1
|
Ren D, Liu R, Yan X, Zhang Q, Zeng X, Yuan X. Intensive stretch-activated CRT-PMCA1 feedback loop promoted apoptosis of myoblasts through Ca 2+ overloading. Apoptosis 2022; 27:929-945. [PMID: 35976579 DOI: 10.1007/s10495-022-01759-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
Mechanical stretch exerted pro-apoptotic effect on myoblasts, the mechanism of which is currently unknown. Intracellular Ca2+ accumulation has been implicated in stretch-induced apoptosis. calreticulin (CRT) and plasma membrane Ca2+ transporting ATPase 1 (PMCA1) are two critical components of Ca2+ signaling system participating in intracellular Ca2+ homeostasis. In this study, we explored the contribution of CRT and PMCA1 in mediating stretch-induced Ca2+ accumulation and apoptosis of myoblasts. Stretching stimuli elevated level of CRT while inhibited activity of PMCA1. Moreover, there were bidirectional regulations between CRT and PMCA1, which formed the positive feedback loop leading to continuous increment of CRT level and repression of PMCA1 activity, in stretched myoblasts. Specifically, increased CRT level inhibited PMCA1 activity via suppressing Calmodulin (CaM), while reduced PMCA1 activity promoted CRT expression through activating p38MAPK pathway. Thus, the CRT-CaM-PMCA1 and PMCA1-p38MAPK-CRT pathways constituted a close cycle comprising CRT, PMCA1, CaM and p38MAPK. Inhibition of both CaM and p38MAPK affected the other three factors in stretched myoblasts. Circulation of the vicious cycle resulted in escalated Ca2+ overloading in myoblasts under continuous stretching stimuli. CRT knock-down, PMCA1 overexpression, and p38MAPK inhibition all attenuated the raised intracellular Ca2+ level and ameliorated myoblast apoptosis in the stretching environment. Conversely, CRT overexpression, PMCA1 knock-down, and CaM inhibition all aggravated stretch-induced Ca2+ overloading and myoblast apoptosis. A positive feedback loop between CRT and PMCA1 was activated in stretched myoblasts, which contributed to intracellular Ca2+ accumulation and resultant myoblast apoptosis.
Collapse
Affiliation(s)
- Dapeng Ren
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Ran Liu
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Xuemin Zeng
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China. .,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China. .,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
He X, Liu J, Gu F, Chen J, Lu YW, Ding J, Guo H, Nie M, Kataoka M, Lin Z, Hu X, Chen H, Liao X, Dong Y, Min W, Deng ZL, Pu WT, Huang ZP, Wang DZ. Cardiac CIP protein regulates dystrophic cardiomyopathy. Mol Ther 2022; 30:898-914. [PMID: 34400329 PMCID: PMC8822131 DOI: 10.1016/j.ymthe.2021.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/24/2021] [Accepted: 08/08/2021] [Indexed: 02/04/2023] Open
Abstract
Heart failure is a leading cause of fatality in Duchenne muscular dystrophy (DMD) patients. Previously, we discovered that cardiac and skeletal-muscle-enriched CIP proteins play important roles in cardiac function. Here, we report that CIP, a striated muscle-specific protein, participates in the regulation of dystrophic cardiomyopathy. Using a mouse model of human DMD, we found that deletion of CIP leads to dilated cardiomyopathy and heart failure in young, non-syndromic mdx mice. Conversely, transgenic overexpression of CIP reduces pathological dystrophic cardiomyopathy in old, syndromic mdx mice. Genome-wide transcriptome analyses reveal that molecular pathways involving fibrogenesis and oxidative stress are affected in CIP-mediated dystrophic cardiomyopathy. Mechanistically, we found that CIP interacts with dystrophin and calcineurin (CnA) to suppress the CnA-Nuclear Factor of Activated T cells (NFAT) pathway, which results in decreased expression of Nox4, a key component of the oxidative stress pathway. Overexpression of Nox4 accelerates the development of dystrophic cardiomyopathy in mdx mice. Our study indicates CIP is a modifier of dystrophic cardiomyopathy and a potential therapeutic target for this devastating disease.
Collapse
Affiliation(s)
- Xin He
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Jianming Liu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Fei Gu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Jinghai Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yao Wei Lu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Jian Ding
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Haipeng Guo
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Critical Care and Emergency Medicine, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mao Nie
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Masaharu Kataoka
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Zhiqiang Lin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Huaqun Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Biology, Nanjing Normal University, Nanjing, China
| | - Xinxue Liao
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Wang Min
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhong-Liang Deng
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China.
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Gartz M, Beatka M, Prom MJ, Strande JL, Lawlor MW. Cardiomyocyte-produced miR-339-5p mediates pathology in Duchenne muscular dystrophy cardiomyopathy. Hum Mol Genet 2021; 30:2347-2361. [PMID: 34270708 PMCID: PMC8600005 DOI: 10.1093/hmg/ddab199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/19/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by severe, progressive muscle wasting. Cardiomyopathy has emerged as a leading cause of death in patients with DMD. The mechanisms contributing to DMD cardiac disease remain under investigation and specific therapies available are lacking. Our prior work has shown that DMD-iPSC-derived cardiomyocytes (DMD-iCMs) are vulnerable to oxidative stress injury and chronic exposure to DMD-secreted exosomes impaired the cell's ability to protect against stress. In this study, we sought to examine a mechanism by which DMD cardiac exosomes impair cellular response through altering important stress-responsive genes in the recipient cells. Here, we report that DMD-iCMs secrete exosomes containing altered microRNA (miR) profiles in comparison to healthy controls. In particular, miR-339-5p was upregulated in DMD-iCMs, DMD exosomes and mdx mouse cardiac tissue. Restoring dystrophin in DMD-iCMs improved the cellular response to stress and was associated with downregulation of miR-339-5p, suggesting that it is disease-specific. Knockdown of miR-339-5p was associated with increased expression of MDM2, GSK3A and MAP2K3, which are genes involved in important stress-responsive signaling pathways. Finally, knockdown of miR-339-5p led to mitochondrial protection and a reduction in cell death in DMD-iCMs, indicating miR-339-5p is involved in direct modulation of stress-responsiveness. Together, these findings identify a potential mechanism by which exosomal miR-339-5p may be modulating cell signaling pathways that are important for robust stress responses. Additionally, these exosomal miRs may provide important disease-specific targets for future therapeutic advancements for the management and diagnosis of DMD cardiomyopathy.
