1
|
Mirzaiebadizi A, Shafabakhsh R, Ahmadian MR. Modulating PAK1: Accessory Proteins as Promising Therapeutic Targets. Biomolecules 2025; 15:242. [PMID: 40001545 PMCID: PMC11852631 DOI: 10.3390/biom15020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The p21-activated kinase (PAK1), a serine/threonine protein kinase, is critical in regulating various cellular processes, including muscle contraction, neutrophil chemotaxis, neuronal polarization, and endothelial barrier function. Aberrant PAK1 activity has been implicated in the progression of several human diseases, including cancer, heart disease, and neurological disorders. Increased PAK1 expression is often associated with poor clinical prognosis, invasive tumor characteristics, and therapeutic resistance. Despite its importance, the cellular mechanisms that modulate PAK1 function remain poorly understood. Accessory proteins, essential for the precise assembly and temporal regulation of signaling pathways, offer unique advantages as therapeutic targets. Unlike core signaling components, these modulators can attenuate aberrant signaling without completely abolishing it, potentially restoring signaling to physiological levels. This review highlights PAK1 accessory proteins as promising and novel therapeutic targets, opening new horizons for disease treatment.
Collapse
Affiliation(s)
- Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Rana Shafabakhsh
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
2
|
Zhang X, Zhang M, Li Y, Deng P. Identification of Potential Selective PAK4 Inhibitors Through Shape and Protein Conformation Ensemble Screening and Electrostatic-Surface-Matching Optimization. Curr Issues Mol Biol 2025; 47:29. [PMID: 39852144 PMCID: PMC11764389 DOI: 10.3390/cimb47010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
P21-activated kinase 4 (PAK4) plays a crucial role in the proliferation and metastasis of various cancers. However, developing selective PAK4 inhibitors remains challenging due to the high homology within the PAK family. Therefore, developing highly selective PAK4 inhibitors is critical to overcoming the limitations of existing inhibitors. We analyzed the structural differences in the binding pockets of PAK1 and PAK4 by combining cross-docking and molecular dynamics simulations to identify key binding regions and unique structural features of PAK4. We then performed screening using shape and protein conformation ensembles, followed by a re-evaluation of the docking results with deep-learning-driven GNINA to identify the candidate molecule, STOCK7S-56165. Based on this, we applied a fragment-replacement strategy under electrostatic-surface-matching conditions to obtain Compd 26. This optimization significantly improved electrostatic interactions and reduced binding energy, highlighting its potential for selectivity. Our findings provide a novel approach for developing selective PAK4 inhibitors and lay the theoretical foundation for future anticancer drug design.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Z.); (M.Z.); (Y.L.)
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
| | - Meile Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Z.); (M.Z.); (Y.L.)
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
| | - Yihao Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Z.); (M.Z.); (Y.L.)
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
| | - Ping Deng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Z.); (M.Z.); (Y.L.)
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing 400016, China
| |
Collapse
|
3
|
Liu X, Pan YJ, Kang MJ, Jiang X, Guo ZY, Pei DS. PAK5 potentiates slug transactivation of N-cadherin to facilitate metastasis of renal cell carcinoma. Cell Signal 2023; 110:110803. [PMID: 37437827 DOI: 10.1016/j.cellsig.2023.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Renal cell carcinoma (RCC) is an aggravating cancer with a poor prognosis and a high rate of metastasis. PAK5, a p21-activated kinases, has shown to be overexpressed in a variety of cancers, including RCC. In previous studies, we discovered that PAK5 regulates cell migration and invasion in RCC cell lines. However, the underlying mechanisms remain obscure. In this study, we consolidated that PAK5 confers a pro-metastatic phenotype RCC cells in vitro and exacerbates metastasis in vivo. High PAK5 expression was associated with an advanced TNM stage and a lower overall survival. Furthermore, PAK5 increases the expression level of N-cadherin. In terms of mechanism, PAK5 bound to Slug and phosphorylated it at serine 87. As a result, phosphorylated Slug transactivated N-cadherin, accelerating the epithelial-mesenchymal transition. Collectively, Slug is a novel PAK5 substrate, and PAK5-mediated phosphorylation of Slug-S87 increases N-cadherin and the pro-metastatic phenotype of RCC, implying that phosphorylated Slug-S87 could be a therapeutic target in progressive RCC.
