1
|
Emig AA, Hansen M, Grimm S, Coarfa C, Lord ND, Williams MK. Temporal dynamics of BMP/Nodal ratio drive tissue-specific gastrulation morphogenesis. Development 2025; 152:dev202931. [PMID: 39651654 PMCID: PMC12070064 DOI: 10.1242/dev.202931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/29/2024] [Indexed: 12/11/2024]
Abstract
Anteroposterior elongation of the vertebrate body plan is driven by convergence and extension (C&E) gastrulation movements in both the mesoderm and neuroectoderm, but how or whether molecular regulation of C&E differs between tissues remains an open question. Using a zebrafish explant model of anteroposterior axis extension, we show that C&E of the neuroectoderm and mesoderm can be uncoupled ex vivo, and that morphogenesis of individual tissues results from distinct morphogen signaling dynamics. Using precise temporal manipulation of BMP and Nodal signaling, we identify a critical developmental window during which high or low BMP/Nodal ratios induce neuroectoderm- or mesoderm-driven C&E, respectively. Increased BMP activity similarly enhances C&E specifically in the ectoderm of intact zebrafish gastrulae, highlighting the in vivo relevance of our findings. Together, these results demonstrate that temporal dynamics of BMP and Nodal morphogen signaling activate distinct morphogenetic programs governing C&E gastrulation movements within individual tissues.
Collapse
Affiliation(s)
- Alyssa A. Emig
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan Hansen
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandra Grimm
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan D. Lord
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Margot Kossmann Williams
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Pogoda HM, Riedl-Quinkertz I, Hammerschmidt M. Direct BMP signaling to chordoblasts is required for the initiation of segmented notochord sheath mineralization in zebrafish vertebral column development. Front Endocrinol (Lausanne) 2023; 14:1107339. [PMID: 37223044 PMCID: PMC10200950 DOI: 10.3389/fendo.2023.1107339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/15/2023] [Indexed: 05/25/2023] Open
Abstract
The vertebral column, with the centra as its iteratively arranged building blocks, represents the anatomical key feature of the vertebrate phylum. In contrast to amniotes, where vertebrae are formed from chondrocytes and osteoblasts deriving from the segmentally organized neural crest or paraxial sclerotome, teleost vertebral column development is initiated by chordoblasts of the primarily unsegmented axial notochord, while sclerotomal cells only contribute to later steps of vertebrae formation. Yet, for both mammalian and teleostean model systems, unrestricted signaling by Bone Morphogenetic Proteins (BMPs) or retinoic acid (RA) has been reported to cause fusions of vertebral elements, while the interplay of the two signaling processes and their exact cellular targets remain largely unknown. Here, we address this interplay in zebrafish, identifying BMPs as potent and indispensable factors that, as formerly shown for RA, directly signal to notochord epithelial cells/chordoblasts to promote entpd5a expression and thereby metameric notochord sheath mineralization. In contrast to RA, however, which promotes sheath mineralization at the expense of further collagen secretion and sheath formation, BMP defines an earlier transitory stage of chordoblasts, characterized by sustained matrix production/col2a1 expression and concomitant matrix mineralization/entpd5a expression. BMP-RA epistasis analyses further indicate that RA can only affect chordoblasts and their further progression to merely mineralizing cells after they have received BMP signals to enter the transitory col2a1/entpd5a double-positive stage. This way, both signals ensure consecutively for proper mineralization of the notochord sheath within segmented sections along its anteroposterior axis. Our work sheds further light onto the molecular mechanisms that orchestrate early steps of vertebral column segmentation in teleosts. Similarities and differences to BMP's working mechanisms during mammalian vertebral column formation and the pathomechanisms underlying human bone diseases such as Fibrodysplasia Ossificans Progressiva (FOP) caused by constitutively active BMP signaling are discussed.
Collapse
Affiliation(s)
- Hans-Martin Pogoda
- Institute of Zoology – Developmental Biology, University of Cologne, Cologne, Germany
| | - Iris Riedl-Quinkertz
- Institute of Zoology – Developmental Biology, University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology – Developmental Biology, University of Cologne, Cologne, Germany
- Cluster of Excellence, Cellular Stress Responses in Aging-Associated Diseases (CECAD) Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Iyer KS, Prabhakara C, Mayor S, Rao M. Cellular compartmentalisation and receptor promiscuity as a strategy for accurate and robust inference of position during morphogenesis. eLife 2023; 12:e79257. [PMID: 36877545 PMCID: PMC9988261 DOI: 10.7554/elife.79257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/14/2023] [Indexed: 03/07/2023] Open
Abstract
Precise spatial patterning of cell fate during morphogenesis requires accurate inference of cellular position. In making such inferences from morphogen profiles, cells must contend with inherent stochasticity in morphogen production, transport, sensing and signalling. Motivated by the multitude of signalling mechanisms in various developmental contexts, we show how cells may utilise multiple tiers of processing (compartmentalisation) and parallel branches (multiple receptor types), together with feedback control, to bring about fidelity in morphogenetic decoding of their positions within a developing tissue. By simultaneously deploying specific and nonspecific receptors, cells achieve a more accurate and robust inference. We explore these ideas in the patterning of Drosophila melanogaster wing imaginal disc by Wingless morphogen signalling, where multiple endocytic pathways participate in decoding the morphogen gradient. The geometry of the inference landscape in the high dimensional space of parameters provides a measure for robustness and delineates stiff and sloppy directions. This distributed information processing at the scale of the cell highlights how local cell autonomous control facilitates global tissue scale design.
Collapse
Affiliation(s)
- Krishnan S Iyer
- Simons Center for the Study of Living Machines, National Center for Biological Sciences - TIFRBangaloreIndia
| | | | - Satyajit Mayor
- National Center for Biological Sciences - TIFRBangaloreIndia
| | - Madan Rao
- Simons Center for the Study of Living Machines, National Center for Biological Sciences - TIFRBangaloreIndia
| |
Collapse
|
4
|
Economou AD, Guglielmi L, East P, Hill CS. Nodal signaling establishes a competency window for stochastic cell fate switching. Dev Cell 2022; 57:2604-2622.e5. [PMID: 36473458 PMCID: PMC7615190 DOI: 10.1016/j.devcel.2022.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/12/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
Specification of the germ layers by Nodal signaling has long been regarded as an archetype of how graded morphogens induce different cell fates. However, this deterministic model cannot explain why only a subset of cells at the early zebrafish embryo margin adopt the endodermal fate, whereas their immediate neighbours, experiencing a similar signaling environment, become mesoderm. Combining pharmacology, quantitative imaging and single cell transcriptomics, we demonstrate that sustained Nodal signaling establishes a bipotential progenitor state from which cells can switch to an endodermal fate or differentiate into mesoderm. Switching is a random event, the likelihood of which is modulated by Fgf signaling. This inherently imprecise mechanism nevertheless leads to robust endoderm formation because of buffering at later stages. Thus, in contrast to previous deterministic models of morphogen action, Nodal signaling establishes a temporal window when cells are competent to undergo a stochastic cell fate switch, rather than determining fate itself.
Collapse
Affiliation(s)
- Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Philip East
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
5
|
Xing C, Zeng Z, Li Y, Gong B, Shen W, Shah R, Yan L, Du H, Meng A. Regulatory factor identification for nodal genes in zebrafish by causal inference. Front Cell Dev Biol 2022; 10:1047363. [DOI: 10.3389/fcell.2022.1047363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of nodal genes is critical for mesoderm and endoderm induction. Our previous study reported that zebrafish nodal genes ndr1/squint and ndr2/cyclops are coordinately regulated by maternal Eomesa, Hwa-activated β-catenin (Hwa/β-catenin) signaling, and Nodal autoregulation (Nodal/Smad2) signaling. However, the exact contribution and underlying mechanisms are still elusive. Here, we applied “causal inference” to evaluate the causal between the independent and dependent variables, and we found that Hwa/β-catenin and Smad2 are the cause of ndr1 activation, while Eomesa is the cause of ndr2 activation. Mechanistically, the different cis-regulatory regions of ndr1 and ndr2 bound by Eomesa, β-catenin, and Smad2 were screened out via ChIP-qPCR and verified by the transgene constructs. The marginal GFP expression driven by ndr1 transgenesis could be diminished without both maternal Eomesa and Hwa/β-catenin, while Eomesa, not β-catenin, could bind and activate ndr2 demonstrated by ndr2 transgenesis. Thus, the distinct regulation of ndr1/ndr2 relies on different cis-regulatory regions.