Collapse
Affiliation(s)
- Melanie Gartz
- Department of Cell Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Margaret Beatka
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mariah J Prom
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer L Strande
- Department of Cell Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael W Lawlor
- Department of Cell Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Rodriguez-Gonzalez M, Lubian-Gutierrez M, Cascales-Poyatos HM, Perez-Reviriego AA, Castellano-Martinez A. Role of the Renin-Angiotensin-Aldosterone System in Dystrophin-Deficient Cardiomyopathy. Int J Mol Sci 2020; 22:356. [PMID: 33396334 PMCID: PMC7796305 DOI: 10.3390/ijms22010356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022] Open
Abstract
Dystrophin-deficient cardiomyopathy (DDC) is currently the leading cause of death in patients with dystrophinopathies. Targeting myocardial fibrosis (MF) has become a major therapeutic goal in order to prevent the occurrence of DDC. We aimed to review and summarize the current evidence about the role of the renin-angiotensin-aldosterone system (RAAS) in the development and perpetuation of MF in DCC. We conducted a comprehensive search of peer-reviewed English literature on PubMed about this subject. We found increasing preclinical evidence from studies in animal models during the last 20 years pointing out a central role of RAAS in the development of MF in DDC. Local tissue RAAS acts directly mainly through its main fibrotic component angiotensin II (ANG2) and its transducer receptor (AT1R) and downstream TGF-b pathway. Additionally, it modulates the actions of most of the remaining pro-fibrotic factors involved in DDC. Despite limited clinical evidence, RAAS blockade constitutes the most studied, available and promising therapeutic strategy against MF and DDC. Conclusion: Based on the evidence reviewed, it would be recommendable to start RAAS blockade therapy through angiotensin converter enzyme inhibitors (ACEI) or AT1R blockers (ARBs) alone or in combination with mineralocorticoid receptor antagonists (MRa) at the youngest age after the diagnosis of dystrophinopathies, in order to delay the occurrence or slow the progression of MF, even before the detection of any cardiovascular alteration.
Collapse
Affiliation(s)
- Moises Rodriguez-Gonzalez
- Pediatric Cardiology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
| | - Manuel Lubian-Gutierrez
- Pediatric Neurology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
- Pediatric Division of Doctor Cayetano Roldan Primary Care Center, 11100 San Fernando, Spain
| | | | | | - Ana Castellano-Martinez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
- Pediatric Nephrology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain
| |
Collapse
|
5
|
Lamhonwah AM, Tein I. Expression of the organic cation/carnitine transporter family (Octn1,-2 and-3) in mdx muscle and heart: Implications for early carnitine therapy in Duchenne muscular dystrophy to improve cellular carnitine homeostasis. Clin Chim Acta 2020; 505:92-97. [PMID: 32070725 DOI: 10.1016/j.cca.2020.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Carnitine is essential for long-chain fatty acid oxidation in muscle and heart. Tissue stores are regulated by organic cation/Cn transporter plasmalemmal Octn2. We previously demonstrated low carnitine in quadriceps/gluteus and heart of adult mdx mice. METHODS We studied protein and mRNA expression of Octn2, mitochondrial Octn1 and peroxisomal Octn3 in adult male C57BL/10ScSn-DMD mdx/J quadriceps, heart, and diaphragm compared to C57BL/10SnJ mice. RESULTS We demonstrated reduction in mOctn2 expression on Western blot and similar expression of mOctn1 and mOctn3 in mdx quadriceps, heart and diaphragm. There was a significant upregulation of mOctn1 and mOctn2 mRNA by qRT-PCR in mdx quadriceps and of mOctn2 and mOctn3 mRNA in mdx heart. We showed upregulation of mdx mOctn1 and mOctn3 mRNA but no increase in protein expression. DISCUSSION Dystrophin deficiency likely disrupts Octn2 expression decreasing muscle carnitine uptake thus contributing to membranotoxic long-chain acyl-CoAs with sarcolemmal and organellar membrane oxidative injury providing a treatment rationale for early L-carnitine in DMD.
Collapse
Affiliation(s)
- Anne-Marie Lamhonwah
- Department of Pediatrics, Division of Neurology, Hospital for Sick Children, University of Toronto, 555 University, Ave., Toronto, Ontario M5G 1X8, Canada; Genetics and Genome Biology Program, The Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Ingrid Tein
- Department of Pediatrics, Division of Neurology, Hospital for Sick Children, University of Toronto, 555 University, Ave., Toronto, Ontario M5G 1X8, Canada; Genetics and Genome Biology Program, The Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada.
| |
Collapse
|
6
|
Peterson JM, Wang DJ, Shettigar V, Roof SR, Canan BD, Bakkar N, Shintaku J, Gu JM, Little SC, Ratnam NM, Londhe P, Lu L, Gaw CE, Petrosino JM, Liyanarachchi S, Wang H, Janssen PML, Davis JP, Ziolo MT, Sharma SM, Guttridge DC. NF-κB inhibition rescues cardiac function by remodeling calcium genes in a Duchenne muscular dystrophy model. Nat Commun 2018; 9:3431. [PMID: 30143619 PMCID: PMC6109146 DOI: 10.1038/s41467-018-05910-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder causing progressive muscle degeneration. Although cardiomyopathy is a leading mortality cause in DMD patients, the mechanisms underlying heart failure are not well understood. Previously, we showed that NF-κB exacerbates DMD skeletal muscle pathology by promoting inflammation and impairing new muscle growth. Here, we show that NF-κB is activated in murine dystrophic (mdx) hearts, and that cardiomyocyte ablation of NF-κB rescues cardiac function. This physiological improvement is associated with a signature of upregulated calcium genes, coinciding with global enrichment of permissive H3K27 acetylation chromatin marks and depletion of the transcriptional repressors CCCTC-binding factor, SIN3 transcription regulator family member A, and histone deacetylase 1. In this respect, in DMD hearts, NF-κB acts differently from its established role as a transcriptional activator, instead promoting global changes in the chromatin landscape to regulate calcium genes and cardiac function.
Collapse
Affiliation(s)
- Jennifer M Peterson
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Binghamton, NY, 13902, USA
| | - David J Wang
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Vikram Shettigar
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Steve R Roof
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA.,Q Test Labs, Columbus, OH, 43235, USA
| | - Benjamin D Canan
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Nadine Bakkar
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Neurobiology, St Joseph's Hospital and Medical Center-Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Jonathan Shintaku
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jin-Mo Gu
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Biomedical Engineering and Pediatrics, Emory University, Decatur, GA, 30322, USA
| | - Sean C Little
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA.,Bristol-Myers Squibb, Wallingford, CT, 06492, USA
| | - Nivedita M Ratnam
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Priya Londhe
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Leina Lu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher E Gaw
- The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer M Petrosino
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Sandya Liyanarachchi
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul M L Janssen
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Jonathan P Davis
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Mark T Ziolo
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Sudarshana M Sharma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Denis C Guttridge
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA. .,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA. .,The Ohio State University Medical Center, Columbus, OH, 43210, USA. .,Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, 29425, USA.
| |
Collapse
|
7
|
Bachur CK, Garcia MH, Bernardino CA, Requel RC, Bachur JA. Analysis of cardiac exams: electrocardiogram and echocardiogram use In Duchenne muscular dystrophies. FISIOTERAPIA EM MOVIMENTO 2014. [DOI: 10.1590/0103-5150.027.003.ao14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction Duchenne Muscular Dystrophies (DMD) is a genetic muscle disorder that causes degeneration and atrophy of skeletal muscle and heart. Objective The aim of this survey is accomplish an evaluation electrocardiographic and echocardiography in the patients bearers of Duchene Muscular Dystrophies (DMD), to observe which alterations, which the degree of cardiac compromising these patient present and the effectiveness of these exams in the evaluation cardiologic. Methods Nine patients of the sex male bearers of DMD, with medium age of 14.12 ± 4.19 years, varying of 7 to 23 years were appraised. All were submitted to the evaluation physiotherapy and the cardiologic: electrocardiogram and echocardiogram. Results The experimental conditions of the present survey we propitiate the observation of the alterations echocardiography, as well as: significant increase in the diastolic diameter of the left ventricular (LV), increase in the systolic diameter of the left atrium (LA), and significant decrease of the ejection fraction of the LV, characterizing global systolic function reduced, and of the alterations electrocardiographic suggested possible overload of RV, septum hypertrophy, blockade of left previous fascicle and overload of atrium left. Compatible alterations of hypertrophy left ventricular were not observed. Conclusion The evidences corroborate with the data described in the literature in the characterization of an important heart compromising that these patient present, like this the evaluation cardiologic, through the complemented exams of the echocardiography and electrocardiography provide important information for the prognostic, the accompaniment, and the treatment of patient bearers of DMD.
Collapse
|
8
|
Barnabei MS, Martindale JM, Townsend D, Metzger JM. Exercise and muscular dystrophy: implications and analysis of effects on musculoskeletal and cardiovascular systems. Compr Physiol 2013; 1:1353-63. [PMID: 23733645 DOI: 10.1002/cphy.c100062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The muscular dystrophies are a heterogeneous collection of progressive, inherited diseases of muscle weakness and degeneration. Although these diseases can vary widely in their etiology and presentation, nearly all muscular dystrophies cause exercise intolerance to some degree. Here, we focus on Duchenne muscular dystrophy (DMD), the most common form of muscular dystrophy, as a paradigm for the effects of muscle disease on exercise capacity. First described in the mid-1800s, DMD is a rapidly progressive and lethal muscular dystrophy caused by mutations in the dystrophin gene. Dystrophin is a membrane-associated cytoskeletal protein, the loss of which causes numerous cellular defects including mechanical instability of the sarcolemma, increased influx of extracellular calcium, and cell signaling defects. Here, we discuss the physiological basis for exercise intolerance in DMD, focusing on the molecular and cellular defects caused by loss of dystrophin and how these manifest as organ-level dysfunction and reduced exercise capacity. The main focus of this article is the defects present in dystrophin-deficient striated muscle. However, discussion regarding the effects of dystrophin loss on other tissues, including vascular smooth muscle is also included. Collectively, the goal of this article is to summarize the current state of knowledge regarding the mechanistic basis for exercise intolerance in DMD, which may serve as an archetype for other muscular dystrophies and diseases of muscle wasting.
Collapse
Affiliation(s)
- Matthew S Barnabei
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
9
|
Zolkipli Z, Mai L, Lamhonwah AM, Tein I. The mdx mouse as a model for carnitine deficiency in the pathogenesis of Duchenne muscular dystrophy. Muscle Nerve 2012; 46:767-72. [PMID: 23055315 DOI: 10.1002/mus.23368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Muscle and cardiac metabolism are dependent on the oxidation of fats and glucose for adenosine triphosphate production, for which L-carnitine is an essential cofactor. METHODS We measured muscle carnitine concentrations in skeletal muscles, diaphragm, and ventricles of C57BL/10ScSn-DMDmdx/J mice (n = 10) and compared them with wild-type C57BL/6J (n = 3), C57BL/10 (n = 10), and C3H (n = 12) mice. Citrate synthase (CS) activity was measured in quadriceps/gluteals and ventricles of mdx and wild-type mice. RESULTS We found significantly lower tissue carnitine in quadriceps/gluteus (P < 0.05) and ventricle (P < 0.05), but not diaphragm of mdx mice, when compared with controls. CS activity was increased in mdx quadriceps/gluteus (P < 0.03) and ventricle (P < 0.02). This suggests compensatory mitochondrial biogenesis. CONCLUSIONS Decreased tissue carnitine has implications for reduced fatty acid and glucose oxidation in mdx quadriceps/gluteus and ventricle. The mdx mouse may be a useful model for studying the role of muscle carnitine deficiency in DMD bioenergetic insufficiency and providing a targeted and timed rationale for L-carnitine therapy.
Collapse
Affiliation(s)
- Zarazuela Zolkipli
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
10
|
Altamirano F, López JR, Henríquez C, Molinski T, Allen PD, Jaimovich E. Increased resting intracellular calcium modulates NF-κB-dependent inducible nitric-oxide synthase gene expression in dystrophic mdx skeletal myotubes. J Biol Chem 2012; 287:20876-87. [PMID: 22549782 DOI: 10.1074/jbc.m112.344929] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by dystrophin mutations, characterized by chronic inflammation and severe muscle wasting. Dystrophic muscles exhibit activated immune cell infiltrates, up-regulated inflammatory gene expression, and increased NF-κB activity, but the contribution of the skeletal muscle cell to this process has been unclear. The aim of this work was to study the pathways that contribute to the increased resting calcium ([Ca(2+)](rest)) observed in mdx myotubes and its possible link with up-regulation of NF-κB and pro-inflammatory gene expression in dystrophic muscle cells. [Ca(2+)](rest) was higher in mdx than in WT myotubes (308 ± 6 versus 113 ± 2 nm, p < 0.001). In mdx myotubes, both the inhibition of Ca(2+) entry (low Ca(2+) solution, Ca(2+)-free solution, and Gd(3+)) and blockade of either ryanodine receptors or inositol 1,4,5-trisphosphate receptors reduced [Ca(2+)](rest). Basal activity of NF-κB was significantly up-regulated in mdx versus WT myotubes. There was an increased transcriptional activity and p65 nuclear localization, which could be reversed when [Ca(2+)](rest) was reduced. Levels of mRNA for TNFα, IL-1β, and IL-6 were similar in WT and mdx myotubes, whereas inducible nitric-oxide synthase (iNOS) expression was increased 5-fold. Reducing [Ca(2+)](rest) using different strategies reduced iNOS gene expression presumably as a result of decreased activation of NF-κB. We propose that NF-κB, modulated by increased [Ca(2+)](rest), is constitutively active in mdx myotubes, and this mechanism can account for iNOS overexpression and the increase in reactive nitrogen species that promote damage in dystrophic skeletal muscle cells.