Collapse
Affiliation(s)
- Xu Liu
- Department of Urology, Xuzhou Children's Hospital, Xuzhou 221002, China
| | - Yao-Jie Pan
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Meng-Jie Kang
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221002, China
| | - Xin Jiang
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221002, China
| | - Zhong-Ying Guo
- Department of Pathology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, China.
| | - Dong-Sheng Pei
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
4
|
Han S, Jin X, Hu T, Chi F. ARHGAP25 suppresses the development of breast cancer by an ARHGAP25/Wnt/ASCL2 feedback loop. Carcinogenesis 2023; 44:369-382. [PMID: 37326327 DOI: 10.1093/carcin/bgad042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Downregulation of ARHGAP25 was found in the tumor samples from breast cancer patients and five breast cancer cell lines. However, its precise role and molecular mechanisms in breast cancer remain completely unknown. Herein, we found that knockdown of ARHGAP25 in breast cancer cells promoted proliferation, migration and invasion of breast cancer cells. Mechanistically, ARHGAP25 silence facilitated the activation of the Wnt/β-catenin pathway and the upregulation of its downstream molecules (including c-Myc, Cyclin D1, PCNA, MMP2, MMP9, Snail and ASCL2) by directly regulating Rac1/PAK1 in breast cancer cells. In vivo xenograft experiments indicated ARHGAP25 silence promoted tumor growth and activated the Wnt/β-catenin pathway. In contrast, overexpression of ARHGAP25 in vitro and in vivo impeded all of the above cancer properties. Intriguingly, ASCL2, a downstream target of the Wnt/β-catenin pathway, transcriptionally repressed the expression of ARHGAP25 and therefore constituted a negative feedback loop. Moreover, bioinformatics analysis indicated that ARHGAP25 was significantly correlated with tumor immune cell infiltration and the survival of patients with different immune cell subgroups in breast cancer. Collectively, our work revealed that ARHGAP25 suppressed tumor progression of breast cancer. It provides a novel insight for the treatment of breast cancer.
Collapse
Affiliation(s)
- Sijia Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xueying Jin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Tianyu Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Feng Chi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
5
|
Wang X, Xiao Y, Dong Y, Wang Z, Yi J, Wang J, Wang X, Zhou H, Zhang L, Shi Y. A20 interacts with mTORC2 to inhibit the mTORC2/Akt/Rac1 signaling axis in hepatocellular carcinoma cells. Cancer Gene Ther 2023; 30:424-436. [PMID: 36411371 DOI: 10.1038/s41417-022-00562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
A20 acts as a tumor suppressor in hepatocellular carcinoma, especially inhibiting metastasis of the malignant cells. However, the mechanisms whereby A20 plays the inhibitory roles are not understood completely. Rac1 signaling is essential for cell migration in hepatocellular carcinoma metastasis. Nevertheless, it is not known whether and how A20 inhibits Rac1 signaling to suppress the migration of hepatocellular carcinoma cell. Thereby, we analyzed the relationship between A20 and Rac1 activation, as well as the activity of Akt and mTORC2, two signaling components upstream of Rac1, using gain and loss of function experiments. We found that the overexpression of A20 repressed, while the knockdown or knockout of A20 promoted, the activation of Rac1, Akt and mTORC2 in hepatocellular carcinoma cells. Moreover, the inhibitory effect of A20 on the mTORC2/Akt/Rac1 signaling axis was due to the interaction between A20 and mTORC2 complex. The binding of A20 to mTORC2 was mediated by the ZnF7 domain of A20 and M1 ubiquitin chain in the mTORC2 complex. Furthermore, A20 inhibited metastasis of hepatocellular carcinoma cells via restraining mTORC2 in a hepatocellular carcinoma xenograft mouse model. These findings revealed the relationship between A20 and mTORC2, and explained the molecular mechanisms of A20 in inhibition of hepatocellular carcinoma metastasis.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ying Xiao
- Laboratory of Cellular and Molecular Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanlei Dong
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhida Wang
- Department of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, China
| | - Jing Yi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianing Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyan Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongyu Shi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
6
|
p21-Activated kinases as promising therapeutic targets in hematological malignancies. Leukemia 2022; 36:315-326. [PMID: 34697424 DOI: 10.1038/s41375-021-01451-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
The p21-Activated Kinases (PAKs) are a family of six serine/threonine kinases that were originally identified as downstream effectors of the Rho GTPases Cdc42 and Rac. Since the first PAK was discovered in 1994, studies have revealed their fundamental and biological importance in the development of physiological systems. Within the cell, PAKs also play significant roles in regulating essential cellular processes such as cytoskeletal dynamics, gene expression, cell survival, and cell cycle progression. These processes are often deregulated in numerous cancers when different PAKs are overexpressed or amplified at the chromosomal level. Furthermore, PAKs modulate multiple oncogenic signaling pathways which facilitate apoptosis escape, uncontrolled proliferation, and drug resistance. There is growing insight into the critical roles of PAKs in regulating steady-state hematopoiesis, including the properties of hematopoietic stem cells (HSC), and the initiation and progression of hematological malignancies. This review will focus on the most recent studies that provide experimental evidence showing how specific PAKs regulate the properties of leukemic stem cells (LSCs) and drug-resistant cells to initiate and maintain hematological malignancies. The current understanding of the molecular and cellular mechanisms by which the PAKs operate in specific human leukemia or lymphomas will be discussed. From a translational point of view, PAKs have been suggested to be critical therapeutic targets and potential prognosis markers; thus, this review will also discuss current therapeutic strategies against hematological malignancies using existing small-molecule PAK inhibitors, as well as promising combination treatments, to sensitize drug-resistant cells to conventional therapies. The challenges of toxicity and non-specific targeting associated with some PAK inhibitors, as well as how future approaches for PAK inhibition to overcome these limitations, will also be addressed.
Collapse
|
7
|
Mosaddeghzadeh N, Ahmadian MR. The RHO Family GTPases: Mechanisms of Regulation and Signaling. Cells 2021; 10:1831. [PMID: 34359999 PMCID: PMC8305018 DOI: 10.3390/cells10071831] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Much progress has been made toward deciphering RHO GTPase functions, and many studies have convincingly demonstrated that altered signal transduction through RHO GTPases is a recurring theme in the progression of human malignancies. It seems that 20 canonical RHO GTPases are likely regulated by three GDIs, 85 GEFs, and 66 GAPs, and eventually interact with >70 downstream effectors. A recurring theme is the challenge in understanding the molecular determinants of the specificity of these four classes of interacting proteins that, irrespective of their functions, bind to common sites on the surface of RHO GTPases. Identified and structurally verified hotspots as functional determinants specific to RHO GTPase regulation by GDIs, GEFs, and GAPs as well as signaling through effectors are presented, and challenges and future perspectives are discussed.
Collapse
Affiliation(s)
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Universitätsstrasse 1, Building 22.03.05, 40225 Düsseldorf, Germany;
| |
Collapse
|
8
|
Liang J, Oyang L, Rao S, Han Y, Luo X, Yi P, Lin J, Xia L, Hu J, Tan S, Tang L, Pan Q, Tang Y, Zhou Y, Liao Q. Rac1, A Potential Target for Tumor Therapy. Front Oncol 2021; 11:674426. [PMID: 34079763 PMCID: PMC8165220 DOI: 10.3389/fonc.2021.674426] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
RAS-related C3 botulinum toxin substrate 1 (Rac.1) is one of the important members of Rho GTPases. It is well known that Rac1 is a cytoskeleton regulation protein that regulates cell adhesion, morphology, and movement. Rac1 is highly expressed in different types of tumors, which is related to poor prognosis. Studies have shown that Rac1 not only participates in the tumor cell cycle, apoptosis, proliferation, invasion, migration and angiogenesis, but also participates in the regulation of tumor stem cell, thus promoting the occurrence of tumors. Rac1 also plays a key role in anti-tumor therapy and participates in immune escape mediated by the tumor microenvironment. In addition, the good prospects of Rac1 inhibitors in cancer prevention and treatment are exciting. Therefore, Rac1 is considered as a potential target for the prevention and treatment of cancer. The necessity and importance of Rac1 are obvious, but it still needs further study.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shan Rao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Pin Yi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiaqi Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lu Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,University of South China, Hengyang, China
| | - Qing Pan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,University of South China, Hengyang, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha, China
| |
Collapse
|
9
|
Campbell WA, Fritsch-Kelleher A, Palazzo I, Hoang T, Blackshaw S, Fischer AJ. Midkine is neuroprotective and influences glial reactivity and the formation of Müller glia-derived progenitor cells in chick and mouse retinas. Glia 2021; 69:1515-1539. [PMID: 33569849 DOI: 10.1002/glia.23976] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
Recent studies suggest midkine (MDK) is involved in the development and regeneration of the zebrafish retina. We investigate the expression patterns of MDK and related factors, roles in neuronal survival, and influence upon the formation of Müller glia-derived progenitor cells (MGPCs) in chick and mouse model systems. By using single-cell RNA-sequencing, we find that MDK and pleiotrophin (PTN), a MDK-related cytokine, are upregulated by Müller glia (MG) during later stages of development in chick. While PTN is downregulated, MDK is dramatically upregulated in mature MG after retinal damage or FGF2 and insulin treatment. By comparison, MDK and PTN are downregulated by MG in damaged mouse retinas. In both chick and mouse retinas, exogenous MDK induces expression of cFos and pS6 in MG. In the chick, MDK significantly decreases numbers dying neurons, reactive microglia, and proliferating MGPCs, whereas PTN has no effect. Inhibition of MDK-signaling with Na3 VO4 blocks neuroprotective effects with an increase in the number of dying cells and negates the pro-proliferative effects on MGPCs in damaged retinas. Inhibitors of PP2A and Pak1, which are associated with MDK-signaling through integrin β1, suppressed the formation of MGPCs in damaged chick retinas. In mice, MDK promotes a small but significant increase in proliferating MGPCs in damaged retinas and potently decreases the number of dying cells. We conclude that MDK expression is dynamically regulated in Müller glia during embryonic maturation, following retinal injury, and during reprogramming into MGPCs. MDK mediates glial activity, neuronal survival, and the re-programming of Müller glia into proliferating MGPCs.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Amanda Fritsch-Kelleher
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Møller LLV, Jaurji M, Kjøbsted R, Joseph GA, Madsen AB, Knudsen JR, Lundsgaard AM, Andersen NR, Schjerling P, Jensen TE, Krauss RS, Richter EA, Sylow L. Insulin-stimulated glucose uptake partly relies on p21-activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle. J Physiol 2020; 598:5351-5377. [PMID: 32844438 DOI: 10.1113/jp280294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Muscle-specific genetic ablation of p21-activated kinase (PAK)2, but not whole-body PAK1 knockout, impairs glucose tolerance in mice. Insulin-stimulated glucose uptake partly relies on PAK2 in glycolytic extensor digitorum longus muscle By contrast to previous reports, PAK1 is dispensable for insulin-stimulated glucose uptake in mouse muscle. ABSTRACT The group I p21-activated kinase (PAK) isoforms PAK1 and PAK2 are activated in response to insulin in skeletal muscle and PAK1/2 signalling is impaired in insulin-resistant mouse and human skeletal muscle. Interestingly, PAK1 has been suggested to be required for insulin-stimulated glucose transporter 4 translocation in mouse skeletal muscle. Therefore, the present study aimed to examine the role of PAK1 in insulin-stimulated muscle glucose uptake. The pharmacological inhibitor of group I PAKs, IPA-3 partially reduced (-20%) insulin-stimulated glucose uptake in isolated mouse soleus muscle (P < 0.001). However, because there was no phenotype with genetic ablation of PAK1 alone, consequently, the relative requirement for PAK1 and PAK2 in whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake was investigated. Whole-body respiratory exchange ratio was largely unaffected in whole-body PAK1 knockout (KO), muscle-specific PAK2 KO and in mice with combined whole-body PAK1 KO and muscle-specific PAK2 KO. By contrast, glucose tolerance was mildly impaired in mice lacking PAK2 specifically in muscle, but not PAK1 KO mice. Moreover, while PAK1 KO muscles displayed normal insulin-stimulated glucose uptake in vivo and in isolated muscle, insulin-stimulated glucose uptake was slightly reduced in isolated glycolytic extensor digitorum longus muscle lacking PAK2 alone (-18%) or in combination with PAK1 KO (-12%) (P < 0.05). In conclusion, glucose tolerance and insulin-stimulated glucose uptake partly rely on PAK2 in glycolytic mouse muscle, whereas PAK1 is dispensable for whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake.
Collapse
Affiliation(s)
- Lisbeth L V Møller
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Merna Jaurji
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Giselle A Joseph
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Agnete B Madsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Microsystems Laboratory 2, Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline R Andersen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Huang S, Zhu Y, Wang C, Li X, Cui X, Tu S, You L, Fu J, Chen Z, Hu W, Gong W. PAK5 facilitates the proliferation, invasion and migration in colorectal cancer cells. Cancer Med 2020; 9:4777-4790. [PMID: 32383357 PMCID: PMC7333859 DOI: 10.1002/cam4.3084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third-most common cancer around the world, accounting for approximately 10% of cancer-related mortality. Deeper molecular understanding of colorectal carcinogenesis will provide evidences for identification of early diagnostic indicators and novel therapeutic strategies for CRC treatment. The p21cdc42/rac1 -activated kinase 5 (PAK5) has been reported to be involved in a variety of tumor-promoting behaviors, whereas the underlying mechanisms of PAK5 in CRC progression are still obscure. Our current study revealed an upregulated expression of PAK5 in human CRC tissues as compared with normal adjacent biopsies, which was associated with tumor progression and metastasis. We further unraveled that inhibition of PAK5 was correlated with restrained proliferation, migration, and invasion of CRC cells in vitro and in vivo. Moreover, we showed an indispensable role of PAK5 in interacting with Cdc42 and Integrin β1, β3, thus, to facilitate the migration and invasion of CRC cells. Collectively, we pointed out a potential of PAK5 to serve as a novel therapeutic target in restricting CRC proliferation and metastasis. The uncovered mechanisms will deepen the comprehension with regard to the mechanisms of CRC progression, as well as providing new insights for therapeutic intervention in colorectal cancer.
Collapse
Affiliation(s)
- Silin Huang
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Ying Zhu
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Chunfei Wang
- Endoscopy CenterThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenGuangdongChina
| | - Xiaxi Li
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Xiaobing Cui
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Sufang Tu
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Lijuan You
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - JingWen Fu
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Zemin Chen
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| | - Wei Hu
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong Kong
| | - Wei Gong
- Department of GastroenterologyShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
| |
Collapse
|
12
|
Dang Y, Guo Y, Ma X, Chao X, Wang F, Cai L, Yan Z, Xie L, Guo X. Systemic analysis of the expression and prognostic significance of PAKs in breast cancer. Genomics 2020; 112:2433-2444. [PMID: 31987914 DOI: 10.1016/j.ygeno.2020.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/24/2019] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
PAKs (p21-activated kinases) are reported to play crucial roles in a variety of cellular processes and participate in the progression of human cancers. However, the expression and prognostic values of PAKs remain poorly explored in breast cancers. In our study, we examined the mRNA and protein expression levels of PAKs and the prognostic value. We also analyzed the interaction network, genetic alteration, and functional enrichment of PAKs. The results showed that the mRNA levels of PAK1, PAK2, PAK4 and PAK6 were significantly up-regulated in breast cancer compared with normal tissues, while the reverse trend for PAK3 and PAK5 was found, furthermore, the proteins expression of PAK1, PAK2 and PAK4 in breast cancer tissues were higher than that in normal breast tissues. Survival analysis revealed breast cancer patients with low mRNA expression of PAK3 and PAK5 showed worse RFS, conversely, elevated PAK4 levels predicted worse RFS. In addition, the breast cancer patients with PAKs genetic alterations correlated with worse OS. These results indicated that PAKs might be promising potential biomarkers for breast cancer.
Collapse
Affiliation(s)
- Yifang Dang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Ying Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiaoyu Ma
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiaoyu Chao
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Fei Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Linghao Cai
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Zhongyi Yan
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Longxiang Xie
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
13
|
LINC00460 promotes hepatocellular carcinoma development through sponging miR-485-5p to up-regulate PAK1. Biomed Pharmacother 2019; 118:109213. [PMID: 31376654 DOI: 10.1016/j.biopha.2019.109213] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
LncRNAs can function as significant regulators of tumor development. However, their roles in hepatocellular carcinoma (HCC) remain poorly investigated. LINC00460 has been identified in several cancers, which can act as an oncogene. In this study, we observed that LINC00460 was significantly up-regulated in HCC cells, which implied that LINC00460 was involved in HCC development. Then, LINC00460 was silenced in Hep3B and Huh-7 cells and we found that knockdown of LINC00460 greatly inhibited HCC cell proliferation. In addition, HCC cell apoptosis was induced and meanwhile, cell cycle progression was blocked by down-regulation of LINC00460 in vitro. Furthermore, we proved that Hep3B and Huh-7 cell migration and invasion capacity was repressed by decrease of LINC00460. Recently, a growing number of studies have indicated the correlation between lncRNAs and microRNAs. Currently, we displayed that miR-485-5p was greatly decreased in HCC cells and LINC00460 could sponge miR-485-5p to regulate HCC progression. The binding association between LINC00460 and miR-485-5p was confirmed using dual-luciferase reporter assay, RNA pulled down and RIP assay in our research. Subsequently, PAK1 was predicted as a downstream target of miR-485-5p and we demonstrated that miR-485-5p suppressed PAK1 levels in vitro. Finally, in vivo experiments were conducted to validate that knockdown of LINC00460 repressed HCC development through modulating miR-485-5p to increase PAK1. Taken these together, we indicated that LINC00460 promoted HCC progression through sponging miR-485-5p and up-regulating PAK1.
Collapse
|
14
|
Zhu C, Cheng C, Wang Y, Muhammad W, Liu S, Zhu W, Shao B, Zhang Z, Yan X, He Q, Xu Z, Yu C, Qian X, Lu L, Zhang S, Zhang Y, Xiong W, Gao X, Xu Z, Chai R. Loss of ARHGEF6 Causes Hair Cell Stereocilia Deficits and Hearing Loss in Mice. Front Mol Neurosci 2018; 11:362. [PMID: 30333726 PMCID: PMC6176010 DOI: 10.3389/fnmol.2018.00362] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022] Open
Abstract
ARHGEF6 belongs to the family of guanine nucleotide exchange factors (GEFs) for Rho GTPases, and it specifically activates Rho GTPases CDC42 and RAC1. Arhgef6 is the X-linked intellectual disability gene also known as XLID46, and clinical features of patients carrying Arhgef6 mutations include intellectual disability and, in some cases, sensorineural hearing loss. Rho GTPases act as molecular switches in many cellular processes. Their activities are regulated by binding or hydrolysis of GTP, which is facilitated by GEFs and GTPase-activating proteins, respectively. RAC1 and CDC42 have been shown to play important roles in hair cell (HC) stereocilia development. However, the role of ARHGEF6 in inner ear development and hearing function has not yet been investigated. Here, we found that ARHGEF6 is expressed in mouse cochlear HCs, including the HC stereocilia. We established Arhgef6 knockdown mice using the clustered regularly interspaced short palindromic repeat-associated Cas9 nuclease (CRISPR-Cas9) genome editing technique. We showed that ARHGEF6 was indispensable for the maintenance of outer hair cell (OHC) stereocilia, and loss of ARHGEF6 in mice caused HC stereocilia deficits that eventually led to progressive HC loss and hearing loss. However, the loss of ARHGEF6 did not affect the synapse density and did not affect the mechanoelectrical transduction currents in OHCs at postnatal day 3. At the molecular level, the levels of active CDC42 and RAC1 were dramatically decreased in the Arhgef6 knockdown mice, suggesting that ARHGEF6 regulates stereocilia maintenance through RAC1/CDC42.
Collapse
Affiliation(s)
- Chengwen Zhu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| | - Waqas Muhammad
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Weijie Zhu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Zhong Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Xiaoqian Yan
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Qingqing He
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Zhengrong Xu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chenjie Yu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Jiang D, Chen Y, Zhu Y, Fu G, Xu S. Expression of key enzymes in the mevalonate pathway are altered in monocrotaline-induced pulmonary arterial hypertension in rats. Mol Med Rep 2017; 16:9593-9600. [PMID: 29039598 DOI: 10.3892/mmr.2017.7798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a serious pulmonary vascular disease. The changes in the structure, function and metabolism of endothelial cells are some of the important features of PAH. Previous studies have demonstrated that the mevalonate pathway is important in cardiovascular remodeling. However, whether the mevalonate pathway is involved in the development of PAH remains to be elucidated. The present study aimed to investigate the expression pattern of mevalonate pathway-related enzymes in monocrotaline (MCT)-induced PAH. F344 rats were randomly divided into two groups (n=6/group): Control group rats were injected with a single dose of saline, and MCT group rats were injected with a single dose of MCT (60 mg/kg). After 4 weeks, the right ventricular systolic pressure (RVSP) was measured, and lung and pulmonary artery tissue samples were collected. It was demonstrated that the RVSP increased and pulmonary vascular remodeling was detected in the PAH group. The expression levels of the enzymes farnesyldiphosphate synthase farnesyltransferase α and geranylgeranyltransferase type I increased in the PAH group, which suggested that the mevalonate pathway may be involved in the pathological development of PAH.
Collapse
Affiliation(s)
- Dongmei Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yu Chen
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Yuxiang Zhu
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shiming Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
16
|
The Core Molecular Machinery Used for Engulfment of Apoptotic Cells Regulates the JNK Pathway Mediating Axon Regeneration in Caenorhabditis elegans. J Neurosci 2017; 36:9710-21. [PMID: 27629720 DOI: 10.1523/jneurosci.0453-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/25/2016] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED The mechanisms that govern the ability of specific neurons to regenerate their axons after injury are not well understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we identify two components functioning upstream of the JNK pathway: the Ste20-related protein kinase MAX-2 and the Rac-type GTPase CED-10. CED-10, when bound by GTP, interacts with MAX-2 and functions as its upstream regulator in axon regeneration. CED-10, in turn, is activated by axon injury via signals initiated from the integrin α-subunit INA-1 and the nonreceptor tyrosine kinase SRC-1 and transmitted via the signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO. This module is also known to regulate the engulfment of apoptotic cells during development. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. SIGNIFICANCE STATEMENT The molecular mechanisms of axon regeneration after injury remain poorly understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we show that integrin, Rac-GTPase, and several other molecules, all of which are known to regulate engulfment of apoptotic cells during development, also regulate axon regeneration. This signaling module activates the JNK-MAPK cascade via MAX-2, a PAK-like protein kinase that binds Rac. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway.
Collapse
|
17
|
Cerione RA. The experiences of a biochemist in the evolving world of G protein-dependent signaling. Cell Signal 2017; 41:2-8. [PMID: 28214588 DOI: 10.1016/j.cellsig.2017.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 12/24/2022]
Abstract
This review describes how a biochemist and basic researcher (i.e. myself) came to make a career in the area of receptor-coupled signal transduction and the roles cellular signaling activities play both in normal physiology and in disease. Much of what has been the best part of this research life is due to the time I spent with Bob Lefkowitz (1982-1985), during an extraordinary period in the emerging field of G-protein-coupled receptors. Among my laboratory colleagues were some truly outstanding scientists including Marc Caron, the late Jeffrey Stadel, Berta Strulovici, Jeff Benovic, Brian Kobilka, and Henrik Dohlman, as well as many more. I came to Bob's laboratory after being trained as a physical biochemist and enzymologist. Bob and his laboratory exposed me to a research style that made it possible to connect the kinds of fundamental biochemical and mechanistic questions that I loved to think about with a direct relevance to disease. Indeed, I owe Bob a great deal for having imparted a research style and philosophy that has remained with me throughout my career. Below, I describe how this has taken me on an interesting journey through various areas of cellular signaling, which have a direct relevance to the actions of one or another type of G-protein.
Collapse
Affiliation(s)
- Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853-6401, US.
| |
Collapse
|
18
|
MicroRNA-494 inhibits breast cancer progression by directly targeting PAK1. Cell Death Dis 2017; 8:e2529. [PMID: 28055013 PMCID: PMC5386359 DOI: 10.1038/cddis.2016.440] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/03/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
Abstract
MicroRNA (miRNA) is involved in the progression and metastasis of diverse human cancers, including breast cancer, as strong evidence has been found that miRNAs can act as oncogenes or tumor suppressor genes. Here, we show that miR-494 is decreased in human breast cancer specimens and breast cancer cell lines. Ectopic expression of miR-494 in basal-like breast cancer cell lines MDA-MB-231-LUC-D2H3LN and BT-549 inhibits clonogenic ability and metastasis-relevant traits in vitro. Moreover, ectopic expression of miR-494 suppresses neoplasm initiation as well as pulmonary metastasis in vivo. Further studies have identified PAK1, as a direct target gene of miR-494, contributes to the functions of miR-494. Remarkably, the expression of PAK1 is inversely correlated with the level of miR-494 in human breast cancer samples. Furthermore, re-expression of PAK1 partially reverses miR-494-mediated proliferative and clonogenic inhibition as well as migration and invasion suppression in breast cancer cells. Taken together, these findings highlight an important role for miR-494 in the regulation of progression and metastatic potential of breast cancer and suggest a potential application of miR-494 in breast cancer treatment.
Collapse
|
19
|
In Silico Elucidation and Inhibition Studies of Selected Phytoligands Against Mitogen-Activated Protein Kinases of Protozoan Parasites. Interdiscip Sci 2015; 8:41-52. [DOI: 10.1007/s12539-015-0269-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/10/2014] [Accepted: 09/22/2014] [Indexed: 02/03/2023]
|
20
|
Singh NK, Kotla S, Dyukova E, Traylor JG, Orr AW, Chernoff J, Marion TN, Rao GN. Disruption of p21-activated kinase 1 gene diminishes atherosclerosis in apolipoprotein E-deficient mice. Nat Commun 2015; 6:7450. [PMID: 26104863 PMCID: PMC4480433 DOI: 10.1038/ncomms8450] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 05/09/2015] [Indexed: 12/26/2022] Open
Abstract
Pak1 plays an important role in various cellular processes, including cell motility, polarity, survival and proliferation. To date, its role in atherogenesis has not been explored. Here we report the effect of Pak1 on atherogenesis using atherosclerosis-prone apolipoprotein E-deficient (ApoE−/−) mice as a model. Disruption of Pak1 in ApoE−/− mice results in reduced plaque burden, significantly attenuates circulating IL-6 and MCP-1 levels, limits the expression of adhesion molecules and diminishes the macrophage content in the aortic root of ApoE−/− mice. We also observed reduced oxidized LDL uptake and increased cholesterol efflux by macrophages and smooth muscle cells of ApoE−/−:Pak1−/− mice as compared with ApoE−/− mice. In addition, we detect increased Pak1 phosphorylation in human atherosclerotic arteries, suggesting its role in human atherogenesis. Altogether, these results identify Pak1 as an important factor in the initiation and progression of atherogenesis. Atherogenesis involves coordinated action of different cell types and factors. Here the authors show that the kinase Pak1 represents a key pro-atherogenic factor affecting the function of macrophages and vascular smooth muscle cells, including their production of proinflammatory cytokine IL-6 and chemokine MCP-1, and retention of cholesterol.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, Tennessee 38163, USA
| | - Sivareddy Kotla
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, Tennessee 38163, USA
| | - Elena Dyukova
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, Tennessee 38163, USA
| | - James G Traylor
- Department of Pathology, LSU Health Sciences Center, Shreveport, Louisiana 71103, USA
| | - A Wayne Orr
- Department of Pathology, LSU Health Sciences Center, Shreveport, Louisiana 71103, USA
| | - Jonathan Chernoff
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, USA
| | - Tony N Marion
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, Tennessee 38163, USA
| |
Collapse
|
21
|
Sun Y, Ren W, Côté JF, Hinds PW, Hu X, Du K. ClipR-59 interacts with Elmo2 and modulates myoblast fusion. J Biol Chem 2015; 290:6130-40. [PMID: 25572395 PMCID: PMC4358253 DOI: 10.1074/jbc.m114.616680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/06/2015] [Indexed: 11/06/2022] Open
Abstract
Recent studies using ClipR-59 knock-out mice implicated this protein in the regulation of muscle function. In this report, we have examined the role of ClipR-59 in muscle differentiation and found that ClipR-59 knockdown in C2C12 cells suppressed myoblast fusion. To elucidate the molecular mechanism whereby ClipR-59 regulates myoblast fusion, we carried out a yeast two-hybrid screen using ClipR-59 as the bait and identified Elmo2, a member of the Engulfment and cell motility protein family, as a novel ClipR-59-associated protein. We showed that the interaction between ClipR-59 and Elmo2 was mediated by the atypical PH domain of Elmo2 and the Glu-Pro-rich domain of ClipR-59 and regulated by Rho-GTPase. We have examined the impact of ClipR-59 on Elmo2 downstream signaling and found that interaction of ClipR-59 with Elmo2 enhanced Rac1 activation. Collectively, our studies demonstrate that formation of an Elmo2·ClipR-59 complex plays an important role in myoblast fusion.
Collapse
Affiliation(s)
- Yingmin Sun
- From the State Key Laboratory for Agro-biotechnology, College of Biological Science, China Agricultural University, 10083 Beijing, China, the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, and
| | - Wenying Ren
- the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, and
| | - Jean-François Côté
- the Institut de Recherches Cliniques de Montréal, Montréal, Université de Montréal, Québec H2W 1R7, Canada
| | - Philip W Hinds
- the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, and
| | - Xiaoxiang Hu
- From the State Key Laboratory for Agro-biotechnology, College of Biological Science, China Agricultural University, 10083 Beijing, China
| | - Keyong Du
- the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, and
| |
Collapse
|
22
|
Chen J, Feng WL, Mo WJ, Ding XW, Xie SN. Expression of integrin-binding protein Nischarin in metastatic breast cancer. