presence of two privileged structural fragments (benzimidazole and biphenyl moieties), can be considered as bi-privileged structures. Compound 7a proved to activate AMP-activated kinase (AMPK) and simultaneously inhibit protein tyrosine phosphatase 1B (PTP1B) with similar potency. This renders it an interesting prototype of potential antidiabetic agents with a dual-target mechanism of action. Using prove of concept in vivo study, we show that dual-targeting compound 7a has a disease-modifying effect in a rat model of type 2 diabetes mellitus via improving insulin sensitivity and lipid metabolism.
Collapse
Affiliation(s)
- Denis A Babkov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd, Russia
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Volgograd, Russia
| | - Olga N Zhukovskaya
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - Anastasia A Brigadirova
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Diana R Prilepskaya
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Alexandra A Kolodina
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - Abbas Haider S Abbas
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - Anatolii S Morkovnik
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India
| | - Ketan Ghosh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India
| | - Alexander A Spasov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| |
Collapse
|
3
|
Thareja S, Verma SK, Jain AK, Kumar M, Bhardwaj TR. Rational Design and Synthesis of Novel Biphenyl Thiazolidinedione Conjugates as Inhibitors of Protein Tyrosine Phosphatase 1B for the Management of Type 2 Diabetes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Experimental and theoretical studies of novel Schiff base based on diammino benzophenone with formyl chromone – BPAMC. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
6
|
Yavuz SÇ, Akkoç S, Tüzün B, Şahin O, Saripinar E. Efficient synthesis and molecular docking studies of new pyrimidine-chromeno hybrid derivatives as potential antiproliferative agents. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1922920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sevtap Çağlar Yavuz
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Turkey
- Department of Veterinary Science, Şefaatli Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - Senem Akkoç
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| | - Burak Tüzün
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Onur Şahin
- Scientific and Technological Research Application and Research Center, Sinop University, Sinop, Turkey
| | - Emin Saripinar
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Turkey
| |
Collapse
|
7
|
Abdelrhman EM, El‐Shetary B, Shebl M, Adly OM. Coordinating behavior of hydrazone ligand bearing chromone moiety towards Cu(II) ions: Synthesis, spectral, density functional theory (DFT) calculations, antitumor, and docking studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - B.A. El‐Shetary
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Magdy Shebl
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| | - Omima M.I. Adly
- Department of Chemistry, Faculty of Education Ain Shams University Cairo Egypt
| |
Collapse
|
8
|
Shanmugapriya A, Kalaiarasi G, Ravi M, Sparkes HA, Kalaivani P, Prabhakaran R. Palladium-mediated C–O bond activation of benzopyrone in 4-oxo-4 H-chromone-3-carbaldehyde-4( N)-substituted thiosemicarbazone: synthesis, structure, nucleic acid/albumin interaction, DNA cleavage, antioxidant and cytotoxic studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj04076f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Palladium ion-mediated C–O activation at the C2 carbon of the benzopyrone moiety of 3-formylchromone-4(N)-substituted thiosemicarbazone (HL1–4) has been observed in square-planar palladium(ii) complexes.
Collapse
Affiliation(s)
- A. Shanmugapriya
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India
| | - G. Kalaiarasi
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India
| | - M. Ravi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai-25, India
| | - H. A. Sparkes
- University of Bristol, School of Chemistry, Cantock's Close, Bristol BS8 1TS, UK
| | - P. Kalaivani
- Department of Chemistry, Nirmala College for Women, Bharathiar University, Coimbatore 641018, India
| | - R. Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India
| |
Collapse
|
9
|
Prabhakar PK, Sivakumar PM. Protein Tyrosine Phosphatase 1B Inhibitors: A Novel Therapeutic Strategy for the Management of type 2 Diabetes Mellitus. Curr Pharm Des 2020; 25:2526-2539. [PMID: 31333090 DOI: 10.2174/1381612825666190716102901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 12/26/2022]
Abstract
Diabetes is one of the most common endocrine non-communicable metabolic disorders which is mainly caused either due to insufficient insulin or inefficient insulin or both together and is characterized by hyperglycemia. Diabetes emerged as a serious health issue in the industrialized and developing country especially in the Asian pacific region. Out of the two major categories of diabetes mellitus, type 2 diabetes is more prevalent, almost 90 to 95% cases, and the main cause of this is insulin resistance. The main cause of the progression of type 2 diabetes mellitus has been found to be insulin resistance. The type 2 diabetes mellitus may be managed by the change in lifestyle, physical activities, dietary modifications and medications. The major currently available management strategies are sulfonylureas, biguanides, thiazolidinediones, α-glucosidase inhibitors, dipeptidyl peptidase-IV inhibitors, and glucagon-like peptide-1 (GLP-1) agonist. Binding of insulin on the extracellular unit of insulin receptor sparks tyrosine kinase of the insulin receptor which induces autophosphorylation. The phosphorylation of the tyrosine is regulated by insulin and leptin molecules. Protein tyrosine phosphatase-1B (PTP1B) works as a negative governor for the insulin signalling pathways, as it dephosphorylates the tyrosine of the insulin receptor and suppresses the insulin signalling cascade. The compounds or molecules which inhibit the negative regulation of PTP1B can have an inductive effect on the insulin pathway and finally help in the management of diabetes mellitus. PTP1B could be an emerging therapeutic strategy for diabetes management. There are a number of clinical and basic research results which suggest that induced expression of PTP1B reduces insulin resistance. In this review, we briefly elaborate and explain the place of PTP1B and its significance in diabetes as well as a recent development in the PTP1B inhibitors as an antidiabetic therapy.