Collapse
Affiliation(s)
- Francisco Altamirano
- From the Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile
| | | | | | | | | | | |
Collapse
|
11
|
Zhang Y, Cao Y, Duan H, Wang H, He L. Imperatorin prevents cardiac hypertrophy and the transition to heart failure via NO-dependent mechanisms in mice. Fitoterapia 2011; 83:60-6. [PMID: 21983344 DOI: 10.1016/j.fitote.2011.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 10/17/2022]
Abstract
Augmented endothelial nitric oxide (NO) synthase (eNOS) signaling has been reported to be associated with improvements in cardiac remodeling, and NO levels have been shown to be related to cardiac hypertrophy and heart failure. Imperatorin, a dietary furanocoumarin, has been shown to prevent cardiac hypertrophy in the spontaneous hypertension rats (SHR). Thus, we aimed to clarify whether imperatorin attenuates both cardiac hypertrophy and heart failure via the NO-signaling pathway. In neonatal mouse cardiac myocytes, imperatorin inhibited protein synthesis stimulated by either isoproterenol or phenylephrine, which was unchanged by NG-nitro-L-arginine methyl ester (L-NAME). Four weeks after transverse aortic constriction (TAC) on Kunming (KM) male mice, the ratio of heart weight to body weight was lower after imperatorin treatment than in controls (6.60 ± 0.35 mg/g in TAC, 4.54 ± 0.29 mg/g with imperatorin 15 mg kg(-1)d(-1), ig, P<0.01); similar changes in the ratio of lung weight to body weight (7.30 ± 0.85 mg/g in TAC, 5.42 ± 0.51 mg/g with imperatorin 15 mg kg(-1)d(-1), ig) and the myocardial fibrosis. All of these improvements were blunted by L-NAME. Imperatorin treatment significantly activated phosphorylation of eNOS. Myocardial mRNA levels of natriuretic peptide precursor type B and protein inhibitor of NO synthase, which were increased in the TAC mice, were decreased in the imperatorin-treated ones. Imperatorin can attenuate cardiac hypertrophy both in vivo and in vitro, and halt the process leading from hypertrophy to heart failure by a NO-mediated pathway.
Collapse
Affiliation(s)
- Yan Zhang
- School of Medicine, Xi'an Jiaotong University, Xi'an, PR China
| | | | | | | | | |
Collapse
|
12
|
Dahiya S, Givvimani S, Bhatnagar S, Qipshidze N, Tyagi SC, Kumar A. Osteopontin-stimulated expression of matrix metalloproteinase-9 causes cardiomyopathy in the mdx model of Duchenne muscular dystrophy. THE JOURNAL OF IMMUNOLOGY 2011; 187:2723-31. [PMID: 21810612 DOI: 10.4049/jimmunol.1101342] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is a common and lethal form of muscular dystrophy. With progressive disease, most patients succumb to death from respiratory or heart failure, or both. However, the mechanisms, especially those governing cardiac inflammation and fibrosis in DMD, remain less understood. Matrix metalloproteinase (MMPs) are a group of extracellular matrix proteases involved in tissue remodeling in both physiologic and pathophysiologic conditions. Previous studies have shown that MMP-9 exacerbates myopathy in dystrophin-deficient mdx mice. However, the role and the mechanisms of action of MMP-9 in cardiac tissue and the biochemical mechanisms leading to increased levels of MMP-9 in mdx mice remain unknown. Our results demonstrate that the levels of MMP-9 are increased in the heart of mdx mice. Genetic ablation of MMP-9 attenuated cardiac injury, left ventricle dilation, and fibrosis in 1-y-old mdx mice. Echocardiography measurements showed improved heart function in Mmp9-deficient mdx mice. Deletion of the Mmp9 gene diminished the activation of ERK1/2 and Akt kinase in the heart of mdx mice. Ablation of MMP-9 also suppressed the expression of MMP-3 and MMP-12 in the heart of mdx mice. Finally, our experiments have revealed that osteopontin, an important immunomodulator, contributes to the increased amounts of MMP-9 in cardiac and skeletal muscle of mdx mice. This study provides a novel mechanism for development of cardiac dysfunction and suggests that MMP-9 and OPN are important therapeutic targets to mitigating cardiac abnormalities in patients with DMD.
Collapse
Affiliation(s)
- Saurabh Dahiya
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
13
|
Burks TN, Cohn RD. Role of TGF-β signaling in inherited and acquired myopathies. Skelet Muscle 2011; 1:19. [PMID: 21798096 PMCID: PMC3156642 DOI: 10.1186/2044-5040-1-19] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/04/2011] [Indexed: 01/25/2023] Open
Abstract
The transforming growth factor-beta (TGF-β) superfamily consists of a variety of cytokines expressed in many different cell types including skeletal muscle. Members of this superfamily that are of particular importance in skeletal muscle are TGF-β1, mitogen-activated protein kinases (MAPKs), and myostatin. These signaling molecules play important roles in skeletal muscle homeostasis and in a variety of inherited and acquired neuromuscular disorders. Expression of these molecules is linked to normal processes in skeletal muscle such as growth, differentiation, regeneration, and stress response. However, chronic elevation of TGF-β1, MAPKs, and myostatin is linked to various features of muscle pathology, including impaired regeneration and atrophy. In this review, we focus on the aberrant signaling of TGF-β in various disorders such as Marfan syndrome, muscular dystrophies, sarcopenia, and critical illness myopathy. We also discuss how the inhibition of several members of the TGF-β signaling pathway has been implicated in ameliorating disease phenotypes, opening up novel therapeutic avenues for a large group of neuromuscular disorders.
Collapse
Affiliation(s)
- Tyesha N Burks
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
14
|
Abstract
Aged mdx mice represent an important model for studying Duchenne cardiomyopathy. Herein we compared the cardiac phenotypes of 22-month-old male and female mdx mice. Surprisingly, only females displayed the characteristic cardiac dilation on pressure-volume loop analysis. Female mdx mice also exhibited lower contractility, larger Q waves, and higher ratios of heart weight to body weight. Our results reveal significant gender disparity in mdx cardiac function. Gender should be considered when using the mdx model for the study of Duchenne cardiomyopathy.
Collapse
Affiliation(s)
- Brian Bostick
- Department of Molecular Microbiology and Immunology, School of Medicine, 1 Hospital Drive, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|
15
|
Bhatnagar S, Kumar A. Therapeutic targeting of signaling pathways in muscular dystrophy. J Mol Med (Berl) 2009; 88:155-66. [PMID: 19816663 DOI: 10.1007/s00109-009-0550-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 02/06/2023]
Abstract
Muscular dystrophy refers to a group of genetic diseases that cause severe muscle weakness and loss of skeletal muscle mass. Although research has helped understanding the molecular basis of muscular dystrophy, there is still no cure for this devastating disorder. Numerous lines of investigation suggest that the primary deficiency of specific proteins causes aberrant activation of several cell signaling pathways in skeletal and cardiac muscle leading to the pathogenesis of muscular dystrophy. Studies using genetic mouse models and pharmacological approaches have provided strong evidence that the modulation of the activity of specific cell signaling pathways has enormous potential to improving the quality of life and extending the life expectancy in muscular dystrophy patients. In this article, we have outlined the current understanding regarding the role of different cell signaling pathways in disease progression with particular reference to different models of muscular dystrophy and the development of therapy.
Collapse
Affiliation(s)
- Shephali Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 500 South Preston Street, Louisville, KY, 40202, USA
| | | |
Collapse
|
16
|
Griffin JL, Des Rosiers C. Applications of metabolomics and proteomics to the mdx mouse model of Duchenne muscular dystrophy: lessons from downstream of the transcriptome. Genome Med 2009; 1:32. [PMID: 19341503 PMCID: PMC2664943 DOI: 10.1186/gm32] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Functional genomic studies are dominated by transcriptomic approaches, in part reflecting the vast amount of information that can be obtained, the ability to amplify mRNA and the availability of commercially standardized functional genomic DNA microarrays and related techniques. This can be contrasted with proteomics, metabolomics and metabolic flux analysis (fluxomics), which have all been much slower in development, despite these techniques each providing a unique viewpoint of what is happening in the overall biological system. Here, we give an overview of developments in these fields 'downstream' of the transcriptome by considering the characterization of one particular, but widely used, mouse model of human disease. The mdx mouse is a model of Duchenne muscular dystrophy (DMD) and has been widely used to understand the progressive skeletal muscle wasting that accompanies DMD, and more recently the associated cardiomyopathy, as well as to unravel the roles of the other isoforms of dystrophin, such as those found in the brain. Studies using proteomics, metabolomics and fluxomics have characterized perturbations in calcium homeostasis in dystrophic skeletal muscle, provided an understanding of the role of dystrophin in skeletal muscle regeneration, and defined the changes in substrate energy metabolism in the working heart. More importantly, they all point to perturbations in proteins, metabolites and metabolic fluxes reflecting mitochondrial energetic alterations, even in the early stage of the dystrophic pathology. Philosophically, these studies also illustrate an important lesson relevant to both functional genomics and the mouse phenotyping in that the knowledge generated has advanced our understanding of cell biology and physiological organization as much as it has advanced our understanding of the disease.
Collapse
Affiliation(s)
- Julian L Griffin
- Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | | |
Collapse
|
17
|
Ervasti JM, Sonnemann KJ. Biology of the striated muscle dystrophin-glycoprotein complex. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:191-225. [PMID: 18275889 DOI: 10.1016/s0074-7696(07)65005-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Since its first description in 1990, the dystrophin-glycoprotein complex has emerged as a critical nexus for human muscular dystrophies arising from defects in a variety of distinct genes. Studies in mammals widely support a primary role for the dystrophin-glycoprotein complex in mechanical stabilization of the plasma membrane in striated muscle and provide hints for secondary functions in organizing molecules involved in cellular signaling. Studies in model organisms confirm the importance of the dystrophin-glycoprotein complex for muscle cell viability and have provided new leads toward a full understanding of its secondary roles in muscle biology.
Collapse
Affiliation(s)
- James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
18
|
Higginson JR, Thompson O, Winder SJ. Targeting of dystroglycan to the cleavage furrow and midbody in cytokinesis. Int J Biochem Cell Biol 2007; 40:892-900. [PMID: 18054267 DOI: 10.1016/j.biocel.2007.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 11/28/2022]
Abstract
Dystroglycan is a cell adhesion molecule that interacts with ezrin family proteins and also components of the extracellular signal-regulated kinase pathway. Ezrin and extracellular signal-regulated kinase are both involved in aspects of the cell division cycle. We therefore examined the role of dystroglycan during cytokinesis. Endogenous dystroglycan colocalised with ezrin at the cleavage furrow and midbody during cytokinesis in REF52 cells. Live cell imaging of green fluorescent protein-tagged dystroglycan in Swiss 3T3 and Hela cells revealed a similar localisation. Live cell imaging of a dystroglycan lacking its cytoplasmic domain revealed an even membrane localisation but no cleavage furrow or midbody localisation. Deletion of a previously identified ezrin-binding site in the dystroglycan cytoplasmic domain however only resulted in a slight reduction in cleavage furrow localisation but loss of midbody staining. There was no apparent cytokinetic defect in cells depleted for dystroglycan, however apoptosis levels were considerably higher in dystroglycan knockdown cells. Cell cycle analysis showed a delay in G2/M transition, possibly caused by a more than 50% reduction in extracellular signal-regulated kinase levels in the knockdown cells. Dystroglycan may therefore not only have a role in organising the contractile ring through direct or indirect associations with actin, but can also modulate the cell cycle by affecting extracellular signal-regulated kinase levels.
Collapse
Affiliation(s)
- J R Higginson
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | |
Collapse
|
19
|
Hnia K, Hugon G, Rivier F, Masmoudi A, Mercier J, Mornet D. Modulation of p38 mitogen-activated protein kinase cascade and metalloproteinase activity in diaphragm muscle in response to free radical scavenger administration in dystrophin-deficient Mdx mice. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:633-43. [PMID: 17255331 PMCID: PMC1851881 DOI: 10.2353/ajpath.2007.060344] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Duchenne muscular dystrophy muscles undergo increased oxidative stress and altered calcium homeostasis, which contribute to myofiber loss by trigging both necrosis and apoptosis. Here, we asked whether treatment with free radical scavengers could improve the dystrophic pattern of mdx muscles. Five-week-old mdx mice were treated for 2 weeks with alpha-lipoic acid/l-carnitine. This treatment decreased the plasmatic creatine kinase level, the antioxidant enzyme activity, and lipid peroxidation products in mdx diaphragm. Free radical scavengers also modulated the phosphorylation/activity of some component of the mitogen-activated protein kinase (MAPK) cascades: p38 MAPK, the extracellular signal-related kinase, and the Jun kinase. beta-Dystroglycan (beta-DG), a multifunctional adaptor or scaffold capable of interacting with components of the extracellular signal-related kinase-MAP kinase cascade, was also affected after treatment. In the mdx muscles, beta-DG (43 kd) was cleaved by matrix metalloproteinases into a 30-kd form (beta-DG30). We show that the proinflammatory protein nuclear factor-kappaB activator decreased after the treatment, leading to a significant reduction of matrix metalloproteinase activity in the mdx diaphragm. Our data highlight the implication of oxidative stress and cell signaling defects in dystrophin-deficient muscle via the MAP kinase cascade-beta-DG interaction and nuclear factor-kappaB-mediated inflammation process.
Collapse
Affiliation(s)
- Karim Hnia
- Institut National de la Santé, et de la Recherche Médicale, Equipe ERI 25, Muscle et Pathologies, Université de Montpellier1, Unité de Formation et de Recherche de Médecine, EA701, 4 Boulevard Henri IV, 34060 Montpellier, France
| | | | | | | | | | | |
Collapse
|
20
|
Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 2007; 36:1-7. [PMID: 17162189 DOI: 10.1016/j.pediatrneurol.2006.09.016] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/11/2006] [Accepted: 09/20/2006] [Indexed: 11/15/2022]
Abstract
Duchenne muscular dystrophy is a devastating inherited neuromuscular disorder that affects one in 3300 live male births. Although the responsible gene and its product, dystrophin, have been characterized for more than 15 years, and a mouse model (mdx) has been developed, comprehensive understanding of the mechanism leading from the absence of dystrophin to the muscular degeneration is still debated. First, dystrophin is considered a key structural element in the muscle fiber, and the primary function of the dystrophin-associated protein complex is to stabilize plasma membrane, although a role of signaling is still possible. Mechanically induced damage through eccentric contractions puts a high stress on fragile membranes and provokes micro-lesions that could eventually lead to loss of calcium homeostasis, and cell death. Altered regeneration, inflammation, impaired vascular adaptation, and fibrosis are probably downstream events that take part in the muscular dystrophy and that probably vary a lot along species (i.e., mdx mice), probands within families, stressing the importance of epigenic factors. Because no etiologic therapy is available for Duchenne muscular dystrophy, a better understanding of the primary and downstream mechanisms could prove useful for producing new adjuvant treatments. All pathophysiologic mechanisms are reviewed together with perspectives on management.
Collapse
|
21
|
Ervasti JM. Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim Biophys Acta Mol Basis Dis 2006; 1772:108-17. [PMID: 16829057 DOI: 10.1016/j.bbadis.2006.05.010] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/31/2006] [Accepted: 05/31/2006] [Indexed: 11/27/2022]
Abstract
Duchenne muscular dystrophy is the most prevalent and severe form of human muscular dystrophy. Investigations into the molecular basis for Duchenne muscular dystrophy were greatly facilitated by seminal studies in the 1980s that identified the defective gene and its major protein product, dystrophin. Biochemical studies revealed its tight association with a multi-subunit complex, the so-named dystrophin-glycoprotein complex. Since its description, the dystrophin-glycoprotein complex has emerged as an important structural unit of muscle and also as a critical nexus for understanding a diverse array of muscular dystrophies arising from defects in several distinct genes. The dystrophin homologue utrophin can compensate at the cell/tissue level for dystrophin deficiency, but functions through distinct molecular mechanisms of protein-protein interaction.
Collapse
Affiliation(s)
- James M Ervasti
- Department of Physiology, 127 Service Memorial Institute, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
22
|
Hanft LM, Rybakova IN, Patel JR, Rafael-Fortney JA, Ervasti JM. Cytoplasmic gamma-actin contributes to a compensatory remodeling response in dystrophin-deficient muscle. Proc Natl Acad Sci U S A 2006; 103:5385-90. [PMID: 16565216 PMCID: PMC1459364 DOI: 10.1073/pnas.0600980103] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dystrophin mechanically links the costameric cytoskeleton and sarcolemma, yet dystrophin-deficient muscle exhibits abnormalities in cell signaling, gene expression, and contractile function that are not clearly understood. We generated new antibodies specific for cytoplasmic gamma-actin and confirmed that gamma-actin most predominantly localized to the sarcolemma and in a faint reticular lattice within normal muscle cells. However, we observed that gamma-actin levels were increased 10-fold at the sarcolemma and within the cytoplasm of striated muscle cells from dystrophin-deficient mdx mice. Transgenic overexpression of the dystrophin homologue utrophin, or functional dystrophin constructs in mdx muscle, restored gamma-actin to normal levels, whereas gamma-actin remained elevated in mdx muscle expressing nonfunctional dystrophin constructs. We conclude that increased cytoplasmic gamma-actin in dystrophin-deficient muscle may be a compensatory response to fortify the weakened costameric lattice through recruitment of parallel mechanical linkages. However, the presence of excessive myoplasmic gamma-actin may also contribute to altered cell signaling or gene expression in dystrophin-deficient muscle.
Collapse
Affiliation(s)
- Laurin M. Hanft
- *Department of Physiology, University of Wisconsin, Madison, WI 53706; and
| | - Inna N. Rybakova
- *Department of Physiology, University of Wisconsin, Madison, WI 53706; and
| | | | - Jill A. Rafael-Fortney
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210
| | - James M. Ervasti
- *Department of Physiology, University of Wisconsin, Madison, WI 53706; and
- To whom correspondence should be addressed at:
Department of Physiology, University of Wisconsin, 127 Service Memorial Institute, 1300 University Avenue, Madison, WI 53706. E-mail:
| |
Collapse
|
23
|
Batchelor CL, Winder SJ. Sparks, signals and shock absorbers: how dystrophin loss causes muscular dystrophy. Trends Cell Biol 2006; 16:198-205. [PMID: 16515861 DOI: 10.1016/j.tcb.2006.02.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/17/2006] [Accepted: 02/16/2006] [Indexed: 11/20/2022]
Abstract
The dystrophin-glycoprotein complex (DGC) can be considered as a specialized adhesion complex, linking the extracellular matrix to the actin cytoskeleton, primarily in muscle cells. Mutations in several components of the DGC lead to its partial or total loss, resulting in various forms of muscular dystrophy. These typically manifest as progressive wasting diseases with loss of muscle integrity. Debate is ongoing about the precise function of the DGC: initially a strictly mechanical role was proposed but it has been suggested that there is aberrant calcium handling in muscular dystrophy and, more recently, changes in MAP kinase and GTPase signalling have been implicated in the aetiology of the disease. Here, we discuss new and interesting developments in these aspects of DGC function and attempt to rationalize the mechanical, calcium and signalling hypotheses to provide a unifying hypothesis of the underlying process of muscular dystrophy.
Collapse
Affiliation(s)
- Clare L Batchelor
- Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, UK, S10 2TN
| | | |
Collapse
|
24
|
Janssen PML, Hiranandani N, Mays TA, Rafael-Fortney JA. Utrophin deficiency worsens cardiac contractile dysfunction present in dystrophin-deficient mdx mice. Am J Physiol Heart Circ Physiol 2005; 289:H2373-8. [PMID: 16024571 DOI: 10.1152/ajpheart.00448.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The loss of dystrophin in patients with Duchenne muscular dystrophy (DMD) causes devastating skeletal muscle degeneration and cardiomyopathy. Dystrophin-deficient (mdx) mice have a much milder phenotype, whereas double knockout (DKO) mice lacking both dystrophin and its homolog, utrophin, exhibit the clinical signs observed in DMD patients. We have previously shown that DKO and mdx mice have similar severities of histological features of cardiomyopathy, but no contractile functional measurements of DKO heart have ever been carried out. To investigate whether DKO mice display cardiac dysfunction at the tissue level, contractile response of the myocardium was tested in small, unbranched, ultrathin, right ventricular muscles. Under near physiological conditions, peak isometric active developed tension (F(dev), in mN/mm2) at a stimulation frequency of 4 Hz was depressed in DKO mice (15.3 +/- 3.7, n = 8) compared with mdx mice (24.2 +/- 5.4, n = 7), which in turn were depressed compared with wild-type (WT) control mice (33.2 +/- 4.5, n = 7). This reduced Fdev was also observed at frequencies within the murine physiological range; at 12 Hz, Fdev was (in mN/mm2) 11.4 +/- 1.8 in DKO, 14.5 +/- 4.2 in mdx, and 28.8 +/- 5.4 in WT mice. The depression of Fdev was observed over the entire frequency range of 4-14 Hz and was significant between DKO versus mdx mice, as well as between DKO or mdx mice versus WT mice. Under beta-adrenergic stimulation (1 micromol/l isoproterenol), Fdev in DKO preparations was only (in mN/mm2) 14.7 +/- 5.1 compared with 30.9 +/- 8.9 in mdx and 41.0 +/- 4.9 in WT mice. These data show that cardiac contractile dysfunction of mdx mice is generally worsened in mice also lacking utrophin.
Collapse
Affiliation(s)
- Paul M L Janssen
- Dept. of Physiology and Cell Biology, The Ohio State Univ., 304 Hamilton Hall, 1645 Neil Ave., Columbus, OH 43210-1218, USA.
| | | | | | | |
Collapse
|
25
|
Nakamura A, Yoshida K, Ueda H, Takeda S, Ikeda SI. Up-regulation of mitogen activated protein kinases in mdx skeletal muscle following chronic treadmill exercise. Biochim Biophys Acta Mol Basis Dis 2005; 1740:326-31. [PMID: 15949699 DOI: 10.1016/j.bbadis.2004.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 11/17/2004] [Accepted: 12/02/2004] [Indexed: 10/26/2022]
Abstract
Dystrophin, a product of the Duchenne muscular dystrophy gene, is a cytoskeletal protein of skeletal and cardiac muscle fibers. Dystrophin-deficient muscle fibers are abnormally vulnerable to mechanical stress including physical exercise, which is a powerful stimulator of mitogen-activated protein kinases (MAPKs). To examine how treadmill exercise affects MAPK family members in dystrophin-deficient skeletal muscle, we subjected both mdx mice, an animal model for Duchenne muscular dystrophy, and C57BL/10 mice to treadmill exercise and examined the phosphorylated protein levels of extracellular-signal regulated kinase (ERK1/2), p38 MAPK and c-Jun N terminal kinase 1 and 2 (JNK1 and JNK2) in the gastrocnemius muscle. Phosphorylation of ERK1/2, p38 MAPK and JNK2, but not JNK1, increased more in the muscles of exercise trained mdx mice than in muscles of trained C57BL/10 or untrained mdx mice. These results show that physical exercise aberrantly up-regulates the phosphorylated form of ERK1/2, p38 MAPK and JNK2 in dystrophin-deficient skeletal muscle and that their up-regulation might play a role in the degeneration and regeneration process of dystrophic features.
Collapse
Affiliation(s)
- Akinori Nakamura
- Third Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | |
Collapse
|
26
|
Wilding JR, Schneider JE, Sang AE, Davies KE, Neubauer S, Clarke K. Dystrophin- and MLP-deficient mouse hearts: marked differences in morphology and function, but similar accumulation of cytoskeletal proteins. FASEB J 2004; 19:79-81. [PMID: 15494447 DOI: 10.1096/fj.04-1731fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In humans, cytoskeletal dystrophin and muscle LIM protein (MLP) gene mutations can cause dilated cardiomyopathy, yet these mutations may have different effects in mice, owing to increased accumulation of other, compensatory cytoskeletal proteins. Consequently, we characterized left-ventricular (LV) morphology and function in vivo using high-resolution cine-magnetic resonance imaging (MRI) in 2- to 3-month old dystrophin-deficient (mdx) and MLP-null mice, and their respective controls. LV passive stiffness was assessed in isolated, perfused hearts, and cytoskeletal protein levels were determined using Western blot analyses. In mdx mouse hearts, LV-to-body weight ratio, cavity volume, ejection fraction, stroke volume, and cardiac output were normal. However, MLP-null mouse hearts had 1.2-fold higher LV-to-body weight ratios (P<0.01), 1.5-fold higher end-diastolic volumes (P<0.01), and decreased ejection fraction compared with controls (25% vs. 66%, respectively, P<0.01), indicating dilated cardiomyopathy and heart failure. In both models, isolated, perfused heart end-diastolic pressure-volume relationships and passive left-ventricular stiffness were normal. Hearts from both models accumulated desmin and beta-tubulin, mdx mouse hearts accumulated utrophin and MLP, and MLP-null mouse hearts accumulated dystrophin and syncoilin. Although the increase in MLP and utrophin in the mdx mouse heart was able to compensate for the loss of dystrophin, accumulation of desmin, syncoilin and dystrophin were unable to compensate for the loss of MLP, resulting in heart failure.
