1
|
Darras BT, Volpe JJ. Levels Above Lower Motor Neuron to Neuromuscular Junction. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:1039-1073.e12. [DOI: 10.1016/b978-0-443-10513-5.00036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Cheng YHH, Bohaczuk SC, Stergachis AB. Functional categorization of gene regulatory variants that cause Mendelian conditions. Hum Genet 2024; 143:559-605. [PMID: 38436667 PMCID: PMC11078748 DOI: 10.1007/s00439-023-02639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Abstract
Much of our current understanding of rare human diseases is driven by coding genetic variants. However, non-coding genetic variants play a pivotal role in numerous rare human diseases, resulting in diverse functional impacts ranging from altered gene regulation, splicing, and/or transcript stability. With the increasing use of genome sequencing in clinical practice, it is paramount to have a clear framework for understanding how non-coding genetic variants cause disease. To this end, we have synthesized the literature on hundreds of non-coding genetic variants that cause rare Mendelian conditions via the disruption of gene regulatory patterns and propose a functional classification system. Specifically, we have adapted the functional classification framework used for coding variants (i.e., loss-of-function, gain-of-function, and dominant-negative) to account for features unique to non-coding gene regulatory variants. We identify that non-coding gene regulatory variants can be split into three distinct categories by functional impact: (1) non-modular loss-of-expression (LOE) variants; (2) modular loss-of-expression (mLOE) variants; and (3) gain-of-ectopic-expression (GOE) variants. Whereas LOE variants have a direct corollary with coding loss-of-function variants, mLOE and GOE variants represent disease mechanisms that are largely unique to non-coding variants. These functional classifications aim to provide a unified terminology for categorizing the functional impact of non-coding variants that disrupt gene regulatory patterns in Mendelian conditions.
Collapse
Affiliation(s)
- Y H Hank Cheng
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Stephanie C Bohaczuk
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
3
|
Feng X, Liu S, Li K, Bu F, Yuan H. NCAD v1.0: a database for non-coding variant annotation and interpretation. J Genet Genomics 2024; 51:230-242. [PMID: 38142743 DOI: 10.1016/j.jgg.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The application of whole genome sequencing is expanding in clinical diagnostics across various genetic disorders, and the significance of non-coding variants in penetrant diseases is increasingly being demonstrated. Therefore, it is urgent to improve the diagnostic yield by exploring the pathogenic mechanisms of variants in non-coding regions. However, the interpretation of non-coding variants remains a significant challenge, due to the complex functional regulatory mechanisms of non-coding regions and the current limitations of available databases and tools. Hence, we develop the non-coding variant annotation database (NCAD, http://www.ncawdb.net/), encompassing comprehensive insights into 665,679,194 variants, regulatory elements, and element interaction details. Integrating data from 96 sources, spanning both GRCh37 and GRCh38 versions, NCAD v1.0 provides vital information to support the genetic diagnosis of non-coding variants, including allele frequencies of 12 diverse populations, with a particular focus on the population frequency information for 230,235,698 variants in 20,964 Chinese individuals. Moreover, it offers prediction scores for variant functionality, five categories of regulatory elements, and four types of non-coding RNAs. With its rich data and comprehensive coverage, NCAD serves as a valuable platform, empowering researchers and clinicians with profound insights into non-coding regulatory mechanisms while facilitating the interpretation of non-coding variants.
Collapse
Affiliation(s)
- Xiaoshu Feng
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Sihan Liu
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Ke Li
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Fengxiao Bu
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China.
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China.
| |
Collapse
|
4
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
5
|
Zhao Y, Li Y, Bian Y, Yao S, Liu P, Yu M, Zhang W, Wang Z, Yuan Y. Congenital myasthenic syndrome in China: genetic and myopathological characterization. Ann Clin Transl Neurol 2021; 8:898-907. [PMID: 33756069 PMCID: PMC8045908 DOI: 10.1002/acn3.51346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE We aimed to summarize the clinical, genetic, and myopathological features of a cohort of Chinese patients with congenital myasthenic syndrome, and follow up on therapeutic outcomes. METHODS The clinical spectrum, mutational frequency of genes, and pathological diagnostic clues of various subtypes of patients with congenital myasthenic syndrome were summarized. Therapeutic effects were followed up. RESULTS Thirty-five patients from 29 families were recruited. Ten genes were identified: GFPT1 (27.6%), AGRN (17.2%), CHRNE (17.2%), COLQ (13.8%), GMPPB (6.9%), CHAT, CHRNA1, DOK7, COG7, and SLC25A1 (3.4% each, respectively). Sole limb-girdle weakness was found in patients with AGRN (1/8) and GFPT1 (7/8) mutations, whereas distal weakness was all observed in patients with AGRN (6/8) mutations. Tubular aggregates were only found in patients with GFPT1 mutations (5/6). The patients with GMPPB mutations (2/2) had decreased alpha-dystroglycan. Acetylcholinesterase inhibitor therapy resulted in no response or worsened symptoms in patients with COLQ mutations, a diverse response in patients with AGRN mutations, and a good response in patients with other subtypes. Albuterol therapy was effective or harmless in most subtypes. Therapy effects became attenuated with long-term use in patients with COLQ or AGRN mutations. INTERPRETATION The genetic distribution of congenital myasthenic syndrome in China is distinct from that of other ethnic origins. The appearance of distal weakness, selective limb-girdle myasthenic syndrome, tubular aggregates, and decreased alpha-dystroglycan were indicative of the specific subtypes. Based on the follow-up findings, we suggest cautious evaluation of the long-term efficacy of therapeutic agents in congenital myasthenic syndrome.
Collapse
Affiliation(s)
- Yawen Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ying Li
- Department of Neurology, Capital Medical University Affiliated Anzhen Hospital, Chaoyang-qu, China
| | - Yang Bian
- Department of Neurology, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Sheng Yao
- Department of Neurology, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Penju Liu
- Department of Neurology, Capital Medical University Affiliated Anzhen Hospital, Chaoyang-qu, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Rodríguez Cruz PM, Cossins J, Beeson D, Vincent A. The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front Mol Neurosci 2020; 13:610964. [PMID: 33343299 PMCID: PMC7744297 DOI: 10.3389/fnmol.2020.610964] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
The neuromuscular junction (NMJ) is a highly specialized synapse between a motor neuron nerve terminal and its muscle fiber that are responsible for converting electrical impulses generated by the motor neuron into electrical activity in the muscle fibers. On arrival of the motor nerve action potential, calcium enters the presynaptic terminal, which leads to the release of the neurotransmitter acetylcholine (ACh). ACh crosses the synaptic gap and binds to ACh receptors (AChRs) tightly clustered on the surface of the muscle fiber; this leads to the endplate potential which initiates the muscle action potential that results in muscle contraction. This is a simplified version of the events in neuromuscular transmission that take place within milliseconds, and are dependent on a tiny but highly structured NMJ. Much of this review is devoted to describing in more detail the development, maturation, maintenance and regeneration of the NMJ, but first we describe briefly the most important molecules involved and the conditions that affect their numbers and function. Most important clinically worldwide, are myasthenia gravis (MG), the Lambert-Eaton myasthenic syndrome (LEMS) and congenital myasthenic syndromes (CMS), each of which causes specific molecular defects. In addition, we mention the neurotoxins from bacteria, snakes and many other species that interfere with neuromuscular transmission and cause potentially fatal diseases, but have also provided useful probes for investigating neuromuscular transmission. There are also changes in NMJ structure and function in motor neuron disease, spinal muscle atrophy and sarcopenia that are likely to be secondary but might provide treatment targets. The NMJ is one of the best studied and most disease-prone synapses in the nervous system and it is amenable to in vivo and ex vivo investigation and to systemic therapies that can help restore normal function.
Collapse
Affiliation(s)
- Pedro M. Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Judith Cossins
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
7
|
Huang K, Li J, Ito M, Takeda JI, Ohkawara B, Ogi T, Masuda A, Ohno K. Gene Expression Profile at the Motor Endplate of the Neuromuscular Junction of Fast-Twitch Muscle. Front Mol Neurosci 2020; 13:154. [PMID: 33117128 PMCID: PMC7549434 DOI: 10.3389/fnmol.2020.00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
The neuromuscular junction (NMJ) is a prototypic chemical synapse between the spinal motor neuron and the motor endplate. Gene expression profiles of the motor endplate are not fully elucidated. Collagen Q (ColQ) is a collagenic tail subunit of asymmetric forms of acetylcholinesterase and is driven by two distinct promoters. pColQ1 is active throughout the slow-twitch muscle, whereas pColQ1a is active at the motor endplate of fast-twitch muscle. We made a transgenic mouse line that expresses nuclear localization signal (NLS)-attached Cre recombinase under the control of pColQ1a (pColQ1a-Cre mouse). RiboTag mouse expresses an HA-tagged ribosomal subunit, RPL22, in cells expressing Cre recombinase. We generated pColQ1a-Cre:RiboTag mouse, and confirmed that HA-tagged RPL22 was enriched at the NMJ of tibialis anterior (TA) muscle. Next, we confirmed that Chrne and Musk that are specifically expressed at the NMJ were indeed enriched in HA-immunoprecipitated (IP) RNA, whereas Sox10 and S100b, markers for Schwann cells, and Icam1, a marker for vascular endothelial cells, and Pax3, a marker for muscle satellite cells, were scarcely detected. Gene set enrichment analysis (GSEA) of RNA-seq data showed that “phosphatidylinositol signaling system” and “extracellular matrix receptor interaction” were enriched at the motor endplate. Subsequent analysis revealed that genes encoding diacylglycerol kinases, phosphatidylinositol kinases, phospholipases, integrins, and laminins were enriched at the motor endplate. We first characterized the gene expression profile under translation at the motor endplate of TA muscle using the RiboTag technique. We expect that our gene expression profiling will help elucidate molecular mechanisms of the development, maintenance, and pathology of the NMJ.
Collapse
Affiliation(s)
- Kun Huang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jin Li
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Belotti E, Schaeffer L. Regulation of Gene expression at the neuromuscular Junction. Neurosci Lett 2020; 735:135163. [PMID: 32553805 DOI: 10.1016/j.neulet.2020.135163] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 01/08/2023]
Abstract
Gene expression in skeletal muscle is profoundly changed upon innervation. 50 years of research on the neuromuscular system have greatly increased our understanding of the mechanisms underlying these changes. By controlling the expression and the activity of key transcription factors, nerve-evoked electrical activity in the muscle fiber positively and negatively regulates the expression of hundreds of genes. Innervation also compartmentalizes gene expression into synaptic and extra-synaptic regions of muscle fibers. In addition, electrically-evoked, release of several factors (e.g. Agrin, Neuregulin, Wnt ligands) induce the clustering of synaptic proteins and of a few muscle nuclei. The sub-synaptic nuclei acquire a particular chromatin organization and develop a specific gene expression program dedicated to building and maintaining a functional neuromuscular synapse. Deciphering synapse-specific, transcriptional regulation started with the identification of the N-box, a six base pair element present in the promoters of the acetylcholine δ and ε subunits. Most genes with synapse-specific expression turned out to contain at least one N-box in their promoters. The N-box is a response element for the synaptic signals Agrin and Neuregulins as well as a binding site for transcription factors of the Ets family. The Ets transcription factors GABP and Erm are implicated in the activation of post-synaptic genes via the N-box. In muscle fibers, Erm expression is restricted to the NMJ whereas GABP is expressed in all muscle nuclei but phosphorylated and activated by the JNK and ERK signaling pathways in response to Agrin and Neuregulins. Post-synaptic gene expression also correlates with chromatin modifications at the genomic level as evidenced by the strong enrichment of decondensed chromatin and acetylated histones in sub-synaptic nuclei. Here we discuss these transcriptional pathways for synaptic specialization at NMJs.
Collapse
Affiliation(s)
- Edwige Belotti
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France
| | - Laurent Schaeffer
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France; Centre De Biotechnologie Cellulaire, Hospices Civils De Lyon, Lyon, France.
| |
Collapse
|
9
|
Rimer M. Extracellular signal-regulated kinases 1 and 2 regulate neuromuscular junction and myofiber phenotypes in mammalian skeletal muscle. Neurosci Lett 2019; 715:134671. [PMID: 31805372 DOI: 10.1016/j.neulet.2019.134671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
The neuromuscular junction is the synapse between a motor neuron of the spinal cord and a skeletal muscle fiber in the periphery. Reciprocal interactions between these excitable cells, and between them and others cell types present within the muscle tissue, shape the development, homeostasis and plasticity of skeletal muscle. An important aim in the field is to understand the molecular mechanisms underlying these cellular interactions, which include identifying the nature of the signals and receptors involved but also of the downstream intracellular signaling cascades elicited by them. This review focuses on work that shows that skeletal muscle fiber-derived extracellular signal-regulated kinases 1 and 2 (ERK1/2), ubiquitous and prototypical intracellular mitogen-activated protein kinases, have modulatory roles in the maintenance of the neuromuscular synapse and in the acquisition and preservation of fiber type identity in skeletal muscle.
Collapse
Affiliation(s)
- Mendell Rimer
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center and Texas A&M Institute for Neuroscience, Bryan, TX 77807 USA.
| |
Collapse
|
10
|
Afshar Bakooshli M, Lippmann ES, Mulcahy B, Iyer N, Nguyen CT, Tung K, Stewart BA, van den Dorpel H, Fuehrmann T, Shoichet M, Bigot A, Pegoraro E, Ahn H, Ginsberg H, Zhen M, Ashton RS, Gilbert PM. A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. eLife 2019; 8:44530. [PMID: 31084710 PMCID: PMC6516829 DOI: 10.7554/elife.44530] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Two-dimensional (2D) human skeletal muscle fiber cultures are ill-equipped to support the contractile properties of maturing muscle fibers. This limits their application to the study of adult human neuromuscular junction (NMJ) development, a process requiring maturation of muscle fibers in the presence of motor neuron endplates. Here we describe a three-dimensional (3D) co-culture method whereby human muscle progenitors mixed with human pluripotent stem cell-derived motor neurons self-organize to form functional NMJ connections. Functional connectivity between motor neuron endplates and muscle fibers is confirmed with calcium imaging and electrophysiological recordings. Notably, we only observed epsilon acetylcholine receptor subunit protein upregulation and activity in 3D co-cultures. Further, 3D co-culture treatments with myasthenia gravis patient sera shows the ease of studying human disease with the system. Hence, this work offers a simple method to model and evaluate adult human NMJ de novo development or disease in culture.