Collapse
|
6
|
Kuhn T, Landge AN, Mörsdorf D, Coßmann J, Gerstenecker J, Čapek D, Müller P, Gebhardt JCM. Single-molecule tracking of Nodal and Lefty in live zebrafish embryos supports hindered diffusion model. Nat Commun 2022; 13:6101. [PMID: 36243734 PMCID: PMC9569377 DOI: 10.1038/s41467-022-33704-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
The hindered diffusion model postulates that the movement of a signaling molecule through an embryo is affected by tissue geometry and binding-mediated hindrance, but these effects have not been directly demonstrated in vivo. Here, we visualize extracellular movement and binding of individual molecules of the activator-inhibitor signaling pair Nodal and Lefty in live developing zebrafish embryos using reflected light-sheet microscopy. We observe that diffusion coefficients of molecules are high in extracellular cavities, whereas mobility is reduced and bound fractions are high within cell-cell interfaces. Counterintuitively, molecules nevertheless accumulate in cavities, which we attribute to the geometry of the extracellular space by agent-based simulations. We further find that Nodal has a larger bound fraction than Lefty and shows a binding time of tens of seconds. Together, our measurements and simulations provide direct support for the hindered diffusion model and yield insights into the nanometer-to-micrometer-scale mechanisms that lead to macroscopic signal dispersal.
Collapse
Affiliation(s)
- Timo Kuhn
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Amit N. Landge
- grid.9811.10000 0001 0658 7699University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - David Mörsdorf
- grid.418026.90000 0004 0492 0357Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Neurosciences and Developmental Biology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Jonas Coßmann
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johanna Gerstenecker
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Daniel Čapek
- grid.9811.10000 0001 0658 7699University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Patrick Müller
- grid.9811.10000 0001 0658 7699University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany ,grid.418026.90000 0004 0492 0357Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - J. Christof M. Gebhardt
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
7
|
Xing C, Shen W, Gong B, Li Y, Yan L, Meng A. Maternal Factors and Nodal Autoregulation Orchestrate Nodal Gene Expression for Embryonic Mesendoderm Induction in the Zebrafish. Front Cell Dev Biol 2022; 10:887987. [PMID: 35693948 PMCID: PMC9178097 DOI: 10.3389/fcell.2022.887987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Nodal proteins provide crucial signals for mesoderm and endoderm induction. In zebrafish embryos, the nodal genes ndr1/squint and ndr2/cyclops are implicated in mesendoderm induction. It remains elusive how ndr1 and ndr2 expression is regulated spatiotemporally. Here we investigated regulation of ndr1 and ndr2 expression using Mhwa mutants that lack the maternal dorsal determinant Hwa with deficiency in β-catenin signaling, Meomesa mutants that lack maternal Eomesodermin A (Eomesa), Meomesa;Mhwa double mutants, and the Nodal signaling inhibitor SB431542. We show that ndr1 and ndr2 expression is completely abolished in Meomesa;Mhwa mutant embryos, indicating an essential role of maternal eomesa and hwa. Hwa-activated β-catenin signaling plays a major role in activation of ndr1 expression in the dorsal blastodermal margin, while eomesa is mostly responsible for ndr1 expression in the lateroventral margin and Nodal signaling contributes to ventral expansion of the ndr1 expression domain. However, ndr2 expression mainly depends on maternal eomesa with minor or negligible contribution of maternal hwa and Nodal autoregulation. These mechanisms may help understand regulation of Nodal expression in other species.
Collapse
Affiliation(s)
- Cencan Xing
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Daxing Research Institute, University of Science and Technology, Beijing, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bo Gong
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yaqi Li
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lu Yan
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Guangzhou National Laboratory, Guangzhou, China
- *Correspondence: Anming Meng,
| |
Collapse
|
8
|
Hill CS. Establishment and interpretation of NODAL and BMP signaling gradients in early vertebrate development. Curr Top Dev Biol 2022; 149:311-340. [PMID: 35606059 DOI: 10.1016/bs.ctdb.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transforming growth factor β (TGF-β) family ligands play crucial roles in orchestrating early embryonic development. Most significantly, two family members, NODAL and BMP form signaling gradients and indeed in fish, frogs and sea urchins these two opposing gradients are sufficient to organize a complete embryonic axis. This review focuses on how these gradients are established and interpreted during early vertebrate development. The review highlights key principles that are emerging, in particular the importance of signaling duration as well as ligand concentration in both gradient generation and their interpretation. Feedforward and feedback loops involving other signaling pathways are also essential for providing spatial and temporal information downstream of the NODAL and BMP signaling pathways. Finally, new data suggest the existence of buffering mechanisms, whereby early signaling defects can be readily corrected downstream later in development, suggesting that signaling gradients do not have to be as precise as previously thought.
Collapse
Affiliation(s)
- Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
9
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Lord ND, Carte AN, Abitua PB, Schier AF. The pattern of nodal morphogen signaling is shaped by co-receptor expression. eLife 2021; 10:e54894. [PMID: 34036935 PMCID: PMC8266389 DOI: 10.7554/elife.54894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Embryos must communicate instructions to their constituent cells over long distances. These instructions are often encoded in the concentration of signals called morphogens. In the textbook view, morphogen molecules diffuse from a localized source to form a concentration gradient, and target cells adopt fates by measuring the local morphogen concentration. However, natural patterning systems often incorporate numerous co-factors and extensive signaling feedback, suggesting that embryos require additional mechanisms to generate signaling patterns. Here, we examine the mechanisms of signaling pattern formation for the mesendoderm inducer Nodal during zebrafish embryogenesis. We find that Nodal signaling activity spans a normal range in the absence of signaling feedback and relay, suggesting that diffusion is sufficient for Nodal gradient formation. We further show that the range of endogenous Nodal ligands is set by the EGF-CFC co-receptor Oep: in the absence of Oep, Nodal activity spreads to form a nearly uniform distribution throughout the embryo. In turn, increasing Oep levels sensitizes cells to Nodal ligands. We recapitulate these experimental results with a computational model in which Oep regulates the diffusive spread of Nodal ligands by setting the rate of capture by target cells. This model predicts, and we confirm in vivo, the surprising observation that a failure to replenish Oep transforms the Nodal signaling gradient into a travelling wave. These results reveal that patterns of Nodal morphogen signaling are shaped by co-receptor-mediated restriction of ligand spread and sensitization of responding cells.
Collapse
Affiliation(s)
- Nathan D Lord
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Adam N Carte
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard UniversityCambridgeUnited States
- Biozentrum, University of BaselBaselSwitzerland
| | - Philip B Abitua
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Biozentrum, University of BaselBaselSwitzerland
- Allen Discovery Center for Cell Lineage Tracing, University of WashingtonSeattleUnited States
| |
Collapse
|
11
|
Hayes K, Kim YK, Pera MF. A case for revisiting Nodal signaling in human pluripotent stem cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1137-1144. [PMID: 33932319 DOI: 10.1002/stem.3383] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Nodal is a transforming growth factor-β (TGF-β) superfamily member that plays a number of critical roles in mammalian embryonic development. Nodal is essential for the support of the peri-implantation epiblast in the mouse embryo and subsequently acts to specify mesendodermal fate at the time of gastrulation and, later, left-right asymmetry. Maintenance of human pluripotent stem cells (hPSCs) in vitro is dependent on Nodal signaling. Because it has proven difficult to prepare a biologically active form of recombinant Nodal protein, Activin or TGFB1 are widely used as surrogates for NODAL in hPSC culture. Nonetheless, the expression of the components of an endogenous Nodal signaling pathway in hPSC provides a potential autocrine pathway for the regulation of self-renewal in this system. Here we review recent studies that have clarified the role of Nodal signaling in pluripotent stem cell populations, highlighted spatial restrictions on Nodal signaling, and shown that Nodal functions in vivo as a heterodimer with GDF3, another TGF-β superfamily member expressed by hPSC. We discuss the role of this pathway in the maintenance of the epiblast and hPSC in light of these new advances.
Collapse
Affiliation(s)
- Kevin Hayes
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Yun-Kyo Kim
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | |
Collapse
|
12
|
Heger P, Zheng W, Rottmann A, Panfilio KA, Wiehe T. The genetic factors of bilaterian evolution. eLife 2020; 9:e45530. [PMID: 32672535 PMCID: PMC7535936 DOI: 10.7554/elife.45530] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G-protein-coupled receptors that control physiology and behaviour, the Robo-Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship.
Collapse
Affiliation(s)
- Peter Heger
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Wen Zheng
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Anna Rottmann
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, Cologne Biocenter, University of CologneCologneGermany
- School of Life Sciences, University of Warwick, Gibbet Hill CampusCoventryUnited Kingdom
| | - Thomas Wiehe
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| |
Collapse
|
13
|
Schauer A, Pinheiro D, Hauschild R, Heisenberg CP. Zebrafish embryonic explants undergo genetically encoded self-assembly. eLife 2020; 9:55190. [PMID: 32250246 PMCID: PMC7190352 DOI: 10.7554/elife.55190] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022] Open
Abstract
Embryonic stem cell cultures are thought to self-organize into embryoid bodies, able to undergo symmetry-breaking, germ layer specification and even morphogenesis. Yet, it is unclear how to reconcile this remarkable self-organization capacity with classical experiments demonstrating key roles for extrinsic biases by maternal factors and/or extraembryonic tissues in embryogenesis. Here, we show that zebrafish embryonic tissue explants, prepared prior to germ layer induction and lacking extraembryonic tissues, can specify all germ layers and form a seemingly complete mesendoderm anlage. Importantly, explant organization requires polarized inheritance of maternal factors from dorsal-marginal regions of the blastoderm. Moreover, induction of endoderm and head-mesoderm, which require peak Nodal-signaling levels, is highly variable in explants, reminiscent of embryos with reduced Nodal signals from the extraembryonic tissues. Together, these data suggest that zebrafish explants do not undergo bona fide self-organization, but rather display features of genetically encoded self-assembly, where intrinsic genetic programs control the emergence of order.
Collapse
|
14
|
Adamer MF, Harrington HA, Gaffney EA, Woolley TE. Coloured Noise from Stochastic Inflows in Reaction-Diffusion Systems. Bull Math Biol 2020; 82:44. [PMID: 32198538 PMCID: PMC7083815 DOI: 10.1007/s11538-020-00719-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
In this paper, we present a framework for investigating coloured noise in reaction-diffusion systems. We start by considering a deterministic reaction-diffusion equation and show how external forcing can cause temporally correlated or coloured noise. Here, the main source of external noise is considered to be fluctuations in the parameter values representing the inflow of particles to the system. First, we determine which reaction systems, driven by extrinsic noise, can admit only one steady state, so that effects, such as stochastic switching, are precluded from our analysis. To analyse the steady-state behaviour of reaction systems, even if the parameter values are changing, necessitates a parameter-free approach, which has been central to algebraic analysis in chemical reaction network theory. To identify suitable models, we use tools from real algebraic geometry that link the network structure to its dynamical properties. We then make a connection to internal noise models and show how power spectral methods can be used to predict stochastically driven patterns in systems with coloured noise. In simple cases, we show that the power spectrum of the coloured noise process and the power spectrum of the reaction-diffusion system modelled with white noise multiply to give the power spectrum of the coloured noise reaction-diffusion system.
Collapse
Affiliation(s)
- Michael F Adamer
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK.
| | - Heather A Harrington
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Eamonn A Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | | |
Collapse
|
15
|
García-Tuñón I, Vuelta E, Lozano L, Herrero M, Méndez L, Palomero-Hernandez J, Pérez-Caro M, Pérez-García J, González-Sarmiento R, Sánchez-Martín M. Establishment of a conditional Nomo1 mouse model by CRISPR/Cas9 technology. Mol Biol Rep 2020; 47:1381-1391. [PMID: 31833031 DOI: 10.1007/s11033-019-05214-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022]
Abstract
The Nomo1 gene mediates a wide range of biological processes of importance in embryonic development. Accordingly, constitutive perturbation of Nomo1 function may result in myriad developmental defects that trigger embryonic lethality. To extend our understanding of Nomo1 function in postnatal stages and in a tissue-specific manner, we generated a conditional knockout mouse model of Nomo1. To achieve this, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology in C57Bl/6J mouse zygotes to generate a new mouse model in which exon 3 of the Nomo1 gene is specifically flanked (or floxed) by LoxP sites (Nomo1f/f). Nomo1f/f mouse embryonic fibroblasts were transduced with a Cre adenovirus and efficiently recombined between LoxP sites. Genomic and expression studies in Nomo1-transduced MEFs demonstrated that the Nomo1 exon 3 is ablated. Western blot assay showed that no protein or early truncated protein is produced. In vivo assay crossing Nomo1f/f mouse with a Msi1-CRE transgenic mouse corroborated the previous findings and it showed Nomo1 exon 3 deletion at msi1+ cell compartment. This short technical report demonstrates that CRISPR/Cas9 technology is a simple and easy method for creating conditional mouse models. The Nomo1f/f mouse will be useful to researchers who wish to explore the role of Nomo1 in any developmental stage or in a tissue-specific manner.
Collapse
Affiliation(s)
- Ignacio García-Tuñón
- IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Elena Vuelta
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Laura Lozano
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - María Herrero
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Lucía Méndez
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Javier Palomero-Hernandez
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - María Pérez-Caro
- Banco de ADN, Nucleus, Universidad de Salamanca, Salamanca, Spain
| | - Jessica Pérez-García
- IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Rogelio González-Sarmiento
- IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Manuel Sánchez-Martín
- IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, Spain.
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain.
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
16
|
Maternal factors regulating symmetry breaking and dorsal–ventral axis formation in the sea urchin embryo. Curr Top Dev Biol 2020; 140:283-316. [DOI: 10.1016/bs.ctdb.2019.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
|
18
|
Economou AD, Hill CS. Temporal dynamics in the formation and interpretation of Nodal and BMP morphogen gradients. Curr Top Dev Biol 2019; 137:363-389. [PMID: 32143749 DOI: 10.1016/bs.ctdb.2019.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the most powerful ideas in developmental biology has been that of the morphogen gradient. In the classical view, a signaling molecule is produced at a local source from where it diffuses, resulting in graded levels across the tissue. This gradient provides positional information, with thresholds in the level of the morphogen determining the position of different cell fates. While experimental studies have uncovered numerous potential morphogens in biological systems, it is becoming increasingly apparent that one important feature, not captured in the simple model, is the role of time in both the formation and interpretation of morphogen gradients. We will focus on two members of the transforming growth factor-β family that are known to play a vital role as morphogens in early vertebrate development: the Nodals and the bone morphogenetic proteins (BMPs). Primarily drawing on the early zebrafish embryo, we will show how recent studies have demonstrated the importance of feedback and other interactions that evolve through time, in shaping morphogen gradients. We will further show how rather than simply reading out levels of a morphogen, the duration of ligand exposure can be a crucial determinant of how cells interpret morphogens, in particular through the unfolding of downstream transcriptional events and in their interactions with other pathways.
Collapse
Affiliation(s)
- Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
19
|
Molina MD, Quirin M, Haillot E, De Crozé N, Range R, Rouel M, Jimenez F, Amrouche R, Chessel A, Lepage T. MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo. PLoS Genet 2018; 14:e1007621. [PMID: 30222786 PMCID: PMC6160229 DOI: 10.1371/journal.pgen.1007621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/27/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022] Open
Abstract
In the sea urchin embryo, specification of the dorsal-ventral axis critically relies on the spatially restricted expression of nodal in the presumptive ventral ectoderm. The ventral restriction of nodal expression requires the activity of the maternal TGF-β ligand Panda but the mechanism by which Panda restricts nodal expression is unknown. Similarly, what initiates expression of nodal in the ectoderm and what are the mechanisms that link patterning along the primary and secondary axes is not well understood. We report that in Paracentrotus lividus, the activity of the maternally expressed ETS-domain transcription factor Yan/Tel is essential for the spatial restriction of nodal. Inhibiting translation of maternal yan/tel mRNA disrupted dorsal-ventral patterning in all germ layers by causing a massive ectopic expression of nodal starting from cleavage stages, mimicking the phenotype caused by inactivation of the maternal Nodal antagonist Panda. We show that like in the fly or in vertebrates, the activity of sea urchin Yan/Tel is regulated by phosphorylation by MAP kinases. However, unlike in the fly or in vertebrates, phosphorylation by GSK3 plays a central role in the regulation Yan/Tel stability in the sea urchin. We show that GSK3 phosphorylates Yan/Tel in vitro at two different sites including a β-TRCP ubiquitin ligase degradation motif and a C-terminal Ser/Thr rich cluster and that phosphorylation of Yan/Tel by GSK3 triggers its degradation by a β-TRCP/proteasome pathway. Finally, we show that, Yan is epistatic to Panda and that the activity of Yan/Tel is required downstream of Panda to restrict nodal expression. Our results identify Yan/Tel as a central regulator of the spatial expression of nodal in Paracentrotus lividus and uncover a key interaction between the gene regulatory networks responsible for patterning the embryo along the dorsal-ventral and animal-vegetal axes. Specification of the embryonic axes is an essential step during early development of metazoa. In the sea urchin embryo, specification of the dorsal-ventral axis critically relies on the spatial restriction of the expression of the TGF-ß family member Nodal in ventral cells, a process that requires the activity of the maternal determinant Panda. How the spatially restricted expression of nodal is established downstream of Panda is not well understood. We have discovered that, in the Mediterranean sea urchin Paracentrotus lividus, the spatial restriction of nodal on the ventral side of the embryo requires the inhibitory activity of a transcriptional repressor named Yan/Tel. This finding suggests a molecular mechanism for the control of nodal expression by the release of a repression. We found that this release requires the activity of two families of kinases that we identified as the MAP kinases and GSK3, a kinase which, intriguingly, was previously known as a key regulator of patterning along the animal-vegetal axis. We discovered that phosphorylation by MAPK and GSK3 triggers degradation of Yan/Tel by a β-TRCP proteasome pathway. Finally, we find that Yan/Tel likely acts downstream of Panda in the hierarchy of genes required for nodal restriction. Our study therefore identifies Yan/Tel as a new essential regulator of nodal expression downstream of Panda and identifies a novel key interaction between the gene regulatory networks responsible for patterning along the primary and secondary axis of polarity.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Magali Quirin
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Emmanuel Haillot
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Noémie De Crozé
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Ryan Range
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Mathieu Rouel
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Felipe Jimenez
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Radja Amrouche
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Aline Chessel
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Thierry Lepage
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
- * E-mail:
| |
Collapse
|
20
|
Almuedo-Castillo M, Bläßle A, Mörsdorf D, Marcon L, Soh GH, Rogers KW, Schier AF, Müller P. Scale-invariant patterning by size-dependent inhibition of Nodal signalling. Nat Cell Biol 2018; 20:1032-1042. [PMID: 30061678 PMCID: PMC6217922 DOI: 10.1038/s41556-018-0155-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 06/27/2018] [Indexed: 12/30/2022]
Abstract
Individuals can vary significantly in size, but the proportions of their body plans are often maintained. We generated smaller zebrafish by removing 30% of their cells at blastula stages and found that these embryos developed into normally patterned individuals. Strikingly, the proportions of all germ layers adjusted to the new embryo size within two hours after cell removal. Since Nodal/Lefty signalling controls germ layer patterning, we performed a computational screen for scale-invariant models of this activator/inhibitor system. This analysis predicted that the concentration of the highly diffusive inhibitor Lefty increases in smaller embryos, leading to a decreased Nodal activity range and contracted germ layer dimensions. In vivo studies confirmed that Lefty concentration increased in smaller embryos, and embryos with reduced Lefty levels or with diffusion-hindered Lefty failed to scale their tissue proportions. These results reveal that size-dependent inhibition of Nodal signalling allows scale-invariant patterning.
Collapse
Affiliation(s)
- María Almuedo-Castillo
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain
| | - Alexander Bläßle
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - David Mörsdorf
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Luciano Marcon
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain
| | - Gary H Soh
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Katherine W Rogers
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
| |
Collapse
|
21
|
Ren X, Hamilton N, Müller F, Yamamoto Y. Cellular rearrangement of the prechordal plate contributes to eye degeneration in the cavefish. Dev Biol 2018; 441:221-234. [PMID: 30031755 DOI: 10.1016/j.ydbio.2018.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/23/2022]
Abstract
Astyanax mexicanus consists of two different populations: a sighted surface-dwelling form (surface fish) and a blind cave-dwelling form (cavefish). In the cavefish, embryonic expression of sonic hedgehog a (shha) in the prechordal plate is expanded towards the anterior midline, which has been shown to contribute to cavefish specific traits such as eye degeneration, enhanced feeding apparatus, and specialized brain anatomy. However, it is not clear how this expanded expression is achieved and which signaling pathways are involved. Nodal signaling has a crucial role for expression of shh and formation of the prechordal plate. In this study, we report increased expression of prechordal plate marker genes, nodal-related 2 (ndr2) and goosecoid (gsc) in cavefish embryos at the tailbud stage. To investigate whether Nodal signaling is responsible for the anterior expansion of the prechordal plate, we used an inhibitor of Nodal signaling and showed a decreased anterior expansion of the prechordal plate and increased pax6 expression in the anterior midline in treated cavefish embryos. Later in development, the lens and optic cup of treated embryos were significantly larger than untreated embryos. Conversely, increasing Nodal signaling in the surface fish embryo resulted in the expansion of anterior prechordal plate and reduction of pax6 expression in the anterior neural plate together with the formation of small lenses and optic cups later in development. These results confirmed that Nodal signaling has a crucial role for the anterior expansion of the prechordal plate and plays a significant role in cavefish eye development. We showed that the anterior expansion of the prechordal plate was not due to increased total cell number, suggesting the expansion is achieved by changes in cellular distribution in the prechordal plate. In addition, the distribution of presumptive prechordal plate cells in Spemann's organiser was also altered in the cavefish. These results suggested that changes in the cellular arrangement of Spemann's organiser in early gastrulae could have an essential role in the anterior expansion of the prechordal plate contributing to eye degeneration in the cavefish.
Collapse
Affiliation(s)
- Xiaoyun Ren
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Noémie Hamilton
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Ferenc Müller
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yoshiyuki Yamamoto
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
22
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
23
|
Vopalensky P, Pralow S, Vastenhouw NL. Reduced expression of the Nodal co-receptor Oep causes loss of mesendodermal competence in zebrafish. Development 2018; 145:dev.158832. [PMID: 29440298 DOI: 10.1242/dev.158832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
Abstract
The activation of specific gene expression programs depends on the presence of the appropriate signals and the competence of cells to respond to those signals. Although it is well established that cellular competence is regulated in space and time, the molecular mechanisms underlying the loss of competence remain largely unknown. Here, we determine the time window during which zebrafish prospective ectoderm loses its ability to respond to Nodal signals, and show that this coincides with a decrease in the levels of the Nodal co-receptor One-eyed pinhead (Oep). Bypassing Oep using a photoactivatable receptor, or an Oep-independent ligand, allows activation of Nodal target genes for an extended period of time. These results suggest that the reduced expression of Oep causes the loss of responsiveness to Nodal signals in the prospective ectoderm. Indeed, extending the presence of Oep prolongs the window of competence to respond to Nodal signals. Our findings suggest a simple mechanism in which the decreasing level of one component of the Nodal signaling pathway regulates the loss of mesendodermal competence in the prospective ectoderm.
Collapse
Affiliation(s)
- Pavel Vopalensky
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Sabrina Pralow
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
24
|
Wei S, Wang Q. Molecular regulation of Nodal signaling during mesendoderm formation. Acta Biochim Biophys Sin (Shanghai) 2018; 50:74-81. [PMID: 29206913 DOI: 10.1093/abbs/gmx128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023] Open
Abstract
One of the most important events during vertebrate embryogenesis is the formation or specification of the three germ layers, endoderm, mesoderm, and ectoderm. After a series of rapid cleavages, embryos form the mesendoderm and ectoderm during late blastulation and early gastrulation. The mesendoderm then further differentiates into the mesoderm and endoderm. Nodal, a member of the transforming growth factor β (TGF-β) superfamily, plays a pivotal role in mesendoderm formation by regulating the expression of a number of critical transcription factors, including Mix-like, GATA, Sox, and Fox. Because the Nodal signal transduction pathway is well-characterized, increasing effort has been made to delineate the spatiotemporal modulation of Nodal signaling during embryonic development. In this review, we summarize the recent progress delineating molecular regulation of Nodal signal intensity and duration during mesendoderm formation.
Collapse
Affiliation(s)
- Shi Wei
- The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
25
|
Rogers KW, Lord ND, Gagnon JA, Pauli A, Zimmerman S, Aksel DC, Reyon D, Tsai SQ, Joung JK, Schier AF. Nodal patterning without Lefty inhibitory feedback is functional but fragile. eLife 2017; 6. [PMID: 29215332 PMCID: PMC5720593 DOI: 10.7554/elife.28785] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
Developmental signaling pathways often activate their own inhibitors. Such inhibitory feedback has been suggested to restrict the spatial and temporal extent of signaling or mitigate signaling fluctuations, but these models are difficult to rigorously test. Here, we determine whether the ability of the mesendoderm inducer Nodal to activate its inhibitor Lefty is required for development. We find that zebrafish lefty mutants exhibit excess Nodal signaling and increased specification of mesendoderm, resulting in embryonic lethality. Strikingly, development can be fully restored without feedback: Lethal patterning defects in lefty mutants can be rescued by ectopic expression of lefty far from its normal expression domain or by spatially and temporally uniform exposure to a Nodal inhibitor drug. While drug-treated mutants are less tolerant of mild perturbations to Nodal signaling levels than wild type embryos, they can develop into healthy adults. These results indicate that patterning without inhibitory feedback is functional but fragile. During animal development, a single fertilized cell gives rise to different tissues and organs. This ‘patterning’ process depends on signaling molecules that instruct cells in different positions in the embryo to acquire different identities. To avoid mistakes during patterning, each cell must receive the correct amount of signal at the appropriate time. In a process called ‘inhibitory feedback’, a signaling molecule instructs cells to produce molecules that block its own signaling. Although inhibitory feedback is widely used during patterning in organisms ranging from sea urchins to mammals, its exact purpose is often not clear. In part this is because feedback is challenging to experimentally manipulate. Removing the inhibitor disrupts feedback, but also increases signaling. Since the effects of broken feedback and increased signaling are intertwined, any resulting developmental defects do not provide information about what feedback specifically does. In order to examine the role of feedback, it is therefore necessary to disconnect the production of the inhibitor from the signaling process. In developing embryos, a well-known signaling molecule called Nodal instructs cells to become specific types – for example, a heart or gut cell. Nodal also promotes the production of its inhibitor, Lefty. To understand how this feedback system works, Rogers, Lord et al. first removed Lefty from zebrafish embryos. These embryos had excessive levels of Nodal signaling, did not develop correctly, and could not survive. Bathing the embryos in a drug that inhibits Nodal reduced excess signaling and allowed them to develop successfully. In these drug-treated embryos, inhibitor production is disconnected from the signaling process, allowing the role of feedback to be examined. Drug-treated embryos were less able to tolerate fluctuations in Nodal signaling than normal zebrafish embryos, which could compensate for such disturbances by adjusting Lefty levels. Overall, it appears that inhibitory feedback in this patterning system is important to compensate for alterations in Nodal signaling, but is not essential for development. Understanding the role of inhibitory feedback will be useful for efforts to grow tissues and organs in the laboratory for clinical use. The results presented by Rogers, Lord et al. also suggest the possibility that drug treatments could be developed to help correct birth defects in the womb.
Collapse
Affiliation(s)
- Katherine W Rogers
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Nathan D Lord
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - James A Gagnon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Andrea Pauli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Steven Zimmerman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Deniz C Aksel
- Program in Biophysics, Harvard Medical School, Boston, United States
| | - Deepak Reyon
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, United States.,Department of Pathology, Harvard Medical School, Boston, United States.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, United States
| | - Shengdar Q Tsai
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, United States.,Department of Pathology, Harvard Medical School, Boston, United States.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, United States
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, United States.,Department of Pathology, Harvard Medical School, Boston, United States.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Broad Institute of MIT and Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, United States.,Center for Systems Biology, Harvard University, Cambridge, United States
| |
Collapse
|
26
|
Tadjuidje E, Kofron M, Mir A, Wylie C, Heasman J, Cha SW. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development. Open Biol 2017; 6:rsob.150187. [PMID: 27488374 PMCID: PMC5008007 DOI: 10.1098/rsob.150187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 07/01/2016] [Indexed: 01/05/2023] Open
Abstract
Nodal class TGF-β signalling molecules play essential roles in establishing the vertebrate body plan. In all vertebrates, nodal family members have specific waves of expression required for tissue specification and axis formation. In Xenopus laevis, six nodal genes are expressed before gastrulation, raising the question of whether they have specific roles or act redundantly with each other. Here, we examine the role of Xnr5. We find it acts at the late blastula stage as a mesoderm inducer and repressor of ectodermal gene expression, a role it shares with Vg1. However, unlike Vg1, Xnr5 depletion reduces the expression of the nodal family member xnr1 at the gastrula stage. It is also required for left/right laterality by controlling the expression of the laterality genes xnr1, antivin (lefty) and pitx2 at the tailbud stage. In Xnr5-depleted embryos, the heart field is established normally, but symmetrical reduction in Xnr5 levels causes a severely stunted midline heart, first evidenced by a reduction in cardiac troponin mRNA levels, while left-sided reduction leads to randomization of the left/right axis. This work identifies Xnr5 as the earliest step in the signalling pathway establishing normal heart laterality in Xenopus.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Department of Biological Sciences, Alabama State University, 1627 Hall Street, Montgomery, AL 36101, USA
| | - Matthew Kofron
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Adnan Mir
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Christopher Wylie
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Janet Heasman
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Sang-Wook Cha
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
27
|
Morov AR, Ukizintambara T, Sabirov RM, Yasui K. Acquisition of the dorsal structures in chordate amphioxus. Open Biol 2017; 6:rsob.160062. [PMID: 27307516 PMCID: PMC4929940 DOI: 10.1098/rsob.160062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 02/04/2023] Open
Abstract
Acquisition of dorsal structures, such as notochord and hollow nerve cord, is likely to have had a profound influence upon vertebrate evolution. Dorsal formation in chordate development thus has been intensively studied in vertebrates and ascidians. However, the present understanding does not explain how chordates acquired dorsal structures. Here we show that amphioxus retains a key clue to answer this question. In amphioxus embryos, maternal nodal mRNA distributes asymmetrically in accordance with the remodelling of the cortical cytoskeleton in the fertilized egg, and subsequently lefty is first expressed in a patch of blastomeres across the equator where wnt8 is expressed circularly and which will become the margin of the blastopore. The lefty domain co-expresses zygotic nodal by the initial gastrula stage on the one side of the blastopore margin and induces the expression of goosecoid, not-like, chordin and brachyury1 genes in this region, as in the oral ectoderm of sea urchin embryos, which provides a basis for the formation of the dorsal structures. The striking similarity in the gene regulations and their respective expression domains when comparing dorsal formation in amphioxus and the determination of the oral ectoderm in sea urchin embryos suggests that chordates derived from an ambulacrarian-type blastula with dorsoventral inversion.
Collapse
Affiliation(s)
- Arseniy R Morov
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Tharcisse Ukizintambara
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Rushan M Sabirov
- Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Kinya Yasui
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
28
|
Montague TG, Schier AF. Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm. eLife 2017; 6:28183. [PMID: 29140251 PMCID: PMC5745085 DOI: 10.7554/elife.28183] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/13/2017] [Indexed: 12/03/2022] Open
Abstract
Nodal is considered the key inducer of mesendoderm in vertebrate embryos and embryonic stem cells. Other TGF-beta-related signals, such as Vg1/Dvr1/Gdf3, have also been implicated in this process but their roles have been unclear or controversial. Here we report that zebrafish embryos without maternally provided vg1 fail to form endoderm and head and trunk mesoderm, and closely resemble nodal loss-of-function mutants. Although Nodal is processed and secreted without Vg1, it requires Vg1 for its endogenous activity. Conversely, Vg1 is unprocessed and resides in the endoplasmic reticulum without Nodal, and is only secreted, processed and active in the presence of Nodal. Co-expression of Nodal and Vg1 results in heterodimer formation and mesendoderm induction. Thus, mesendoderm induction relies on the combination of two TGF-beta-related signals: maternal and ubiquitous Vg1, and zygotic and localized Nodal. Modeling reveals that the pool of maternal Vg1 enables rapid signaling at low concentrations of zygotic Nodal. All animals begin life as just one cell – a fertilized egg. In order to make a recognizable adult, each embryo needs to make the three types of tissue that will eventually form all of the organs: endoderm, which will form the internal organs; mesoderm, which will form the muscle and bones; and ectoderm, which will generate the skin and nervous system. All vertebrates – animals with backbones like fish and humans – use the so-called Nodal signaling pathway to make the endoderm and mesoderm. Nodal is a signaling molecule that binds to receptors on the surface of cells. If Nodal binds to a receptor on a cell, it instructs that cell to become endoderm or mesoderm. As such, Nodal is critical for vertebrate life. However, there has been a 30-year debate in the field of developmental biology about whether a protein called Vg1, which has a similar molecular structure as Nodal, plays a role in the early development of vertebrates. Zebrafish are often used to study animal development, and Montague and Schier decided to test whether these fish need the gene for Vg1 (also known as Gdf3) by deleting it using a genome editing technique called CRISPR/Cas9. It turns out that female zebrafish can survive without this gene. Yet, when the offspring of these females do not inherit the instructions to make Vg1 from their mothers, they fail to form the endoderm and mesoderm. This means that the embryos do not have hearts, blood or other internal organs, and they die within three days. Two other groups of researchers have independently reported similar results. The findings reveal that Vg1 is critical for the Nodal signaling pathway to work in zebrafish. Montague and Schier then showed that, in this pathway, Nodal does not activate its receptors on its own. Instead, Nodal must interact with Vg1, and it is this Nodal-Vg1 complex that activates receptors, and instructs cells to become endoderm and mesoderm. Scientists currently use the Nodal signaling pathway to induce human embryonic stem cells growing in the laboratory to become mesoderm and endoderm. As such, these new findings could ultimately help researchers to grow tissues and organs for human patients.
