1
|
Gao J, Qin P, Tang S, Guo L, Dai C, Wen J, Yi B, Ma C, Shen J, Fu T, Zou J, Tu J. A gain-of-function mutation in BnaIAA13 disrupts vascular tissue and lateral root development in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5592-5610. [PMID: 38824403 PMCID: PMC11427839 DOI: 10.1093/jxb/erae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
Rapeseed (Brassica napus) is an important oilseed crop worldwide. Plant vascular tissues are responsible for long-distance transport of water and nutrients and for providing mechanical support. The lateral roots absorb water and nutrients. The genetic basis of vascular tissue and lateral root development in rapeseed remains unknown. This study characterized an ethyl methanesulfonate-mutagenized rapeseed mutant, T16, which showed dwarf stature, reduced lateral roots, and leaf wilting. SEM observations showed that the internode cells were shortened. Observations of tissue sections revealed defects in vascular bundle development in the stems and petioles. Genetic analysis revealed that the phenotypes of T16 were controlled by a single semi-dominant nuclear gene. Map-based cloning and genetic complementarity identified BnaA03.IAA13 as the functional gene; a G-to-A mutation in the second exon changed glycine at position 79 to glutamic acid, disrupting the conserved degron motif VGWPP. Transcriptome analysis in roots and stems showed that auxin and cytokinin signaling pathways were disordered in T16. Evolutionary analysis showed that AUXIN/INDOLE-3-ACETIC ACID is conserved during plant evolution. The heterozygote of T16 showed significantly reduced plant height while maintaining other agronomic traits. Our findings provide novel insights into the regulatory mechanisms of vascular tissue and lateral root development, and offer a new germplasm resource for rapeseed breeding.
Collapse
Affiliation(s)
- Jinxiang Gao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, Hainan, 572025, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
de Roij M, Borst JW, Weijers D. Protein degradation in auxin response. THE PLANT CELL 2024; 36:3025-3035. [PMID: 38652687 PMCID: PMC11371164 DOI: 10.1093/plcell/koae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2024]
Abstract
The signaling molecule auxin sits at the nexus of plant biology where it coordinates essentially all growth and developmental processes. Auxin molecules are transported throughout plant tissues and are capable of evoking highly specific physiological responses by inducing various molecular pathways. In many of these pathways, proteolysis plays a crucial role for correct physiological responses. This review provides a chronology of the discovery and characterization of the auxin receptor, which is a fascinating example of separate research trajectories ultimately converging on the discovery of a core auxin signaling hub that relies on degradation of a family of transcriptional inhibitor proteins-the Aux/IAAs. Beyond describing the "classical" proteolysis-driven auxin response system, we explore more recent examples of the interconnection of proteolytic systems, which target a range of other auxin signaling proteins, and auxin response. By highlighting these emerging concepts, we provide potential future directions to further investigate the role of protein degradation within the framework of auxin response.
Collapse
Affiliation(s)
- Martijn de Roij
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| |
Collapse
|
3
|
Sun Q, Li X, Sun L, Sun M, Xu H, Zhou X. Plant hormones and phenolic acids response to UV-B stress in Rhododendron chrysanthum pall. Biol Direct 2024; 19:40. [PMID: 38807240 PMCID: PMC11134694 DOI: 10.1186/s13062-024-00483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Our study aims to identify the mechanisms involved in regulating the response of Rhodoendron Chrysanthum Pall. (R. chrysanthum) leaves to UV-B exposure; phosphorylated proteomics and metabolomics for phenolic acids and plant hormones were integrated in this study. The results showed that UV-B stress resulted in the accumulation of salicylic acid and the decrease of auxin, jasmonic acid, abscisic acid, cytokinin and gibberellin in R. chrysanthum. The phosphorylated proteins that changed in plant hormone signal transduction pathway and phenolic acid biosynthesis pathway were screened by comprehensive metabonomics and phosphorylated proteomics. In order to construct the regulatory network of R. chrysanthum leaves under UV-B stress, the relationship between plant hormones and phenolic acid compounds was analyzed. It provides a rationale for elucidating the molecular mechanisms of radiation tolerance in plants.
Collapse
Affiliation(s)
- Qi Sun
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xiangqun Li
- Jilin Engineering Vocational College, Siping, China
| | - Li Sun
- Siping Central People's Hospital, Siping, China
| | - Mingyi Sun
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China.
| |
Collapse
|
4
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
5
|
Gasperini D, Howe GA. Phytohormones in a universe of regulatory metabolites: lessons from jasmonate. PLANT PHYSIOLOGY 2024; 195:135-154. [PMID: 38290050 PMCID: PMC11060663 DOI: 10.1093/plphys/kiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Small-molecule phytohormones exert control over plant growth, development, and stress responses by coordinating the patterns of gene expression within and between cells. Increasing evidence indicates that currently recognized plant hormones are part of a larger group of regulatory metabolites that have acquired signaling properties during the evolution of land plants. This rich assortment of chemical signals reflects the tremendous diversity of plant secondary metabolism, which offers evolutionary solutions to the daunting challenges of sessility and other unique aspects of plant biology. A major gap in our current understanding of plant regulatory metabolites is the lack of insight into the direct targets of these compounds. Here, we illustrate the blurred distinction between classical phytohormones and other bioactive metabolites by highlighting the major scientific advances that transformed the view of jasmonate from an interesting floral scent to a potent transcriptional regulator. Lessons from jasmonate research generally apply to other phytohormones and thus may help provide a broad understanding of regulatory metabolite-protein interactions. In providing a framework that links small-molecule diversity to transcriptional plasticity, we hope to stimulate future research to explore the evolution, functions, and mechanisms of perception of a broad range of plant regulatory metabolites.
Collapse
Affiliation(s)
- Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 42284, USA
| |
Collapse
|
6
|
Qi T, Yang W, Hassan MJ, Liu J, Yang Y, Zhou Q, Li H, Peng Y. Genome-wide identification of Aux/IAA gene family in white clover (Trifolium repens L.) and functional verification of TrIAA18 under different abiotic stress. BMC PLANT BIOLOGY 2024; 24:346. [PMID: 38684940 PMCID: PMC11057079 DOI: 10.1186/s12870-024-05034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND White clover (Trifolium repens L.) is an excellent leguminous cool-season forage with a high protein content and strong nitrogen-fixing ability. Despite these advantages, its growth and development are markedly sensitive to environmental factors. Indole-3-acetic acid (IAA) is the major growth hormone in plants, regulating plant growth, development, and response to adversity. Nevertheless, the specific regulatory functions of Aux/IAA genes in response to abiotic stresses in white clover remain largely unexplored. RESULTS In this study, we identified 47 Aux/IAA genes in the white clover genome, which were categorized into five groups based on phylogenetic analysis. The TrIAAs promoter region co-existed with different cis-regulatory elements involved in developmental and hormonal regulation, and stress responses, which may be closely related to their diverse regulatory roles. Collinearity analysis showed that the amplification of the TrIAA gene family was mainly carried out by segmental duplication. White clover Aux/IAA genes showed different expression patterns in different tissues and under different stress treatments. In addition, we performed a yeast two-hybrid analysis to investigate the interaction between white clover Aux/IAA and ARF proteins. Heterologous expression indicated that TrIAA18 could enhance stress tolerance in both yeast and transgenic Arabidopsis thaliana. CONCLUSION These findings provide new scientific insights into the molecular mechanisms of growth hormone signaling in white clover and its functional characteristics in response to environmental stress.
Collapse
Affiliation(s)
- Tiangang Qi
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weiqiang Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiefang Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujiao Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinyu Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hang Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Zhang X, Wu C, Guo Y, Ren X, Meng Y, Gao Q, Zhang F, Wang Y, Guo J. Genome-Wide Analysis Elucidates the Roles of GhTIR1/ AFB Genes Reveals the Function of Gh_D08G0763 ( GhTIR1) in Cold Stress in G. hirsutum. PLANTS (BASEL, SWITZERLAND) 2024; 13:1152. [PMID: 38674561 PMCID: PMC11055017 DOI: 10.3390/plants13081152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
This study identified 13 GhTIR1/AFB members in G. hirsutum through bioinformatics methods and divided them into three subgroups by phylogenetic tree analysis. Motif and gene structure analysis showed that the genes in this family were highly conserved. Promoter cis-acting element analysis found that the promoters of GhTIR1/AFBs contained a large number of cis-acting elements in response to growth and development and abiotic stress. Further RT-qPCR results showed that GhTIR1/AFB genes responded to various abiotic stresses such as IAA, ABA, cold, and heat, and the expression levels of each gene changed obviously, especially Gh_D08G0763 (GhTIR1), which responded significantly to cold injury. Using VIGS (virus-induced gene silencing) technology to silence Gh_D08G0763 in the cold-tolerant cotton variety ZM36, it was found that the resistance of ZM36 to cold damage was significantly reduced. The physiological response mechanism of the Gh_D08G0763 in resisting cold damage was further analyzed through trypan blue staining of leaves and determination of enzyme activity levels. This study provided effective genetic resources for cotton cold-tolerance breeding.
Collapse
Affiliation(s)
- Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (X.R.); (Y.M.); (Q.G.); (F.Z.)
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Cuicui Wu
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China;
| | - Yutao Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475000, China;
| | - Xiang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (X.R.); (Y.M.); (Q.G.); (F.Z.)
| | - Yongming Meng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (X.R.); (Y.M.); (Q.G.); (F.Z.)
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Qi Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (X.R.); (Y.M.); (Q.G.); (F.Z.)