Collapse
Affiliation(s)
- Pranav K Prabhakar
- Research & Development, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Ponnurengam M Sivakumar
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
| |
Collapse
|
10
|
Eleftheriou P, Geronikaki A, Petrou A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Curr Top Med Chem 2019; 19:246-263. [PMID: 30714526 DOI: 10.2174/1568026619666190201152153] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Diabetes Mellitus (DM), is a metabolic disorder characterized by high blood glucose levels. The main types of diabetes mellitus are Diabetes mellitus type I, Diabetes mellitus type II, gestational diabetes and Diabetes of other etiology. Diabetes type II, the Non Insulin Dependent Type (NIDDM) is the most common type, characterized by the impairment in activation of the intracellular mechanism leading to the insertion and usage of glucose after interaction of insulin with its receptor, known as insulin resistance. Although, a number of drugs have been developed for the treatment of diabetes type II, their ability to reduce blood glucose levels is limited, while several side effects are also observed. Furthermore, none of the market drugs targets the enhancement of the action of the intracellular part of insulin receptor or recuperation of the glucose transport mechanism in GLUT4 dependent cells. The Protein Tyrosine Phosphatase (PTP1b) is the main enzyme involved in insulin receptor desensitization and has become a drug target for the treatment of Diabetes type II. Several PTP1b inhibitors have already been found, interacting with the binding site of the enzyme, surrounding the catalytic amino acid Cys215 and the neighboring area or with the allosteric site of the enzyme, placed at a distance of 20 Å from the active site, around Phe280. However, the research continues for finding more potent inhibitors with increased cell permeability and specificity. OBJECTIVE The aim of this review is to show the attempts made in developing of Protein Tyrosine Phosphatase (PTP1b) inhibitors with high potency, selectivity and bioavailability and to sum up the indications for favorable structural characteristics of effective PTP1b inhibitors. METHODS The methods used include a literature survey and the use of Protein Structure Databanks such as PuBMed Structure and RCSB and the tools they provide. CONCLUSION The research for finding PTP1b inhibitors started with the design of molecules mimicking the Tyrosine substrate of the enzyme. The study revealed that an aromatic ring connected to a polar group, which preferably enables hydrogen bond formation, is the minimum requirement for small inhibitors binding to the active site surrounding Cys215. Molecules bearing two hydrogen bond donor/acceptor (Hb d/a) groups at a distance of 8.5-11.5 Å may form more stable complexes, interacting simultaneously with a secondary area A2. Longer molecules with two Hb d/a groups at a distance of 17 Å or 19 Å may enable additional interactions with secondary sites (B and C) that confer stability as well as specificity. An aromatic ring linked to polar or Hb d/a moieties is also required for allosteric inhibitors. A lower distance between Hb d/a moieties, around 7.5 Å may favor allosteric interaction. Permanent inhibition of the enzyme by oxidation of the catalytic Cys215 has also been referred. Moreover, covalent modification of Cys121, placed near but not inside the catalytic pocket has been associated with permanent inhibition of the enzyme.
Collapse
Affiliation(s)
- Phaedra Eleftheriou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki 57400, Greece
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
11
|
Metal based biologically active compounds: Design, synthesis, DNA binding and antidiabetic activity of 6-methyl-3-formyl chromone derived hydrazones and their metal (II) complexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:178-191. [DOI: 10.1016/j.jphotobiol.2017.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
|
12
|
Lv J, Chen T, Yue X, Zhou J, Gong X, Zhang J. A colorimetric biosensor based on guanidinium recognition for the assay of protein tyrosine phosphatase 1B and its inhibitors. NEW J CHEM 2017. [DOI: 10.1039/c7nj02918g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new colorimetric biosensor for the assay of PTP1B and its inhibitors based on coordination between RGC/AuNPs and MNPs/APP.
Collapse
Affiliation(s)
- Jun Lv
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Tingjun Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Xiquan Yue
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Jianqiong Zhou
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Xiuqing Gong
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
13
|
Ko JH, Ho Baek S, Nam D, Chung WS, Lee SG, Lee J, Mo Yang W, Um JY, Seok Ahn K. 3-Formylchromone inhibits proliferation and induces apoptosis of multiple myeloma cells by abrogating STAT3 signaling through the induction of PIAS3. Immunopharmacol Immunotoxicol 2016; 38:334-43. [DOI: 10.1080/08923973.2016.1203928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Verma SK, Thareja S. Formylchromone derivatives as novel and selective PTP-1B inhibitors: a drug design aspect using molecular docking-based self-organizing molecular field analysis. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1584-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
KUMAR PRAVI, BALAKRISHNA C, MURALI B, GUDIPATI RAMAKRISHNA, HOTA PRASANTAK, CHAUDHARY AVINASHB, SHREE AJAYA, YENNAM SATYANARAYANA, BEHERA MANORANJAN. An efficient synthesis of 8-substituted Odoratine derivatives by the Suzuki coupling reaction. J CHEM SCI 2016. [DOI: 10.1007/s12039-016-1042-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Chen X, Martinez JS, Mohr JT. Regiodivergent Halogenation of Vinylogous Esters: One-Pot, Transition-Metal-Free Access to Differentiated Haloresorcinols. Org Lett 2015; 17:378-81. [PMID: 25564873 DOI: 10.1021/ol503561x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaohong Chen
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street, Chicago, Illinois 60607, United States
| | - Jenny S. Martinez
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street, Chicago, Illinois 60607, United States
| | - Justin T. Mohr
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street, Chicago, Illinois 60607, United States
| |
Collapse
|
17
|
Zhang J, Lv J, Wang X, Li D, Wang Z, Li G. A simple and visible colorimetric method through Zr4+–phosphate coordination for the assay of protein tyrosine phosphatase 1B and screening of its inhibitors. Analyst 2015; 140:5716-23. [DOI: 10.1039/c5an00970g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibitors of protein tyrosine phosphatase 1B (PTP1B) are promising agents for the treatment of type 2 diabetes and obesity, so a colorimetric method has been developed in this work for PTP1B assay and screening of its inhibitors.