Collapse
Affiliation(s)
- Tessa G Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Harvard Stem Cell Institute, Cambridge, United States.,FAS Center for Systems Biology, Harvard University, Cambridge, United States
| |
Collapse
|
29
|
Bian SS, Zheng XL, Sun HQ, Chen JH, Lu YL, Liu YQ, Tao DC, Ma YX. Clock1a affects mesoderm development and primitive hematopoiesis by regulating Nodal-Smad3 signaling in the zebrafish embryo. J Biol Chem 2017; 292:14165-14175. [PMID: 28687631 DOI: 10.1074/jbc.m117.794289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/05/2017] [Indexed: 02/05/2023] Open
Abstract
Circadian clock and Smad2/3/4-mediated Nodal signaling regulate multiple physiological and pathological processes. However, it remains unknown whether Clock directly cross-talks with Nodal signaling and how this would regulate embryonic development. Here we show that Clock1a coordinated mesoderm development and primitive hematopoiesis in zebrafish embryos by directly up-regulating Nodal-Smad3 signaling. We found that Clock1a is expressed both maternally and zygotically throughout early zebrafish development. We also noted that Clock1a alterations produce embryonic defects with shortened body length, lack of the ventral tail fin, or partial defect of the eyes. Clock1a regulates the expression of the mesodermal markers ntl, gsc, and eve1 and of the hematopoietic markers scl, lmo2, and fli1a Biochemical analyses revealed that Clock1a stimulates Nodal signaling by increasing expression of Smad2/3/4. Mechanistically, Clock1a activates the smad3a promoter via its E-box1 element (CAGATG). Taken together, these findings provide mechanistic insight into the role of Clock1a in the regulation of mesoderm development and primitive hematopoiesis via modulation of Nodal-Smad3 signaling and indicate that Smad3a is directly controlled by the circadian clock in zebrafish.
Collapse
Affiliation(s)
- Sha-Sha Bian
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Xu-Lei Zheng
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Hua-Qin Sun
- SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jian-Hui Chen
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Yi-Lu Lu
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Yun-Qiang Liu
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Da-Chang Tao
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China
| | - Yong-Xin Ma
- From the Laboratory of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu 610041, China.
| |
Collapse
|
30
|
Klika V, Gaffney EA. History dependence and the continuum approximation breakdown: the impact of domain growth on Turing's instability. Proc Math Phys Eng Sci 2017; 473:20160744. [PMID: 28413340 DOI: 10.1098/rspa.2016.0744] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/14/2017] [Indexed: 01/20/2023] Open
Abstract
A diffusively driven instability has been hypothesized as a mechanism to drive spatial self-organization in biological systems since the seminal work of Turing. Such systems are often considered on a growing domain, but traditional theoretical studies have only treated the domain size as a bifurcation parameter, neglecting the system non-autonomy. More recently, the conditions for a diffusively driven instability on a growing domain have been determined under stringent conditions, including slow growth, a restriction on the temporal interval over which the prospect of an instability can be considered and a neglect of the impact that time evolution has on the stability properties of the homogeneous reference state from which heterogeneity emerges. Here, we firstly relax this latter assumption and observe that the conditions for the Turing instability are much more complex and depend on the history of the system in general. We proceed to relax all the above constraints, making analytical progress by focusing on specific examples. With faster growth, instabilities can grow transiently and decay, making the prediction of a prospective Turing instability much more difficult. In addition, arbitrarily high spatial frequencies can destabilize, in which case the continuum approximation is predicted to break down.
Collapse
Affiliation(s)
- Václav Klika
- Department of Mathematics, FNSPE, Czech Technical University in Prague, Czech Republic
| | - Eamonn A Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Tseng WC, Munisha M, Gutierrez JB, Dougan ST. Establishment of the Vertebrate Germ Layers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:307-381. [PMID: 27975275 DOI: 10.1007/978-3-319-46095-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.
Collapse
Affiliation(s)
- Wei-Chia Tseng
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Mumingjiang Munisha
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Juan B Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Scott T Dougan
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
32
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
33
|
van Boxtel AL, Chesebro JE, Heliot C, Ramel MC, Stone RK, Hill CS. A Temporal Window for Signal Activation Dictates the Dimensions of a Nodal Signaling Domain. Dev Cell 2015; 35:175-85. [PMID: 26506307 PMCID: PMC4640439 DOI: 10.1016/j.devcel.2015.09.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 08/11/2015] [Accepted: 09/23/2015] [Indexed: 11/22/2022]
Abstract
Morphogen signaling is critical for the growth and patterning of tissues in embryos and adults, but how morphogen signaling gradients are generated in tissues remains controversial. The morphogen Nodal was proposed to form a long-range signaling gradient via a reaction-diffusion system, on the basis of differential diffusion rates of Nodal and its antagonist Lefty. Here we use a specific zebrafish Nodal biosensor combined with immunofluorescence for phosphorylated Smad2 to demonstrate that endogenous Nodal is unlikely to diffuse over a long range. Instead, short-range Nodal signaling activation in a temporal window is sufficient to determine the dimensions of the Nodal signaling domain. The size of this temporal window is set by the differentially timed production of Nodal and Lefty, which arises mainly from repression of Lefty translation by the microRNA miR-430. Thus, temporal information is transformed into spatial information to define the dimensions of the Nodal signaling domain and, consequently, to specify mesendoderm.
Collapse
Affiliation(s)
- Antonius L van Boxtel
- Developmental Signalling, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - John E Chesebro
- Developmental Signalling, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Claire Heliot
- Developmental Signalling, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Marie-Christine Ramel
- Developmental Signalling, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Richard K Stone
- Experimental Histopathology, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Caroline S Hill
- Developmental Signalling, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
34
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
35
|
Ball P. Forging patterns and making waves from biology to geology: a commentary on Turing (1952) 'The chemical basis of morphogenesis'. Philos Trans R Soc Lond B Biol Sci 2015; 373:rsta.2014.0218. [PMID: 25750229 DOI: 10.1098/rsta.2014.0218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 05/21/2023] Open
Abstract
Alan Turing was neither a biologist nor a chemist, and yet the paper he published in 1952, 'The chemical basis of morphogenesis', on the spontaneous formation of patterns in systems undergoing reaction and diffusion of their ingredients has had a substantial impact on both fields, as well as in other areas as disparate as geomorphology and criminology. Motivated by the question of how a spherical embryo becomes a decidedly non-spherical organism such as a human being, Turing devised a mathematical model that explained how random fluctuations can drive the emergence of pattern and structure from initial uniformity. The spontaneous appearance of pattern and form in a system far away from its equilibrium state occurs in many types of natural process, and in some artificial ones too. It is often driven by very general mechanisms, of which Turing's model supplies one of the most versatile. For that reason, these patterns show striking similarities in systems that seem superficially to share nothing in common, such as the stripes of sand ripples and of pigmentation on a zebra skin. New examples of 'Turing patterns' in biology and beyond are still being discovered today. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Collapse
Affiliation(s)
- Philip Ball
- 18 Hillcourt Road, East Dulwich, London SE22 0PE, UK
| |
Collapse
|
36
|
Ball P. Forging patterns and making waves from biology to geology: a commentary on Turing (1952) 'The chemical basis of morphogenesis'. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140218. [PMID: 25750229 PMCID: PMC4360114 DOI: 10.1098/rstb.2014.0218] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Alan Turing was neither a biologist nor a chemist, and yet the paper he published in 1952, 'The chemical basis of morphogenesis', on the spontaneous formation of patterns in systems undergoing reaction and diffusion of their ingredients has had a substantial impact on both fields, as well as in other areas as disparate as geomorphology and criminology. Motivated by the question of how a spherical embryo becomes a decidedly non-spherical organism such as a human being, Turing devised a mathematical model that explained how random fluctuations can drive the emergence of pattern and structure from initial uniformity. The spontaneous appearance of pattern and form in a system far away from its equilibrium state occurs in many types of natural process, and in some artificial ones too. It is often driven by very general mechanisms, of which Turing's model supplies one of the most versatile. For that reason, these patterns show striking similarities in systems that seem superficially to share nothing in common, such as the stripes of sand ripples and of pigmentation on a zebra skin. New examples of 'Turing patterns' in biology and beyond are still being discovered today. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Collapse
Affiliation(s)
- Philip Ball
- 18 Hillcourt Road, East Dulwich, London SE22 0PE, UK
| |
Collapse
|
37
|
Korvasová K, Gaffney E, Maini P, Ferreira M, Klika V. Investigating the Turing conditions for diffusion-driven instability in the presence of a binding immobile substrate. J Theor Biol 2015; 367:286-295. [DOI: 10.1016/j.jtbi.2014.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 10/14/2014] [Accepted: 11/23/2014] [Indexed: 12/15/2022]
|
38
|
Godard BG, Coolen M, Le Panse S, Gombault A, Ferreiro-Galve S, Laguerre L, Lagadec R, Wincker P, Poulain J, Da Silva C, Kuraku S, Carre W, Boutet A, Mazan S. Mechanisms of endoderm formation in a cartilaginous fish reveal ancestral and homoplastic traits in jawed vertebrates. Biol Open 2014; 3:1098-107. [PMID: 25361580 PMCID: PMC4232768 DOI: 10.1242/bio.20148037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In order to gain insight into the impact of yolk increase on endoderm development, we have analyzed the mechanisms of endoderm formation in the catshark S. canicula, a species exhibiting telolecithal eggs and a distinct yolk sac. We show that in this species, endoderm markers are expressed in two distinct tissues, the deep mesenchyme, a mesenchymal population of deep blastomeres lying beneath the epithelial-like superficial layer, already specified at early blastula stages, and the involuting mesendoderm layer, which appears at the blastoderm posterior margin at the onset of gastrulation. Formation of the deep mesenchyme involves cell internalizations from the superficial layer prior to gastrulation, by a movement suggestive of ingressions. These cell movements were observed not only at the posterior margin, where massive internalizations take place prior to the start of involution, but also in the center of the blastoderm, where internalizations of single cells prevail. Like the adjacent involuting mesendoderm, the posterior deep mesenchyme expresses anterior mesendoderm markers under the control of Nodal/activin signaling. Comparisons across vertebrates support the conclusion that endoderm is specified in two distinct temporal phases in the catshark as in all major osteichthyan lineages, in line with an ancient origin of a biphasic mode of endoderm specification in gnathostomes. They also highlight unexpected similarities with amniotes, such as the occurrence of cell ingressions from the superficial layer prior to gastrulation. These similarities may correspond to homoplastic traits fixed separately in amniotes and chondrichthyans and related to the increase in egg yolk mass.