Collapse
Affiliation(s)
- Mohsen Afshar Bakooshli
- Donnelly Centre, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ethan S Lippmann
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, United States
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Nisha Iyer
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, United States
| | - Christine T Nguyen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Kayee Tung
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Bryan A Stewart
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Hubrecht van den Dorpel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
| | - Tobias Fuehrmann
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Molly Shoichet
- Donnelly Centre, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Anne Bigot
- INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Universite, Paris, France
| | - Elena Pegoraro
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Henry Ahn
- Department of Surgery, University of Toronto, Toronto, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Howard Ginsberg
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Randolph Scott Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, United States
| | - Penney M Gilbert
- Donnelly Centre, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Darras BT, Volpe JJ. Levels Above Lower Motor Neuron to Neuromuscular Junction. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:887-921.e11. [DOI: 10.1016/b978-0-323-42876-7.00032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Engel AG. Genetic basis and phenotypic features of congenital myasthenic syndromes. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:565-589. [PMID: 29478601 DOI: 10.1016/b978-0-444-64076-5.00037-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. The disease proteins reside in the nerve terminal, the synaptic basal lamina, or in the postsynaptic region, or at multiple sites at the neuromuscular junction as well as in other tissues. Targeted mutation analysis by Sanger or exome sequencing has been facilitated by characteristic phenotypic features of some CMS. No fewer than 20 disease genes have been recognized to date. In one-half of the currently identified probands, the disease stems from mutations in genes encoding subunits of the muscle form of the acetylcholine receptor (CHRNA1, CHRNB, CHRNAD1, and CHRNE). In 10-14% of the probands the disease is caused by mutations in RAPSN, DOK 7, or COLQ, and in 5% by mutations in CHAT. Other less frequently identified disease genes include LAMB2, AGRN, LRP4, MUSK, GFPT1, DPAGT1, ALG2, and ALG 14 as well as SCN4A, PREPL, PLEC1, DNM2, and MTM1. Identification of the genetic basis of each CMS is important not only for genetic counseling and disease prevention but also for therapy, because therapeutic agents that benefit one type of CMS can be harmful in another.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, United States.
| |
Collapse
|
13
|
Ohno K, Ohkawara B, Ito M. Recent advances in congenital myasthenic syndromes. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Bisei Ohkawara
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Mikako Ito
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
14
|
Tintignac LA, Brenner HR, Rüegg MA. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev 2015; 95:809-52. [DOI: 10.1152/physrev.00033.2014] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia.
Collapse
Affiliation(s)
- Lionel A. Tintignac
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Hans-Rudolf Brenner
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Markus A. Rüegg
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| |
Collapse
|
15
|
HnRNP C, YB-1 and hnRNP L coordinately enhance skipping of human MUSK exon 10 to generate a Wnt-insensitive MuSK isoform. Sci Rep 2014; 4:6841. [PMID: 25354590 PMCID: PMC4213890 DOI: 10.1038/srep06841] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/13/2014] [Indexed: 12/11/2022] Open
Abstract
Muscle specific receptor tyrosine kinase (MuSK) is an essential postsynaptic transmembrane molecule that mediates clustering of acetylcholine receptors (AChR). MUSK exon 10 is alternatively skipped in human, but not in mouse. Skipping of this exon disrupts a cysteine-rich region (Fz-CRD), which is essential for Wnt-mediated AChR clustering. To investigate the underlying mechanisms of alternative splicing, we exploited block-scanning mutagenesis with human minigene and identified a 20-nucleotide block that contained exonic splicing silencers. Using RNA-affinity purification, mass spectrometry, and Western blotting, we identified that hnRNP C, YB-1 and hnRNP L are bound to MUSK exon 10. siRNA-mediated knockdown and cDNA overexpression confirmed the additive, as well as the independent, splicing suppressing effects of hnRNP C, YB-1 and hnRNP L. Antibody-mediated in vitro protein depletion and scanning mutagenesis additionally revealed that binding of hnRNP C to RNA subsequently promotes binding of YB-1 and hnRNP L to the immediate downstream sites and enhances exon skipping. Simultaneous tethering of two splicing trans-factors to the target confirmed the cooperative effect of YB-1 and hnRNP L on hnRNP C-mediated exon skipping. Search for a similar motif in the human genome revealed nine alternative exons that were individually or coordinately regulated by hnRNP C and YB-1.
Collapse
|
16
|
Abicht A, Dusl M, Gallenmüller C, Guergueltcheva V, Schara U, Della Marina A, Wibbeler E, Almaras S, Mihaylova V, von der Hagen M, Huebner A, Chaouch A, Müller JS, Lochmüller H. Congenital myasthenic syndromes: Achievements and limitations of phenotype-guided gene-after-gene sequencing in diagnostic practice: A study of 680 patients. Hum Mutat 2012; 33:1474-84. [DOI: 10.1002/humu.22130] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/30/2012] [Indexed: 11/09/2022]
|
17
|
Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 2012; 35:441-53. [PMID: 22633140 DOI: 10.1016/j.tins.2012.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 01/22/2023]
Abstract
The vertebrate neuromuscular junction (NMJ), a peripheral synapse formed between motoneuron and skeletal muscle, is characterized by a protracted postnatal period of maturation and life-long maintenance. In neuromuscular disorders such as congenital myasthenic syndromes (CMSs), disruptions of NMJ maturation and/or maintenance are frequently observed. In particular, defective neuromuscular transmission associated with structural and molecular abnormalities at the pre- and postsynaptic membranes, as well as at the synaptic cleft, has been reported in these patients. Here, we review recent advances in the understanding of molecular and cellular events that mediate NMJ maturation and maintenance. The underlying regulatory mechanisms, including key molecular regulators at the presynaptic nerve terminal, synaptic cleft, and postsynaptic muscle membrane, are discussed.
Collapse
|
18
|
Abstract
Skeletal muscle innervation is a multi-step process leading to the neuromuscular junction (NMJ) apparatus formation. The transmission of the signal from nerve to muscle occurs at the NMJ level. The molecular mechanism that orchestrates the organization and functioning of synapses is highly complex, and it has not been completely elucidated so far. Neuromuscular junctions are assembled on the muscle fibers at very precise locations called end plates (EP). Acetylcholine receptor (AChR) clusterization at the end plates is required for an accurate synaptic transmission. This review will focus on some mechanisms responsible for accomplishing the correct distribution of AChRs at the synapses. Recent evidences support the concept that a dual transcriptional control of AChR genes in subsynaptic and extrasynaptic nuclei is crucial for AChR clusterization. Moreover, new players have been discovered in the agrin-MuSK pathway, the master organizer of postsynaptical differentiation. Mutations in this pathway cause neuromuscular congenital disorders. Alterations of the postynaptic apparatus are also present in physiological conditions characterized by skeletal muscle wasting. Indeed, recent evidences demonstrate how NMJ misfunctioning has a crucial role at the onset of age-associated sarcopenia.
Collapse
|
19
|
Engel AG. Current status of the congenital myasthenic syndromes. Neuromuscul Disord 2012; 22:99-111. [PMID: 22104196 PMCID: PMC3269564 DOI: 10.1016/j.nmd.2011.10.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 01/04/2023]
Abstract
Congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. Clinical, electrophysiologic, and morphologic studies have paved the way for detecting CMS-related mutations in proteins residing in the nerve terminal, the synaptic basal lamina, and in the postsynaptic region of the motor endplate. The disease proteins identified to date include choline acetyltransferase (ChAT), the endplate species of acetylcholinesterase (AChE), β2-laminin, the acetylcholine receptor (AChR), rapsyn, plectin, Na(v)1.4, the muscle specific protein kinase (MuSK), agrin, downstream of tyrosine kinase 7 (Dok-7), and glutamine-fructose-6-phosphate transaminase 1 (GFPT1). Myasthenic syndromes associated with centronuclear myopathies were recently recognized. Analysis of properties of expressed mutant proteins contributed to finding improved therapy for most CMS. Despite these advances, the molecular basis of some phenotypically characterized CMS remains elusive. Moreover, other types of CMS and disease genes likely exist and await discovery.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
20
|
Masuda A, Shen XM, Ito M, Matsuura T, Engel AG, Ohno K. hnRNP H enhances skipping of a nonfunctional exon P3A in CHRNA1 and a mutation disrupting its binding causes congenital myasthenic syndrome. Hum Mol Genet 2008; 17:4022-35. [PMID: 18806275 PMCID: PMC2638575 DOI: 10.1093/hmg/ddn305] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/01/2008] [Accepted: 09/17/2008] [Indexed: 12/28/2022] Open
Abstract
In humans and great apes, CHRNA1 encoding the muscle nicotinic acetylcholine receptor alpha subunit carries an inframe exon P3A, the inclusion of which yields a nonfunctional alpha subunit. In muscle, the P3A(-) and P3A(+) transcripts are generated in a 1:1 ratio but the functional significance and regulation of the alternative splicing remain elusive. An intronic mutation (IVS3-8G>A), identified in a patient with congenital myasthenic syndrome, disrupts an intronic splicing silencer (ISS) and results in exclusive inclusion of the downstream P3A exon. We found that the ISS-binding splicing trans-factor was heterogeneous nuclear ribonucleoprotein (hnRNP) H and the mutation attenuated the affinity of hnRNP for the ISS approximately 100-fold. We next showed that direct placement of hnRNP H to the 3' end of intron 3 silences, and siRNA-mediated downregulation of hnRNP H enhances recognition of exon P3A. Analysis of the human genome suggested that the hnRNPH-binding UGGG motif is overrepresented close to the 3' ends of introns. Pursuing this clue, we showed that alternative exons of GRIP1, FAS, VPS13C and NRCAM are downregulated by hnRNP H. Our findings imply that the presence of the hnRNP H-binding motif close to the 3' end of an intron is an essential but underestimated splicing regulator of the downstream exon.
Collapse
Affiliation(s)
- Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xin-Ming Shen
- Department of Neurology, Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tohru Matsuura
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew G. Engel
- Department of Neurology, Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neurology, Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Herndon CA, Fromm L. Neuregulin-1 induces acetylcholine receptor transcription in the absence of GABPα phosphorylation. J Neurosci Res 2008; 86:982-91. [DOI: 10.1002/jnr.21563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
|
24
|
Hippenmeyer S, Huber RM, Ladle DR, Murphy K, Arber S. ETS Transcription Factor Erm Controls Subsynaptic Gene Expression in Skeletal Muscles. Neuron 2007; 55:726-40. [PMID: 17785180 DOI: 10.1016/j.neuron.2007.07.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/22/2007] [Accepted: 07/24/2007] [Indexed: 11/23/2022]
Abstract
Accumulation of specific proteins at synaptic structures is essential for synapse assembly and function, but mechanisms regulating local protein enrichment remain poorly understood. At the neuromuscular junction (NMJ), subsynaptic nuclei underlie motor axon terminals within extrafusal muscle fibers and are transcriptionally distinct from neighboring nuclei. In this study, we show that expression of the ETS transcription factor Erm is highly concentrated at subsynaptic nuclei, and its mutation in mice leads to severe downregulation of many genes with normally enriched subsynaptic expression. Erm mutant mice display an expansion of the muscle central domain in which acetylcholine receptor (AChR) clusters accumulate, show gradual fragmentation of AChR clusters, and exhibit symptoms of muscle weakness mimicking congenital myasthenic syndrome (CMS). Together, our findings define Erm as an upstream regulator of a transcriptional program selective to subsynaptic nuclei at the NMJ and underscore the importance of transcriptional control of local synaptic protein accumulation.
Collapse
Affiliation(s)
- Simon Hippenmeyer
- Biozentrum, Department of Cell Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. Muscle and neuronal nicotinic acetylcholine receptors. FEBS J 2007; 274:3799-845. [PMID: 17651090 DOI: 10.1111/j.1742-4658.2007.05935.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are integral membrane proteins and prototypic members of the ligand-gated ion-channel superfamily, which has precursors in the prokaryotic world. They are formed by the assembly of five transmembrane subunits, selected from a pool of 17 homologous polypeptides (alpha1-10, beta1-4, gamma, delta, and epsilon). There are many nAChR subtypes, each consisting of a specific combination of subunits, which mediate diverse physiological functions. They are widely expressed in the central nervous system, while, in the periphery, they mediate synaptic transmission at the neuromuscular junction and ganglia. nAChRs are also found in non-neuronal/nonmuscle cells (keratinocytes, epithelia, macrophages, etc.). Extensive research has determined the specific function of several nAChR subtypes. nAChRs are now important therapeutic targets for various diseases, including myasthenia gravis, Alzheimer's and Parkinson's diseases, and schizophrenia, as well as for the cessation of smoking. However, knowledge is still incomplete, largely because of a lack of high-resolution X-ray structures for these molecules. Nevertheless, electron microscopy studies on 2D crystals of nAChR from fish electric organs and the determination of the high-resolution X-ray structure of the acetylcholine binding protein (AChBP) from snails, a homolog of the extracellular domain of the nAChR, have been major steps forward and the data obtained have important implications for the design of subtype-specific drugs. Here, we review some of the latest advances in our understanding of nAChRs and their involvement in physiology and pathology.
Collapse
Affiliation(s)
- Dimitra Kalamida
- Department of Pharmacy, University of Patras, Rio Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jaworski A, Smith CL, Burden SJ. GA-binding protein is dispensable for neuromuscular synapse formation and synapse-specific gene expression. Mol Cell Biol 2007; 27:5040-6. [PMID: 17485447 PMCID: PMC1951497 DOI: 10.1128/mcb.02228-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mRNAs encoding postsynaptic components at the neuromuscular junction are concentrated in the synaptic region of muscle fibers. Accumulation of these RNAs in the synaptic region is mediated, at least in part, by selective transcription of the corresponding genes in synaptic myofiber nuclei. The transcriptional mechanisms that are responsible for synapse-specific gene expression are largely unknown, but an Ets site in the promoter regions of acetylcholine receptor (AChR) subunit genes and other "synaptic" genes is required for synapse-specific transcription. The Ets domain transcription factor GA-binding protein (GABP) has been implicated to mediate synapse-specific gene expression. Inactivation of GABPalpha, the DNA-binding subunit of GABP, leads to early embryonic lethality, preventing analysis of synapse formation in gabpalpha mutant mice. To study the role of GABP at neuromuscular synapses, we conditionally inactivated gabpalpha in skeletal muscle and studied synaptic differentiation and muscle gene expression. Although expression of rb, a target of GABP, is elevated in muscle tissue deficient in GABPalpha, clustering of synaptic AChRs at synapses and synapse-specific gene expression are normal in these mice. These data indicate that GABP is dispensable for synapse-specific transcription and maintenance of normal AChR expression at synapses.
Collapse
Affiliation(s)
- Alexander Jaworski
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomoledular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
27
|
O'Leary DA, Noakes PG, Lavidis NA, Kola I, Hertzog PJ, Ristevski S. Targeting of the ETS factor GABPalpha disrupts neuromuscular junction synaptic function. Mol Cell Biol 2007; 27:3470-80. [PMID: 17325042 PMCID: PMC1899955 DOI: 10.1128/mcb.00659-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The GA-binding protein (GABP) transcription factor has been shown in vitro to regulate the expression of the neuromuscular proteins utrophin, acetylcholine esterase, and acetylcholine receptor subunits delta and epsilon through the N-box promoter motif (5'-CCGGAA-3'), but its in vivo function remains unknown. A single point mutation within the N-box of the gene encoding the acetylcholine receptor epsilon subunit has been identified in several patients suffering from postsynaptic congenital myasthenic syndrome, implicating the GA-binding protein in neuromuscular function and disease. Since conventional gene targeting results in an embryonic-lethal phenotype, we used conditional targeting to investigate the role of GABPalpha in neuromuscular junction and skeletal muscle development. The diaphragm and soleus muscles from mutant mice display alterations in morphology and distribution of acetylcholine receptor clusters at the neuromuscular junction and neurotransmission properties consistent with reduced receptor function. Furthermore, we confirmed decreased expression of the acetylcholine receptor epsilon subunit and increased expression of the gamma subunit in skeletal muscle tissues. Therefore, the GABP transcription factor aids in the structural formation and function of neuromuscular junctions by regulating the expression of postsynaptic genes.