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (X.R.); (Y.M.); (Q.G.); (F.Z.)
| | - Yaping Wang
- Sanya Institute of Henan University, Sanya 572025, China;
| | - Jinggong Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475000, China;
- Sanya Institute of Henan University, Sanya 572025, China;
| |
Collapse
|
8
|
Su L, Zhang T, Yang B, Dong T, Liu X, Bai Y, Liu H, Xiong J, Zhong Y, Cheng ZMM. Different evolutionary patterns of TIR1/AFBs and AUX/IAAs and their implications for the morphogenesis of land plants. BMC PLANT BIOLOGY 2023; 23:265. [PMID: 37202746 DOI: 10.1186/s12870-023-04253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND The plant hormone auxin is widely involved in plant growth, development, and morphogenesis, and the TIR1/AFB and AUX/IAA proteins are closely linked to rapid auxin response and signal transmission. However, their evolutionary history, historical patterns of expansion and contraction, and changes in interaction relationships are still unknown. RESULTS Here, we analyzed the gene duplications, interactions, and expression patterns of TIR1/AFBs and AUX/IAAs to understand their underlying mechanisms of evolution. The ratios of TIR1/AFBs to AUX/IAAs range from 4:2 in Physcomitrium patens to 6:29 in Arabidopsis thaliana and 3:16 in Fragaria vesca. Whole-genome duplication (WGD) and tandem duplication have contributed to the expansion of the AUX/IAA gene family, but numerous TIR1/AFB gene duplicates were lost after WGD. We further analyzed the expression profiles of TIR1/AFBs and AUX/IAAs in different tissue parts of Physcomitrium patens, Selaginella moellendorffii, Arabidopsis thaliana and Fragaria vesca, and found that TIR1/AFBs and AUX/IAAs were highly expressed in all tissues in P. patens, S. moellendorffii. In A. thaliana and F. vesca, TIR1/AFBs maintained the same expression pattern as the ancient plants with high expression in all tissue parts, while AUX/IAAs appeared tissue-specific expression. In F. vesca, 11 AUX/IAAs interacted with TIR1/AFBs with different interaction strengths, and the functional specificity of AUX/IAAs was related to their ability to bind TIR1/AFBs, thus promoting the development of specific higher plant organs. Verification of the interactions among TIR1/AFBs and AUX/IAAs in Marchantia polymorpha and F. vesca also showed that the regulation of AUX/IAA members by TIR1/AFBs became more refined over the course of plant evolution. CONCLUSIONS Our results indicate that specific interactions and specific gene expression patterns both contributed to the functional diversification of TIR1/AFBs and AUX/IAAs.
Collapse
Affiliation(s)
- Liyao Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianyu Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yibo Bai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingsong Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Zhong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zong-Ming Max Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Gidhi A, Mohapatra A, Fatima M, Jha SK, Kumar M, Mukhopadhyay K. Insights of auxin signaling F-box genes in wheat (Triticum aestivum L.) and their dynamic expression during the leaf rust infection. PROTOPLASMA 2023; 260:723-739. [PMID: 36100728 DOI: 10.1007/s00709-022-01808-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB) protein serves as auxin receptor and links with Aux/IAA repressor protein leading to its degradation via SKP-Cullin-F box (SCFTIR1/AFB) complex in the auxin signaling pathway. Present study revealed 11 TIR1/AFB genes in wheat by genome-wide search using AFB HMM profile. Phylogenetic analysis clustered these genes in two classes. Several phytohormone, abiotic, and biotic stress responsive cis-elements were detected in promoter regions of TIR1/AFB genes. These genes were localized on homoeologous chromosome groups 2, 3, and 5 showing orthologous relation with other monocot plants. Most genes were interrupted by introns and the gene products were localized in cytoplasm, nucleus, and cell organelles. TaAFB3, TaAFB5, and TaAFB8 had nuclear localization signals. The evolutionary constraint suggested paralogous sister pairs and orthologous genes went through strong purifying selection process and are slowly evolving at protein level. Functional annotation revealed all TaAFB genes participated in auxin activated signaling pathway and SCF-mediated ubiquitination process. Furthermore, in silico expression study revealed their diverse expression profiles during various developmental stages in different tissues and organs as well as during biotic and abiotic stress. QRT-PCR based studies suggested distinct expression pattern of TIR1-1, TIR1-3, TaAFB1, TaAFB2, TaAFB3, TaAFB4, TaAFB5, TaAFB7, and TaAFB8 displaying maximum expression at 24 and 48 h post inoculation in both susceptible and resistant near isogenic wheat lines infected with leaf rust pathogen. Importantly, this also reflects coordinated responses in expression patterns of wheat TIR1/AFB genes during progression stages of leaf rust infection.
Collapse
Affiliation(s)
- Anupama Gidhi
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Archit Mohapatra
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Mehar Fatima
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
10
|
Morales-Herrera S, Rubilar-Hernández C, Pérez-Henríquez P, Norambuena L. Endocytic trafficking induces lateral root founder cell specification in Arabidopsis thaliana in a process distinct from the auxin-induced pathway. FRONTIERS IN PLANT SCIENCE 2023; 13:1060021. [PMID: 36726665 PMCID: PMC9885164 DOI: 10.3389/fpls.2022.1060021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Plants can modify their body structure, such as their root architecture, post-embryonically. For example, Arabidopsis thaliana can develop lateral roots as part of an endogenous program or in response to biotic and abiotic stimuli. Root pericycle cells are specified to become lateral root founder cells, initiating lateral root organogenesis. We used the endocytic trafficking inducer Sortin2 to examine the role of endomembrane trafficking in lateral root founder cell specification. Our results indicate that Sortin2 stimulation turns on a de novo program of lateral root primordium formation that is distinct from the endogenous program driven by auxin. In this distinctive mechanism, extracellular calcium uptake and endocytic trafficking toward the vacuole are required for lateral root founder cell specification upstream of the auxin module led by AUX/IAA28. The auxin-dependent TIR1/AFB F-boxes and auxin polar transport are dispensable for the endocytic trafficking-dependent lateral root founder cell specification; however, a different set of F-box proteins and a functional SCF complex are required. The endocytic trafficking could constitute a convenient strategy for organogenesis in response to environmental conditions.
Collapse
|
11
|
Luo X, Wei Y, Zheng Y, Wei L, Wu F, Cai Q, Xie H, Zhang J. Analysis of co-expression and gene regulatory networks associated with sterile lemma development in rice. BMC PLANT BIOLOGY 2023; 23:11. [PMID: 36604645 PMCID: PMC9817312 DOI: 10.1186/s12870-022-04012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The sterile lemma is a unique organ of the rice (Oryza sativa L.) spikelet. However, the characteristics and origin of the rice sterile lemma have not been determined unequivocally, so it is important to elucidate the molecular mechanism of the development of the sterile lemma. RESULTS In the paper, we outline the regulatory mechanism of sterile lemma development by LONG STERILE LEMMA1 (G1), which has been identified as the gene controlling sterile lemma development. Based on the comprehensive analyses of transcriptome dynamics during sterile lemma development with G1 alleles between wild-type (WT) and mutant (MT) in rice, we obtained co-expression data and regulatory networks related to sterile lemma development. Co-transfection assays of rice protoplasts confirmed that G1 affects the expression of various phytohormone-related genes by regulating a number of critical transcription factors, such as OsLBD37 and OSH1. The hormone levels in sterile lemmas from WT and MT of rice supports the hypotheses that lower auxin, lower gibberellin, and higher cytokinin concentrations are required to maintain a normal phenotype of sterile lemmas. CONCLUSION The regulatory networks have considerable reference value, and some of the regulatory relationships exhibiting strong correlations are worthy of further study. Taken together, these work provided a detailed guide for further studies into the molecular mechanism of sterile lemma development.
Collapse
Affiliation(s)
- Xi Luo
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Linyan Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Fangxi Wu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| |
Collapse
|
12
|
Antoniadi I, Mateo-Bonmatí E, Pernisová M, Brunoni F, Antoniadi M, Villalonga MGA, Ament A, Karády M, Turnbull C, Doležal K, Pěnčík A, Ljung K, Novák O. IPT9, a cis-zeatin cytokinin biosynthesis gene, promotes root growth. FRONTIERS IN PLANT SCIENCE 2022; 13:932008. [PMID: 36311087 PMCID: PMC9616112 DOI: 10.3389/fpls.2022.932008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 06/12/2023]
Abstract
Cytokinin and auxin are plant hormones that coordinate many aspects of plant development. Their interactions in plant underground growth are well established, occurring at the levels of metabolism, signaling, and transport. Unlike many plant hormone classes, cytokinins are represented by more than one active molecule. Multiple mutant lines, blocking specific parts of cytokinin biosynthetic pathways, have enabled research in plants with deficiencies in specific cytokinin-types. While most of these mutants have confirmed the impeding effect of cytokinin on root growth, the ipt29 double mutant instead surprisingly exhibits reduced primary root length compared to the wild type. This mutant is impaired in cis-zeatin (cZ) production, a cytokinin-type that had been considered inactive in the past. Here we have further investigated the intriguing ipt29 root phenotype, opposite to known cytokinin functions, and the (bio)activity of cZ. Our data suggest that despite the ipt29 short-root phenotype, cZ application has a negative impact on primary root growth and can activate a cytokinin response in the stele. Grafting experiments revealed that the root phenotype of ipt29 depends mainly on local signaling which does not relate directly to cytokinin levels. Notably, ipt29 displayed increased auxin levels in the root tissue. Moreover, analyses of the differential contributions of ipt2 and ipt9 to the ipt29 short-root phenotype demonstrated that, despite its deficiency on cZ levels, ipt2 does not show any root phenotype or auxin homeostasis variation, while ipt9 mutants were indistinguishable from ipt29. We conclude that IPT9 functions may go beyond cZ biosynthesis, directly or indirectly, implicating effects on auxin homeostasis and therefore influencing plant growth.