Collapse
Affiliation(s)
- Benoit G Godard
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| | - Marion Coolen
- Université d'Orléans-CNRS, UMR 6218, 45070 Orléans, France Present address: CNRS UPR 3294, Institute of Neurobiology Alfred Fessard, 91198 Gif-sur-Yvette, France
| | - Sophie Le Panse
- Plateforme d'Imagerie, Sorbonne Universités, UPMC Univ Paris 06, CNRS, FR 2424, Station Biologique, 29688 Roscoff, France
| | - Aurélie Gombault
- Université d'Orléans-CNRS, UMR 6218, 45070 Orléans, France Present address: UMR 7355, Université d'Orleans-CNRS, 45071 Orléans, France
| | - Susana Ferreiro-Galve
- Université d'Orléans-CNRS, UMR 6218, 45070 Orléans, France Present address: Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, Campus San Juan de Alicante, 03550 Alicante, Spain
| | - Laurent Laguerre
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| | - Ronan Lagadec
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| | - Patrick Wincker
- CEA-Institut de Génomique-Genoscope, 2 rue Gaston-Crémieux, 91057 Evry, France
| | - Julie Poulain
- CEA-Institut de Génomique-Genoscope, 2 rue Gaston-Crémieux, 91057 Evry, France
| | - Corinne Da Silva
- CEA-Institut de Génomique-Genoscope, 2 rue Gaston-Crémieux, 91057 Evry, France
| | - Shigehiro Kuraku
- Genome Resource and Analysis Unit (GRAS), Center for Developmental Biology, RIKEN.2-2-3 Minatojima-minami, Chuo-KU, Kobe 650-0047, Japan
| | - Wilfrid Carre
- ABiMS, Sorbonne Universités, UPMC Univ Paris 06, CNRS, FR 2424, 29688 Roscoff, France
| | - Agnès Boutet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| | - Sylvie Mazan
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7150, 29688 Roscoff, France
| |
Collapse
|
39
|
Xu X, He Y, Sun L, Ma S, Luo C. Maternal Vsx1 plays an essential role in regulating prechordal mesendoderm and forebrain formation in zebrafish. Dev Biol 2014; 394:264-76. [PMID: 25150888 DOI: 10.1016/j.ydbio.2014.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/15/2022]
Abstract
Prechordal mesendoderm (PME) is a derivative of gastrula organizer underlying the anterior neural plate of vertebrate embryos. It has been firmly established that PME is critical for head induction and anterior-posterior patterning. Therefore, the establishment of PME in a desired shape and size at a correct position during early embryogenesis is crucial for normal head patterning. However, it remains largely unclear how the desired form and size of PME is generated at a predestined position during early embryogenesis. Here we show that in zebrafish a maternal transcription repressor Vsx1 is essential for this early developmental regulation. Knocking down maternal vsx1 resulted in impaired PME formation and progression associated with a deficient and posteriorized forebrain. Loss- and gain-of-function experiments showed that maternal Vsx1 is essential for repressing ntl ectopic expression in more animal region at early gastrula stages. Chromatin immunoprecipitation assay in combination with core consensus sequence mutation analysis further revealed that maternal Vsx1 can directly repress ntl transcription by binding to the proximal promoter at a specific site. Simultaneous inhibition of ntl function could successfully suppress the defects of both PME and forebrain formation in maternal Vsx1 knockdown embryos. Our results reveal a pivotal role for maternal Vsx1 as a direct transcriptional repressor of ntl expression at the margin of the zebrafish gastrula to ensure directional cell polarization and migration of PME cells.
Collapse
Affiliation(s)
- Xiaofeng Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ying He
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lei Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shanshan Ma
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Chen Luo
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
40
|
Economou AD, Green JBA. Modelling from the experimental developmental biologists viewpoint. Semin Cell Dev Biol 2014; 35:58-65. [PMID: 25026465 DOI: 10.1016/j.semcdb.2014.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
In this review we consider Reaction-Diffusion as the archetype of a model in developmental biology. We consider its history in relation to experimental work since it was first proposed in 1952 by Turing and revived in the 1970s by Meinhardt. We then discuss the most recent examples of experiments that address this model, including the challenges that remain in capturing the physico-chemical manifestation of the model mechanism in a real developmental system. Finally we discuss the model's current status and use in the experimental community.
Collapse
Affiliation(s)
- Andrew D Economou
- Department of Craniofacial Development & Stem Cell Biology, Guy's Tower, Floor 27, London SE1 9RT, United Kingdom
| | - Jeremy B A Green
- Department of Craniofacial Development & Stem Cell Biology, Guy's Tower, Floor 27, London SE1 9RT, United Kingdom.
| |
Collapse
|
41
|
Bauer R, Zubler F, Hauri A, Muir DR, Douglas RJ. Developmental origin of patchy axonal connectivity in the neocortex: a computational model. Cereb Cortex 2014; 24:487-500. [PMID: 23131803 PMCID: PMC3888370 DOI: 10.1093/cercor/bhs327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Injections of neural tracers into many mammalian neocortical areas reveal a common patchy motif of clustered axonal projections. We studied in simulation a mathematical model for neuronal development in order to investigate how this patchy connectivity could arise in layer II/III of the neocortex. In our model, individual neurons of this layer expressed the activator-inhibitor components of a Gierer-Meinhardt reaction-diffusion system. The resultant steady-state reaction-diffusion pattern across the neuronal population was approximately hexagonal. Growth cones at the tips of extending axons used the various morphogens secreted by intrapatch neurons as guidance cues to direct their growth and invoke axonal arborization, so yielding a patchy distribution of arborization across the entire layer II/III. We found that adjustment of a single parameter yields the intriguing linear relationship between average patch diameter and interpatch spacing that has been observed experimentally over many cortical areas and species. We conclude that a simple Gierer-Meinhardt system expressed by the neurons of the developing neocortex is sufficient to explain the patterns of clustered connectivity observed experimentally.
Collapse
Affiliation(s)
- Roman Bauer
- Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology Zürich
| | - Frederic Zubler
- Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology Zürich
| | - Andreas Hauri
- Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology Zürich
| | - Dylan R. Muir
- Department of Neurophysiology, Brain Research Institute, University of Zürich, Zürich CH-8057, Switzerland
| | - Rodney J. Douglas
- Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology Zürich
| |
Collapse
|
42
|
Coffman JA, Wessels A, DeSchiffart C, Rydlizky K. Oral-aboral axis specification in the sea urchin embryo, IV: hypoxia radializes embryos by preventing the initial spatialization of nodal activity. Dev Biol 2013; 386:302-7. [PMID: 24384388 DOI: 10.1016/j.ydbio.2013.12.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 11/17/2022]
Abstract
The oral-aboral axis of the sea urchin embryo is specified conditionally via a regulated feedback circuit involving the signaling gene nodal and its antagonist lefty. In normal development nodal activity becomes localized to the prospective oral side of the blastula stage embryo, a process that requires lefty. In embryos of Strongylocentrotus purpuratus, a redox gradient established by asymmetrically distributed mitochondria provides an initial spatial input that positions the localized domain of nodal expression. This expression is perturbed by hypoxia, leading to development of radialized embryos lacking an oral-aboral axis. Here we show that this radialization is not caused by a failure to express nodal, but rather by a failure to localize nodal activity to one side of the embryo. This occurs even when embryos are removed from hypoxia at late cleavage stage when nodal is first expressed, indicating that the effect involves the initiation phase of nodal activity, rather than its positive feedback-driven amplification and maintenance. Quantitative fluorescence microscopy of MitoTracker Orange-labeled embryos expressing nodal-GFP reporter gene revealed that hypoxia abolishes the spatial correlation between mitochondrial distribution and nodal expression, suggesting that hypoxia eliminates the initial spatial bias in nodal activity normally established by the redox gradient. We propose that absent this bias, the initiation phase of nodal expression is spatially uniform, such that the ensuing Nodal-mediated community effect is not localized, and hence refractory to Lefty-mediated enforcement of localization.