Collapse
Affiliation(s)
- Juan Zhang
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Jun Lv
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Xiaonan Wang
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Defeng Li
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Zhaoxia Wang
- Department of Oncology
- The Second Affiliated Hospital of Nanjing Medical University
- Nanjing 210011
- PR China
| | - Genxi Li
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| |
Collapse
|
18
|
Sekhar KC, Syed R, Golla M, Kumar M V J, Yellapu NK, Chippada AR, Chamarthi NR. Novel heteroaryl phosphonicdiamides PTPs inhibitors as anti-hyperglycemic agents. Daru 2014; 22:76. [PMID: 25542373 PMCID: PMC4305230 DOI: 10.1186/s40199-014-0076-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 11/13/2014] [Indexed: 11/05/2023] Open
Abstract
BACKGROUND Chronic and oral administration of benzylamine improves glucose tolerance. Picolylamine is a selective functional antagonist of the human adenosine A2B receptor. Phosphonic diamide derivatives enhance the cellular permeability and in turn their biological activities. METHODS A series of heteroaryl phosphonicdiamide derivatives were designed as therapeutics to control and manage type2 diabetes. Initially defined Lipinski parameters encouraged them as safer drugs. Molecular docking of these compounds against Protein tyrosine phosphatase (PTP), the potential therapeutic target of type 2 diabetes, revealed their potential binding ability explaining their anti-diabetic activity in terms of PTP inhibition. Human intestinal absorption, Caco-2 cell permeability, MDCK cell permeability, BBB penetration, skin permeability and plasma protein binding abilities of the title compounds were calculated by PreADMET server. A convenient method has been developed for the synthesis of title compounds through the formation of 1-ethoxy-N,N'-bis(4-fluorobenzyl/pyridin-3-ylmethyl)phosphinediamine by the reaction of 4-fluorobenzylamine/ 3-picolylamine with ethyldichlorophosphite, subsequently reacted with heteroaryl halides using lanthanum(III) chloride as a catalyst. RESULTS All the compounds exhibited significant in vitro anti-oxidant activity and in vivo evaluation in streptozotocin induced diabetic rat models revealed that the normal glycemic levels were observed on 12(th) day by 9a and 20(th) day by 5b, 5c, 9e and 9f. The remaining compounds also exhibited normal glycemic levels by 25(th) day. CONCLUSION The results from molecular modeling, in vitro and in vivo studies are suggesting them as safer and effective therapeutic agents against type2 diabetes. Graphical Abstract Development of PTPs inhibitors.
Collapse
Affiliation(s)
| | - Rasheed Syed
- Department of Chemistry, Sri Venkateswara University, Tirupati, 517 502, India.
| | - Madhava Golla
- Department of Chemistry, Sri Venkateswara University, Tirupati, 517 502, India.
| | - Jyothi Kumar M V
- Department of Biotechnology, Sri Venkateswara University, Tirupati, 517 502, India.
| | - Nanda Kumar Yellapu
- Biomedical informatics Center, Vector Control Research Centre, Indian Council of Medical Research, Puducherry, 605006, India.
| | - Appa Rao Chippada
- Department of Biochemistry, Sri Venkateswara University, Tirupati, 517 502, India.
| | - Naga Raju Chamarthi
- Department of Chemistry, Sri Venkateswara University, Tirupati, 517 502, India.
| |
Collapse
|
19
|
Synthesis, characterization and anticancer activity of 3-formylchromone benzoylhydrazone metal complexes. TRANSIT METAL CHEM 2014. [DOI: 10.1007/s11243-014-9904-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Tamrakar AK, Maurya CK, Rai AK. PTP1B inhibitors for type 2 diabetes treatment: a patent review (2011 - 2014). Expert Opin Ther Pat 2014; 24:1101-15. [PMID: 25120222 DOI: 10.1517/13543776.2014.947268] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Protein tyrosine phosphatase 1B (PTP1B) plays an important role in the negative regulation of insulin signal transduction pathway and has emerged as novel therapeutic strategy for the treatment of type 2 diabetes. PTP1B inhibitors enhance the sensibility of insulin receptor (IR) and have favorable curing effect for insulin resistance-related diseases. A large number of PTP1B inhibitors, either synthetic or isolated as bioactive agents from natural products, have developed and investigated for their ability to stimulate insulin signaling. AREAS COVERED This review includes an updated summary (2011 - 2014) of PTP1B inhibitors that have been published in patent applications, with an emphasis on their chemical structure, mode of action and therapeutic outcomes. The usefulness of PTP1B inhibitors as pharmaceutical agents for the treatment of type 2 diabetes is also discussed. EXPERT OPINION PTP1B inhibitors show beneficial effects to enhance sensibility of IR by restricting the activity of enzyme and have favorable curing effects. However, structural homologies in the catalytic domain of PTP1B with other protein tyrosine phosphatases (PTPs) like leukocyte common antigen-related, CD45, SHP-2 and T-cell-PTP present a challenging task of achieving selectivity. Thus, for therapeutic application of PTP1B inhibitors, highly selective molecules exhibiting desired effects without side effects are expected to find clinical application.
Collapse
Affiliation(s)
- Akhilesh Kumar Tamrakar
- CSIR-Central Drug Research Institute, Division of Biochemistry , Sector-10, Jankipuram Extension, Sitapur Road, Lucknow-226001 , India +91 0522 2772550 Ext. 4635 ; +91 0522 2771941 ; CSIR-CDRI communication number: 8743
| | | | | |
Collapse
|
21
|
Kavitha P, Laxma Reddy K. Synthesis, Structural Characterization, and Biological Activity Studies of Ni(II) and Zn(II) Complexes. Bioinorg Chem Appl 2014; 2014:568741. [PMID: 24948904 PMCID: PMC4022167 DOI: 10.1155/2014/568741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/26/2014] [Indexed: 11/17/2022] Open
Abstract
Ni(II) and Zn(II) complexes were synthesized from tridentate 3-formyl chromone Schiff bases such as 3-((2-hydroxyphenylimino)methyl)-4H-chromen-4-one (HL1), 2-((4-oxo-4H-chromen-3-yl)methylneamino)benzoic acid (HL2), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL3), and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL4). All the complexes were characterized in the light of elemental analysis, molar conductance, FTIR, UV-VIS, magnetic, thermal, powder XRD, and SEM studies. The conductance and spectroscopic data suggested that, the ligands act as neutral and monobasic tridentate ligands and form octahedral complexes with general formula [M(L1-4)2]·nH2O (M = Ni(II) and Zn(II)). Metal complexes exhibited pronounced activity against tested bacteria and fungi strains compared to the ligands. In addition metal complexes displayed good antioxidant and moderate nematicidal activities. The cytotoxicity of ligands and their metal complexes have been evaluated by MTT assay. The DNA cleavage activity of the metal complexes was performed using agarose gel electrophoresis in the presence and absence of oxidant H2O2. All metal complexes showed significant nuclease activity in the presence of H2O2.
Collapse
Affiliation(s)
- Palakuri Kavitha
- Department of Chemistry, National Institute of Technology, Warangal 506 004, India
| | - K. Laxma Reddy
- Department of Chemistry, National Institute of Technology, Warangal 506 004, India
| |
Collapse
|
22
|
Mariappan G, Sundaraganesan N. FT-IR, FT-Raman, NMR spectra, density functional computations of the vibrational assignments (for monomer and dimer) and molecular geometry of anticancer drug 7-amino-2-methylchromone. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.01.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Madabhushi S, Chinthala N, Kanwal A, Kaur G, Banerjee SK. Synthesis and characterization of 2-(4-((1-alkyl or aryl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)naphtho[1,2-d]oxazoles for protein tyrosine phosphatase 1B inhibitory activity. Med Chem Res 2014. [DOI: 10.1007/s00044-013-0784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Panini P, Venugopala KN, Odhav B, Chopra D. Quantitative Analysis of Intermolecular Interactions in 7-Hydroxy-4-methyl-2H-chromen-2-one and Its Hydrate. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2014. [DOI: 10.1007/s40010-014-0143-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Ishikawa Y, Motohashi Y. 6,8-Di-chloro-4-oxochromene-3-carbalde-hyde. Acta Crystallogr Sect E Struct Rep Online 2014; 69:o1416. [PMID: 24427051 PMCID: PMC3884433 DOI: 10.1107/s1600536813022228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/08/2013] [Indexed: 12/03/2022]
Abstract
The asymmetric unit of the title compound, C10H4Cl2O3, contain two essentially planar independent molecules (mean atomic deviations from the corresponding least-square planes are 0.041 and 0.045 Å for molecules 1 and 2, respectively). In the crystal, molecules are linked through a pair of halogen bonds [Cl⋯O separations are 3.044 (5) and 3.033 (6) Å, C—Cl⋯O angles are 160.4 (3) and 162.8 (3)°, and C=O⋯Cl angles are 138.7 (4) and 139.6 (4)°, respectively, in molecules 1 and 2] and C—H⋯O hydrogen bonds into slightly folded bands [the dihedral angle between the planes of neighboring molecules is 8.6 (2)°] along the c-axis direction.
Collapse
Affiliation(s)
- Yoshinobu Ishikawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuya Motohashi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
26
|
Ali TES, Ibrahim MA, El-Gohary NM, El‐Kazak AM. 3-Formylchromones as diverse building blocks in heterocycles synthesis. ACTA ACUST UNITED AC 2013. [DOI: 10.5155/eurjchem.4.3.311-328.815] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Malla P, Kumar R, Kumar M. Validation of Formylchromane Derivatives as Protein Tyrosine Phosphatase 1B Inhibitors by Pharmacophore Modeling, Atom-Based 3D-QSAR and Docking Studies. Chem Biol Drug Des 2013; 82:71-80. [DOI: 10.1111/cbdd.12135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Priyanka Malla
- University Institute of Pharmaceutical Sciences; Punjab University; Chandigarh; 160014; India
| | - Rajnish Kumar
- University Institute of Pharmaceutical Sciences; Punjab University; Chandigarh; 160014; India
| | - Manoj Kumar
- University Institute of Pharmaceutical Sciences; Punjab University; Chandigarh; 160014; India
| |
Collapse
|
28
|
Kavitha P, Saritha M, Laxma Reddy K. Synthesis, structural characterization, fluorescence, antimicrobial, antioxidant and DNA cleavage studies of Cu(II) complexes of formyl chromone Schiff bases. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 102:159-168. [PMID: 23220531 DOI: 10.1016/j.saa.2012.10.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/28/2012] [Accepted: 10/22/2012] [Indexed: 06/01/2023]
Abstract
Cu(II) complexes have been synthesized from different Schiff bases, such as 3-((2-hydroxy phenylimino)methyl)-4H-chromen-4-one (HL(1)), 2-((4-oxo-4H-chromen-3-yl)methylneamino) benzoicacid (HL(2)), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL(3)) and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL(4)). The complexes were characterized by analytical, molar conductance, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data reveal that metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the Cu(II) complexes are neutral. On the basis of magnetic and electronic spectral data, distorted octahedral geometry is proposed for all the Cu(II) complexes. Thermal behaviour of the synthesized complexes illustrates the presence of lattice water molecules in the complexes. X-ray diffraction studies reveal that all the ligands and their Cu(II) complexes have triclinic system with different unit cell parameters. Antimicrobial, antioxidant and DNA cleavage activities indicate that metal complexes exhibited greater activity as compared with ligands.
Collapse
Affiliation(s)
- P Kavitha
- Department of Chemistry, National Institute of Technology, Warangal 506 004, Andhra Pradesh, India
| | | | | |
Collapse
|
29
|
Anitha C, Sheela CD, Tharmaraj P, Johnson Raja S. Synthesis and characterization of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based azo-linked Schiff base ligand. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 98:35-42. [PMID: 22982386 DOI: 10.1016/j.saa.2012.08.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/12/2012] [Accepted: 08/12/2012] [Indexed: 06/01/2023]
Abstract
Azo-Schiff-base complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized and characterized by elemental analysis, IR, UV-Vis, (1)H NMR, mass spectra, molar conductance, magnetic susceptibility measurement, electron spin resonance (EPR), CV, fluorescence, NLO and SEM. The conductance data indicate the nonelectrolytic nature of the complexes, except VO(II) complex which is electrolytic in nature. On the basis of electronic spectra and magnetic susceptibility octahedral geometry has been proposed for the complexes. The EPR spectra of copper and oxovanadium complexes in DMSO at 300 and 77K were recorded and its salient features are reported. The redox behavior of the copper(II) complex was studied using cyclic voltammetry. The in vitro antimicrobial activity against Staphylococcus aureus, Escherichia coli, Salmonella enterica typhi, Bacillus subtilis and Candida strains was studied and compared with that of free ligand by well-diffusion technique. The azo Schiff base exhibited fluorescence properties originating from intraligand (π-π(*)) transitions and metal-mediated enhancement is observed on complexation and so the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. On the basis of the optimized structures, the second-order nonlinear optical properties (NLO) are calculated by using second-harmonic generation (SHG) and also the surface morphology of the complexes was studied by SEM.
Collapse
Affiliation(s)
- C Anitha
- Department of Chemistry, Thiagarajar College, Madurai 625 009, India
| | | | | | | |
Collapse
|
30
|
Liu J, Jiang F, Jin Y, Zhang Y, Liu J, Liu W, Fu L. Design, synthesis, and evaluation of 2-substituted ethenesulfonic acid ester derivatives as protein tyrosine phosphatase 1B inhibitors. Eur J Med Chem 2012; 57:10-20. [PMID: 23043764 DOI: 10.1016/j.ejmech.2012.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/28/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Thirty-two 2-substituted ethenesulfonic acid ester derivatives were designed, synthesized, and evaluated for their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B) and selectivity over T-Cell protein tyrosine phosphatase (TCPTP). Preliminary structure-activity relationship studies demonstrated that the substitution at the aromatic center and the length of linker between the hydrophobic tail and aromatic center markedly affected the inhibitory activity against PTP1B and the selectivity over TCPTP. Specifically, compounds 43 and 36 revealed excellent inhibitory activity to PTP1B with IC(50) = 1.3 μM and 1.5 μM, respectively, and marked 10- and 20-fold selectivity over TCPTP. Cytotoxicity data showed low cytotoxicity for COS-7 cell with IC(50) values >100 μM for most synthesized chemicals.
Collapse
Affiliation(s)
- Jingbao Liu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The huge increase in type 2 diabetes is a burden worldwide. Many marketed compounds do not address relevant aspects of the disease; they may already compensate for defects in insulin secretion and insulin action, but loss of secreting cells (β-cell destruction), hyperglucagonemia, gastric emptying, enzyme activation/inhibition in insulin-sensitive cells, substitution or antagonizing of physiological hormones and pathways, finally leading to secondary complications of diabetes, are not sufficiently addressed. In addition, side effects for established therapies such as hypoglycemias and weight gain have to be diminished. At present, nearly 1000 compounds have been described, and approximately 180 of these are going to be developed (already in clinical studies), some of them directly influencing enzyme activity, influencing pathophysiological pathways, and some using G-protein-coupled receptors. In addition, immunological approaches and antisense strategies are going to be developed. Many compounds are derived from physiological compounds (hormones) aiming at improving their kinetics and selectivity, and others are chemical compounds that were obtained by screening for a newly identified target in the physiological or pathophysiological machinery. In some areas, great progress is observed (e.g., incretin area); in others, no great progress is obvious (e.g., glucokinase activators), and other areas are not recommended for further research. For all scientific areas, conclusions with respect to their impact on diabetes are given. Potential targets for which no chemical compound has yet been identified as a ligand (agonist or antagonist) are also described.
Collapse
Affiliation(s)
- E J Verspohl
- Department of Pharmacology, Institute of Medicinal Chemistry, University of Muenster, Hittorfstr. 58-62, 48149 Muenster, Germany.
| |
Collapse
|
32
|
Yadav VR, Prasad S, Gupta SC, Sung B, Phatak SS, Zhang S, Aggarwal BB. 3-Formylchromone interacts with cysteine 38 in p65 protein and with cysteine 179 in IκBα kinase, leading to down-regulation of nuclear factor-κB (NF-κB)-regulated gene products and sensitization of tumor cells. J Biol Chem 2011; 287:245-256. [PMID: 22065587 DOI: 10.1074/jbc.m111.274613] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
3-Formylchromone (3-FC) has been associated with anticancer potential through a mechanism yet to be elucidated. Because of the critical role of NF-κB in tumorigenesis, we investigated the effect of this agent on the NF-κB activation pathway. Whether activated by inflammatory agents (such as TNF-α and endotoxin) or tumor promoters (such as phorbol ester and okadaic acid), 3-FC suppressed NF-κB activation. It also inhibited constitutive NF-κB expressed by most tumor cells. This activity correlated with sequential inhibition of IκBα kinase (IKK) activation, IκBα phosphorylation, IκBα degradation, p65 phosphorylation, p65 nuclear translocation, and reporter gene expression. We found that 3-FC inhibited the direct binding of p65 to DNA, and this binding was reversed by a reducing agent, thus suggesting a role for the cysteine residue. Furthermore, mutation of Cys38 to Ser in p65 abolished this effect of the chromone. This result was confirmed by a docking study. 3-FC also inhibited IKK activation directly, and the reducing agent reversed this inhibition. Furthermore, mutation of Cys179 to Ala in IKK abolished the effect of the chromone. Suppression of NF-κB activation led to inhibition of anti-apoptotic (Bcl-2, Bcl-xL, survivin, and cIAP-1), proliferative (cyclin D1 and COX-2), invasive (MMP-9 and ICAM-1), and angiogenic (VEGF) gene products and sensitization of tumor cells to cytokines. Thus, this study shows that modification of cysteine residues in IKK and p65 by 3-FC leads to inhibition of the NF-κB activation pathway, suppression of anti-apoptotic gene products, and potentiation of apoptosis in tumor cells.
Collapse
Affiliation(s)
- Vivek R Yadav
- Cytokine Research Laboratory, Department of Experimental Therapeutics
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics
| | - Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics
| | - Bokyung Sung
- Cytokine Research Laboratory, Department of Experimental Therapeutics
| | - Sharangdhar S Phatak
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shuxing Zhang
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics.
| |
Collapse
|
33
|
Sumathi S, Tharmaraj P, Sheela C, Ebenezer R, Saravana Bhava P. Synthesis, characterization, NLO study, and antimicrobial activities of metal complexes derived from 3-(3-(2-hydroxyphenyl)-3-oxoprop-1-enyl)-4H-chromen-4-one and sulfanilamide. J COORD CHEM 2011. [DOI: 10.1080/00958972.2011.579116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. Sumathi
- a Department of Chemistry , Thiagarajar College , Madurai – 625 009 , India
| | - P. Tharmaraj
- a Department of Chemistry , Thiagarajar College , Madurai – 625 009 , India
| | - C.D. Sheela
- b Department of Chemistry , The American College , Madurai – 625 002 , India
| | - R. Ebenezer
- a Department of Chemistry , Thiagarajar College , Madurai – 625 009 , India
| | - P. Saravana Bhava
- c Department of Chemistry , Vellaichami Nadar College , Virudhunagar – 626 001 , India
| |
Collapse
|
34
|
Seth SK, Sarkar D, Kar T. Use of π–π forces to steer the assembly of chromone derivatives into hydrogen bonded supramolecular layers: crystal structures and Hirshfeld surface analyses. CrystEngComm 2011. [DOI: 10.1039/c1ce05037k] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Structural studies and characterization of 3-formylchromone and products of its reactions with chosen primary aromatic amines. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2010.10.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Kurundkar SB, Sachan N, Kodam KM, Kulkarni VM, Bodhankar SL, D'Souza S, Vanage G, Ghole VS. Novel biphenyl compound, VMNS2e, ameliorates streptozotocin-induced diabetic nephropathy in rats. J Diabetes 2010; 2:282-9. [PMID: 20923502 DOI: 10.1111/j.1753-0407.2010.00094.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM To study the effect of a new biphenyl synthetic compound showing interactions with the active site of protein tyrosine phosphatase 1B by docking and molecular dynamics, VMNS2e in streptozotocin-induced diabetic nephropathy in rats with various renal function parameters and renal ultrastructure. METHODS Streptozotocin (55 mg/kg)-induced diabetic rats were orally treated once daily with VMNS2e (30, 60, and 120 mg/kg) for 8 weeks. The body weight and blood glucose levels of the rats were recorded during the study period. After 8 weeks of treatment creatinine clearance, urinary protein, blood urea nitrogen, urinary albumin excretion rate, and insulin levels were measured. An ultrastructure study of the kidney tissue was performed and the glomerular basement membrane thickness was measured. RESULTS Eight weeks of VMNS2e treatment significantly reduced the fasting blood glucose level, attenuated elevating blood urea nitrogen levels, and reduced glomerular basement membrane thickness. CONCLUSION It is concluded that VMNS2e treatment at 30 and 60 mg/kg, when given for 8 weeks, partly ameliorated early diabetic nephropathy in diabetic rats.
Collapse
Affiliation(s)
- Sucheta B Kurundkar
- Division of Biochemistry, Department of Chemistry, University of PuneDepartments, Pune, India.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gupta S, Pandey G, Rahuja N, Srivastava AK, Saxena AK. Design, synthesis and docking studies on phenoxy-3-piperazin-1-yl-propan-2-ol derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 2010; 20:5732-4. [DOI: 10.1016/j.bmcl.2010.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/16/2022]
|
38
|
Thareja S, Aggarwal S, Bhardwaj TR, Kumar M. Protein Tyrosine Phosphatase 1B Inhibitors: A Molecular Level Legitimate Approach for the Management of Diabetes Mellitus. Med Res Rev 2010; 32:459-517. [DOI: 10.1002/med.20219] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Suresh Thareja
- University Institute of Pharmaceutical Sciences; Panjab University; 160 014; Chandigarh; India
| | - Saurabh Aggarwal
- University Institute of Pharmaceutical Sciences; Panjab University; 160 014; Chandigarh; India
| | | | - Manoj Kumar
- University Institute of Pharmaceutical Sciences; Panjab University; 160 014; Chandigarh; India
| |
Collapse
|
39
|
Chohan ZH, Iqbal MS, Aftab SK. Design, synthesis, characterization and antibacterial properties of copper(II) complexes with chromone-derived compounds. Appl Organomet Chem 2009. [DOI: 10.1002/aoc.1587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Verma N, Mittal M, Verma RK. Docking of oxalyl aryl amino benzoic acid derivatives into PTP1B. Bioinformation 2008; 3:83-8. [PMID: 19238234 PMCID: PMC2637956 DOI: 10.6026/97320630003083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/08/2008] [Accepted: 09/21/2008] [Indexed: 11/23/2022] Open
Abstract
Protein Tyrosine Phosphatases (PTPs) that function as negative regulators of the insulin signaling cascade have been identified as novel targets for the therapeutic enhancement of insulin action in insulin resistant disease states. Reducing Protein Tyrosine Phosphatase1B (PTP1B) abundance not only enhances insulin sensitivity and improves glucose metabolism but also protects against obesity induced by high fat feeding. PTP1B inhibitors such as Formylchromone derivatives, 1, 2-Naphthoquinone derivatives and Oxalyl aryl amino benzoic derivatives may eventually find an important clinical role as insulin sensitizers in the management of Type-II Diabetes and metabolic syndrome. We have carried out docking of modified oxalyl aryl amino benzoic acid derivatives into three dimensional structure of PTP1B using BioMed CAChe 6.1. These compounds exhibit good selectivity for PTP1B over most of phosphatases in selectivity panel such as SHP-2, LAR, CD45 and TCPTP found in literature. This series of compounds identified the amino acid residues such as Gly220 and Arg221 are important for achieving specificity via H-bonding interactions. Lipophilic side chain of methionine in modified oxalyl aryl amino benzoic acid derivative [1b (a2, b2, c1, d)] lies in closer vicinity of hydrophobic region of protein consisted of Meth258 and Phe52 in comparison to active ligand. Docking Score in [1b (a2, b2, c1, d)] is -131.740Kcal/mol much better than active ligand score -98.584Kcal/mol. This information can be exploited to design PTP1B specific inhibitors.
Collapse
Affiliation(s)
- Neelam Verma
- Department of Biotechnology, Punjabi University, Patiala.
| | | | | |
Collapse
|
41
|
Sachan N, Kadam SS, Kulkarni VM. Human protein tyrosine phosphatase 1B inhibitors: QSAR by genetic function approximation. J Enzyme Inhib Med Chem 2008; 22:267-76, 371-3. [PMID: 17674807 DOI: 10.1080/14756360601051274] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP 1B), a negative regulator of insulin receptor signaling system, has emerged as a highly validated, attractive target for the treatment of non-insulin dependent diabetes mellitus (NIDDM) and obesity. As a result there is a growing interest in the development of potent and specific inhibitors for this enzyme. This quantitative structure-activity relationship (QSAR) study for a series of formylchromone derivatives as PTP lB inhibitors was performed using genetic function approximation (GFA) technique. The QSAR models were developed using a training set of 29 compounds and the predictive ability of the QSAR model was evaluated against a test set of 7 compounds. The internal and external consistency of the final QSAR model was 0.766 and 0.785. The statistical quality of QSAR models was assessed by statistical parameters r2, r2 (crossvalidated r2), r2pred (predictive r2) and lack of fit (LOF) measure. The results indicate that PTP lB inhibitory activity of the formylchromone derivatives is strongly dependent on electronic, thermodynamic and shape related parameters.
Collapse
Affiliation(s)
- Narsingh Sachan
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune-411038, India
| | | | | |
Collapse
|
42
|
Lácová M, Stankovičová H, Boháč A, Kotzianová B. Convenient synthesis and unusual reactivity of 2-oxo-2H,5H-pyrano[3,2-c]chromenes. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Shrestha S, Bhattarai BR, Kafle B, Lee KH, Cho H. Derivatives of 1,4-bis(3-hydroxycarbonyl-4-hydroxyl)styrylbenzene as PTP1B inhibitors with hypoglycemic activity. Bioorg Med Chem 2008; 16:8643-52. [DOI: 10.1016/j.bmc.2008.07.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
|
44
|
Su WK, Li ZH, Zhao LY. ONE-POT SYNTHESIS OF 3-FORMYLCHROMONES FROMbis-(TRICHLOROMETHYL) CARBONATE/DMF. ORG PREP PROCED INT 2007. [DOI: 10.1080/00304940709458601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Shrestha S, Bhattarai BR, Lee KH, Cho H. Mono- and disalicylic acid derivatives: PTP1B inhibitors as potential anti-obesity drugs. Bioorg Med Chem 2007; 15:6535-48. [PMID: 17692525 DOI: 10.1016/j.bmc.2007.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/07/2007] [Accepted: 07/10/2007] [Indexed: 01/04/2023]
Abstract
A series of compounds containing one or two salicylic acid moieties were synthesized, and their efficacy to inhibit the phosphohydrolase activity of PTP1B examined. Some of the methylenedisalicylic acid derivatives were potent inhibitors of PTP1B. Of those derivatives, 3c exhibited about a 14-fold selectivity against TC-PTP, and this compound was tested in a mouse model for its efficacy to prevent diet-induced obesity. It effectively suppressed the increases in body weight and adipose mass, without any noticeable toxic effect. The compound also prevented increases in the plasma triglyceride, cholesterol, and nonesterified fatty acid concentrations; thus, expanding its therapeutic potential to other related metabolic diseases, such as hyperlipidemia and hypercholesterolemia.
Collapse
Affiliation(s)
- Suja Shrestha
- Department of Chemistry and Institute of Molecular Cell Biology, College of Natural Sciences, Inha University, Incheon 402-751, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Lee S, Wang Q. Recent development of small molecular specific inhibitor of protein tyrosine phosphatase 1B. Med Res Rev 2007; 27:553-73. [PMID: 17039461 DOI: 10.1002/med.20079] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein tyrosine phosphatases (PTPs), a large family of signaling enzymes, play essential roles in intracellular signal transduction by regulating the cellular level of tyrosine phosphorylation to control cell growth and differentiation, metabolism, cell migration, gene transcription, ion-channel activity, immune response, cell apoptosis, and bone development. Among all PTPs, protein tyrosine phosphatase 1B (PTP1B) plays a seminal role in cellular signaling and in many human diseases, including cancer, diabetes, and obesity. Therefore, small molecular inhibitors of PTP1B can be promising drug candidates. Because of the structural homologies in many families of PTPs, it is a challenging task to find inhibitors specific to each PTP. Recent studies suggested that secondary binding pockets or peripheral binding sites around the conserved active site should be exploited to design novel potent and selective PTP1B inhibitors. In this review, we discuss the structural and biological features of small molecular PTP1B-specific inhibitors, with particular emphasis on small molecular inhibitors targeting PTP1B over the other PTPs that have been synthesized in the past 4 years.
Collapse
Affiliation(s)
- Seokjoon Lee
- Department of Basic Science, Kwandong University College of Medicine, Gangneung 210-701, South Korea
| | | |
Collapse
|
47
|
Jung M, Lee Y, Park M, Kim H, Kim H, Lim E, Tak J, Sim M, Lee D, Park N, Oh WK, Hur KY, Kang ES, Lee HC. Design, synthesis, and discovery of stilbene derivatives based on lithospermic acid B as potent protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 2007; 17:4481-6. [PMID: 17596944 DOI: 10.1016/j.bmcl.2007.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 05/15/2007] [Accepted: 06/02/2007] [Indexed: 11/19/2022]
Abstract
Dihydroxy stilbene derivatives were designed based on lithospermic acid B and were prepared from 4-(chloromethyl)benzoic acid. The inhibitory activities of the novel compounds against protein tyrosine phosphatase 1B (PTP1B) were evaluated. 3,4-Dihydroxy stilbene carbonyl compounds (7, 11b, 27b) inhibited PTP1B with IC50 values comparable to molybdate, while the conjugation-extended compound (15b) showed inhibition 3-fold better than preclinical RK682. The introduction of electron withdrawing groups or amides into the second phenyl ring, or extension of the conjugation into the stilbene molecule may increase stability of the generated radicals.
Collapse
Affiliation(s)
- Mankil Jung
- Department of Chemistry, Yonsei University, Seoul 120-749, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Docking Studies on Formylchromone Derivatives as Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitors. B KOREAN CHEM SOC 2007. [DOI: 10.5012/bkcs.2007.28.7.1141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Cho SY, Baek JY, Han SS, Kang SK, Ha JD, Ahn JH, Lee JD, Kim KR, Cheon HG, Rhee SD, Yang SD, Yon GH, Pak CS, Choi JK. PTP-1B inhibitors: Cyclopenta[d][1,2]-oxazine derivatives. Bioorg Med Chem Lett 2006; 16:499-502. [PMID: 16289879 DOI: 10.1016/j.bmcl.2005.10.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/07/2005] [Accepted: 10/19/2005] [Indexed: 11/24/2022]
Abstract
A series of novel cyclopenta[d][1,2]-oxazine derivatives was prepared and evaluated for their inhibitory activity toward protein tyrosine phosphatase 1B (PTP-1B). Compound 6s was found to be an inhibitor of PTP-1B with nanomolar IC(50) value and high level of selectivity over other recombinant phosphatases.
Collapse
Affiliation(s)
- Sung Yun Cho
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Holmes CP, Li X, Pan Y, Xu C, Bhandari A, Moody CM, Miguel JA, Ferla SW, De Francisco MN, Frederick BT, Zhou S, Macher N, Jang L, Irvine JD, Grove JR. Discovery and structure–activity relationships of novel sulfonamides as potent PTP1B inhibitors. Bioorg Med Chem Lett 2005; 15:4336-41. [PMID: 16046123 DOI: 10.1016/j.bmcl.2005.06.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 06/11/2005] [Accepted: 06/13/2005] [Indexed: 11/22/2022]
Abstract
A series of novel sulfonamides containing a single difluoromethylene-phosphonate group were discovered to be potent inhibitors of protein tyrosine phosphatase 1B. Structure-activity relationships around the scaffold were investigated, leading to the identification of compounds with IC50 or Ki values in the low nanomolar range. These sulfonamide-based inhibitors exhibit 100 and 30 times higher inhibitory activity than the corresponding tertiary amines and carboxamides, respectively.
Collapse
|