1
|
Shankar S, Chew TW, Chichili VPR, Low BC, Sivaraman J. Structural basis for the distinct roles of non-conserved Pro116 and conserved Tyr124 of BCH domain of yeast p50RhoGAP. Cell Mol Life Sci 2024; 81:216. [PMID: 38740643 PMCID: PMC11090974 DOI: 10.1007/s00018-024-05238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
p50RhoGAP is a key protein that interacts with and downregulates the small GTPase RhoA. p50RhoGAP is a multifunctional protein containing the BNIP-2 and Cdc42GAP Homology (BCH) domain that facilitates protein-protein interactions and lipid binding and the GAP domain that regulates active RhoA population. We recently solved the structure of the BCH domain from yeast p50RhoGAP (YBCH) and showed that it maintains the adjacent GAP domain in an auto-inhibited state through the β5 strand. Our previous WT YBCH structure shows that a unique kink at position 116 thought to be made by a proline residue between alpha helices α6 and α7 is essential for the formation of intertwined dimer from asymmetric monomers. Here we sought to establish the role and impact of this Pro116. However, the kink persists in the structure of P116A mutant YBCH domain, suggesting that the scaffold is not dictated by the proline residue at this position. We further identified Tyr124 (or Tyr188 in HBCH) as a conserved residue in the crucial β5 strand. Extending to the human ortholog, when substituted to acidic residues, Tyr188D or Tyr188E, we observed an increase in RhoA binding and self-dimerization, indicative of a loss of inhibition of the GAP domain by the BCH domain. These results point to distinct roles and impact of the non-conserved and conserved amino acid positions in regulating the structural and functional complexity of the BCH domain.
Collapse
Affiliation(s)
- Srihari Shankar
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Ti Weng Chew
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | | | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- NUS College, National University of Singapore, Singapore, 138593, Singapore.
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
2
|
Zhou L, Yang Y, Fu X, Xia B, Li C, Lu C, Qi Y, Zhang H, Liu T. The protective effect and molecular mechanism of glycyrrhizic acid glycosides against Tripterygium glycosides induced nephrotoxicity based on the RhoA/ROCK1 signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117100. [PMID: 37648177 DOI: 10.1016/j.jep.2023.117100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium glycosides (TG), which are extracted from the traditional Chinese medicine, Tripterygium wilfordii Hook F. (TwHF), has promising applications in the treatment of renal diseases; however, since its active components exerts bidirectional kidney toxicity, its clinical application is severely restricted. AIM OF THE STUDY Recent investigations have demonstrated definite toxicity-reducing effects from glycyrrhizic acid glycosides (GA) when combined with TG; however, the mechanism remains unclear. To our knowledge, this is the first study to investigate the specific molecular mechanism by which GA alleviates TG-induced renal toxicity from the perspective of tight junctions. MATERIALS AND METHODS Dynamic analyses, which investigated the changes in kidney toxicity biomarkers for different combinations and concentrations of TG and GA, were conducted for three weeks on SD rats and renal tissue structural changes were examined after three weeks of administration. Additionally, the transcription and translation levels of the relevant tight junctions and RhoA/ROCK1/MLC signalling proteins were analysed in HK-2 cells. RESULTS Our study showed that TG can cause transient tubulotoxicity at certain doses, and that the combined application of GA and TG can repair tight junction structures by regulating the key factors in the RhoA/ROCK1/MLC signalling pathway, thus reducing TG-induced nephrotoxicity. CONCLUSIONS Overall, this study provides a new strategy to reduce TG-induced toxicity by protecting renal tight junctions.
Collapse
Affiliation(s)
- Liu Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Yifei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Xiaotong Fu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Bing Xia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Chenna Lu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Ying Qi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Haijing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Ting Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| |
Collapse
|
3
|
Tanaka R, Yamada K. Genomic and Reverse Translational Analysis Discloses a Role for Small GTPase RhoA Signaling in the Pathogenesis of Schizophrenia: Rho-Kinase as a Novel Drug Target. Int J Mol Sci 2023; 24:15623. [PMID: 37958606 PMCID: PMC10648424 DOI: 10.3390/ijms242115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Schizophrenia is one of the most serious psychiatric disorders and is characterized by reductions in both brain volume and spine density in the frontal cortex. RhoA belongs to the RAS homolog (Rho) family and plays critical roles in neuronal development and structural plasticity via Rho-kinase. RhoA activity is regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Several variants in GAPs and GEFs associated with RhoA have been reported to be significantly associated with schizophrenia. Moreover, several mouse models carrying schizophrenia-associated gene variants involved in RhoA/Rho-kinase signaling have been developed. In this review, we summarize clinical evidence showing that variants in genes regulating RhoA activity are associated with schizophrenia. In the last half of the review, we discuss preclinical evidence indicating that RhoA/Rho-kinase is a potential therapeutic target of schizophrenia. In particular, Rho-kinase inhibitors exhibit anti-psychotic-like effects not only in Arhgap10 S490P/NHEJ mice, but also in pharmacologic models of schizophrenia (methamphetamine- and MK-801-treated mice). Accordingly, we propose that Rho-kinase inhibitors may have antipsychotic effects and reduce cognitive deficits in schizophrenia despite the presence or absence of genetic variants in small GTPase signaling pathways.
Collapse
Affiliation(s)
- Rinako Tanaka
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
- International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
4
|
Lu W, Wen J. H 2S-RhoA/ROCK Pathway and Glial Cells in Axonal Remyelination After Ischemic Stroke. Mol Neurobiol 2023; 60:5493-5504. [PMID: 37322287 DOI: 10.1007/s12035-023-03422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Ischemic stroke is one of the main reasons of disability and death. Stroke-induced functional deficits are mainly due to the secondary degeneration of the white matter characterized by axonal demyelination and injury of axon-glial integrity. Enhancement of the axonal regeneration and remyelination could promote the neural functional recovery. However, cerebral ischemia-induced activation of RhoA/Rho kinase (ROCK) pathway plays a crucial and harmful role in the process of axonal recovery and regeneration. Inhibition of this pathway could promote the axonal regeneration and remyelination. In addition, hydrogen sulfide (H2S) has the significant neuroprotective role during the recovery of ischemic stroke via inhibiting the inflammatory response and oxidative stress, regulating astrocyte function, promoting the differentiation of endogenous oligodendrocyte precursor cells (OPCs) to mature oligodendrocyte. Among all of these effects, promoting the formation of mature oligodendrocyte is a crucial part of axonal regeneration and remyelination. Furthermore, numerous studies have uncovered the crosstalk between astrocytes and oligodendrocyte, microglial cells and oligodendrocyte in the axonal remyelination following ischemic stroke. The purpose of this review was to discuss the relationship among H2S, RhoA/ROCK pathway, astrocytes, and microglial cells in the axonal remyelination following ischemic stroke to reveal new strategies for preventing and treating this devastating disease.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Punessen NC, Pena C, Sandberg A, Koza LA, Linseman DA. A novel anti-apoptotic role for Cdc42/ACK-1 signaling in neurons. Mol Cell Neurosci 2023; 126:103865. [PMID: 37263460 DOI: 10.1016/j.mcn.2023.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's and Parkinson's disease are caused by a progressive and aberrant destruction of neurons in the brain and spinal cord. These disorders lack effective long-term treatments that impact the underlying mechanisms of pathogenesis and as a result, existing options focus primarily on alleviating symptomology. Dysregulated programmed cell death (i.e., apoptosis) is a significant contributor to neurodegeneration, and is controlled by a number of different factors. Rho family GTPases are molecular switches with recognized importance in proper neuronal development and migration that have more recently emerged as central regulators of apoptosis and neuronal survival. Here, we investigated a role for the Rho GTPase family member, Cdc42, and its downstream effectors, in neuronal survival and apoptosis. We initially induced apoptosis in primary cultures of rat cerebellar granule neurons (CGNs) by removing both growth factor-containing serum and depolarizing potassium from the cell medium. We then utilized both chemical inhibitors and adenoviral shRNA targeted to Cdc42 to block the function of Cdc42 or its downstream effectors under either control or apoptotic conditions. Our in vitro studies demonstrate that functional inhibition of Cdc42 or its downstream effector, activated Cdc42-associated tyrosine kinase-1 (ACK-1), had no adverse effects on CGN survival under control conditions, but significantly sensitized neurons to cell death under apoptotic conditions. In conclusion, our results suggest a key pro-survival role for Cdc42/ACK-1 signaling in neurons, particularly in regulating neuronal susceptibility to pro-apoptotic stress such as that observed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Noelle C Punessen
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Claudia Pena
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Alexandra Sandberg
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Lilia A Koza
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Daniel A Linseman
- Department of Biological Sciences, University of Denver, Denver, CO, USA; Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA.
| |
Collapse
|
6
|
Zhang Y, Li G, Zhao Y. Advances in the development of Rho GTPase inhibitors. Bioorg Med Chem 2023; 90:117337. [PMID: 37253305 DOI: 10.1016/j.bmc.2023.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Rho guanosine triphosphatases (Rho GTPases), as members of the Ras superfamily, are GDP/GTP binding proteins that behave as molecular switches for the transduction of signals from external stimuli. Rho GTPases play essential roles in a number of cellular processes including cell cycle, cell polarity as well as cell migration. The dysregulations of Rho GTPases are related with various diseases, especially with cancers. Accumulating evidence supports that Rho GTPases play important roles in cancer development and progression. Rho GTPases become potential therapeutic targets for cancer therapy. And a number of inhibitors targeting Rho GTPases have been developed. In this review, we discuss their structural features, summarize their roles in cancer, and focus on the recent progress of their inhibitors, which are beneficial for the drug discovery targeting Rho GTPases.
Collapse
Affiliation(s)
- Yijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Martín-Cámara O, Cores Á, López-Alvarado P, Menéndez JC. Emerging targets in drug discovery against neurodegenerative diseases: Control of synapsis disfunction by the RhoA/ROCK pathway. Eur J Med Chem 2021; 225:113742. [PMID: 34388381 DOI: 10.1016/j.ejmech.2021.113742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
Synaptic spine morphology is controlled by the activity of Rac1, Cdc42 and RhoA, which need to be finely balanced, and in particular RhoA/ROCK prevents the formation of new protrusions by stabilizing actin formation. These processes are crucial to the maturation process, slowing the de novo generation of new spines. The RhoA/ROCK also influences plasticity processes, and selective modulation by ROCK1 of MLC-dependent actin dynamics leads to neurite retraction, but not to spine retraction. ROCK1 is also responsible for the reduction of the readily releasable pool of synaptic vesicles. These and other evidences suggest that ROCK1 is the main isoform acting on the presynaptic neuron. On the other hand, ROCK2 seems to have broad effects on LIMK/cofilin-dependent plasticity processes such as cofilin-dependent PSD changes. The RhoA/ROCK pathway is an important factor in several different brain-related pathologies via both downstream and upstream pathways. In the aggregate, these evidences show that the RhoA/ROCK pathway has a central role in the etiopathogenesis of a large group of CNS diseases, which underscores the importance of the pharmacological modulation of RhoA/ROCK as an important pathway to drug discovery in the neurodegenerative disease area. This article aims at providing the first review of the role of compounds acting on the RhoA/ROCK pathway in the control of synaptic disfunction.
Collapse
Affiliation(s)
- Olmo Martín-Cámara
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Structural basis for p50RhoGAP BCH domain-mediated regulation of Rho inactivation. Proc Natl Acad Sci U S A 2021; 118:2014242118. [PMID: 34006635 DOI: 10.1073/pnas.2014242118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spatiotemporal regulation of signaling cascades is crucial for various biological pathways, under the control of a range of scaffolding proteins. The BNIP-2 and Cdc42GAP Homology (BCH) domain is a highly conserved module that targets small GTPases and their regulators. Proteins bearing BCH domains are key for driving cell elongation, retraction, membrane protrusion, and other aspects of active morphogenesis during cell migration, myoblast differentiation, and neuritogenesis. We previously showed that the BCH domain of p50RhoGAP (ARHGAP1) sequesters RhoA from inactivation by its adjacent GAP domain; however, the underlying molecular mechanism for RhoA inactivation by p50RhoGAP remains unknown. Here, we report the crystal structure of the BCH domain of p50RhoGAP Schizosaccharomyces pombe and model the human p50RhoGAP BCH domain to understand its regulatory function using in vitro and cell line studies. We show that the BCH domain adopts an intertwined dimeric structure with asymmetric monomers and harbors a unique RhoA-binding loop and a lipid-binding pocket that anchors prenylated RhoA. Interestingly, the β5-strand of the BCH domain is involved in an intermolecular β-sheet, which is crucial for inhibition of the adjacent GAP domain. A destabilizing mutation in the β5-strand triggers the release of the GAP domain from autoinhibition. This renders p50RhoGAP active, thereby leading to RhoA inactivation and increased self-association of p50RhoGAP molecules via their BCH domains. Our results offer key insight into the concerted spatiotemporal regulation of Rho activity by BCH domain-containing proteins.
Collapse
|
9
|
Zhang R, Mo WJ, Huang LS, Chen JT, Wu WZ, He WY, Feng ZB. Identifying the Prognostic Risk Factors of Synaptojanin 2 and Its Underlying Perturbations Pathways in Hepatocellular Carcinoma. Bioengineered 2021; 12:855-874. [PMID: 33641617 PMCID: PMC8806346 DOI: 10.1080/21655979.2021.1890399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Synaptojanin 2 (SYNJ2) regulates cell proliferation and apoptosis via dephosphorylating plasma membrane phosphoinositides. Aim of this study is to first seek the full-scale expression levels and potential emerging roles of SYNJ2 in hepatocellular carcinoma (HCC). We systematically analyzed SYNJ2 mRNA expression and protein levels in HCC tissues based on large-scale data and in-house immunohistochemistry (IHC). The clinical significance and risk factors for SYNJ2-related HCC cases were identified. A nomogram of prognosis was created and its performance was validated by concordance index (C-index) and shown in calibration plots. Based on the identified differentially coexpressed genes (DCGs) of SYNJ2, enriched annotations and potential pathways were predicted, and the protein interacting networks were mapped. Upregulated SYNJ2 in 3,728 HCC and 3,203 non-HCC tissues were verified and in-house IHC showed higher protein levels of SYNJ2 in HCC tissues. Pathologic T stage was identified as a risk factor. Upregulated mRNA levels and mutated SYNJ2 might cause a poorer outcome. The C-index of the nomogram model constructed by SYNJ2 level, age, gender, TNM classification, grade, and stage was evaluated as 0.643 (95%CI = 0.619–0.668) with well-calibrated plots. A total of 2,533 DCGs were extracted and mainly functioned together with SYNJ2 in metabolic pathways. Possible transcriptional axis of CTCF/POLR2A-SYNJ2/INPP5B (transcription factor-target) in metabolic pathways was discovered based on ChIP-seq datasets. In summary, transcriptional regulatory axis CTCF/POLR2A-SYNJ2 might influence SYNJ2 expression levels. Increased SYNJ2 expression level could be utilized for predicting HCC prognosis and potentially accelerates the occurrence and development of HCC via metabolic perturbations pathways.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wei-Jia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lan-Shan Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ji-Tian Chen
- Department of Pathology, People's Hospital of Ling Shan, Ling Shan, Guangxi Zhuang Autonomous Region, China
| | - Wei-Zi Wu
- Department of Pathology, People's Hospital of Ling Shan, Ling Shan, Guangxi Zhuang Autonomous Region, China
| | - Wei-Ying He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
10
|
Abdrabou A, Wang Z. Regulation of the nuclear speckle localization and function of Rac1. FASEB J 2021; 35:e21235. [PMID: 33417283 DOI: 10.1096/fj.202001694r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 11/11/2022]
Abstract
Despite significant evidence that Rac1 is localized to the nucleus, little is known regarding the function and biological significance of nuclear Rac1. Here, we showed that in response to EGF Rac1 was translocated to nuclear speckles and co-localized with the nuclear speckle marker Serine/arginine-rich splicing factor 2 (SRSF2) in Cos-7 cells. We also showed that the nuclear speckle localization of Rac1 was dependent on its T108 phosphorylation and facilitated by Rac1 polybasic region (PBR) that contains a nuclear localization signal and Rac1 GTPase activity. To gain insight into the function of Rac1 in nuclear speckles, we searched for Rac1 binding proteins in the nucleus. We isolated nuclear fraction of HEK 293 cells and incubated with GST-Rac1 and the phosphomimetic GST-Rac1T108E. We identified 463 proteins that were associated with GST-Rac1T108E, but not with GST-Rac1 by LC-MS/MS. Three notable groups of these proteins are: the heterogeneous nuclear ribonucleoproteins (hnRNPs), small nuclear ribonucleoproteins (snRNPs), and SRSFs, all of which are involved in pre-mRNA splicing and associated with nuclear speckles. We further showed by co-immunoprecipitation that Rac1 interacts with SRSF2, hnRNPA1, and U2A' in response to EGF. The interaction is dependent on T108 phosphorylation and facilitated by Rac1 PBR and GTPase activity. We showed that hnRNPA1 translocated in and out of nucleus in response to EGF in a similar pattern to Rac1. Rac1 only partially colocalized with U2A' that localizes to the actual splicing sites adjacent to nuclear speckle. Finally, we showed that Rac1 regulated EGF-induced pre-mRNA splicing and this is mediated by T108 phosphorylation. We conclude that in response to EGF, T108 phosphorylated Rac1 is targeted to nuclear speckles, interacts with multiple groups of proteins involved in pre-mRNA splicing, and regulates EGF-induced pre-mRNA splicing.
Collapse
Affiliation(s)
- Abdalla Abdrabou
- Department of Medical Genetics and Signal, Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zhixiang Wang
- Department of Medical Genetics and Signal, Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Li B, Xu Y, Quan Y, Cai Q, Le Y, Ma T, Liu Z, Wu G, Wang F, Bao C, Li H. Inhibition of RhoA/ROCK Pathway in the Early Stage of Hypoxia Ameliorates Depression in Mice via Protecting Myelin Sheath. ACS Chem Neurosci 2020; 11:2705-2716. [PMID: 32667781 DOI: 10.1021/acschemneuro.0c00352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuroplasticity and connectivity in the central nervous system (CNS) are easily damaged after hypoxia. Long-term exposure to an anoxic environment can lead to neuropsychiatric symptoms and increases the likelihood of depression. Demyelination is an important lesion of CNS injury that may occur in depression. Previous studies have found that the RhoA/ROCK pathway is upregulated in neuropsychiatric disorders such as multiple sclerosis, stroke, and neurodegenerative diseases. Therefore, the chief aim of this study is to explore the regulatory role of the RhoA/ROCK pathway in the development of depression after hypoxia by behavioral tests, Western blotting, immunostaining as well as electron microscopy. Results showed that HIF-1α, S100β, RhoA/ROCK, and immobility time in FST were increased, sucrose water preference ratio in SPT was decreased, and the aberrant activity of neurocyte and demyelination occurred after hypoxia. After the administration of Y-27632 and fluoxetine in hypoxia, these alterations were improved. Lingo1, a negative regulatory factor, was also overexpressed after hypoxia and its expression was decreased when the pathway blocked. However, fluoxetine had no effect on the expression of Lingo1. Then, we demonstrated that demyelination was associated with failures of oligodendrocyte precursor cell proliferation and differentiation and increased apoptosis of oligodendrocytes. Collectively, our data indicate that the RhoA/ROCK pathway plays a vital role in the initial depression during hypoxia. Blocking this pathway in the early stage of hypoxia can enhance the effectiveness of antidepressants, rescue myelin damage, and reduce the expression of the negative regulatory protein of myelination. The findings provide new insight into the prophylaxis and treatment of depression.
Collapse
Affiliation(s)
- Baichuan Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yang Xu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yong Quan
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| | - Qiyan Cai
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yifan Le
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Teng Ma
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Zhi Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Guangyan Wu
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| | - Fei Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Chuncha Bao
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| | - Hongli Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| |
Collapse
|
12
|
Pradhan G, Raj Abraham P, Shrivastava R, Mukhopadhyay S. Calcium Signaling Commands Phagosome Maturation Process. Int Rev Immunol 2020; 38:57-69. [PMID: 31117900 DOI: 10.1080/08830185.2019.1592169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phagosome-lysosome (P-L) fusion is one of the central immune-effector responses of host. It is known that phagosome maturation process is associated with numerous signaling cascades and among these, important role of calcium (Ca2+) signaling has been realized recently. Ca2+ plays key roles in actin rearrangement, activation of NADPH oxidase and protein kinase C (PKC). Involvement of Ca2+ in these cellular processes directs phagosomal maturation process. Some of the intracellular pathogens have acquired the strategies to modulate Ca2+ associated pathways to block P-L fusion process. In this review we have described the mechanism of Ca2+ signals that influence P-L fusion by controlling ROS, actin and PKC signaling cascades. We have also discussed the strategies implemented by the intracellular pathogens to manipulate Ca2+ signaling to consequently subvert P-L fusion. A detail study of factors associated in manipulating Ca2+ signaling may provide new insights for the development of therapeutic tools for more effective treatment options against infectious diseases.
Collapse
Affiliation(s)
- Gourango Pradhan
- a Laboratory of Molecular Cell Biology , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Hyderabad , India.,b Graduate Studies , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Philip Raj Abraham
- a Laboratory of Molecular Cell Biology , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Hyderabad , India
| | - Rohini Shrivastava
- a Laboratory of Molecular Cell Biology , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Hyderabad , India.,b Graduate Studies , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Sangita Mukhopadhyay
- a Laboratory of Molecular Cell Biology , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Hyderabad , India
| |
Collapse
|
13
|
Urbanczyk M, Layland SL, Schenke-Layland K. The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues. Matrix Biol 2019; 85-86:1-14. [PMID: 31805360 DOI: 10.1016/j.matbio.2019.11.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/24/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022]
Abstract
The cells and tissues of the human body are constantly exposed to exogenous and endogenous forces that are referred to as biomechanical cues. They guide and impact cellular processes and cell fate decisions on the nano-, micro- and macro-scale, and are therefore critical for normal tissue development and maintaining tissue homeostasis. Alterations in the extracellular matrix composition of a tissue combined with abnormal mechanosensing and mechanotransduction can aberrantly activate signaling pathways that promote disease development. Such processes are therefore highly relevant for disease modelling or when aiming for the development of novel therapies. In this mini review, we describe the main biomechanical cues that impact cellular fates. We highlight their role during development, homeostasis and in disease. We also discuss current techniques and tools that allow us to study the impact of biomechanical cues on cell and tissue development under physiological conditions, and we point out directions, in which in vitro biomechanics can be of use in the future.
Collapse
Affiliation(s)
- Max Urbanczyk
- Department of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany
| | - Shannon L Layland
- Department of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute of Women's Health, Eberhard Karls University Tübingen, Germany; Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence IFIT (EXC 2180), "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Germany; Dept. of Medicine/Cardiology, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
14
|
Abdrabou A, Brandwein D, Liu C, Wang Z. Rac1 S71 Mediates the Interaction between Rac1 and 14-3-3 Proteins. Cells 2019; 8:E1006. [PMID: 31480268 PMCID: PMC6770128 DOI: 10.3390/cells8091006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Both 14-3-3 proteins (14-3-3s) and Rho proteins regulate cytoskeleton remodeling and cell migration, which suggests a possible interaction between the signaling pathways regulated by these two groups of proteins. Indeed, more and more emerging evidence indicates the mutual regulation of these two signaling pathways. However, all of the data regarding the interaction between Rac1 signaling pathways and 14-3-3 signaling pathways are through either the upstream regulators or downstream substrates. It is not clear if Rac1 could interact with 14-3-3s directly. It is interesting to notice that the Rac1 sequence 68RPLSYP73 is likely a 14-3-3 protein binding motif following the phosphorylation of S71 by Akt. Thus, we hypothesize that Rac1 directly interacts with 14-3-3s. We tested this hypothesis in this research. By using mutagenesis, co-immunoprecipitation (co-IP), Rac1 activity assay, immunoblotting, and indirect immunofluorescence, we demonstrate that 14-3-3s interact with Rac1. This interaction is mediated by Rac1 S71 in both phosphorylation-dependent and -independent manners, but the phosphorylation-dependent interaction is much stronger. Epidermal growth factor (EGF) strongly stimulates the phosphorylation of Rac1 S71 and the interaction between 14-3-3s and Rac1. Mutating S71 to A completely abolishes both phosphorylation-dependent and -independent interactions between 14-3-3s and Rac1. The interaction between 14-3-3s and Rac1 mostly serve to regulate the activity and subcellular localization of Rac1. Among the seven 14-3-3 isoforms, 14-3-3η, -σ, and -θ showed interactions with Rac1 in both Cos-7 and HEK 293 cells. 14-3-3γ also binds to Rac1 in HEK 293 cells, but not in Cos-7 cells. We conclude that 14-3-3s interact with Rac1. This interaction is mediated by Rac1 S71 in both phosphorylation-dependent and -independent manners. The interaction between 14-3-3 and Rac1 mostly serves to regulate the activity and subcellular localization of Rac1. Among the seven 14-3-3 isoforms, 14-3-3η, -γ, -σ, and -θ interact with Rac1.
Collapse
Affiliation(s)
- Abdalla Abdrabou
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Daniel Brandwein
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Changyu Liu
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Zhixiang Wang
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
15
|
Chen YL, Wu WL, Jang CW, Yen YC, Wang SH, Tsai FY, Shen YY, Chen YW. Interferon-stimulated gene 15 modulates cell migration by interacting with Rac1 and contributes to lymph node metastasis of oral squamous cell carcinoma cells. Oncogene 2019; 38:4480-4495. [PMID: 30765861 DOI: 10.1038/s41388-019-0731-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/15/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023]
Abstract
In an effort to understand the underlying mechanisms of lymph node metastasis in oral squamous cell carcinoma (OSCC), through in vivo selection, LN1-1 cells were previously established from OEC-M1 cells and showed enhanced lymphangiogenesis and lymphatic metastasis capabilities. In the current study, we use a stable isotope labeling with amino acids in cell culture (SILAC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic platform to compare LN1-1 to OEC-M1 cells. Interferon-stimulated gene 15 (ISG15) was found highly expressed in LN1-1 cells. Immunohistochemical analysis and meta-analysis of publicly available microarray datasets revealed that the ISG15 level was increased in human OSCC tissues and associated with poor disease outcome. Knockdown of ISG15 had minimal effects on tumor growth but did decrease tumor lymphangiogenesis and lymphatic metastasis of LN1-1 cells. Consistent with the in vivo assay, ISG15 knockdown did not impair cell growth but diminished cell migration, invasion, and transendothelial migration in vitro. ISG15-induced cell migration was independent of ISGylation and associated with membrane protrusion. Ectopic expression of ISG15 increased Rac1 activity and knockdown of Rac1 impaired ISG15-enhanced migration. Furthermore, Rac1 colocalized with ISG15 to a region of membrane protrusion and ISG15 coimmunoprecipitated with Rac1, especially with the Rac1-GDP form. Importantly, as shown by proximity ligation assays, ISG15 and Rac1 physically interacted with each other. Our results indicated that ISG15 affects cell migration by interacting with Rac1 and regulating Rac1 activity and contributes to lymphatic metastasis in OSCC.
Collapse
Affiliation(s)
- Yu-Lin Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Wan-Lin Wu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chuan-Wei Jang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Chen Yen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ssu-Han Wang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ying-Ying Shen
- Pathology Core Laboratory, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
16
|
Abdrabou A, Wang Z. Post-Translational Modification and Subcellular Distribution of Rac1: An Update. Cells 2018; 7:cells7120263. [PMID: 30544910 PMCID: PMC6316090 DOI: 10.3390/cells7120263] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
Rac1 is a small GTPase that belongs to the Rho family. The Rho family of small GTPases is a subfamily of the Ras superfamily. The Rho family of GTPases mediate a plethora of cellular effects, including regulation of cytoarchitecture, cell size, cell adhesion, cell polarity, cell motility, proliferation, apoptosis/survival, and membrane trafficking. The cycling of Rac1 between the GTP (guanosine triphosphate)- and GDP (guanosine diphosphate)-bound states is essential for effective signal flow to elicit downstream biological functions. The cycle between inactive and active forms is controlled by three classes of regulatory proteins: Guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). Other modifications include RNA splicing and microRNAs; various post-translational modifications have also been shown to regulate the activity and function of Rac1. The reported post-translational modifications include lipidation, ubiquitination, phosphorylation, and adenylylation, which have all been shown to play important roles in the regulation of Rac1 and other Rho GTPases. Moreover, the Rac1 activity and function are regulated by its subcellular distribution and translocation. This review focused on the most recent progress in Rac1 research, especially in the area of post-translational modification and subcellular distribution and translocation.
Collapse
Affiliation(s)
- Abdalla Abdrabou
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
17
|
Anthocyanins from Hibiscus sabdariffa calyx attenuate in vitro and in vivo melanoma cancer metastasis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
18
|
Qureshi BM, Schmidt A, Behrmann E, Bürger J, Mielke T, Spahn CMT, Heck M, Scheerer P. Mechanistic insights into the role of prenyl-binding protein PrBP/δ in membrane dissociation of phosphodiesterase 6. Nat Commun 2018; 9:90. [PMID: 29311697 PMCID: PMC5758567 DOI: 10.1038/s41467-017-02569-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023] Open
Abstract
Isoprenylated proteins are associated with membranes and their inter-compartmental distribution is regulated by solubilization factors, which incorporate lipid moieties in hydrophobic cavities and thereby facilitate free diffusion during trafficking. Here we report the crystal structure of a solubilization factor, the prenyl-binding protein (PrBP/δ), at 1.81 Å resolution in its ligand-free apo-form. Apo-PrBP/δ harbors a preshaped, deep hydrophobic cavity, capacitating apo-PrBP/δ to readily bind its prenylated cargo. To investigate the molecular mechanism of cargo solubilization we analyzed the PrBP/δ-induced membrane dissociation of rod photoreceptor phosphodiesterase (PDE6). The results suggest that PrBP/δ exclusively interacts with the soluble fraction of PDE6. Depletion of soluble species in turn leads to dissociation of membrane-bound PDE6, as both are in equilibrium. This “solubilization by depletion” mechanism of PrBP/δ differs from the extraction of prenylated proteins by the similar folded solubilization factor RhoGDI, which interacts with membrane bound cargo via an N-terminal structural element lacking in PrBP/δ. The prenyl-binding protein PrBP/δ is a solubilization factor involved in trafficking of prenylated proteins. Here the authors present the ligand-free apo-PrBP/δ structure and propose a "solubilization by depletion" mechanism, where PrBP/δ sequesters only soluble rod photoreceptor phosphodiesterase (PDE6), leading to a dissociation of membrane-bound PDE6.
Collapse
Affiliation(s)
- Bilal M Qureshi
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Cryo Electron Microscopy, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Enzyme Kinetics, Charitéplatz 1, D-10117, Berlin, Germany.,Division of Biological & Environmental Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117, Berlin, Germany
| | - Elmar Behrmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Cryo Electron Microscopy, Charitéplatz 1, D-10117, Berlin, Germany.,Research Group Structural Dynamics of Proteins, Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany.,Institute of Biochemistry-Structural Biochemistry, University of Cologne, Zuelpicher Straße 47, D-50674, Cologne, Germany
| | - Jörg Bürger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Cryo Electron Microscopy, Charitéplatz 1, D-10117, Berlin, Germany.,UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195, Berlin, Germany
| | - Thorsten Mielke
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195, Berlin, Germany
| | - Christian M T Spahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Cryo Electron Microscopy, Charitéplatz 1, D-10117, Berlin, Germany
| | - Martin Heck
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Enzyme Kinetics, Charitéplatz 1, D-10117, Berlin, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117, Berlin, Germany.
| |
Collapse
|
19
|
Drosophila Syd-1 Has RhoGAP Activity That Is Required for Presynaptic Clustering of Bruchpilot/ELKS but Not Neurexin-1. Genetics 2017; 208:705-716. [PMID: 29217522 DOI: 10.1534/genetics.117.300538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/22/2017] [Indexed: 12/23/2022] Open
Abstract
Syd-1 proteins are required for presynaptic development in worm, fly, and mouse. Syd-1 proteins in all three species contain a Rho GTPase activating protein (GAP)-like domain of unclear significance: invertebrate Syd-1s are thought to lack GAP activity, and mouse mSYD1A has GAP activity that is thought to be dispensable for its function. Here, we show that Drosophila melanogaster Syd-1 can interact with all six fly Rhos and has GAP activity toward Rac1 and Cdc42. During development, fly Syd-1 clusters multiple presynaptic proteins at the neuromuscular junction (NMJ), including the cell adhesion molecule Neurexin (Nrx-1) and the active zone (AZ) component Bruchpilot (Brp), both of which Syd-1 binds directly. We show that a mutant form of Syd-1 that specifically lacks GAP activity localizes normally to presynaptic sites and is sufficient to recruit Nrx-1 but fails to cluster Brp normally. We provide evidence that Syd-1 participates with Rac1 in two separate functions: (1) together with the Rac guanine exchange factor (RacGEF) Trio, GAP-active Syd-1 is required to regulate the nucleotide-bound state of Rac1, thereby promoting Brp clustering; and (2) Syd-1, independent of its GAP activity, is required for the recruitment of Nrx-1 to boutons, including the recruitment of Nrx-1 that is promoted by GTP-bound Rac1. We conclude that, contrary to current models, the GAP domain of fly Syd-1 is active and required for presynaptic development; we suggest that the same may be true of vertebrate Syd-1 proteins. In addition, our data provide new molecular insight into the ability of Rac1 to promote presynaptic development.
Collapse
|
20
|
Interaction between Rho GTPases and 14-3-3 Proteins. Int J Mol Sci 2017; 18:ijms18102148. [PMID: 29036929 PMCID: PMC5666830 DOI: 10.3390/ijms18102148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/25/2023] Open
Abstract
The Rho GTPase family accounts for as many as 20 members. Among them, the archetypes RhoA, Rac1, and Cdc42 have been the most well-characterized. Like all members of the small GTPases superfamily, Rho proteins act as molecular switches to control cellular processes by cycling between active, GTP-bound and inactive, GDP-bound states. The 14-3-3 family proteins comprise seven isoforms. They exist as dimers (homo- or hetero-dimer) in cells. They function by binding to Ser/Thr phosphorylated intracellular proteins, which alters the conformation, activity, and subcellular localization of their binding partners. Both 14-3-3 proteins and Rho GTPases regulate cell cytoskeleton remodeling and cell migration, which suggests a possible interaction between the signaling pathways regulated by these two groups of proteins. Indeed, more and more emerging evidence indicates the mutual regulation of these two signaling pathways. There have been many documented reviews of 14-3-3 protein and Rac1 separately, but there is no review regarding the interaction and mutual regulation of these two groups of proteins. Thus, in this article we thoroughly review all the reported interactions between the signaling pathways regulated by 14-3-3 proteins and Rho GTPases (mostly Rac1).
Collapse
|
21
|
Structural evidence of a phosphoinositide-binding site in the Rgd1-RhoGAP domain. Biochem J 2017; 474:3307-3319. [DOI: 10.1042/bcj20170331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 11/17/2022]
Abstract
Phosphoinositide lipids recruit proteins to the plasma membrane involved in the regulation of cytoskeleton organization and in signalling pathways that control cell polarity and growth. Among those, Rgd1p is a yeast GTPase-activating protein (GAP) specific for Rho3p and Rho4p GTPases, which control actin polymerization and stress signalling pathways. Phosphoinositides not only bind Rgd1p, but also stimulate its GAP activity on the membrane-anchored form of Rho4p. Both F-BAR (F-BAR FCH, and BAR) and RhoGAP domains of Rgd1p are involved in lipid interactions. In the Rgd1p–F-BAR domain, a phosphoinositide-binding site has been recently characterized. We report here the X-ray structure of the Rgd1p–RhoGAP domain, identify by NMR spectroscopy and confirm by docking simulations, a new but cryptic phosphoinositide-binding site, comprising contiguous A1, A1′ and B helices. The addition of helix A1′, unusual among RhoGAP domains, seems to be crucial for lipid interactions. Such a site was totally unexpected inside a RhoGAP domain, as it was not predicted from either the protein sequence or its three-dimensional structure. Phosphoinositide-binding sites in RhoGAP domains have been reported to correspond to polybasic regions, which are located at the unstructured flexible termini of proteins. Solid-state NMR spectroscopy experiments confirm the membrane interaction of the Rgd1p–RhoGAP domain upon the addition of PtdIns(4,5)P2 and indicate a slight membrane destabilization in the presence of the two partners.
Collapse
|
22
|
Dias Bastos PA, Vlahou A, Leite-Moreira A, Santos LL, Ferreira R, Vitorino R. Deciphering the disease-related molecular networks using urine proteomics. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Ikeda Y, Kawai K, Ikawa A, Kawamoto K, Egami Y, Araki N. Rac1 switching at the right time and location is essential for Fcγ receptor-mediated phagosome formation. J Cell Sci 2017; 130:2530-2540. [DOI: 10.1242/jcs.201749] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/04/2017] [Indexed: 12/28/2022] Open
Abstract
Lamellipodia are sheet-like cell protrusions driven by actin polymerization mainly through Rac1, a GTPase molecular switch. In Fcγ receptor-mediated phagocytosis of IgG-opsonized erythrocytes (IgG-Es), Rac1 activation is required for lamellipodial extension along the surface of IgG-Es. However, the significance of Rac1 deactivation in phagosome formation is poorly understood. Our live-cell imaging and electron microscopy revealed that RAW264 macrophages expressing a constitutively active Rac1 mutant showed defects in phagocytic cup formation, while lamellipodia were formed around IgG-Es. Because the activated Rac1 reduced the phosphorylation levels of myosin light chain, failure of the cup formation were probably due to inhibition of actin/myosin II contractility. Reversible photo-manipulation of the Rac1 switch in macrophages fed with IgG-Es could phenocopy two lamellipodial motilities: outward-extension and cup-constriction by Rac1 ON and OFF, respectively. In conjunction with FRET imaging of Rac1 activity, we provide a novel mechanistic model of phagosome formation spatiotemporally controlled by Rac1 switching within a phagocytic cup.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Akira Ikawa
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Kyoko Kawamoto
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| |
Collapse
|
24
|
Sáenz‐Narciso B, Gómez‐Orte E, Zheleva A, Gastaca I, Cabello J. Control of developmental networks by Rac/Rho small GTPases: How cytoskeletal changes during embryogenesis are orchestrated. Bioessays 2016; 38:1246-1254. [PMID: 27790724 PMCID: PMC5132145 DOI: 10.1002/bies.201600165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small GTPases in the Rho family act as major nodes with functions beyond cytoskeletal rearrangements shaping the Caenorhabditis elegans embryo during development. These small GTPases are key signal transducers that integrate diverse developmental signals to produce a coordinated response in the cell. In C. elegans, the best studied members of these highly conserved Rho family small GTPases, RHO-1/RhoA, CED-10/Rac, and CDC-42, are crucial in several cellular processes dealing with cytoskeletal reorganization. In this review, we update the functions described for the Rho family small GTPases in spindle orientation and cell division, engulfment, and cellular movements during C. elegans embryogenesis, focusing on the Rho subfamily Rac. Please also see the video abstract here.
Collapse
Affiliation(s)
| | - Eva Gómez‐Orte
- Center for Biomedical Research of La Rioja (CIBIR)LogroñoSpain
| | | | - Irene Gastaca
- Center for Biomedical Research of La Rioja (CIBIR)LogroñoSpain
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR)LogroñoSpain
| |
Collapse
|
25
|
Rauch L, Hennings K, Trasak C, Röder A, Schröder B, Koch-Nolte F, Rivera-Molina F, Toomre D, Aepfelbacher M. Staphylococcus aureus recruits Cdc42GAP through recycling endosomes and the exocyst to invade human endothelial cells. J Cell Sci 2016; 129:2937-49. [PMID: 27311480 DOI: 10.1242/jcs.186213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023] Open
Abstract
Activation and invasion of the vascular endothelium by Staphylococcus aureus is a major cause of sepsis and endocarditis. For endothelial cell invasion, S. aureus triggers actin polymerization through Cdc42, N-WASp (also known as WASL) and the Arp2/3 complex to assemble a phagocytic cup-like structure. Here, we show that after stimulating actin polymerization staphylococci recruit Cdc42GAP (also known as ARHGAP1) which deactivates Cdc42 and terminates actin polymerization in the phagocytic cups. Cdc42GAP is delivered to the invading bacteria on recycling endocytic vesicles in concert with the exocyst complex. When Cdc42GAP recruitment by staphylococci was prevented by blocking recycling endocytic vesicles or the exocyst complex, or when Cdc42 was constitutively activated, phagocytic cup closure was impaired and endothelial cell invasion was inhibited. Thus, to complete invasion of the endothelium, staphylococci reorient recycling endocytic vesicles to recruit Cdc42GAP, which terminates Cdc42-induced actin polymerization in phagocytic cups. Analogous mechanisms might govern other Cdc42-dependent cell functions.
Collapse
Affiliation(s)
- Liane Rauch
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Kirsten Hennings
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Claudia Trasak
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Anja Röder
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Barbara Schröder
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg 85764, Germany Institute for Biological Imaging, Technical University of Munich, Arcisstrasse 21, Munich 80333, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| |
Collapse
|
26
|
GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites. Sci Rep 2016; 6:28249. [PMID: 27306108 PMCID: PMC4910163 DOI: 10.1038/srep28249] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/01/2016] [Indexed: 01/19/2023] Open
Abstract
As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation.
Collapse
|
27
|
The Rho GTPase Family Genes in Bivalvia Genomes: Sequence, Evolution and Expression Analysis. PLoS One 2015; 10:e0143932. [PMID: 26633655 PMCID: PMC4669188 DOI: 10.1371/journal.pone.0143932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/11/2015] [Indexed: 01/27/2023] Open
Abstract
Background Rho GTPases are important members of the Ras superfamily, which represents the largest signaling protein family in eukaryotes, and function as key molecular switches in converting and amplifying external signals into cellular responses. Although numerous analyses of Rho family genes have been reported, including their functions and evolution, a systematic analysis of this family has not been performed in Mollusca or in Bivalvia, one of the most important classes of Mollusca. Results In this study, we systematically identified and characterized a total set (Rho, Rac, Mig, Cdc42, Tc10, Rnd, RhoU, RhoBTB and Miro) of thirty Rho GTPase genes in three bivalve species, including nine in the Yesso scallop Patinopecten yessoensis, nine in the Zhikong scallop Chlamys farreri, and twelve in the Pacific oyster Crassostrea gigas. Phylogenetic analysis and interspecies comparison indicated that bivalves might possess the most complete types of Rho genes in invertebrates. A multiple RNA-seq dataset was used to investigate the expression profiles of bivalve Rho genes, revealing that the examined scallops share more similar Rho expression patterns than the oyster, whereas more Rho mRNAs are expressed in C. farreri and C. gigas than in P. yessoensis. Additionally, Rho, Rac and Cdc42 were found to be duplicated in the oyster but not in the scallops. Among the expanded Rho genes of C. gigas, duplication pairs with high synonymous substitution rates (Ks) displayed greater differences in expression. Conclusion A comprehensive analysis of bivalve Rho GTPase family genes was performed in scallop and oyster species, and Rho genes in bivalves exhibit greater conservation than those in any other invertebrate. This is the first study focusing on a genome-wide characterization of Rho GTPase genes in bivalves, and the findings will provide a valuable resource for a better understanding of Rho evolution and Rho GTPase function in Bivalvia.
Collapse
|
28
|
Koo PK, Weitzman M, Sabanaygam CR, van Golen KL, Mochrie SGJ. Extracting Diffusive States of Rho GTPase in Live Cells: Towards In Vivo Biochemistry. PLoS Comput Biol 2015; 11:e1004297. [PMID: 26512894 PMCID: PMC4626024 DOI: 10.1371/journal.pcbi.1004297] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/26/2015] [Indexed: 11/19/2022] Open
Abstract
Resolving distinct biochemical interaction states when analyzing the trajectories of diffusing proteins in live cells on an individual basis remains challenging because of the limited statistics provided by the relatively short trajectories available experimentally. Here, we introduce a novel, machine-learning based classification methodology, which we call perturbation expectation-maximization (pEM), that simultaneously analyzes a population of protein trajectories to uncover the system of diffusive behaviors which collectively result from distinct biochemical interactions. We validate the performance of pEM in silico and demonstrate that pEM is capable of uncovering the proper number of underlying diffusive states with an accurate characterization of their diffusion properties. We then apply pEM to experimental protein trajectories of Rho GTPases, an integral regulator of cytoskeletal dynamics and cellular homeostasis, in vivo via single particle tracking photo-activated localization microcopy. Remarkably, pEM uncovers 6 distinct diffusive states conserved across various Rho GTPase family members. The variability across family members in the propensities for each diffusive state reveals non-redundant roles in the activation states of RhoA and RhoC. In a resting cell, our results support a model where RhoA is constantly cycling between activation states, with an imbalance of rates favoring an inactive state. RhoC, on the other hand, remains predominantly inactive. Single particle tracking is a powerful tool that captures the diffusive dynamics of proteins as they undergo various interactions in living cells. Uncovering different biochemical interactions by analyzing the diffusive behaviors of individual protein trajectories, however, is challenging due to the limited statistics provided by short trajectories and experimental noise sources which are intimately coupled into each protein’s localization. Here, we introduce a novel, unsupervised, machine-learning based classification methodology, which we call perturbation expectation-maximization (pEM), that simultaneously analyzes a population of protein trajectories to uncover the system of diffusive behaviors which collectively result from distinct biochemical interactions. We validate the performance of pEM in silico and in vivo on the biological system of Rho GTPase, a signal transduction protein responsible for regulating cytoskeletal dynamics. We envision that the presented methodology will be applicable to a wide range of single protein tracking data where different biochemical interactions result in distinct diffusive behaviors. More generally, this study brings us an important step closer to the possibility of monitoring the endogenous biochemistry of diffusing proteins within live cells with single molecule resolution.
Collapse
Affiliation(s)
- Peter K. Koo
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
| | - Matthew Weitzman
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Chandran R. Sabanaygam
- Delaware Biotechnology Institute, Bioimaging Center, Newark, Delaware, United States of America
| | - Kenneth L. van Golen
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Simon G. J. Mochrie
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
- Department of Applied Physics, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
29
|
TAT-RhoGDI2, a novel tumor metastasis suppressor fusion protein: expression, purification and functional evaluation. Appl Microbiol Biotechnol 2014; 98:9633-41. [DOI: 10.1007/s00253-014-6021-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 01/03/2023]
|
30
|
Kast DJ, Yang C, Disanza A, Boczkowska M, Madasu Y, Scita G, Svitkina T, Dominguez R. Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors. Nat Struct Mol Biol 2014; 21:413-22. [PMID: 24584464 DOI: 10.1038/nsmb.2781] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/28/2014] [Indexed: 12/16/2022]
Abstract
The Rho family GTPase effector IRSp53 has essential roles in filopodia formation and neuronal development, but its regulatory mechanism is poorly understood. IRSp53 contains a membrane-binding BAR domain followed by an unconventional CRIB motif that overlaps with a proline-rich region (CRIB-PR) and an SH3 domain that recruits actin cytoskeleton effectors. Using a fluorescence reporter assay, we show that human IRSp53 adopts a closed inactive conformation that opens synergistically with the binding of human Cdc42 to the CRIB-PR and effector proteins, such as the tumor-promoting factor Eps8, to the SH3 domain. The crystal structure of Cdc42 bound to the CRIB-PR reveals a new mode of effector binding to Rho family GTPases. Structure-inspired mutations disrupt autoinhibition and Cdc42 binding in vitro and decouple Cdc42- and IRSp53-dependent filopodia formation in cells. The data support a combinatorial mechanism of IRSp53 activation.
Collapse
Affiliation(s)
- David J Kast
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yadaiah Madasu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Giorgio Scita
- 1] FIRC Institute of Molecular Oncology, Milan, Italy. [2] Department of Health Sciences, University of Milan School of Medicine, Milan, Italy
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Greer ER, Chao AT, Bejsovec A. Pebble/ECT2 RhoGEF negatively regulates the Wingless/Wnt signaling pathway. Development 2013; 140:4937-46. [PMID: 24198276 DOI: 10.1242/dev.101303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wingless (Wg)/Wnt signaling is essential for patterning invertebrate and vertebrate embryos, and inappropriate Wnt activity is associated with a variety of human cancers. Despite intensive study, Wnt pathway mechanisms are not fully understood. We have discovered a new mechanism for regulating the Wnt pathway: activity of a Rho guanine nucleotide exchange factor (GEF) encoded by pebble (pbl) in Drosophila and ECT2 in humans. This RhoGEF has an essential role in cytokinesis, but also plays an unexpected, conserved role in inhibiting Wg/Wnt activity. Loss and gain of pbl function in Drosophila embryos cause pattern defects that indicate altered Wg activity. Both Pbl and ECT2 repress Wg/Wnt target gene expression in cultured Drosophila and human cells. The GEF activity is required for Wnt regulation, whereas other protein domains important for cytokinesis are not. Unlike most negative regulators of Wnt activity, Pbl/ECT2 functions downstream of Armadillo (Arm)/beta-catenin stabilization. Our results indicate GTPase regulation at a novel point in Wg/Wnt signal transduction, and provide new insight into the categorization of ECT2 as a human proto-oncogene.
Collapse
|
32
|
Suzuki D, Yamada A, Kamijo R. The essential roles of the small GTPase Rac1 in limb development. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
CD82 blocks cMet activation and overcomes hepatocyte growth factor effects on oligodendrocyte precursor differentiation. J Neurosci 2013; 33:7952-60. [PMID: 23637186 DOI: 10.1523/jneurosci.5836-12.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanisms that regulate oligodendrocyte (OL) precursor migration and differentiation are important in normal development and in demyelinating/remyelinating conditions. We previously found that the tetraspanin CD82 is far more highly expressed in O4(+) OL precursors of the adult rat brain than those of the neonatal brain. CD82 has been physically linked to cMet, the hepatocyte growth factor (HGF) receptor, in tumor cells, and this interaction decreases downstream signaling. We show here that CD82 inhibits the HGF activation of cMet in neonatal and adult rat OL precursors. CD82 expression is sufficient to allow precursor differentiation into mature OLs even in the presence of HGF. In contrast, CD82 downregulation in adult O4(+)/CD82(+) cells inhibits their differentiation, decreases their accumulation of myelin proteins, and causes a reversion to less mature stages. CD82 expression in neonatal O4(+)/CD82(-) cells also blocks Rac1 activation, suggesting a possible regulatory effect on cytoskeletal organization and mobility. Thus, CD82 is a negative regulator of HGF/cMet during OL development and overcomes HGF inhibitory regulation of OL precursor maturation.
Collapse
|
34
|
Peterson TS, Thebeau CN, Ajit D, Camden JM, Woods LT, Wood WG, Petris MJ, Sun GY, Erb L, Weisman GA. Up-regulation and activation of the P2Y(2) nucleotide receptor mediate neurite extension in IL-1β-treated mouse primary cortical neurons. J Neurochem 2013; 125:885-96. [PMID: 23550835 DOI: 10.1111/jnc.12252] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 12/12/2022]
Abstract
The pro-inflammatory cytokine interleukin-1β (IL-1β), whose levels are elevated in the brain in Alzheimer's and other neurodegenerative diseases, has been shown to have both detrimental and beneficial effects on disease progression. In this article, we demonstrate that incubation of mouse primary cortical neurons (mPCNs) with IL-1β increases the expression of the P2Y2 nucleotide receptor (P2Y2R) and that activation of the up-regulated receptor with UTP, a relatively selective agonist of the P2Y2R, increases neurite outgrowth. Consistent with the accepted role of cofilin in the regulation of neurite extension, results indicate that incubation of IL-1β-treated mPCNs with UTP increases the phosphorylation of cofilin, a response absent in PCNs isolated from P2Y2R(-/-) mice. Other findings indicate that function-blocking anti-αv β3/5 integrin antibodies prevent UTP-induced cofilin activation in IL-1β-treated mPCNs, suggesting that established P2Y2R/αv β3/5 interactions that promote G12 -dependent Rho activation lead to cofilin phosphorylation involved in neurite extension. Cofilin phosphorylation induced by UTP in IL-1β-treated mPCNs is also decreased by inhibitors of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), suggesting a role for P2Y2R-mediated and Gq-dependent calcium mobilization in neurite outgrowth. Taken together, these studies indicate that up-regulation of P2Y2Rs in mPCNs under pro-inflammatory conditions can promote cofilin-dependent neurite outgrowth, a neuroprotective response that may be a novel pharmacological target in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Troy S Peterson
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri 65211-7310, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chi X, Wang S, Huang Y, Stamnes M, Chen JL. Roles of rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci 2013; 14:7089-108. [PMID: 23538840 PMCID: PMC3645678 DOI: 10.3390/ijms14047089] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 01/21/2023] Open
Abstract
Rho family GTPases belong to the Ras GTPase superfamily and transduce intracellular signals known to regulate a variety of cellular processes, including cell polarity, morphogenesis, migration, apoptosis, vesicle trafficking, viral transport and cellular transformation. The three best-characterized Rho family members are Cdc42, RhoA and Rac1. Cdc42 regulates endocytosis, the transport between the endoplasmic reticulum and Golgi apparatus, post-Golgi transport and exocytosis. Cdc42 influences trafficking through interaction with Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, leading to changes in actin dynamics. Rac1 mediates endocytic and exocytic vesicle trafficking by interaction with its effectors, PI3kinase, synaptojanin 2, IQGAP1 and phospholipase D1. RhoA participates in the regulation of endocytosis through controlling its downstream target, Rho kinase. Interestingly, these GTPases play important roles at different stages of viral protein and genome transport in infected host cells. Importantly, dysregulation of Cdc42, Rac1 and RhoA leads to numerous disorders, including malignant transformation. In some cases, hyperactivation of Rho GTPases is required for cellular transformation. In this article, we review a number of findings related to Rho GTPase function in intracellular transport and cellular transformation.
Collapse
Affiliation(s)
- Xiaojuan Chi
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
| | - Song Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail:
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
| | - Mark Stamnes
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; E-Mail:
| | - Ji-Long Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-6480-7300; Fax: +86-10-6480-7980
| |
Collapse
|
36
|
Nakamura M, Matsumoto K, Iwamoto Y, Muguruma T, Nakazawa N, Hatori R, Taniguchi K, Maeda R, Matsuno K. Reduced cell number in the hindgut epithelium disrupts hindgut left–right asymmetry in a mutant of pebble, encoding a RhoGEF, in Drosophila embryos. Mech Dev 2013; 130:169-80. [DOI: 10.1016/j.mod.2012.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 10/27/2022]
|
37
|
Jeong S, Juhaszova K, Kolodkin AL. The Control of semaphorin-1a-mediated reverse signaling by opposing pebble and RhoGAPp190 functions in drosophila. Neuron 2013. [PMID: 23177958 DOI: 10.1016/j.neuron.2012.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transmembrane semaphorins (Semas) serve evolutionarily conserved guidance roles, and some function as both ligands and receptors. However, the molecular mechanisms underlying the transduction of these signals to the cytoskeleton remain largely unknown. We have identified two direct regulators of Rho family small GTPases, pebble (a Rho guanine nucleotide exchange factor [GEF]) and RhoGAPp190 (a GTPase activating protein [GAP]), that show robust interactions with the cytoplasmic domain of the Drosophila Sema-1a protein. Neuronal pebble and RhoGAPp190 are required to control motor axon defasciculation at specific pathway choice points and also for target recognition during Drosophila neuromuscular development. Sema-1a-mediated motor axon defasciculation is promoted by pebble and inhibited by RhoGAPp190. Genetic analyses show that opposing pebble and RhoGAPp190 functions mediate Sema-1a reverse signaling through the regulation of Rho1 activity. Therefore, pebble and RhoGAPp190 transduce transmembrane semaphorin-mediated guidance cue information that regulates the establishment of neuronal connectivity during Drosophila development.
Collapse
Affiliation(s)
- Sangyun Jeong
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
38
|
Poosti F, Yazdani S, Dolman MEM, Jan Kok R, Chen C, Ding G, Lacombe M, Prakash J, van den Born J, Hillebrands JL, van Goor H, de Borst MH. Targeted inhibition of renal Rho kinase reduces macrophage infiltration and lymphangiogenesis in acute renal allograft rejection. Eur J Pharmacol 2012; 694:111-9. [DOI: 10.1016/j.ejphar.2012.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 08/22/2012] [Accepted: 08/27/2012] [Indexed: 01/16/2023]
|
39
|
Trerotola M, Li J, Alberti S, Languino LR. Trop-2 inhibits prostate cancer cell adhesion to fibronectin through the β1 integrin-RACK1 axis. J Cell Physiol 2012; 227:3670-7. [PMID: 22378065 DOI: 10.1002/jcp.24074] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Trop-2 is a transmembrane glycoprotein upregulated in several human carcinomas, including prostate cancer (PrCa). Trop-2 has been suggested to regulate cell-cell adhesion, given its high homology with the other member of the Trop family, Trop-1/EpCAM, and its ability to bind the tight junction proteins claudin-1 and claudin-7. However, a role for Trop-2 in cell adhesion to the extracellular matrix has never been postulated. Here, we show for the first time that Trop-2 expression in PrCa cells correlates with their aggressiveness. Using either shRNA-mediated silencing of Trop-2 in cells that endogenously express it, or ectopic expression of Trop-2 in cells that do not express it, we show that Trop-2 inhibits PrCa cell adhesion to fibronectin (FN). In contrast, expression of another transmembrane receptor, α(v) β(5) integrin, does not affect cell adhesion to this ligand. We find that Trop-2 does not modulate either protein or activation levels of the prominent FN receptors, β(1) integrins, but acts through increasing β(1) association with the adaptor molecule RACK1 and redistribution of RACK1 to the cell membrane. As a result of Trop-2 expression, we also observe activation of Src and FAK, known to occur upon β(1) -RACK1 interaction. These enhanced Src and FAK activities are not mediated by changes in either the activity of IGF-IR, which is known to bind RACK1, or IGF-IR's ability to associate with β(1) integrins. In summary, our data demonstrate that the transmembrane receptor Trop-2 is a regulator of PrCa cell adhesion to FN through activation of the β(1) integrin-RACK1-FAK-Src signaling axis.
Collapse
Affiliation(s)
- Marco Trerotola
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
40
|
Parrini MC, Camonis J. Cell motility: The necessity of Rac1 GDP/GTP flux. Commun Integr Biol 2012; 4:772-4. [PMID: 22446552 DOI: 10.4161/cib.17772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Ras proto-oncogenic proteins, prototypes of the small GTPases, work as molecular switches: they are active when bound to GTP and inactive when bound to GDP. A variety of evidence suggested that the Ras paradigm is not fully valid for the Rho-family of small GTPases. Indeed, permanent activation is not sufficient but it is rather the continuous oscillation between the GDP-bound and GTP-bound conformations (namely the GDP/GTP cycling or GTPase flux), that is required for Rho-GTPases to perform their biological functions and properly coordinate actin cytoskeleton reorganization. In our recent study, we show that Rac1 needs to cycle between the GDP and GTP states in order to efficiently control cell motility. Similarly, it was previously reported that GDP/GTP cycling is required by RhoA for cytokinesis and by Cdc42 for cell polarization. The future challenge is to understand why the GTPase flux is so important for the biological actions of Rho GTPases.
Collapse
|
41
|
Garcia JL, Couceiro J, Gomez-Moreta JA, Gonzalez Valero JM, Briz AS, Sauzeau V, Lumbreras E, Delgado M, Robledo C, Almunia ML, Bustelo XR, Hernandez JM. Expression of VAV1 in the tumour microenvironment of glioblastoma multiforme. J Neurooncol 2012; 110:69-77. [PMID: 22864683 DOI: 10.1007/s11060-012-0936-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 07/06/2012] [Indexed: 11/26/2022]
Abstract
Even though much progress has been made towards understanding the molecular nature of glioma, the survival rates of patients affected by this tumour have not changed significantly over recent years. Better knowledge of this malignancy is still needed in order to predict its outcome and improve patient treatment. VAV1 is an GDP/GTP exchange factor for Rho/Rac proteins with oncogenic potential that is involved in the regulation of cytoskeletal dynamics and cell migration. Here we report its overexpression in 59 patients diagnosed with high-grade glioma, and the associated upregulation of a number of genes coding for proteins also involved in cell invasion- and migration-related processes. Unexpectedly, immunohistochemical experiments revealed that VAV1 is not expressed in glioma cells. Instead, VAV1 is found in non-tumoural astrocyte-like cells that are located either peritumouraly or perivascularly. We propose that the expression of VAV1 is linked to synergistic signalling cross-talk between cancer and infiltrating cells. Interestingly, we show that the pattern of expression of VAV1 could have a role in the neoplastic process in glioblastoma tumours.
Collapse
Affiliation(s)
- Juan Luis Garcia
- Research Unit, IECSCYL-Hospital Universitario de Salamanca. IBSAL, IBMCC (USALCSIC), Paseo San Vicente 58, 37007, Salamanca, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gomez-Cambronero J. Biochemical and cellular implications of a dual lipase-GEF function of phospholipase D2 (PLD2). J Leukoc Biol 2012; 92:461-7. [PMID: 22750546 DOI: 10.1189/jlb.0212073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PLD2 plays a key role in cell membrane lipid reorganization and as a key cell signaling protein in leukocyte chemotaxis and phagocytosis. Adding to the large role for a lipase in cellular functions, recently, our lab has identified a PLD2-Rac2 binding through two CRIB domains in PLD2 and has defined PLD2 as having a new function, that of a GEF for Rac2. PLD2 joins other major GEFs, such as P-Rex1 and Vav, which operate mainly in leukocytes. We explain the biochemical and cellular implications of a lipase-GEF duality. Under normal conditions, GEFs are not constitutively active; instead, their activation is highly regulated. Activation of PLD2 leads to its localization at the plasma membrane, where it can access its substrate GTPases. We propose that PLD2 can act as a "scaffold" protein to increase efficiency of signaling and compartmentalization at a phagocytic cup or the leading edge of a leukocyte lamellipodium. This new concept will help our understanding of leukocyte crucial functions, such as cell migration and adhesion, and how their deregulation impacts chronic inflammation.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, OH, USA.
| |
Collapse
|
43
|
Ueno T, Falkenburger BH, Pohlmeyer C, Inoue T. Triggering actin comets versus membrane ruffles: distinctive effects of phosphoinositides on actin reorganization. Sci Signal 2011; 4:ra87. [PMID: 22169478 DOI: 10.1126/scisignal.2002033] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A limited set of phosphoinositide membrane lipids regulate diverse cellular functions including proliferation, differentiation, and migration. We developed two techniques based on rapamycin-induced protein dimerization to rapidly change the concentration of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. First, using a membrane-recruitable form of PI(4)P 5-kinase, we increased PI(4,5)P(2) synthesis from phosphatidylinositol 4-phosphate [PI(4)P] and found that COS-7, HeLa, and human embryonic kidney 293 cells formed bundles of motile actin filaments known as actin comets. In contrast, a second technique that increased the concentration of PI(4,5)P(2) without consuming PI(4)P induced membrane ruffles. These distinct phenotypes were mediated by dynamin-mediated vesicular trafficking and mutually inhibitory crosstalk between the small guanosine triphosphatases Rac and RhoA. Our results indicate that the effect of PI(4,5)P(2) on actin reorganization depends on the abundance of other phosphoinositides, such as PI(4)P. Thus, combinatorial regulation of phosphoinositide concentrations may contribute to the diversity of phosphoinositide functions.
Collapse
Affiliation(s)
- Tasuku Ueno
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
44
|
Protein palmitoylation and subcellular trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2981-94. [DOI: 10.1016/j.bbamem.2011.07.009] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
|
45
|
Okada H, Uezu A, Mason FM, Soderblom EJ, Moseley MA, Soderling SH. SH3 domain-based phototrapping in living cells reveals Rho family GAP signaling complexes. Sci Signal 2011; 4:rs13. [PMID: 22126966 DOI: 10.1126/scisignal.2002189] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rho family GAPs [guanosine triphosphatase (GTPase) activating proteins] negatively regulate Rho family GTPase activity and therefore modulate signaling events that control cytoskeletal dynamics. The spatial distribution of these GAPs and their specificity toward individual GTPases are controlled by their interactions with various proteins within signaling complexes. These interactions are likely mediated through the Src homology 3 (SH3) domain, which is abundant in the Rho family GAP proteome and exhibits a micromolar binding affinity, enabling the Rho family GAPs to participate in transient interactions with multiple binding partners. To capture these elusive GAP signaling complexes in situ, we developed a domain-based proteomics approach, starting with in vivo phototrapping of SH3 domain-binding proteins and the mass spectrometry identification of associated proteins for nine representative Rho family GAPs. After the selection of candidate binding proteins by cluster analysis, we performed peptide array-based high-throughput in vitro binding assays to confirm the direct interactions and map the SH3 domain-binding sequences. We thereby identified 54 SH3-mediated binding interactions (including 51 previously unidentified ones) for nine Rho family GAPs. We constructed Rho family GAP interactomes that provided insight into the functions of these GAPs. We further characterized one of the predicted functions for the Rac-specific GAP WRP and identified a role for WRP in mediating clustering of the postsynaptic scaffolding protein gephyrin and the GABA(A) (γ-aminobutyric acid type A) receptor at inhibitory synapses.
Collapse
Affiliation(s)
- Hirokazu Okada
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
46
|
Epithelial-mesenchymal transition of rat peritoneal mesothelial cells via Rhoa/Rock pathway. In Vitro Cell Dev Biol Anim 2010; 47:165-72. [PMID: 21108050 DOI: 10.1007/s11626-010-9369-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
The objective of this study was to investigate the role of the RhoA/Rock signaling pathway in the epithelial-mesenchymal transition (EMT) of rat peritoneal mesothelial cells (RPMCs). Primary SD rat peritoneal mesothelial cells were cultured in vitro. RPMCs were randomly assigned to four groups: group A (control), group B (TGF-β1, 10 μg/L), group C (10 μg/L TGF-β1 + 10 μmol/L Y-27632, an inhibitor of Rock that was pre-applied for 2 h before TGF-β1 stimulation), and group D (Y-27632 alone, 10 μmol/L). Our results were as follows: (1) TGF-β1 stimulation elicited a robust increase in RhoA activity in a time-dependent manner; the increase was 2.57 ± 0.52 times larger than the activity observed for the control group (P < 0.05) after 10 min of stimulation. RhoA activity peaked at 1 h and was 4.35 ± 0.41 times the value observed for the control group (P < 0.05). (2) TGF-β1 up-regulated mRNA and/or protein expression of α-SMA, vimentin, and collagen and down-regulated mRNA and protein expression of E-cadherin in RPMCs. (3) The Rock inhibitor Y-27632 effectively reduced TGF-β1-induced expression of α-SMA, collagen, and vimentin; the mRNA levels of α-SMA and collagen decreased by 53.8% and 55.7%, respectively, and the protein levels of α-SMA, vimentin, and collagen decreased by 42.6%, 60.1%, and 58.1%, respectively, as compared to TGF-β1-stimulated groups (P < 0.05). However, the Rock inhibitor Y-27632 had no effect on the level of E-cadherin. In conclusion, the RhoA/Rock signaling pathway may mediate EMT induced by TGF-β1 in rat peritoneal mesothelial cells. The RhoA/Rock pathway may be a potential therapeutic target for the treatment of peritoneal fibrosis.
Collapse
|
47
|
Wu J, Tang Q, Shen J, Yao A, Wang F, Pu L, Yu Y, Li X, Li G, Zhang F, Sun B, Kong L, Li D, Zhang Y, Guo X, Wang X. Comparative proteome profile during the early period of small-for-size liver transplantation in rats revealed the protective role of Prdx5. J Hepatol 2010; 53:73-83. [PMID: 20451279 DOI: 10.1016/j.jhep.2010.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 01/12/2010] [Accepted: 01/12/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS In living-donor liver transplantation (LDLT), "small-for-size graft (SFSG) syndrome" is a complex process resulting primarily from ischemia-reperfusion injury (IRI) and portal hypertension associated with size mismatch between graft and recipient. In the early period of LDLT, molecular events related to subsequent apoptosis, necrosis, proliferation and regeneration appeared in specific protein expression patterns. METHODS We used 2D-PAGE and MALDI-TOF/TOF technology to construct a comparative proteome profile for small-for-size liver grafts (SFSGs) during the early period of LDLT in rats (ischemia 1h, and 2, 6, 24, 48 h post-reperfusion); sham-operated liver was the control. Western blotting was used to confirm the proteomics results and immunohistochemistry was carried out to explore the cellular localization of selected proteins. We further performed cluster and bioinformatics analyses of differential proteins. Lastly, we overexpressed Prdx5 in liver grafts using an adenoviral vector to evaluate its protective role. RESULTS We identified 314 differential protein spots corresponding to 259 different proteins. Cluster analyses revealed six expression patterns, and bioinformatics analyses revealed that each pattern was related to many specific cell processes. We also showed that Prdx5 overexpression could attenuate injury to SFSGs and increase survival in recipients. CONCLUSIONS Taken together, these results reveal an important proteome profile that is functional in SFSGs during early period of LDLT, and provide a strong basis for further research.
Collapse
Affiliation(s)
- Jindao Wu
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Okamoto K, Bosch M, Hayashi Y. The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiology (Bethesda) 2010; 24:357-66. [PMID: 19996366 DOI: 10.1152/physiol.00029.2009] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and actin are two crucial molecules involved in long-term potentiation (LTP). In addition to its signaling function, CaMKII plays a structural role via direct interaction with actin filaments, thus coupling functional and structural plasticity in dendritic spines. The status of F-actin, regulated by CaMKII, determines the postsynaptic protein binding capacity and thus may act as a synaptic tag that consolidates LTP.
Collapse
Affiliation(s)
- Kenichi Okamoto
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
49
|
Zavarella S, Nakada M, Belverud S, Coniglio SJ, Chan A, Mittler MA, Schneider SJ, Symons M. Role of Rac1-regulated signaling in medulloblastoma invasion. Laboratory investigation. J Neurosurg Pediatr 2009; 4:97-104. [PMID: 19645540 DOI: 10.3171/2009.4.peds08322] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECT Medulloblastomas are the most common malignant brain tumors in children. These tumors are highly invasive, and patients harboring these lesions are frequently diagnosed with distant spread. In this study, the authors investigated the role of Rac1, a member of the Rho family of small guanosine triphosphatases, in medulloblastoma invasion. METHODS Three established medulloblastoma cell lines were used: DAOY, UW-228, and ONS-76. Specific depletion of Rac1 protein was accomplished by transient transfection of small interfering RNA. Cell invasion through extracellular matrix (Matrigel) was quantified using a transwell migration assay. Mitogen activated protein kinase activation was determined using phospho-MAP kinase-specific antibodies, and inhibition of MAP kinase pathways was achieved by specific small molecule inhibitors. Localization of Rac1 and its expression levels were determined by immunohistochemical analysis using a Rac1-specific antibody, and Rac1 activation was qualitatively assessed by Rac1 plasma membrane association. RESULTS Small interfering RNA-mediated depletion of Rac1 strongly inhibited medulloblastoma cell invasion. Although depletion of Rac1 inhibited the proliferation of UW-228 cells, and of ONS-76 cells to a lesser extent, it stimulated the proliferation of DAOY cells. Depletion of Rac1 also inhibited the activation of the ERK and JNK MAP kinase pathways, and inhibition of either pathway diminished invasion and proliferation. Immunohistochemical analysis demonstrated that the Rac1 protein was overexpressed in all medulloblastoma tumors examined, and indicated that Rac1 was hyperactive in 6 of 25 tumors. CONCLUSIONS The authors' data show that Rac1 is necessary for the invasive behavior of medulloblastoma cells in vitro, and plays a variable role in medulloblastoma cell proliferation. In addition, these results indicate that Rac1 stimulates medulloblastoma invasion by activating the ERK and JNK pathways. The authors suggest that Rac1 and signaling elements controlled by this guanosine triphosphatase may serve as novel targets for therapeutic intervention in malignant medulloblastomas.
Collapse
Affiliation(s)
- Salvatore Zavarella
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Carr HS, Cai C, Keinänen K, Frost JA. Interaction of the RhoA exchange factor Net1 with discs large homolog 1 protects it from proteasome-mediated degradation and potentiates Net1 activity. J Biol Chem 2009; 284:24269-80. [PMID: 19586902 DOI: 10.1074/jbc.m109.029439] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Net1 is a nuclear Rho guanine nucleotide exchange factor that is specific for the RhoA subfamily of small G proteins. Truncated forms of Net1 are transforming in NIH3T3 cells, and this activity requires cytoplasmic localization of Net1 as well as the presence of a COOH-terminal PDZ binding site. We have previously shown that Net1 interacts with PDZ domain-containing proteins within the Discs Large (Dlg) family and relocalizes them to the nucleus. In the present work, we demonstrate that Net1 binds directly to the first two PDZ domains of Dlg1 and that both PDZ domains are required for maximal interaction in cells. Furthermore, we show that Net1 is an unstable protein in MCF7 breast epithelial cells and that interaction with Dlg1 significantly enhances Net1 stability. Stabilization by Dlg1 significantly increases the ability of Net1 to stimulate RhoA activation in cells. The stability of endogenous Net1 is strongly enhanced by cell-cell contact, and this correlates with a dramatic increase in the interaction between Net1 and Dlg1. Importantly, disruption of E-cadherin-mediated cell contacts, either by depletion of external calcium or by treatment with transforming growth factor beta, leads to a rapid loss of the interaction between Net1 and Dlg1 and a subsequent increase in the ubiquitylation of Net1. These results indicate that Net1 requires interaction with PDZ domain proteins, such as Dlg1, to protect it from proteasome-mediated degradation and to maximally stimulate RhoA and that this interaction is regulated by cell-cell contact.
Collapse
Affiliation(s)
- Heather S Carr
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|