Collapse
Affiliation(s)
- James A Coffman
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672, USA.
| | - Abigail Wessels
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672, USA
| | | | - Katarina Rydlizky
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672, USA
| |
Collapse
|
43
|
Kapp LD, Abrams EW, Marlow FL, Mullins MC. The integrator complex subunit 6 (Ints6) confines the dorsal organizer in vertebrate embryogenesis. PLoS Genet 2013; 9:e1003822. [PMID: 24204286 PMCID: PMC3814294 DOI: 10.1371/journal.pgen.1003822] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.
Collapse
Affiliation(s)
- Lee D. Kapp
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Elliott W. Abrams
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Florence L. Marlow
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Fleming BM, Yelin R, James RG, Schultheiss TM. A role for Vg1/Nodal signaling in specification of the intermediate mesoderm. Development 2013; 140:1819-29. [PMID: 23533180 PMCID: PMC3621495 DOI: 10.1242/dev.093740] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2013] [Indexed: 11/20/2022]
Abstract
The intermediate mesoderm (IM) is the embryonic source of all kidney tissue in vertebrates. The factors that regulate the formation of the IM are not yet well understood. Through investigations in the chick embryo, the current study identifies and characterizes Vg1/Nodal signaling (henceforth referred to as 'Nodal-like signaling') as a novel regulator of IM formation. Excess Nodal-like signaling at gastrulation stages resulted in expansion of the IM at the expense of the adjacent paraxial mesoderm, whereas inhibition of Nodal-like signaling caused repression of IM gene expression. IM formation was sensitive to levels of the Nodal-like pathway co-receptor Cripto and was inhibited by a truncated form of the secreted molecule cerberus, which specifically blocks Nodal, indicating that the observed effects are specific to the Nodal-like branch of the TGFβ signaling pathway. The IM-promoting effects of Nodal-like signaling were distinct from the known effects of this pathway on mesoderm formation and left-right patterning, a finding that can be attributed to specific time windows for the activities of these Nodal-like functions. Finally, a link was observed between Nodal-like and BMP signaling in the induction of IM. Activation of IM genes by Nodal-like signaling required an active BMP signaling pathway, and Nodal-like signals induced phosphorylation of Smad1/5/8, which is normally associated with activation of BMP signaling pathways. We postulate that Nodal-like signaling regulates IM formation by modulating the IM-inducing effects of BMP signaling.
Collapse
Affiliation(s)
- Britannia M. Fleming
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronit Yelin
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Richard G. James
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Thomas M. Schultheiss
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
45
|
Park CB, Dufort D. NODAL signaling components regulate essential events in the establishment of pregnancy. Reproduction 2013; 145:R55-64. [DOI: 10.1530/rep-12-0103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Successful mammalian reproduction is dependent on a receptive and nurturing uterine environment. In order to establish pregnancy in humans, the uterus must i) be adequately prepared to receive the blastocyst, ii) engage in a coordinated molecular dialog with the embryo to facilitate implantation, and iii) undergo endometrial decidualization. Although numerous factors have been implicated in these essential processes, the precise network of molecular interactions that govern receptivity, embryo implantation, and decidualization remain unclear. NODAL, a morphogen in the transforming growth factor β superfamily, is well known for its critical functions during embryogenesis; however, recent studies have demonstrated an emerging role for NODAL signaling during early mammalian reproduction. Here, we review the established data and a recent wave of new studies implicating NODAL signaling components in uterine cycling, embryo implantation, and endometrial decidualization in humans and mice.
Collapse
|
46
|
Marcon L, Sharpe J. Turing patterns in development: what about the horse part? Curr Opin Genet Dev 2012; 22:578-84. [PMID: 23276682 DOI: 10.1016/j.gde.2012.11.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 11/28/2022]
Abstract
For many years Turing patterns-the repetitive patterns which Alan Turing proved could arise from simple diffusing and interacting factors-have remained an interesting theoretical possibility, rather than a central concern of the developmental biology community. Recently however, this has started to change, with an increasing number of studies combining both experimental and theoretical work to reveal how Turing models may underlie a variety of patterning or morphogenetic processes. We review here the recent developments in this field across a wide range of model systems.
Collapse
Affiliation(s)
- Luciano Marcon
- EMBL-CRG Systems Biology Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|
47
|
Abstract
Differences between the left and right sides of the brain are present in many animal species. For instance, in humans the left cerebral hemisphere is largely responsible for language and tool use and the right for processing spatial information. Zebrafish have prominent left-right asymmetries in their epithalamus that have been associated with differential left and right eye use and navigational behavior. In wild-type (WT) zebrafish embryos, Nodal pathway genes are expressed in the left side of the pineal anlage. Shortly thereafter, a parapineal organ forms to the left of the pineal. The parapineal organ causes differences in gene expression, neuropil density, and connectivity of the left and right habenula nuclei. In embryos that have an open neural tube, such as embryos that are deficient in Nodal signaling or the cell adhesion protein N-cadherin, the left and right sides of the developing epithalamus remain separated from one another. We find that the brains of these embryos often become left isomerized: both sides of the brain develop morphology and gene expression patterns that are characteristic of the left side. However, other aspects of epithalamic development, such as differentiation of specific neuronal cell types, are intact. We propose that there is a mechanism in embryos with closed neural tubes that prevents both sides from developing like the left side. This mechanism fails when the two sides of the epithalamus are widely separated from one another, suggesting that it is dependent upon a signaling protein with limited range.
Collapse
|
48
|
Middleton AM, King JR, Loose M. Wave pinning and spatial patterning in a mathematical model of Antivin/Lefty-Nodal signalling. J Math Biol 2012; 67:1393-424. [PMID: 23070212 DOI: 10.1007/s00285-012-0592-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/07/2012] [Indexed: 01/24/2023]
Abstract
Nodal signals are key regulators of mesoderm and endoderm development in vertebrate embryos. It has been observed experimentally that in Xenopus embryos the spatial range of Nodal signals is restricted by the signal Antivin (also known as Lefty). Nodal signals can activate both Nodal and Antivin, whereas Antivin is thought to antagonise Nodal by binding either directly to it or to its receptor. In this paper we develop a mathematical model of this signalling network in a line of cells. We consider the heterodimer and receptor-mediated inhibition mechanisms separately and find that, in both cases, the restriction by Antivin to the range of Nodal signals corresponds to wave pinning in the model. Our analysis indicates that, provided Antivin diffuses faster than Nodal, either mechanism can robustly account for the experimental data. We argue that, in the case of Xenopus development, it is wave pinning, rather than Turing-type patterning, that is underlying Nodal-Antivin dynamics. This leads to several experimentally testable predictions, which are discussed. Furthermore, for heterodimer-mediated inhibition to prevent waves of Nodal expression from propagating, the Nodal-Antivin complex must be turned over, and diffusivity of the complex must be negligible. In the absence of molecular mechanisms regulating these, we suggest that Antivin restricts Nodal signals via receptor-mediated, and not heterodimer-mediated, inhibition.
Collapse
Affiliation(s)
- A M Middleton
- Albert-Ludwigs-Universität, Habsburgerstrasse 49, Freiburg, 79104, Germany,
| | | | | |
Collapse
|
49
|
Matsui T, Bessho Y. Left-right asymmetry in zebrafish. Cell Mol Life Sci 2012; 69:3069-77. [PMID: 22527718 PMCID: PMC11115138 DOI: 10.1007/s00018-012-0985-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/04/2012] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
Abstract
In vertebrates, internal organs are positioned asymmetrically across the left-right (LR) axis, placing them in a defined area within the body. This LR asymmetric placement is a conserved feature of the vertebrate body plan. Events determining LR asymmetry occur during embryonic development, and are regulated by the coordinated action of genetic mechanisms that are evolutionarily conserved among vertebrates. Recent studies using zebrafish have provided new insights into how the Kupffer's vesicle organizer region is generated, and how it relays LR asymmetry information to the lateral plate mesoderm. In this review, we summarize recent advances in zebrafish and describe our current understanding of the mechanisms underlying these processes.
Collapse
Affiliation(s)
- Takaaki Matsui
- Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Nara, 630-0101, Japan.
| | | |
Collapse
|
50
|
Meinhardt H. No oscillations in real activator-inhibitor systems in accomplishing pattern formation. Bull Math Biol 2012; 74:2265-7; author reply 2268-71. [PMID: 22899480 DOI: 10.1007/s11538-012-9767-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/02/2012] [Indexed: 11/29/2022]
|