Collapse
Affiliation(s)
- Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Eduardo Mateo-Bonmatí
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Markéta Pernisová
- Plant Sciences Core Facility, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), and NCBR, Faculty of Science, Masaryk University, Brno, Czechia
| | - Federica Brunoni
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Mariana Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Anita Ament
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Michal Karády
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Colin Turnbull
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Karel Doležal
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
13
|
Cheng W, Zhang M, Cheng T, Wang J, Zhang Q. Genome-wide identification of Aux/IAA gene family and their expression analysis in Prunus mume. Front Genet 2022; 13:1013822. [PMID: 36313426 PMCID: PMC9597081 DOI: 10.3389/fgene.2022.1013822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
AUXIN/INDOLE ACETIC ACIDs (Aux/IAAs), an early auxin-responsive gene family, is important for plant growth and development. To fully comprehend the character of Aux/IAA genes in woody plants, we identified 19 PmIAA genes in Prunus mume and dissected their protein domains, phylogenetic relationship, gene structure, promoter, and expression patterns during floral bud flushing, auxin response, and abiotic stress response. The study showed that PmIAA proteins shared conserved Aux/IAA domain, but differed in protein motif composition. 19 PmIAA genes were divided into six groups (Groups Ⅰ to Ⅵ) based on phylogenetic analysis. The gene duplication analysis showed that segmental and dispersed duplication greatly influenced the expansion of PmIAA genes. Moreover, we identified and classified the cis-elements of PmIAA gene promoters and detected elements that are related to phytohormone responses and abiotic stress responses. With expression pattern analysis, we observed the auxin-responsive expression of PmIAA5, PmIAA17, and PmIAA18 in flower bud, stem, and leaf tissues. PmIAA5, PmIAA13, PmIAA14, and PmIAA18 were possibly involved in abiotic stress responses in P. mume. In general, these results laid the theoretical foundation for elaborating the functions of Aux/IAA genes in perennial woody plant development.
Collapse
Affiliation(s)
| | - Man Zhang
- *Correspondence: Man Zhang, ; Qixiang Zhang,
| | | | | | | |
Collapse
|
14
|
Figueiredo MRAD, Strader LC. Intrinsic and extrinsic regulators of Aux/IAA protein degradation dynamics. Trends Biochem Sci 2022; 47:865-874. [PMID: 35817652 PMCID: PMC9464691 DOI: 10.1016/j.tibs.2022.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 01/03/2023]
Abstract
The plant hormone auxin acts through regulated degradation of Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) proteins to regulate transcriptional events. In this review, we examine the composition and function of each Aux/IAA structural motif. We then focus on recent characterization of Aux/IAA N-terminal disordered regions, formation of secondary structure within these disordered regions, and post-translational modifications (PTMs) that affect Aux/IAA function and stability. We propose how structural variations between Aux/IAA family members may be tuned for differential transcriptional repression and degradation dynamics.
Collapse
|
15
|
Avilez-Montalvo JR, Quintana-Escobar AO, Méndez-Hernández HA, Aguilar-Hernández V, Brito-Argáez L, Galaz-Ávalos RM, Uc-Chuc MA, Loyola-Vargas VM. Auxin-Cytokinin Cross Talk in Somatic Embryogenesis of Coffea canephora. PLANTS 2022; 11:plants11152013. [PMID: 35956493 PMCID: PMC9370429 DOI: 10.3390/plants11152013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Cytokinins (CK) are plant growth regulators involved in multiple physiological processes in plants. One less studied aspect is CK homeostasis (HM). The primary genes related to HM are involved in biosynthesis (IPT), degradation (CKX), and signaling (ARR). This paper demonstrates the effect of auxin (Aux) and CK and their cross talk in a Coffea canephora embryogenic system. The transcriptome and RT-qPCR suggest that Aux in pre-treatment represses biosynthesis, degradation, and signal CK genes. However, in the induction, there is an increase of genes implicated in the CK perception/signal, indicating perhaps, as in other species, Aux is repressing CK, and CK are inducing per se genes involved in its HM. This is reflected in the endogenous concentration of CK; pharmacology experiments helped study the effect of each plant growth regulator in our SE system. We conclude that the Aux–CK balance is crucial to directing somatic embryogenesis in C. canephora.
Collapse
Affiliation(s)
- Johny R. Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Ana O. Quintana-Escobar
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Hugo A. Méndez-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Víctor Aguilar-Hernández
- Catedrático CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico;
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Rosa M. Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Miguel A. Uc-Chuc
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
- Correspondence: ; Tel.: +52-999-942-83-30 (ext. 243)
| |
Collapse
|
16
|
Abstract
Auxin signaling regulates growth and developmental processes in plants. The core of nuclear auxin signaling relies on just three components: TIR1/AFBs, Aux/IAAs, and ARFs. Each component is itself made up of several domains, all of which contribute to the regulation of auxin signaling. Studies of the structural aspects of these three core signaling components have deepened our understanding of auxin signaling dynamics and regulation. In addition to the structured domains of these components, intrinsically disordered regions within the proteins also impact auxin signaling outcomes. New research is beginning to uncover the role intrinsic disorder plays in auxin-regulated degradation and subcellular localization. Structured and intrinsically disordered domains affect auxin perception, protein degradation dynamics, and DNA binding. Taken together, subtle differences within the domains and motifs of each class of auxin signaling component affect signaling outcomes and specificity.
Collapse
Affiliation(s)
- Nicholas Morffy
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, Missouri 63130, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, Missouri 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130, USA
| |
Collapse
|
17
|
Sathyan KM, Scott TG, Guertin MJ. ARF-AID: A Rapidly Inducible Protein Degradation System That Preserves Basal Endogenous Protein Levels. ACTA ACUST UNITED AC 2021; 132:e124. [PMID: 32757370 PMCID: PMC7491365 DOI: 10.1002/cpmb.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inducible degron systems are widely used to specifically and rapidly deplete proteins of interest in cell lines and organisms. An advantage of inducible degradation is that the biological system under study remains intact and functional until perturbation, a feature that necessitates that the endogenous levels of the protein are maintained. However, endogenous tagging of genes with auxin‐inducible degrons (AID) can result in chronic, auxin‐independent proteasome‐mediated degradation. The ARF‐AID (auxin‐response factor–auxin‐inducible degron) system is a re‐engineered auxin‐inducible protein degradation system. The additional expression of the ARF‐PB1 domain prevents chronic, auxin‐independent degradation of AID‐tagged proteins while preserving rapid auxin‐induced degradation of tagged proteins. Here, we describe the protocol for engineering human cell lines to implement the ARF‐AID system for specific and inducible protein degradation. These methods are adaptable and can be extended from cell lines to organisms. © 2020 The Authors. Basic Protocol 1: Generation of ARF‐P2A‐TIR1 progenitor cells Basic Protocol 2: Designing, cloning, and testing of a gene‐specific sgRNA Basic Protocol 3: Design and amplification of a homology‐directed repair construct (C‐terminal tagging) Alternate Protocol 1: Design and amplification of a homology‐directed repair construct (N‐terminal tagging) Basic Protocol 4: Tagging of a gene of interest with AID Alternate Protocol 2: Establishment of an ARF‐AID clamp system Basic Protocol 5: Testing of auxin‐mediated degradation of the AID‐tagged protein
Collapse
Affiliation(s)
- Kizhakke Mattada Sathyan
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia
| | - Thomas G Scott
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia
| | - Michael J Guertin
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia.,Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia.,Cancer Center, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
18
|
Tu T, Zheng S, Ren P, Meng X, Zhao J, Chen Q, Li C. Coordinated cytokinin signaling and auxin biosynthesis mediates arsenate-induced root growth inhibition. PLANT PHYSIOLOGY 2021; 185:1166-1181. [PMID: 33793921 PMCID: PMC8133639 DOI: 10.1093/plphys/kiaa072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
Interactions between plant hormones and environmental signals are important for the maintenance of root growth plasticity under ever-changing environmental conditions. Here, we demonstrate that arsenate (AsV), the most prevalent form of arsenic (As) in nature, restrains elongation of the primary root through transcriptional regulation of local auxin biosynthesis genes in the root tips of Arabidopsis (Arabidopsis thaliana) plants. The ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1 (ASA1) and BETA SUBUNIT 1 (ASB1) genes encode enzymes that catalyze the conversion of chorismate to anthranilate (ANT) via the tryptophan-dependent auxin biosynthesis pathway. Our results showed that AsV upregulates ASA1 and ASB1 expression in root tips, and ASA1- and ASB1-mediated auxin biosynthesis is involved in AsV-induced root growth inhibition. Further investigation confirmed that AsV activates cytokinin signaling by stabilizing the type-B ARABIDOPSIS RESPONSE REGULATOR1 (ARR1) protein, which directly promotes the transcription of ASA1 and ASB1 genes by binding to their promoters. Genetic analysis revealed that ASA1 and ASB1 are epistatic to ARR1 in the AsV-induced inhibition of primary root elongation. Overall, the results of this study illustrate a molecular framework that explains AsV-induced root growth inhibition via crosstalk between two major plant growth regulators, auxin and cytokinin.
Collapse
Affiliation(s)
- Tianli Tu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Shuangshuang Zheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Panrong Ren
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwen Meng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jiuhai Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
- Author for communication: (Q.C.), (C.L.)
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Martinez-Garcia M, Fernández-Jiménez N, Santos JL, Pradillo M. Duplication and divergence: New insights into AXR1 and AXL functions in DNA repair and meiosis. Sci Rep 2020; 10:8860. [PMID: 32483285 PMCID: PMC7264244 DOI: 10.1038/s41598-020-65734-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/20/2020] [Indexed: 01/08/2023] Open
Abstract
Rubylation is a conserved regulatory pathway similar to ubiquitination and essential in the response to the plant hormone auxin. In Arabidopsis thaliana, AUXIN RESISTANT1 (AXR1) functions as the E1-ligase in the rubylation pathway. The gene AXR1-LIKE (AXL), generated by a relatively recent duplication event, can partially replace AXR1 in this pathway. We have analysed mutants deficient for both proteins and complementation lines (with the AXR1 promoter and either AXR1 or AXL coding sequences) to further study the extent of functional redundancy between both genes regarding two processes: meiosis and DNA repair. Here we report that whereas AXR1 is essential to ensure the obligatory chiasma, AXL seems to be dispensable during meiosis, although its absence slightly alters chiasma distribution. In addition, expression of key DNA repair and meiotic genes is altered when either AXR1 or AXL are absent. Furthermore, our results support a significant role for both genes in DNA repair that was not previously described. These findings highlight that AXR1 and AXL show a functional divergence in relation to their involvement in homologous recombination, exemplifying a duplicate retention model in which one copy tends to have more sub-functions than its paralog.
Collapse
Affiliation(s)
- Marina Martinez-Garcia
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Juan L Santos
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| |
Collapse
|
20
|
Powers SK, Strader LC. Regulation of auxin transcriptional responses. Dev Dyn 2019; 249:483-495. [PMID: 31774605 PMCID: PMC7187202 DOI: 10.1002/dvdy.139] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 01/27/2023] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate a vast number of developmental responses throughout all stages of plant growth. Tight control and coordination of auxin signaling is required for the generation of specific auxin‐response outputs. The nuclear auxin signaling pathway controls auxin‐responsive gene transcription through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F‐BOX pathway. Recent work has uncovered important details into how regulation of auxin signaling components can generate unique and specific responses to determine auxin outputs. In this review, we discuss what is known about the core auxin signaling components and explore mechanisms important for regulating auxin response specificity. A review of recent updates to our understanding of auxin signaling.
Collapse
Affiliation(s)
- Samantha K Powers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri.,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri.,Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
21
|
Li N, Uhrig JF, Thurow C, Huang LJ, Gatz C. Reconstitution of the Jasmonate Signaling Pathway in Plant Protoplasts. Cells 2019; 8:cells8121532. [PMID: 31795159 PMCID: PMC6953042 DOI: 10.3390/cells8121532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 01/11/2023] Open
Abstract
The phytohormone jasmonic acid (JA) plays an important role in various plant developmental processes and environmental adaptations. The JA signaling pathway has been well-elucidated in the reference plant Arabidopsis thaliana. It starts with the perception of the active JA derivative, jasmonoyl-isoleucine (JA-Ile), by the F-box protein COI1 which is part of the E3-ligase SCFCOI1. Binding of JA-Ile enables the interaction between COI1 and JAZ repressor proteins. Subsequent degradation of JAZ proteins leads to the activation of transcription factors like e.g., MYC2. Here we demonstrate that the pathway can be reconstituted in transiently transformed protoplasts. Analysis of the stability of a JAZ1-fLuc fusion protein as a function of COI1 transiently expressed in coi1 protoplasts allows structure function analysis of both JAZs and COI1. Using this system, we found that conserved cysteines in COI1 influence steady state COI1 protein levels. Using a luciferase reporter gene under the control of the JAZ1 promoter enable to address those features of JAZ1 that are required for MYC2 repression. Interestingly, the conserved TIFY-motif previously described to interact with NINJA to recruit the corepressor TOPLESS is not necessary for repression. This result is in favor of the alternative repression mode that proposes a direct competition between repressive JAZs and promotive MEDIATOR25 at MYC2. Finally, using protoplasts from the aos coi1 double mutant, which is deficient in JA synthesis and perception, we provide a system that has the potential to study the activity of different COI1 variants in the presence of different ligands.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Hunan 410004, China;
- College of Forestry, Central South University of Forestry and Technology, Hunan 410004, China
- Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Göttingen, Germany; (J.F.U.); (C.T.)
| | - Joachim F. Uhrig
- Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Göttingen, Germany; (J.F.U.); (C.T.)
| | - Corinna Thurow
- Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Göttingen, Germany; (J.F.U.); (C.T.)
| | - Li-Jun Huang
- College of Forestry, Central South University of Forestry and Technology, Hunan 410004, China
- Correspondence: (L.-J.H.); (C.G.)
| | - Christiane Gatz
- Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Göttingen, Germany; (J.F.U.); (C.T.)
- Correspondence: (L.-J.H.); (C.G.)
| |
Collapse
|
22
|
Sathyan KM, McKenna BD, Anderson WD, Duarte FM, Core L, Guertin MJ. An improved auxin-inducible degron system preserves native protein levels and enables rapid and specific protein depletion. Genes Dev 2019; 33:1441-1455. [PMID: 31467088 PMCID: PMC6771385 DOI: 10.1101/gad.328237.119] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
Rapid perturbation of protein function permits the ability to define primary molecular responses while avoiding downstream cumulative effects of protein dysregulation. The auxin-inducible degron (AID) system was developed as a tool to achieve rapid and inducible protein degradation in nonplant systems. However, tagging proteins at their endogenous loci results in chronic auxin-independent degradation by the proteasome. To correct this deficiency, we expressed the auxin response transcription factor (ARF) in an improved inducible degron system. ARF is absent from previously engineered AID systems but is a critical component of native auxin signaling. In plants, ARF directly interacts with AID in the absence of auxin, and we found that expression of the ARF PB1 (Phox and Bem1) domain suppresses constitutive degradation of AID-tagged proteins. Moreover, the rate of auxin-induced AID degradation is substantially faster in the ARF-AID system. To test the ARF-AID system in a quantitative and sensitive manner, we measured genome-wide changes in nascent transcription after rapidly depleting the ZNF143 transcription factor. Transcriptional profiling indicates that ZNF143 activates transcription in cis and regulates promoter-proximal paused RNA polymerase density. Rapidly inducible degradation systems that preserve the target protein's native expression levels and patterns will revolutionize the study of biological systems by enabling specific and temporally defined protein dysregulation.
Collapse
Affiliation(s)
- Kizhakke Mattada Sathyan
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Brian D McKenna
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Warren D Anderson
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Leighton Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Michael J Guertin
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA.,Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA.,Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
23
|
Williams C, Fernández-Calvo P, Colinas M, Pauwels L, Goossens A. Jasmonate and auxin perception: how plants keep F-boxes in check. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3401-3414. [PMID: 31173086 DOI: 10.1093/jxb/erz272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/29/2019] [Indexed: 05/24/2023]
Abstract
Phytohormones regulate the plasticity of plant growth and development, and responses to biotic and abiotic stresses. Many hormone signal transduction cascades involve ubiquitination and subsequent degradation of proteins by the 26S proteasome. The conjugation of ubiquitin to a substrate is facilitated by the E1 activating, E2 conjugating, and the substrate-specifying E3 ligating enzymes. The most prevalent type of E3 ligase in plants is the Cullin-RING ligase (CRL)-type, with F-box proteins (FBPs) as the substrate recognition component. The activity of these SKP-Cullin-F-box (SCF) complexes needs to be tightly regulated in time and place. Here, we review the regulation of SCF function in plants on multiple levels, with a focus on the auxin and jasmonate SCF-type receptor complexes. We discuss in particular the relevance of protein-protein interactions and post-translational modifications as mechanisms to keep SCF functioning under control. Additionally, we highlight the unique property of SCFTIR1/AFB and SCFCOI1 to recognize substrates by forming co-receptor complexes. Finally, we explore how engineered selective agonists can be used to study and uncouple the outcomes of the complex auxin and jasmonate signaling networks that are governed by these FBPs.
Collapse
Affiliation(s)
- Clara Williams
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Centre for Plant Biotechnology and Genomics, Parque Cientifico y Tecnologico, UPM Campus de Montegancedo, Madrid, Spain
| | - Maite Colinas
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurens Pauwels
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
24
|
Rudnicka M, Ludynia M, Karcz W. Effects of Naphthazarin (DHNQ) Combined with Lawsone (NQ-2-OH) or 1,4-Naphthoquinone (NQ) on the Auxin-Induced Growth of Zea mays L. Coleoptile Segments. Int J Mol Sci 2019; 20:E1788. [PMID: 30978914 PMCID: PMC6479706 DOI: 10.3390/ijms20071788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022] Open
Abstract
Naphthoquinones, plants secondary metabolites are known for their antibacterial, antifungal, anti-inflammatory, anti-cancer and anti-parasitic properties. The biological activity of naphthoquinones is connected with their ability to generate reactive oxygen species and to modify biological molecules at their nucleophilic sites. In our research, the effect of naphthazarin (DHNQ) combined with 2-hydroxy-1,4-naphthoquinone (NQ-2-OH) or 1,4-naphthoquinone (1,4-NQ) on the elongation growth, pH changes of the incubation medium, oxidative stress and redox activity of maize coleoptile cells were investigated. This paper describes experiments performed with maize (Zea mays L.) coleoptile segments, which is a classical model system to study plant cell elongation growth. The data presented clearly demonstrate that lawsone and 1,4-naphthoquinone combined with naphthazarin, at low concentrations (1 and 10 nM), reduced the endogenous and IAA-induced (Indole-3-Acetic Acid) elongation growth of maize coleoptile segments. Those changes in growth correlated with the proton concentration in the incubation medium, which suggests that the changes in the growth of maize coleoptile segments observed in the presence of naphthoquinones are mediated through the activity of PM H⁺-ATPase. The presence of naphthoquinones induced oxidative stress in the maize coleoptile tissue by producing hydrogen peroxide and causing changes in the redox activity. Moreover, the incubation of maize segments with both naphthoquinones combined with naphthazarin resulted in lipid peroxidation and membrane damage. The regulation of PM H⁺-ATPase activity, especially its inhibition, may result from two major types of reaction: first, a direct interaction between an enzyme and naphthoquinone, which leads to the covalent modification of the protein thiols and the generation of thioethers, which have been found to alter the activity of the PM H⁺-ATPases; second, naphthoquinones induce reactive oxygen species (ROS) production, which inhibits PM H⁺-ATPases by increasing cytosolic Ca2+. This harmful effect was stronger when naphthazarin and 1,4-naphthoquinone were added together. Taking these results into account, it can be suggested that by combining naphthoquinones in small quantities, an alternative to synthetic pesticides could be developed.
Collapse
Affiliation(s)
- Małgorzata Rudnicka
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40032 Katowice, Poland.
| | - Michał Ludynia
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40032 Katowice, Poland.
| | - Waldemar Karcz
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40032 Katowice, Poland.
| |
Collapse
|
25
|
Cai Z, Zeng DE, Liao J, Cheng C, Sahito ZA, Xiang M, Fu M, Chen Y, Wang D. Genome-Wide Analysis of Auxin Receptor Family Genes in Brassica juncea var. tumida. Genes (Basel) 2019; 10:genes10020165. [PMID: 30791673 PMCID: PMC6410323 DOI: 10.3390/genes10020165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/08/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
Transport inhibitor response 1/auxin signaling f-box proteins (TIR1/AFBs) play important roles in the process of plant growth and development as auxin receptors. To date, no information has been available about the characteristics of the TIR1/AFB gene family in Brassica juncea var. tumida. In this study, 18 TIR1/AFB genes were identified and could be clustered into six groups. The genes are located in 11 of 18 chromosomes in the genome of B. juncea var. tumida, and similar gene structures are found for each of those genes. Several cis-elements related to plant response to phytohormones, biotic stresses, and abiotic stresses are found in the promoter of BjuTIR1/AFB genes. The results of qPCR analysis show that most genes have differential patterns of expression among six tissues, with the expression levels of some of the genes repressed by salt stress treatment. Some of the genes are also responsive to pathogen Plasmodiophora brassicae treatment. This study provides valuable information for further studies as to the role of BjuTIR1/AFB genes in the regulation of plant growth, development, and response to abiotic stress.
Collapse
Affiliation(s)
- Zhaoming Cai
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China.
| | - De-Er Zeng
- School of Life Sciences, Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China.
| | - Jingjing Liao
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China.
| | - Chunhong Cheng
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China.
| | - Zulfiqar Ali Sahito
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Meiqin Xiang
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China.
| | - Min Fu
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China.
| | - Yuanqing Chen
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China.
| | - Diandong Wang
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|
26
|
Roosjen M, Paque S, Weijers D. Auxin Response Factors: output control in auxin biology. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:179-188. [PMID: 28992135 DOI: 10.1093/jxb/erx237] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytohormone auxin is involved in almost all developmental processes in land plants. Most, if not all, of these processes are mediated by changes in gene expression. Auxin acts on gene expression through a short nuclear pathway that converges upon the activation of a family of DNA-binding transcription factors. These AUXIN RESPONSE FACTORS (ARFs) are thus the effector of auxin response and translate the chemical signal into the regulation of a defined set of genes. Given the limited number of dedicated components in auxin signaling, distinct properties among the ARF family probably contribute to the establishment of multiple unique auxin responses in plant development. In the two decades following the identification of the first ARF in Arabidopsis, much has been learnt about how these transcription factors act, and how they generate unique auxin responses. Progress in genetics, biochemistry, genomics, and structural biology has helped to develop mechanistic models for ARF action. However, despite intensive efforts, many central questions are yet to be addressed. In this review, we highlight what has been learnt about ARF transcription factors, and identify outstanding questions and challenges for the near future.
Collapse
Affiliation(s)
- Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Sébastien Paque
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| |
Collapse
|
27
|
Ma Q, Grones P, Robert S. Auxin signaling: a big question to be addressed by small molecules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:313-328. [PMID: 29237069 PMCID: PMC5853230 DOI: 10.1093/jxb/erx375] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 05/20/2023]
Abstract
Providing a mechanistic understanding of the crucial roles of the phytohormone auxin has been an important and coherent aspect of plant biology research. Since its discovery more than a century ago, prominent advances have been made in the understanding of auxin action, ranging from metabolism and transport to cellular and transcriptional responses. However, there is a long road ahead before a thorough understanding of its complex effects is achieved, because a lot of key information is still missing. The availability of an increasing number of technically advanced scientific tools has boosted the basic discoveries in auxin biology. A plethora of bioactive small molecules, consisting of the synthetic auxin-like herbicides and the more specific auxin-related compounds, developed as a result of the exploration of chemical space by chemical biology, have made the tool box for auxin research more comprehensive. This review mainly focuses on the compounds targeting the auxin co-receptor complex, demonstrates the various ways to use them, and shows clear examples of important basic knowledge obtained by their usage. Application of these precise chemical tools, together with an increasing amount of structural information for the major components in auxin action, will certainly aid in strengthening our insights into the complexity and diversity of auxin response.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | - Peter Grones
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | | |
Collapse
|
28
|
Tian H, Lv B, Ding T, Bai M, Ding Z. Auxin-BR Interaction Regulates Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2017; 8:2256. [PMID: 29403511 PMCID: PMC5778104 DOI: 10.3389/fpls.2017.02256] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
Plants develop a high flexibility to alter growth, development, and metabolism to adapt to the ever-changing environments. Multiple signaling pathways are involved in these processes and the molecular pathways to transduce various developmental signals are not linear but are interconnected by a complex network and even feedback mutually to achieve the final outcome. This review will focus on two important plant hormones, auxin and brassinosteroid (BR), based on the most recent progresses about these two hormone regulated plant growth and development in Arabidopsis, and highlight the cross-talks between these two phytohormones.
Collapse
Affiliation(s)
- Huiyu Tian
- *Correspondence: Mingyi Bai, Zhaojun Ding, Huiyu Tian,
| | | | | | - Mingyi Bai
- *Correspondence: Mingyi Bai, Zhaojun Ding, Huiyu Tian,
| | - Zhaojun Ding
- *Correspondence: Mingyi Bai, Zhaojun Ding, Huiyu Tian,
| |
Collapse
|
29
|
Kurtyka R, Pokora W, Tukaj Z, Karcz W. Effects of juglone and lawsone on oxidative stress in maize coleoptile cells treated with IAA. AOB PLANTS 2016; 8:plw073. [PMID: 27760740 PMCID: PMC5199135 DOI: 10.1093/aobpla/plw073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Naphthoquinones are secondary metabolites widely distributed in nature and produced by bacteria, fungi and higher plants. Their biological activity may result from induction of oxidative stress, caused by redox cycling or direct interaction with cellular macromolecules, in which quinones act as electrophiles. The redox homeostasis is known as one of factors involved in auxin-mediated plant growth regulation. To date, however, little is known about the crosstalk between reactive oxygen species (ROS) produced by quinones and the plant growth hormone auxin (IAA). In this study, redox cycling properties of two naphthoquinones, juglone (5-hydroxy-1,4-naphthoquinone) and lawsone (2-hydroxy-1,4-naphthoquinone), were compared in experiments performed on maize coleoptile segments incubated with or without the addition of IAA. It was found that lawsone was much more effective than juglone in increasing both H2O2 production and the activity of antioxidative enzymes (SOD, POX and CAT) in coleoptile cells, regardless of the presence of IAA. An increase in the activity of Cu/Zn-SOD isoenzymes induced by both naphthoquinones suggests that juglone- and lawsone-generated H2O2 was primarily produced in the cytosolic and cell wall spaces. The cell potential to neutralize hydrogen peroxide, determined by POX and CAT activity, pointed to activity of catalase as the main enzymatic mechanism responsible for degradation of H2O2 Therefore, we assumed that generation of H2O2, induced more efficiently by LW than JG, was the major factor accounting for differences in the toxicity of naphthoquinones in maize coleoptiles. The role of auxin in the process appeared negligible. Moreover, the results suggested that oxidative stress imposed by JG and LW was one of mechanisms of allelopathic action of the studied quinones in plants.
Collapse
Affiliation(s)
- Renata Kurtyka
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40 032 Katowice, Poland
| | - Wojciech Pokora
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, PL-80 308 Gdańsk, Poland
| | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, PL-80 308 Gdańsk, Poland
| | - Waldemar Karcz
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40 032 Katowice, Poland
| |
Collapse
|
30
|
Abstract
Auxin is arguably the most important signaling molecule in plants, and the last few decades have seen remarkable breakthroughs in understanding its production, transport, and perception. Recent investigations have focused on transcriptional responses to auxin, providing novel insight into the functions of the domains of key transcription regulators in responses to the hormonal cue and prominently implicating chromatin regulation in these responses. In addition, studies are beginning to identify direct targets of the auxin-responsive transcription factors that underlie auxin modulation of development. Mechanisms to tune the response to different auxin levels are emerging, as are first insights into how this single hormone can trigger diverse responses. Key unanswered questions center on the mechanism for auxin-directed transcriptional repression and the identity of additional determinants of auxin response specificity. Much of what has been learned in model plants holds true in other species, including the earliest land plants.
Collapse
Affiliation(s)
- Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
31
|
Dinesh DC, Villalobos LIAC, Abel S. Structural Biology of Nuclear Auxin Action. TRENDS IN PLANT SCIENCE 2016; 21:302-316. [PMID: 26651917 DOI: 10.1016/j.tplants.2015.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/23/2015] [Indexed: 05/23/2023]
Abstract
Auxin coordinates plant development largely via hierarchical control of gene expression. During the past decades, the study of early auxin genes paired with the power of Arabidopsis genetics have unraveled key nuclear components and molecular interactions that perceive the hormone and activate primary response genes. Recent research in the realm of structural biology allowed unprecedented insight into: (i) the recognition of auxin-responsive DNA elements by auxin transcription factors; (ii) the inactivation of those auxin response factors by early auxin-inducible repressors; and (iii) the activation of target genes by auxin-triggered repressor degradation. The biophysical studies reviewed here provide an impetus for elucidating the molecular determinants of the intricate interactions between core components of the nuclear auxin response module.
Collapse
Affiliation(s)
- Dhurvas Chandrasekaran Dinesh
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Luz Irina A Calderón Villalobos
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany; Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
32
|
Tomašić Paić A, Fulgosi H. Chloroplast immunophilins. PROTOPLASMA 2016; 253:249-258. [PMID: 25963286 DOI: 10.1007/s00709-015-0828-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
Immunophilins occur in almost all living organisms. They are ubiquitously expressed proteins including cyclophilins, FK506/rapamycin-binding proteins, and parvulins. Their functional significance in vascular plants is mostly related to plant developmental processes, signalling, and regulation of photosynthesis. Enzymatically active immunophilins catalyse isomerization of proline imidic peptide bonds and assist in rapid folding of nascent proline-containing polypeptides. They also participate in protein trafficking and assembly of supramolecular protein complexes. Complex immunophilins possess various additional functional domains associated with a multitude of molecular interactions. A considerable number of immunophilins act as auxiliary and/or regulatory proteins in highly specialized cellular compartments, such as lumen of thylakoids. In this review, we present a comprehensive overview of so far identified chloroplast immunophilins that assist in specific assembly/repair processes necessary for the maintenance of efficient photosynthetic energy conversion.
Collapse
Affiliation(s)
- Ana Tomašić Paić
- Division of Molecular Biology, Rudjer Bošković Institute, Bijenička cesta 54, HR-10002, Zagreb, Croatia
| | - Hrvoje Fulgosi
- Division of Molecular Biology, Rudjer Bošković Institute, Bijenička cesta 54, HR-10002, Zagreb, Croatia.
| |
Collapse
|
33
|
El-Sharkawy I, Sherif S, El Kayal W, Jones B, Li Z, Sullivan AJ, Jayasankar S. Overexpression of plum auxin receptor PslTIR1 in tomato alters plant growth, fruit development and fruit shelf-life characteristics. BMC PLANT BIOLOGY 2016; 16:56. [PMID: 26927309 PMCID: PMC4772300 DOI: 10.1186/s12870-016-0746-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/26/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND TIR1-like proteins are F-box auxin receptors. Auxin binding to the F-box receptor proteins promotes the formation of SCF(TIR1) ubiquitin ligase complex that targets the auxin repressors, Aux/IAAs, for degradation via the ubiquitin/26S proteasome pathway. The release of auxin response factors (ARFs) from their Aux/IAA partners allows ARFs to mediate auxin-responsive changes in downstream gene transcription. In an attempt to understand the potential role of auxin during fruit development, a plum auxin receptor, PslTIR1, has previously been characterized at the cellular, biochemical and molecular levels, but the biological significance of this protein is still lacking. In the present study, tomato (Solanum lycopersicum) was used as a model to investigate the phenotypic and molecular changes associated with the overexpression of PslTIR1. RESULTS The findings of the present study highlighted the critical role of PslTIR1 as positive regulator of auxin-signalling in coordinating the development of leaves and fruits. This was manifested by the entire leaf morphology of transgenic tomato plants compared to the wild-type compound leaf patterning. Moreover, transgenic plants produced parthenocarpic fruits, a characteristic property of auxin hypersensitivity. The autocatalytic ethylene production associated with the ripening of climacteric fruits was not significantly altered in transgenic tomato fruits. Nevertheless, the fruit shelf-life characteristics were affected by transgene presence, mainly through enhancing fruit softening rate. The short shelf-life of transgenic tomatoes was associated with dramatic upregulation of several genes encoding proteins involved in cell-wall degradation, which determine fruit softening and subsequent fruit shelf-life. CONCLUSIONS The present study sheds light into the involvement of PslTIR1 in regulating leaf morphology, fruit development and fruit softening-associated ripening, but not autocatalytic ethylene production. The results demonstrate that auxin accelerates fruit softening independently of ethylene action and this is probably mediated through the upregulation of many cell-wall metabolism genes.
Collapse
Affiliation(s)
- I El-Sharkawy
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON, Canada.
- Damanhour University, Faculty of Agriculture, Damanhour, Egypt.
| | - S Sherif
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON, Canada.
- Damanhour University, Faculty of Agriculture, Damanhour, Egypt.
| | - W El Kayal
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON, Canada.
| | - B Jones
- The University of Sydney, Faculty of Agriculture, Sydney, Australia.
| | - Z Li
- Chongqing University, Genetic Engineering Research Center, Bioengineering College, Chongqing, China.
| | - A J Sullivan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada.
| | | |
Collapse
|
34
|
Su SH, Gray WM, Masson PH. Auxin: Shape matters. NATURE PLANTS 2015; 1:15097. [PMID: 27250261 DOI: 10.1038/nplants.2015.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Shih-Heng Su
- Laboratory of Genetics, University of Wisconsin-Madison, 425G Henry Mall, Madison, Wisconsin 53706, USA
| | - William M Gray
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue, St Paul, Minnesota 55108, USA
| | - Patrick H Masson
- Laboratory of Genetics, University of Wisconsin-Madison, 425G Henry Mall, Madison, Wisconsin 53706, USA
| |
Collapse
|
35
|
Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nat Commun 2015; 6:7395. [PMID: 26096057 DOI: 10.1038/ncomms8395] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
In plants, auxin signalling is initiated by the auxin-promoted interaction between the auxin receptor TIR1, an E3 ubiquitin ligase, and the Aux/IAA transcriptional repressors, which are subsequently degraded by the proteasome. Gain-of-function mutations in the highly conserved domain II of Aux/IAAs abolish the TIR1-Aux/IAA interaction and thus cause an auxin-resistant phenotype. Here we show that peptidyl-prolyl isomerization of rice OsIAA11 catalysed by LATERAL ROOTLESS2 (LRT2), a cyclophilin-type peptidyl-prolyl cis/trans isomerase, directly regulates the stability of OsIAA11. NMR spectroscopy reveals that LRT2 efficiently catalyses the cis/trans isomerization of OsIAA11. The lrt2 mutation reduces OsTIR1-OsIAA11 interaction and consequently causes the accumulation of a higher level of OsIAA11 protein. Moreover, knockdown of the OsIAA11 expression partially rescues the lrt2 mutant phenotype in lateral root development. Together, these results illustrate cyclophilin-catalysed peptidyl-prolyl isomerization promotes Aux/IAA degradation, as a mechanism regulating auxin signalling.
Collapse
|
36
|
Jin X, Fu Z, Lv P, Peng Q, Ding D, Li W, Tang J. Identification and Characterization of microRNAs during Maize Grain Filling. PLoS One 2015; 10:e0125800. [PMID: 25951054 PMCID: PMC4423906 DOI: 10.1371/journal.pone.0125800] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/26/2015] [Indexed: 12/23/2022] Open
Abstract
The grain filling rate is closely associated with final grain yield of maize during the period of maize grain filling. To identify the key microRNAs (miRNAs) and miRNA-dependent gene regulation networks of grain filling in maize, a deep-sequencing technique was used to research the dynamic expression patternsof miRNAs at four distinct developmental grain filling stages in Zhengdan 958, which is an elite hybrid and cultivated widely in China. The sequencing result showed that the expression amount of almost all miRNAs was changing with the development of the grain filling and formed in seven groups. After normalization, 77 conserved miRNAs and 74 novel miRNAs were co-detected in these four samples. Eighty-one out of 162 targets of the conserved miRNAs belonged to transcriptional regulation (81, 50%), followed by oxidoreductase activity (18, 11%), signal transduction (16, 10%) and development (15, 9%). The result showed that miRNA 156, 393, 396 and 397, with their respective targets, might play key roles in the grain filling rate by regulating maize growth, development and environment stress response. The result also offered novel insights into the dynamic change of miRNAs during the developing process of maize kernels and assistedin the understanding of how miRNAs are functioning about the grain filling rate.
Collapse
Affiliation(s)
- Xining Jin
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Panqing Lv
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qian Peng
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weihua Li
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- * E-mail:
| |
Collapse
|
37
|
El-Sharkawy I, Sherif SM, Jones B, Mila I, Kumar PP, Bouzayen M, Jayasankar S. TIR1-like auxin-receptors are involved in the regulation of plum fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5205-15. [PMID: 24996652 PMCID: PMC4157706 DOI: 10.1093/jxb/eru279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ethylene has long been considered the key regulator of ripening in climacteric fruit. Recent evidence showed that auxin also plays an important role during fruit ripening, but the nature of the interaction between the two hormones has remained unclear. To understand the differences in ethylene- and auxin-related behaviours that might reveal how the two hormones interact, we compared two plum (Prunus salicina L.) cultivars with widely varying fruit development and ripening ontogeny. The early-ripening cultivar, Early Golden (EG), exhibited high endogenous auxin levels and auxin hypersensitivity during fruit development, while the late-ripening cultivar, V98041 (V9), displayed reduced auxin content and sensitivity. We show that exogenous auxin is capable of dramatically accelerating fruit development and ripening in plum, indicating that this hormone is actively involved in the ripening process. Further, we demonstrate that the variations in auxin sensitivity between plum cultivars could be partially due to PslAFB5, which encodes a TIR1-like auxin receptor. Two different PslAFB5 alleles were identified, one (Pslafb5) inactive due to substitution of the conserved F-box amino acid residue Pro61 to Ser. The early-ripening cultivar, EG, exhibited homozygosity for the inactive allele; however, the late cultivar, V9, displayed a PslAFB5/afb5 heterozygous genotype. Our results highlight the impact of auxin in stimulating fruit development, especially the ripening process and the potential for differential auxin sensitivity to alter important fruit developmental processes.
Collapse
Affiliation(s)
- Islam El-Sharkawy
- University of Guelph, Department of Plant Agriculture. 4890 Victoria Av. N., P.O. Box 7000 Vineland Station, ON, L0R 2E0 Canada Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Sherif M Sherif
- University of Guelph, Department of Plant Agriculture. 4890 Victoria Av. N., P.O. Box 7000 Vineland Station, ON, L0R 2E0 Canada Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Brian Jones
- The University of Sydney, Faculty of Agriculture, Australia
| | - Isabelle Mila
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F-31326, France
| | - Prakash P Kumar
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Mondher Bouzayen
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan F-31326, France
| | - Subramanian Jayasankar
- University of Guelph, Department of Plant Agriculture. 4890 Victoria Av. N., P.O. Box 7000 Vineland Station, ON, L0R 2E0 Canada
| |
Collapse
|
38
|
Jayaweera T, Siriwardana C, Dharmasiri S, Quint M, Gray WM, Dharmasiri N. Alternative splicing of Arabidopsis IBR5 pre-mRNA generates two IBR5 isoforms with distinct and overlapping functions. PLoS One 2014; 9:e102301. [PMID: 25144378 PMCID: PMC4140696 DOI: 10.1371/journal.pone.0102301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/12/2014] [Indexed: 01/01/2023] Open
Abstract
The INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5) gene encodes a dual specificity phosphatase that regulates plant auxin responses. IBR5 has been predicted to generate two transcripts through alternative splicing, but alternative splicing of IBR5 has not been confirmed experimentally. The previously characterized ibr5-1 null mutant exhibits many auxin related defects such as auxin insensitive primary root growth, defective vascular development, short stature and reduced lateral root development. However, whether all these defects are caused by the lack of phosphatase activity is not clear. Here we describe two new auxin insensitive IBR5 alleles, ibr5-4, a catalytic site mutant, and ibr5-5, a splice site mutant. Characterization of these new mutants indicates that IBR5 is post-transcriptionally regulated to generate two transcripts, AT2G04550.1 and AT2G04550.3, and consequently two IBR5 isoforms, IBR5.1 and IBR5.3. The IBR5.1 isoform exhibits phosphatase catalytic activity that is required for both proper degradation of Aux/IAA proteins and auxin-induced gene expression. These two processes are independently regulated by IBR5.1. Comparison of new mutant alleles with ibr5-1 indicates that all three mutant alleles share many phenotypes. However, each allele also confers distinct defects implicating IBR5 isoform specific functions. Some of these functions are independent of IBR5.1 catalytic activity. Additionally, analysis of these new mutant alleles suggests that IBR5 may link ABP1 and SCFTIR1/AFBs auxin signaling pathways.
Collapse
Affiliation(s)
- Thilanka Jayaweera
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| | - Chamindika Siriwardana
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Sunethra Dharmasiri
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| | - Marcel Quint
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - William M. Gray
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nihal Dharmasiri
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Retzer K, Butt H, Korbei B, Luschnig C. The far side of auxin signaling: fundamental cellular activities and their contribution to a defined growth response in plants. PROTOPLASMA 2014; 251:731-46. [PMID: 24221297 PMCID: PMC4059964 DOI: 10.1007/s00709-013-0572-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 05/04/2023]
Abstract
Recent years have provided us with spectacular insights into the biology of the plant hormone auxin, leaving the impression of a highly versatile molecule involved in virtually every aspect of plant development. A combination of genetics, biochemistry, and cell biology has established auxin signaling pathways, leading to the identification of two distinct modes of auxin perception and downstream regulatory cascades. Major targets of these signaling modules are components of the polar auxin transport machinery, mediating directional distribution of the phytohormone throughout the plant body, and decisively affecting plant development. Alterations in auxin transport, metabolism, or signaling that occur as a result of intrinsic as well as environmental stimuli, control adjustments in morphogenetic programs, giving rise to defined growth responses attributed to the activity of the phytohormone. Some of the results obtained from the analysis of auxin, however, do not fit coherently into a picture of highly specific signaling events, but rather suggest mutual interactions between auxin and fundamental cellular pathways, like the control of intracellular protein sorting or translation. Crosstalk between auxin and these basic determinants of cellular activity and how they might shape auxin effects in the control of morphogenesis are the subject of this review.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| | - Haroon Butt
- Department of Biological Sciences, Forman Christian College, Ferozepur Road, Lahore, 54600 Pakistan
| | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| |
Collapse
|
40
|
Lee S, Sundaram S, Armitage L, Evans JP, Hawkes T, Kepinski S, Ferro N, Napier RM. Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation. ACS Chem Biol 2014; 9:673-82. [PMID: 24313839 PMCID: PMC3964829 DOI: 10.1021/cb400618m] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Structure–activity
profiles for the phytohormone auxin have
been collected for over 70 years, and a number of synthetic auxins
are used in agriculture. Auxin classification schemes and binding
models followed from understanding auxin structures. However, all
of the data came from whole plant bioassays, meaning the output was
the integral of many different processes. The discovery of Transport
Inhibitor-Response 1 (TIR1) and the Auxin F-Box (AFB) proteins as
sites of auxin perception and the role of auxin as molecular glue
in the assembly of co-receptor complexes has allowed the development
of a definitive quantitative structure–activity relationship
for TIR1 and AFB5. Factorial analysis of binding activities offered
two uncorrelated factors associated with binding efficiency and binding
selectivity. The six maximum-likelihood estimators of Efficiency are
changes in the overlap matrixes, inferring that Efficiency is related
to the volume of the electronic system. Using the subset of compounds
that bound strongly, chemometric analyses based on quantum chemical
calculations and similarity and self-similarity indices yielded three
classes of Specificity that relate to differential binding. Specificity
may not be defined by any one specific atom or position and is influenced
by coulomb matrixes, suggesting that it is driven by electrostatic
forces. These analyses give the first receptor-specific classification
of auxins and indicate that AFB5 is the preferred site for a number
of auxinic herbicides by allowing interactions with analogues having
van der Waals surfaces larger than that of indole-3-acetic acid. The
quality factors are also examined in terms of long-standing models
for the mechanism of auxin binding.
Collapse
Affiliation(s)
- Sarah Lee
- School
of Life Sciences, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, U.K
| | - Shanthy Sundaram
- School
of Life Sciences, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, U.K
- Centre
for Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| | - Lynne Armitage
- Centre
for Plant Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - John P. Evans
- Jealott’s
Hill Intl Research Centre, Syngenta, Ltd., Bracknell, Berkshire RG42 6EY, U.K
| | - Tim Hawkes
- Jealott’s
Hill Intl Research Centre, Syngenta, Ltd., Bracknell, Berkshire RG42 6EY, U.K
| | - Stefan Kepinski
- Centre
for Plant Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Noel Ferro
- Mulliken
Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Wegelerstr. 12, D-53115 Bonn, Germany
| | - Richard M. Napier
- School
of Life Sciences, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, U.K
| |
Collapse
|
41
|
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:316-33. [PMID: 24530645 DOI: 10.1016/j.bbagrm.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5-Pro6 bonds, and to a lesser extent pSer2-Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs.
Collapse
|
42
|
Auxin-Binding Protein 1 is a negative regulator of the SCFTIR1/AFB pathway. Nat Commun 2013; 4:2496. [DOI: 10.1038/ncomms3496] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/23/2013] [Indexed: 01/30/2023] Open
|
43
|
Kuang JF, Wu JY, Zhong HY, Li CQ, Chen JY, Lu WJ, Li JG. Carbohydrate stress affecting fruitlet abscission and expression of genes related to auxin signal transduction pathway in litchi. Int J Mol Sci 2012; 13:16084-103. [PMID: 23443112 PMCID: PMC3546680 DOI: 10.3390/ijms131216084] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/06/2012] [Accepted: 11/16/2012] [Indexed: 01/11/2023] Open
Abstract
Auxin, a vital plant hormone, regulates a variety of physiological and developmental processes. It is involved in fruit abscission through transcriptional regulation of many auxin-related genes, including early auxin responsive genes (i.e., auxin/indole-3-acetic acid (AUX/IAA), Gretchen Hagen3 (GH3) and small auxin upregulated (SAUR)) and auxin response factors (ARF), which have been well characterized in many plants. In this study, totally five auxin-related genes, including one AUX/IAA (LcAUX/IAA1), one GH3 (LcGH3.1), one SAUR (LcSAUR1) and two ARFs (LcARF1 and LcARF2), were isolated and characterized from litchi fruit. LcAUX/IAA1, LcGH3.1, LcSAUR1, LcARF1 and LcARF2 contain open reading frames (ORFs) encoding polypeptides of 203, 613, 142, 792 and 832 amino acids, respectively, with their corresponding molecular weights of 22.67, 69.20, 11.40, 88.20 and 93.16 kDa. Expression of these genes was investigated under the treatment of girdling plus defoliation which aggravated litchi fruitlet abscission due to the blockage of carbohydrates transport and the reduction of endogenous IAA content. Results showed that transcript levels of LcAUX/IAA1, LcGH3.1 and LcSAUR1 mRNAs were increased after the treatment in abscission zone (AZ) and other tissues, in contrast to the decreasing accumulation of LcARF1 mRNA, suggesting that LcAUX/IAA1, LcSAUR1 and LcARF1 may play more important roles in abscission. Our results provide new insight into the process of fruitlet abscission induced by carbohydrate stress and broaden our understanding of the auxin signal transduction pathway in this process at the molecular level.
Collapse
Affiliation(s)
- Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-F.K.); (H.-Y.Z.); (J.-Y.C.); (W.-J.L.)
| | - Jian-Yang Wu
- China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-Y.W.); (C.-Q.L.)
- College of Basic Education, Zhanjiang Normal University, Zhanjiang 524037, China
| | - Hai-Ying Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-F.K.); (H.-Y.Z.); (J.-Y.C.); (W.-J.L.)
| | - Cai-Qin Li
- China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-Y.W.); (C.-Q.L.)
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-F.K.); (H.-Y.Z.); (J.-Y.C.); (W.-J.L.)
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-F.K.); (H.-Y.Z.); (J.-Y.C.); (W.-J.L.)
| | - Jian-Guo Li
- China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-Y.W.); (C.-Q.L.)
| |
Collapse
|
44
|
Mignolli F, Mariotti L, Lombardi L, Vidoz ML, Ceccarelli N, Picciarelli P. Tomato fruit development in the auxin-resistant dgt mutant is induced by pollination but not by auxin treatment. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1165-1172. [PMID: 22608080 DOI: 10.1016/j.jplph.2012.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 06/01/2023]
Abstract
In tomato (Solanum lycopersicum Mill.), auxin is believed to play a pivotal role in controlling fruit-set and early ovary growth. In this paper we investigated the effect of the reduced auxin sensitivity exhibited by the diageotropica (dgt) tomato mutant on ovary growth during early stage of fruit development. Here we show that in hand-pollinated ovaries fruit-set was not affected by the dgt lesion while fruit growth was reduced. This reduction was associated with a smaller cell size of mesocarp cells, with a lower mean C values and with a lower gene expression of the expansin gene LeExp2. When a synthetic auxin (4-CPA, chlorophenoxyacetic acid) was applied to the flowers of wild type plants, parthenocarpic ovary growth was induced. On the contrary, auxin application to the flowers of dgt plants failed to induce parthenocarpy. Hand-pollinated ovaries of dgt contained higher levels of IAA compared to wild type and this was not associated with high transcript levels of genes encoding a key regulatory enzyme of IAA biosynthesis (ToFZYs) but with lower expression levels of GH3, a gene involved in the conjugation of IAA to amino acids. The expression of diverse Aux/IAA genes and SAUR (small auxin up-regulated RNA) was also altered in the dgt ovaries. The dgt lesion does not seem to affect specific Aux/IAA genes in terms of transcript occurrence but rather in terms of relative levels of expression. Transcript levels of Aux/IAA genes were up regulated in auxin-treated ovaries of wild-type but not in dgt. Together, our results suggest that dgt ovary cells are not able to sense and/or transduce the external auxin signal, whereas pollinated dgt ovary cells are able to detect the IAA present in fertilized ovules promoting fruit development.
Collapse
Affiliation(s)
- Francesco Mignolli
- Department of Biology, University of Pisa, Via Mariscoglio 34, I-56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Villalobos LIAC, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, Zheng N, Napier R, Kepinski S, Estelle M. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 2012; 8:477-85. [PMID: 22466420 PMCID: PMC3331960 DOI: 10.1038/nchembio.926] [Citation(s) in RCA: 396] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/02/2012] [Indexed: 12/31/2022]
Abstract
The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity seems to be largely determined by the Aux/IAA. As there are 6 TIR1/AUXIN SIGNALING F-BOX proteins (AFBs) and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin-sensing properties. We also demonstrate that the AFB5-Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response.
Collapse
Affiliation(s)
- Luz Irina A. Calderón Villalobos
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
| | - Sarah Lee
- School of Life sciences, University of Warwick, CV35 9EF, UK
| | - Cesar De Oliveira
- Department of Chemistry & Biochemistry and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
| | - Anthony Ivetac
- Department of Chemistry & Biochemistry and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
| | - Wolfgang Brandt
- Bioorganic Chemistry Department, IPB-Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Lynne Armitage
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Laura B. Sheard
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Xu Tan
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Geraint Parry
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
- Department of Plant Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Haibin Mao
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Ning Zheng
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Richard Napier
- School of Life sciences, University of Warwick, CV35 9EF, UK
| | - Stefan Kepinski
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
46
|
Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc Natl Acad Sci U S A 2011; 108:7253-8. [PMID: 21482761 DOI: 10.1073/pnas.1006740108] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microorganisms and their hosts communicate with each other through an array of signals. The plant hormone auxin (indole-3-acetic acid; IAA) is central in many aspects of plant development. Cyclodipeptides and their derivative diketopiperazines (DKPs) constitute a large class of small molecules synthesized by microorganisms with diverse and noteworthy activities. Here, we present genetic, chemical, and plant-growth data showing that in Pseudomonas aeruginosa, the LasI quorum-sensing (QS) system controls the production of three DKPs--namely, cyclo(L-Pro-L-Val), cyclo(L-Pro-L-Phe), and cyclo(L-Pro-L-Tyr)--that are involved in plant growth promotion by this bacterium. Analysis of all three bacterial DKPs in Arabidopsis thaliana seedlings provided detailed information indicative of an auxin-like activity, based on their efficacy at modulating root architecture, activation of auxin-regulated gene expression, and response of auxin-signaling mutants tir1, tir1 afb2 afb3, arf7, arf19, and arf7arf19. The observation that QS-regulated bacterial production of DKPs modulates auxin signaling and plant growth promotion establishes an important function for DKPs mediating prokaryote/eukaryote transkingdom signaling.
Collapse
|
47
|
Prigge MJ, Lavy M, Ashton NW, Estelle M. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr Biol 2010; 20:1907-12. [PMID: 20951049 DOI: 10.1016/j.cub.2010.08.050] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/21/2010] [Accepted: 08/24/2010] [Indexed: 11/30/2022]
Abstract
Auxin regulates most aspects of flowering-plant growth and development, including key developmental innovations that evolved within the vascular plant lineage after diverging from a bryophyte-like ancestor nearly 500 million years ago. Recent studies in Arabidopsis indicate that auxin acts by directly binding the TIR1 subunit of the SCF(TIR1) ubiquitin ligase; this binding results in degradation of the Aux/IAA transcriptional repressors and de-repression of auxin-responsive genes. Little is known, however, about the mechanism of auxin action in other plants. To characterize auxin signaling in a nonflowering plant, we utilized the genetically tractable moss Physcomitrella patens. We used a candidate-gene approach to show that previously identified auxin-resistant mutants of P. patens harbor mutations in Aux/IAA genes. Furthermore, we show that the moss Aux/IAA proteins interact with Arabidopsis TIR1 moss homologs called PpAFB and that a reduction in PpAFB levels results in a phenotype similar to that of the auxin-resistant mutants. Our results indicate that the molecular mechanism of auxin perception is conserved in land plants despite vast differences in the role auxin plays in different plant lineages.
Collapse
Affiliation(s)
- Michael J Prigge
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | | | | | | |
Collapse
|
48
|
Abstract
The history of plant biology is inexorably intertwined with the conception and discovery of auxin, followed by the many decades of research to comprehend its action during growth and development. Growth responses to auxin are complex and require the coordination of auxin production, transport, and perception. In this overview of past auxin research, we limit our discourse to the mechanism of auxin action. We attempt to trace the almost epic voyage from the birth of the hormonal concept in plants to the recent crystallographic studies that resolved the TIR1-auxin receptor complex, the first structural model of a plant hormone receptor. The century-long endeavor is a beautiful illustration of the power of scientific reasoning and human intuition, but it also brings to light the fact that decisive progress is made when new technologies emerge and disciplines unite.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz-Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany.
| | | |
Collapse
|
49
|
Calderon-Villalobos LI, Tan X, Zheng N, Estelle M. Auxin perception--structural insights. Cold Spring Harb Perspect Biol 2010; 2:a005546. [PMID: 20504967 DOI: 10.1101/cshperspect.a005546] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The identity of the auxin receptor(s) and the mechanism of auxin perception has been a subject of intense interest since the discovery of auxin almost a century ago. The development of genetic approaches to the study of plant hormone signaling led to the discovery that auxin acts by promoting degradation of transcriptional repressors called Aux/IAA proteins. This process requires a ubiquitin protein ligase (E3) called SCF(TIR1) and related SCF complexes. Surprisingly, auxin works by directly binding to TIR1, the F-box protein subunit of this SCF. Structural studies demonstrate that auxin acts like a "molecular glue," to stabilize the interaction between TIR1 and the Aux/IAA substrate. These exciting results solve an old problem in plant biology and reveal new mechanisms for E3 regulation and hormone perception.
Collapse
|
50
|
Hao GF, Yang GF. The role of Phe82 and Phe351 in auxin-induced substrate perception by TIR1 ubiquitin ligase: a novel insight from molecular dynamics simulations. PLoS One 2010; 5:e10742. [PMID: 20505777 PMCID: PMC2873998 DOI: 10.1371/journal.pone.0010742] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/28/2010] [Indexed: 11/19/2022] Open
Abstract
It is well known that Auxin plays a key role in controlling many aspects of plant growth and development. Crystal structures of Transport inhibitor response 1 (TIR1), a true receptor of auxin, were very recently determined for TIR1 alone and in complexes with auxin and different synthetic analogues and an Auxin/Indole-3-Acetic Acid (Aux/IAA) substrate peptide. However, the dynamic conformational changes of the key residues of TIR1 that take place during the auxin and substrate perception by TIR1 and the detailed mechanism of these changes are still unclear. In the present study, various computational techniques were integrated to uncover the detailed molecular mechanism of the auxin and Aux/IAA perception process; these simulations included molecular dynamics (MD) simulations on complexes and the free enzyme, the molecular mechanics Poisson Boltzmann surface area (MM-PBSA) calculations, normal mode analysis, and hydrogen bond energy (HBE) calculations. The computational simulation results provided a reasonable explanation for the structure-activity relationships of auxin and its synthetic analogues in view of energy. In addition, a more detailed model for auxin and Aux/IAA perception was also proposed, indicating that Phe82 and Phe351 played a pivotal role in Aux/IAA perception. Upon auxin binding, Phe82 underwent conformational changes to accommodate the subsequent binding of Aux/IAA. As a result, auxin enhances the TIR1-Aux/IAA interactions by acting as a "molecular glue". Besides, Phe351 acts as a "fastener" to further improve the substrate binding. The structural and mechanistic insights obtained from the present study will provide valuable clues for the future design of promising auxin analogues.
Collapse
Affiliation(s)
- Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|