Collapse
Affiliation(s)
- Debra A O'Leary
- Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Blesa JR, Hernández-Yago J. Distinct functional contributions of 2 GABP–NRF-2 recognition sites within the context of the human TOMM70 promoter. Biochem Cell Biol 2006; 84:813-22. [PMID: 17167546 DOI: 10.1139/o06-064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TOMM70 is a subunit of the outer mitochondrial membrane translocase that plays a major role as a receptor of hydrophobic preproteins targeted to mitochondria. We have previously reported 2 binding sites for the transcription factor GABP–NRF-2 in the promoter region of the human TOMM70 gene that are important in activating transcription. To assess the functionality and actual role of these sites, chromatin immunoprecipitation, site-directed mutagenesis, and electrophoretic mobility shift assays were carried out. We conclude that GABP–NRF-2 binds in vivo to the TOMM70 promoter, and that the 2 GABP–NRF-2 binding sites of the promoter have different functional contributions in promoting TOMM70 expression. Evidence is provided that they work in an additive manner as single sites.
Collapse
Affiliation(s)
- José R Blesa
- Fundación Centro de Investigación Príncipe Felipe, Av. Autopista del Saler 16-3, 46013 Valencia, Spain
| | | |
Collapse
|
29
|
Beeson D, Hantaï D, Lochmüller H, Engel AG. 126th International Workshop: congenital myasthenic syndromes, 24-26 September 2004, Naarden, the Netherlands. Neuromuscul Disord 2005; 15:498-512. [PMID: 15951177 DOI: 10.1016/j.nmd.2005.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Indexed: 11/16/2022]
Affiliation(s)
- David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliff, Oxford, UK
| | | | | | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Congenital myasthenic syndromes are a heterogeneous group of diseases caused by genetic defects affecting neuromuscular transmission. In this article, a strategy that leads to the diagnosis of congenital myasthenic syndromes is presented, and recent advances in the clinical, genetic and molecular aspects of congenital myasthenic syndrome are outlined. RECENT FINDINGS Besides the identification of new mutations in genes already known to be implicated in congenital myasthenic syndromes (genes for the acetylcholine receptor subunits and the collagen tail of acetylcholinesterase), mutations in other genes have more recently been discovered and characterized (genes for choline acetyltransferase, rapsyn, and the muscle sodium channel SCN4A). Fluoxetine has recently been proposed as an alternative treatment for 'slow channel' congenital myasthenic syndrome. SUMMARY The characterization of congenital myasthenic syndromes comprises two complementary steps: establishing the diagnosis and identifying the pathophysiological type of congenital myasthenic syndrome. Characterization of the type of congenital myasthenic syndrome has allowed it to be classified as caused by presynaptic, synaptic and postsynaptic defects. A clinically and muscle histopathologically oriented genetic study has identified several genes in which mutations cause the disease. Despite comprehensive characterization, the phenotypic expression of one given gene involved is variable, and the aetiology of many congenital myasthenic syndromes remains to be discovered.
Collapse
Affiliation(s)
- Daniel Hantaï
- Inserm U582 and Unité Clinique de Pathologie Neuromusculaire, Institut de Myologie, Hôpital de la Salpêtrière, Paris, France.
| | | | | | | |
Collapse
|
31
|
O'Leary DA, Koleski D, Kola I, Hertzog PJ, Ristevski S. Identification and expression analysis of alternative transcripts of the mouse GA-binding protein (Gabp) subunits α and β1. Gene 2005; 344:79-92. [PMID: 15656975 DOI: 10.1016/j.gene.2004.09.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 09/02/2004] [Accepted: 09/23/2004] [Indexed: 11/20/2022]
Abstract
The erythroblast transformation specific (ETS) transcription factor GA-binding protein (Gabp) is widely expressed and acts on a diverse range of target genes, including nuclear-encoded mitochondrial proteins and neuromuscular-specific genes. The GABPalpha subunit contains an ETS DNA binding domain and the beta subunit contains a nuclear localization signal (NLS) and transactivation domain. Here, we show coincident expression of Gabpalpha and beta1 throughout mouse embryogenesis, consistent with the gene products functioning in a complex. We have also identified 2 alternatively spliced, tissue-specific exons 1 (5' untranslated regions) of mouse Gabpalpha and 4 alternative 3' polyadenylation signals that, in combination, result in 12 transcripts for Gabpalpha. These alternative transcripts are suggested to have altered stability, subcellular localization and/or translation efficiency. Further, we identified nine differentially expressed splice variants of mouse Gabpbeta1 that encode beta protein forms lacking functional domains, suggesting a dominant negative function. Together, alternative transcripts of Gabpalpha and beta1 provide a mechanism for tissue-specific regulation of Gabp activity.
Collapse
MESH Headings
- 3T3 Cells
- Alternative Splicing/genetics
- Animals
- Binding Sites/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Embryo, Mammalian/metabolism
- Female
- GA-Binding Protein Transcription Factor
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- Luciferases/genetics
- Luciferases/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- Protein Subunits/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Transcription Factors/genetics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Debra A O'Leary
- Centre for Functional Genomics and Human Disease, Monash Institute of Reproduction and Development, Monash Medical Centre, Monash University, Clayton 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | | | |
Collapse
|
32
|
Rodova M, Kelly KF, VanSaun M, Daniel JM, Werle MJ. Regulation of the rapsyn promoter by kaiso and delta-catenin. Mol Cell Biol 2004; 24:7188-96. [PMID: 15282317 PMCID: PMC479716 DOI: 10.1128/mcb.24.16.7188-7196.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapsyn is a synapse-specific protein that is required for clustering acetylcholine receptors at the neuromuscular junction. Analysis of the rapsyn promoter revealed a consensus site for the transcription factor Kaiso within a region that is mutated in a subset of patients with congenital myasthenic syndrome. Kaiso is a POZ-zinc finger family transcription factor which recognizes the specific core consensus sequence CTGCNA (where N is any nucleotide). Previously, the only known binding partner for Kaiso was the cell adhesion cofactor, p120 catenin. Here we show that delta-catenin, a brain-specific member of the p120 catenin subfamily, forms a complex with Kaiso. Antibodies against Kaiso and delta-catenin recognize proteins in the nuclei of C2C12 myocytes and at the postsynaptic domain of the mouse neuromuscular junction. Endogenous Kaiso in C2C12 cells coprecipitates with the rapsyn promoter in vivo as shown by chromatin immunoprecipitation assay. Minimal promoter assays demonstrated that the rapsyn promoter can be activated by Kaiso and delta-catenin; this activation is apparently muscle specific. These results provide the first experimental evidence that rapsyn is a direct sequence-specific target of Kaiso and delta-catenin. We propose a new model of synapse-specific transcription that involves the interaction of Kaiso, delta-catenin, and myogenic transcription factors at the neuromuscular junction.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Armadillo Domain Proteins
- Base Sequence
- Catenins
- Cell Adhesion Molecules
- Cell Line
- Chickens
- Cytoskeletal Proteins/metabolism
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Macromolecular Substances
- Mice
- Molecular Sequence Data
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myasthenic Syndromes, Congenital/genetics
- Myasthenic Syndromes, Congenital/metabolism
- Neuromuscular Junction/physiology
- Phosphoproteins
- Promoter Regions, Genetic
- Sequence Alignment
- Transcription Factors/metabolism
- Delta Catenin
Collapse
Affiliation(s)
- Marianna Rodova
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, 66160-7421, USA
| | | | | | | | | |
Collapse
|
33
|
Andreux F, Hantaï D, Eymard B. [Congenital myasthenic syndromes: phenotypic expression and pathophysiological characterisation]. Rev Neurol (Paris) 2004; 160:163-76. [PMID: 15034473 DOI: 10.1016/s0035-3787(04)70887-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Congenital Myasthenic Syndromes (CMS) are a heterogeneous group of diseases caused by genetic defects affecting neuromuscular transmission. The twenty five past Years saw major advances in identifying different types of CMS due to abnormal presynaptic, synaptic, and postsynaptic proteins. CMS diagnosis requires two steps: 1) positive diagnosis supported by myasthenic signs beginning in neonatal period, efficacy of anticholinesterase medications, positive family history, negative tests for anti-acetylcholine receptor (AChR) antibodies, electromyographic studies (decremental response at low frequency, repetitive CMAP after one single stimulation); 2) pathophysiological characterisation of CMS implying specific studies: light and electron microscopic analysis of endplate (EP) morphology, estimation of the number of AChR per EP, acetylcholinesterase (AChE) expression, molecular genetic analysis. Most CMS are postsynaptic due to mutations in the AChR subunits genes that alter the kinetic properties or decrease the expression of AChR. The kinetic mutations increase or decrease the synaptic response to ACh resulting respectively in Slow Channel Syndrome (characterized by a autosomal dominant transmission, repetitive CMAP, refractoriness to anticholinesterase medication) and fast channel, recessively transmitted. AChR deficiency without kinetic abnormalities is caused by recessive mutations in AChR genes (mostly epsilon subunit) or by primary rapsyn deficiency, a post synaptic protein involved in AChR concentration. Recently, mutations in SCN4A sodium channel have been reported in one patient. AChE deficiency is identified on the following data: recessive transmission, presence of repetitive CMAP, refractoriness to cholinesterase inhibitors, slow pupillary response to light and absent expression of the enzyme at EP. This synaptic CMS is caused by mutations in the collagenic tail subunit (ColQ) that anchors the catalytic subunits in the synaptic basal lamina. The most frequent presynaptic CMS is caused by mutations of choline acetyltransferase. Several CMS are still not characterized. Many EP molecules are potential etiological candidates. In these unidentified cases, other methods of investigations are required: linkage analysis, when sufficient number of informative relatives are available, microelectrophysiological studies performed in intercostal or anconeus muscles. Prognosis of CMS, depending on severity and evolution of symptoms, is difficult to assess, and it cannot not be simply derived from mutation identification. Most patients respond favourably to anticholinesterase medications or to 3,4 DAP which is effective not only in presynaptic but also in postsynaptic CMS. Specific therapies for slow channel CMS are quinidine and fluoxetine that normalize the prolonged opening episodes. Clinical benefits derived from the full characterisation of each case include genetic counselling and specific therapy.
Collapse
Affiliation(s)
- F Andreux
- INSERM 582 et Institut de Myologie, Hôpital de la Pitié-Salpêtrière
| | | | | |
Collapse
|
34
|
Sunesen M, Huchet-Dymanus M, Christensen MO, Changeux JP. Phosphorylation-elicited quaternary changes of GA binding protein in transcriptional activation. Mol Cell Biol 2003; 23:8008-18. [PMID: 14585962 PMCID: PMC262348 DOI: 10.1128/mcb.23.22.8008-8018.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enrichment of nicotinic acetylcholine receptors (nAChR) on the tip of the subjunctional folds of the postsynaptic membrane is a central event in the development of the vertebrate neuromuscular junction. This is attained, in part, through a selective transcription in the subsynaptic nuclei, and it has recently been shown that the GA binding protein (GABP) plays an important role in this compartmentalized expression. The neural factor heregulin (HRG) activates nAChR transcription in cultured cells by stimulating a signaling cascade of protein kinases. Hence, it is speculated that GABP becomes activated by phosphorylation, but the mechanism has remained elusive. To fully understand the consequences of GABP phosphorylation, we examined the effect of heregulin-elicited GABP phosphorylation on cellular localization, DNA binding, transcription, and mobility. We demonstrate that HRG-elicited phosphorylation dramatically changes the transcriptional activity and mobility of GABP. While phosphorylation of GABPbeta seems to be dispensable for these changes, phosphorylation of GABPalpha is crucial. Using fluorescence resonance energy transfer, we furthermore showed that phosphorylation of threonine 280 in GABPalpha triggers reorganizations of the quaternary structure of GABP. Taken together, these results support a model in which phosphorylation-elicited structural changes of GABP enable engagement in certain interactions leading to transcriptional activation.
Collapse
Affiliation(s)
- Morten Sunesen
- Laboratoire Récepteurs et Cognition, CNRS URA 2182, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
35
|
Beeson D, Webster R, Ealing J, Croxen R, Brownlow S, Brydson M, Newsom-Davis J, Slater C, Hatton C, Shelley C, Colquhoun D, Vincent A. Structural abnormalities of the AChR caused by mutations underlying congenital myasthenic syndromes. Ann N Y Acad Sci 2003; 998:114-24. [PMID: 14592868 DOI: 10.1196/annals.1254.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The objective was to define the molecular mechanisms underlying congenital myasthenic syndromes (CMS) by studying mutations within genes encoding the acetylcholine receptor (AChR) and related proteins at the neuromuscular junction. It was found that mutations within muscle AChRs are the most common cause of CMS. The majority are located within the epsilon-subunit gene and result in AChR deficiency.
Collapse
MESH Headings
- Alleles
- Animals
- Cell Line
- DNA Mutational Analysis
- Exons
- Extracellular Space/genetics
- Extracellular Space/metabolism
- Female
- Humans
- In Situ Hybridization/methods
- Male
- Mutation
- Myasthenic Syndromes, Congenital/classification
- Myasthenic Syndromes, Congenital/diagnosis
- Myasthenic Syndromes, Congenital/genetics
- Myasthenic Syndromes, Congenital/physiopathology
- Neuromuscular Junction/abnormalities
- Neuromuscular Junction/genetics
- Neuromuscular Junction/metabolism
- Patch-Clamp Techniques
- Polymorphism, Single-Stranded Conformational
- Protein Structure, Secondary
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Receptors, Cholinergic/chemistry
- Receptors, Cholinergic/deficiency
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
Collapse
Affiliation(s)
- David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe, Headington, Oxford OX3 9DS, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Méjat A, Ravel-Chapuis A, Vandromme M, Schaeffer L. Synapse-specific gene expression at the neuromuscular junction. Ann N Y Acad Sci 2003; 998:53-65. [PMID: 14592863 DOI: 10.1196/annals.1254.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Agrin is the key neural factor that controls muscle postsynaptic differentiation, including the induction of synapse-specific transcription via neuregulins. In 1995, the promoter element responsible for the targeting of AChR delta and epsilon gene transcription to the skeletal muscle subsynaptic area was identified. This element, named N-box, recruits the Ets-related transcription factor GABP to AChR delta and epsilon promoters, and both the N-box and GABP are required to obtain transcriptional stimulation by neuregulins. The physiological importance of the N-box has been definitively established with the discovery of myasthenic families carrying single-point mutations in the N-box of the AChR epsilon gene promoter and showing reduced levels of AChR epsilon subunit expression. The control of synapse-specific transcription by agrin and neuregulins through the N-box and GABP is not restricted to the case of AChR genes. The same regulation holds true for the ACh esterase and utrophin genes, thus showing that nerve-induced transcriptional activation of several synapse-specific genes is triggered by a common mechanism involving agrin, neuregulins, and ultimately the N-box and Ets-related transcription factors.
Collapse
Affiliation(s)
- Alexandre Méjat
- Equipe Différenciation Neuromusculaire, UMR 5161 CNRS/ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | |
Collapse
|
37
|
Engel AG, Ohno K, Shen XM, Sine SM. Congenital Myasthenic Syndromes: Multiple Molecular Targets at the Neuromuscular Junction. Ann N Y Acad Sci 2003; 998:138-60. [PMID: 14592871 DOI: 10.1196/annals.1254.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Congenital myasthenic syndromes (CMS) stem from defects in presynaptic, synaptic, and postsynaptic proteins. The presynaptic CMS are associated with defects that curtail the evoked release of acetylcholine (ACh) quanta or ACh resynthesis. Defects in ACh resynthesis have now been traced to mutations in choline acetyltransferase. A synaptic CMS is caused by mutations in the collagenic tail subunit (ColQ) of the endplate species of acetylcholinesterase that prevent the tail subunit from associating with catalytic subunits or from becoming inserted into the synaptic basal lamina. Most postsynaptic CMS are caused by mutations in subunits of the acetylcholine receptor (AChR) that alter the kinetic properties or decrease the expression of AChR. The kinetic mutations increase or decrease the synaptic response to ACh and result in slow- and fast-channel syndromes, respectively. Most low-expressor mutations reside in the AChR epsilon subunit and are partially compensated by residual expression of the fetal-type gamma subunit. In a subset of CMS patients, endplate AChR deficiency is caused by mutations in rapsyn, a molecule that plays a critical role in concentrating AChR in the postsynaptic membrane.
Collapse
Affiliation(s)
- Andrew G Engel
- Neuromuscular Disease Research Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
38
|
Engel AG, Ohno K, Sine SM. Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nat Rev Neurosci 2003; 4:339-52. [PMID: 12728262 DOI: 10.1038/nrn1101] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Andrew G Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
39
|
Chakkalakal JV, Jasmin BJ. Localizing synaptic mRNAs at the neuromuscular junction: it takes more than transcription. Bioessays 2003; 25:25-31. [PMID: 12508279 DOI: 10.1002/bies.10205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neuromuscular junction has been used for several decades as an excellent model system to examine the cellular and molecular events involved in the formation and maintenance of a differentiated chemical synapse. In this context, several laboratories have focused their efforts over the last 15 years on the important contribution of transcriptional mechanisms to the regulation of the development and plasticity of the postsynaptic apparatus in muscle fibers. Converging lines of evidence now indicate that post-transcriptional events, operating at the level of mRNA stability and targeting, are likely to also play key roles at the neuromuscular junction. Here, we present the recent findings highlighting the role of these additional molecular events and extend our review to include data showing that post-transcriptional events are also important in the control of the expression of genes encoding synaptic proteins in muscle cells placed under different conditions. Finally, we discuss the possibility that mis-regulation of post-transcriptional events can occur in certain neuromuscular diseases and cause abnormalities of the neuromuscular junction.
Collapse
Affiliation(s)
- Joe V Chakkalakal
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
40
|
Abstract
Congenital myasthenic syndromes (CMS) stem from defects in presynaptic, synaptic basal lamina, and postsynaptic proteins. The presynaptic CMS are associated with defects that curtail the evoked release of acetylcholine (ACh) quanta or ACh resynthesis. Defects in ACh resynthesis have now been traced to mutations in choline acetyltransferase. A basal lamina CMS is caused by mutations in the collagenic tail subunit (ColQ) of the endplate species of acetylcholinesterase that prevent the tail subunit from associating with catalytic subunits or from becoming inserted into the synaptic basal lamina. Most postsynaptic CMS are caused by mutations in subunits of the acetylcholine receptor (AChR) that alter the kinetic properties or decrease the expression of AChR. The kinetic mutations increase or decrease the synaptic response to ACh and result in slow- and fast-channel syndromes, respectively. Most low-expressor mutations reside in the AChR epsilon subunit and are partially compensated by residual expression of the fetal type gamma subunit. In a subset of CMS patients, endplate AChR deficiency is caused by mutations in rapsyn, a molecule that plays a critical role in concentrating AChR in the postsynaptic membrane.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
41
|
Affiliation(s)
- Kinji Ohno
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
42
|
Affiliation(s)
- Steven J Burden
- Molecular Neurobiology Program, Skirball Institute, NYU Medical School, 540 First Avenue, New York City, New York 10016, USA.
| |
Collapse
|
43
|
de Kerchove d'Exaerde A, Cartaud J, Ravel-Chapuis A, Seroz T, Pasteau F, Angus LM, Jasmin BJ, Changeux JP, Schaeffer L. Expression of mutant Ets protein at the neuromuscular synapse causes alterations in morphology and gene expression. EMBO Rep 2002; 3:1075-81. [PMID: 12393756 PMCID: PMC1307595 DOI: 10.1093/embo-reports/kvf220] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The localized transcription of several muscle genes at the motor endplate is controlled by the Ets transcription factor GABP. To evaluate directly its contribution to the formation of the neuromuscular junction, we generated transgenic mice expressing a general Ets dominant-negative mutant specifically in skeletal muscle. Quantitative RT-PCR analysis demonstrated that the expression of genes containing an Ets-binding site was severely affected in the mutant mice. Conversely, the expression of other synaptic genes, including MuSK and Rapsyn, was unchanged. In these animals, muscles expressing the mutant transcription factor developed normally, but examination of the post-synaptic morphology revealed marked alterations of both the primary gutters and secondary folds of the neuromuscular junction. Our results demonstrate that Ets transcription factors are crucial for the normal formation of the neuromuscular junction. They further show that Ets-independent mechanisms control the synaptic expression of a distinct set of synaptic genes.
Collapse
Affiliation(s)
- Alban de Kerchove d'Exaerde
- Laboratoire de Neurobiologie Moléculaire, CNRS URA 2182 'Récepteurs et Cognition' Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France
- Laboratory of Neurophysiology, CP 601, Université Libre de Bruxelles, Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium
| | - Jean Cartaud
- Biologie Cellulaire des Membranes, Institut Jacques Monod, UMR7592 CNRS, Université Paris6 et Paris7, 75251 Paris, France
| | - Aymeric Ravel-Chapuis
- Equipe Différenciation Neuromusculaire, UMR 5665 CNRS/ENS, Ecole Normale Supérieure, 46 allée d'Italie 69364 Lyon cedex 07, France
| | - Thierry Seroz
- Laboratoire de Neurobiologie Moléculaire, CNRS URA 2182 'Récepteurs et Cognition' Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Fabien Pasteau
- Equipe Différenciation Neuromusculaire, UMR 5665 CNRS/ENS, Ecole Normale Supérieure, 46 allée d'Italie 69364 Lyon cedex 07, France
| | - Lindsay M. Angus
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jean-Pierre Changeux
- Laboratoire de Neurobiologie Moléculaire, CNRS URA 2182 'Récepteurs et Cognition' Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France
- Tel: +33 1 45688805; Fax: +33 1 45688836;
| | - Laurent Schaeffer
- Equipe Différenciation Neuromusculaire, UMR 5665 CNRS/ENS, Ecole Normale Supérieure, 46 allée d'Italie 69364 Lyon cedex 07, France
| |
Collapse
|
44
|
Abstract
The past decade saw remarkable advances in defining the molecular and genetic basis of the congenital myasthenic syndromes. These advances would not have been possible without antecedent clinical observations, electrophysiologic analysis, and careful morphologic studies that pointed to candidate genes or proteins. For example, a kinetic abnormality of the acetylcholine receptor (AChR) detected at the single channel level pointed to a kinetic mutation in an AChR subunit; endplate AChR deficiency suggested mutations residing in an AChR subunit or in rapsyn; absence of acetylcholinesterase (AChE) from the endplate predicted mutations in the catalytic or collagen-tailed subunit of this enzyme; and a history of abrupt episodes of apnea associated with a stimulation dependent decrease of endplate potentials and currents implicated proteins concerned with ACh resynthesis or vesicular filling. Discovery of mutations in endplate-specific proteins also prompted expression studies that afforded proof of pathogenicity, provided clues for rational therapy, lead to precise structure function correlations, and highlighted functionally significant residues or molecular domains that previous systematic mutagenesis studies had failed to detect. An overview of the spectrum of the congenital myasthenic syndromes suggests that most are caused by mutations in AChR subunits, and particularly in the epsilon subunit. Future studies will likely uncover new types of CMS that reside in molecules governing quantal release, organization of the synaptic basal lamina, and expression and aggregation of AChR on the postsynaptic junctional folds.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
45
|
Abstract
Congenital myasthenic syndromes (CMS) constitute a heterogenous group of inherited disorders in which neuromuscular transmission is compromised by one or more specific mechanisms. Clinical evidence for the diagnosis of a CMS includes a history of increased fatigable weakness since infancy or early childhood, a decremental EMG response, and the absence of acetylcholine receptor (AChR) antibodies. There has been rapid progress in understanding of the molecular basis of CMS. Mutation analysis of the AChR subunits has revealed numerous disease-associated mutations. These mutations alter the response to acetylcholine. It is decreased in the fast-channel syndromes and in primary AChR deficiency; and it is increased in the slow-channel syndrome due to prolonged open-time of the AChR. Acetylcholinesterase deficiency is associated with mutations in the gene encoding the collagenic tail subunit of the enzyme. Mutations in the gene encoding for choline acetyltransferase causes the CMS associated with episodic apnea.
Collapse
Affiliation(s)
- Joern P Sieb
- Department of Neurology, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | |
Collapse
|
46
|
Abicht A, Stucka R, Schmidt C, Briguet A, Höpfner S, Song IH, Pongratz D, Müller-Felber W, Ruegg MA, Lochmüller H. A newly identified chromosomal microdeletion and an N-box mutation of the AChR epsilon gene cause a congenital myasthenic syndrome. Brain 2002; 125:1005-13. [PMID: 11960891 DOI: 10.1093/brain/awf095] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Congenital myasthenic syndromes (CMSs) are frequently caused by mutations of the coding region of the acetylcholine receptor epsilon subunit (AChRepsilon) gene leading to a reduced expression of the acetylcholine receptor (AChR) at the postsynaptic membrane. Two recent observations have linked two different N-box mutations of the human AChRepsilon promoter to a clinical CMS phenotype. N-boxes are regulatory sequence elements of mammalian promoters that confer synapse-specific expression of several genes, including the AChR subunit genes. Here, we report on a novel point mutation (epsilon-154G-->A) in the N-box of the AChRepsilon promoter in a German CMS pedigree. Semiquantitative analysis of AChRepsilon mRNA levels in the patient's muscle indicated significantly impaired AChRepsilon expression. We provide additional evidence of a pathogenic role for this mutation using the mutated promoter (epsilon-154G-->A) driving a heterologous gene (luciferase) in rat skeletal muscle. We show that agrin-induced gene expression is significantly reduced by the N-box mutant (mt) compared with the wild-type (wt) promoter. Refined haplotype analysis and direct sequencing revealed maternal inheritance of the mutant AChRepsilon promoter (epsilon-154G-->A) together with paternal inheritance of a chromosomal microdeletion (Delta1290 bp) encompassing the promoter and the first two exons of the AChRepsilon gene in the index patient. In conclusion, we provide genetic and functional evidence that a mutation of the AChRepsilon subunit promoter (epsilon-154G-->A) causes CMS due to the reduction of gene expression in skeletal muscle. Moreover, this is the first report of a chromosomal microdeletion affecting an AChR gene. This type of mutation may be missed in standard screening techniques of CMS patients.
Collapse
Affiliation(s)
- Angela Abicht
- Genzentrum and Friedrich-Baur-Institut, Ludwig-Maximilians-University Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ohno K, Engel AG. Congenital myasthenic syndromes: genetic defects of the neuromuscular junction. Curr Neurol Neurosci Rep 2002; 2:78-88. [PMID: 11898587 DOI: 10.1007/s11910-002-0057-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Congenital myasthenic syndromes (CMS) stem from defects in presynaptic, synaptic, and postsynaptic proteins. The presynaptic CMS are associated with defects that curtail the evoked release of acetylcholine (ACh) quanta or the resynthesis of ACh. Insufficient resynthesis of ACh is now known to be caused by mutations that reduce the expression, catalytic efficiency, or both of choline acetyltransferase. The synaptic CMS are caused by mutations in the collagenic tail subunit (ColQ) of the endplate species of acetylcholinesterase that prevent ColQ from associating with catalytic subunits or from insertion into the synaptic basal lamina. With one exception, postsynaptic CMS identified to date are associated with a kinetic abnormality or decreased expression of the acetylcholine receptor (AChR). Numerous mutations have now been identified in subunits of AChR that alter the kinetics or surface expression of the receptor. The kinetic mutations increase or decrease the synaptic response to ACh and result in slow- and fast-channel syndromes, respectively. Most mutations that reduce surface expression of AChR reside in the receptor's epsilon subunit and are partially compensated by residual expression of the fetal-type gamma subunit. Null mutations in both alleles of other AChR subunits are likely lethal, owing to absence of a substituting subunit.
Collapse
Affiliation(s)
- Kinji Ohno
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
48
|
Abstract
Concomitant with innervation, genes coding for components of the neuromuscular junction become exclusively expressed in subsynaptic nuclei. A six-base pair element, the N box, can confer synapse-specific transcription to the acetylcholine nicotinic receptor delta and epsilon subunit, utrophin, and acetylcholine esterase genes. N box-dependent synaptic expression is stimulated by the nerve-derived signal agrin and the trophic factor neuregulin, which triggers the MAPK and JNK signaling pathways, to ultimately allow activation by the N box binding Ets transcription factor GABP.
Collapse
Affiliation(s)
- L Schaeffer
- Laboratoire de Neurobiologie Moléculaire, CNRS URA 2182 "Récepteurs et Cognition", Institut Pasteur, 25 rue du Dr Roux, 75724 Cedex 15, Paris, France
| | | | | |
Collapse
|
49
|
Nagano M, Yamashita S, Hirano K, Kujiraoka T, Ito M, Sagehashi Y, Hattori H, Nakajima N, Maruyama T, Sakai N, Egashira T, Matsuzawa Y. Point mutation (-69 G-->A) in the promoter region of cholesteryl ester transfer protein gene in Japanese hyperalphalipoproteinemic subjects. Arterioscler Thromb Vasc Biol 2001; 21:985-90. [PMID: 11397708 DOI: 10.1161/01.atv.21.6.985] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) from HDL to apolipoprotein (apo) B-containing lipoproteins and plays a crucial role in reverse cholesterol transport, which is a major protective system against atherosclerosis. Genetic CETP deficiency is the most common cause of a marked hyperalphalipoproteinemia (HALP) in the Japanese, and various mutations have been identified in the coding region as well as in the exon/intron boundaries in the CETP gene. In the present study, we identified a novel mutation in the promoter region of the CETP gene. This mutation was a G-to-A substitution at the -69 nucleotide of the promoter region (-69 G-->A), corresponding to the second nucleotide of the PEA3/ETS binding site (CGGAA) located upstream of the putative TATA box. Four (2.0%) of 196 unrelated subjects with a marked HALP (HDL cholesterol >/=2.59 mmol/L=100 mg/dL) were revealed to be heterozygous for the -69 G-->A mutation, and the allelic frequency of the mutant was 0.0102 in the subjects with a marked HALP. The subjects with the -69 G-->A mutation had low plasma CETP levels. Reporter gene assay showed that this mutation markedly reduced the transcriptional activities in HepG2 cells (8% of wild type). These results suggested that this mutation would be dominant negative. In conclusion, a novel -69 G-->A mutation in the CETP gene causes the decreased transcriptional activity leading to HALP.
Collapse
Affiliation(s)
- M Nagano
- Research Department, R&D Center, BML, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Engel AE. 73(rd) ENMC International Workshop: congenital myasthenic syndromes. 22-23 October, 1999, Naarden, The Netherlands. Neuromuscul Disord 2001; 11:315-21. [PMID: 11297949 DOI: 10.1016/s0960-8966(00)00189-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- A E Engel
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|