Collapse
Affiliation(s)
- James R Wilding
- Department of Physiology, University of Oxford, Oxford, England, UK
| | | | | | | | | | | |
Collapse
|
27
|
Hunton DL, Zou L, Pang Y, Marchase RB. Adult rat cardiomyocytes exhibit capacitative calcium entry. Am J Physiol Heart Circ Physiol 2003; 286:H1124-32. [PMID: 14630640 DOI: 10.1152/ajpheart.00162.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Capacitative Ca(2+) entry (CCE) refers to the influx of Ca(2+) through plasma membrane channels activated on depletion of endoplasmic-sarcoplasmic reticulum Ca(2+) stores. We utilized two Ca(2+)-sensitive dyes (one monitoring cytoplasmic free Ca(2+) and the other free Ca(2+) within the sarcoplasmic reticulum) to determine whether adult rat ventricular myocytes exhibit CCE. Treatments with inhibitors of the sarcoplasmic endoplasmic reticulum Ca(2+)-ATPases were not efficient in releasing Ca(2+) from stores. However, when these inhibitors were coupled with either Ca(2+) ionophores or angiotensin II (an agonist generating inositol 1,4,5 trisphosphate), depletion of stores was observed. This depletion was accompanied by a significant influx of extracellular Ca(2+) characteristic of CCE. CCE was also observed when stores were depleted with caffeine. This influx of Ca(2+) was sensitive to four inhibitors of CCE (glucosamine, lanthanum, gadolinium, and SKF-96365) but not to inhibitors of L-type channels or the Na(+)/Ca(2+) exchanger. In the whole cell configuration, an inward current of approximately 0.7 pA/pF at -90 mV was activated when a Ca(2+) chelator or inositol (1,4,5)-trisphosphate was included in the pipette or when Ca(2+) stores were depleted with a Ca(2+)-ATPase inhibitor and ionophore. The current was maximal at hyperpolarizing voltages and inwardly rectified. The channel was relatively permeant to Ca(2+) and Ba(2+) but only poorly to Mg(2+) or Mn(2+). Taken together, these data support the existence of CCE in adult cardiomyocytes, a finding with likely implications to physiological responses to phospholipase C-generating agonists.
Collapse
Affiliation(s)
- Dacia L Hunton
- Dept. of Cell Biology, Univ. of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | | | | | |
Collapse
|
28
|
van Deutekom JCT, van Ommen GJB. Advances in Duchenne muscular dystrophy gene therapy. Nat Rev Genet 2003; 4:774-83. [PMID: 14526374 DOI: 10.1038/nrg1180] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial characterization of the genetic defect for Duchenne muscular dystrophy, much effort has been expended in attempts to develop a therapy for this devastating childhood disease. Gene therapy was the obvious answer but, initially, the dystrophin gene and its product seemed too large and complex for this approach. However, our increasing knowledge of the organization of the gene and the role of dystrophin in muscle function has indicated ways to manipulate them both. Gene therapy for Duchenne muscular dystrophy now seems to be in reach.
Collapse
Affiliation(s)
- Judith C T van Deutekom
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | |
Collapse
|
29
|
Hainsey TA, Senapati S, Kuhn DE, Rafael JA. Cardiomyopathic features associated with muscular dystrophy are independent of dystrophin absence in cardiovasculature. Neuromuscul Disord 2003; 13:294-302. [PMID: 12868498 DOI: 10.1016/s0960-8966(02)00286-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The loss of dystrophin results in skeletal muscle degeneration and cardiomyopathy in patients with Duchenne muscular dystrophy. In skeletal muscle, dystrophin strengthens the myofiber membrane by linking the submembranous cytoskeleton and extracellular matrix through its direct interaction with the dystroglycan/sarcoglycan complex. In limb-girdle muscular dystrophy, the loss of the sarcoglycans in cardiovasculature leads to cardiomyopathy. It is unknown whether the absence of dystrophin in cardiomyocytes or cardiovasculature leads to the cardiomyopathy associated with primary dystrophin deficiency. We show here that the cardiomyopathic features of the utrophin/dystrophin-deficient mouse can be prevented by the presence of dystrophin in cardiomyocytes but not in cardiovasculature. Furthermore, restoration of the dystroglycans and sarcoglycans to the cardiomyocyte membrane is not sufficient to prevent cardiomyopathy. These data provide the first evidence that dystrophin plays a mechanical role in cardiomyocytes similar to its role in skeletal muscle. These results indicate that treatment of cardiomyocytes but not cardiovasculature is essential in dystrophinopathies.
Collapse
Affiliation(s)
- T A Hainsey
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, 410 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
30
|
Griffin JL, Sang E, Evens T, Davies K, Clarke K. Metabolic profiles of dystrophin and utrophin expression in mouse models of Duchenne muscular dystrophy. FEBS Lett 2002; 530:109-16. [PMID: 12387876 DOI: 10.1016/s0014-5793(02)03437-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metabolic profiles from (1)H nuclear magnetic resonance spectroscopy have been used to describe both one and two protein systems in four mouse models related to Duchenne muscular dystrophy using the pattern recognition technique partial least squares. Robust statistical models were built for extracts and intact cardiac tissue, distinguishing mice according to expression of dystrophin. Using metabolic profiles of diaphragm, models were built describing dystrophin and utrophin, a dystrophin related protein, expression. Increased utrophin expression counteracted some of the deficits associated with dystrophic tissue. This suggests the method may be ideal for following treatment regimes such as gene therapy.
Collapse
Affiliation(s)
- J L Griffin
- Biological Chemistry, Biomedical Sciences, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
31
|
Nakamura A, Yoshida K, Takeda S, Dohi N, Ikeda SI. Progression of dystrophic features and activation of mitogen-activated protein kinases and calcineurin by physical exercise, in hearts of mdx mice. FEBS Lett 2002; 520:18-24. [PMID: 12044863 DOI: 10.1016/s0014-5793(02)02739-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously demonstrated that calcineurin and p38 mitogen-activated protein kinase (MAPK) are up-regulated in the hearts of mdx mice. However, the degree of up-regulation observed was variable, which may reflect variable levels of daily physical activities among the mice. To investigate whether or not exercise affects dystrophic features and activates intracellular signaling molecules in mdx hearts, we subjected mdx and C57BL/10 mice to treadmill exercise and examined intracellular signaling molecules in cardiac muscles, at the protein level. The heart to body weight ratio was significantly increased in exercised mdx mice. Histopathology in exercised mdx hearts showed extensive infiltration of inflammatory cells, together with increases in interstitial fibrosis and adipose tissues, all of which were not observed either in exercised C57BL/10 or non-exercised mdx hearts. Phosphorylated p38 MAPK, phosphorylated extracellular signal-regulated kinase 1/2 and calcineurin, but not phosphorylated c-Jun N-terminal kinase 1, were up-regulated in exercised mdx hearts compared to exercised C57BL/10 or non-exercised mdx hearts. These data suggest that physical exercise accelerates the dystrophic process through activation of intracellular signaling molecules in dystrophin-deficient hearts.
Collapse
Affiliation(s)
- Akinori Nakamura
- Third Department of Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | | | | | |
Collapse
|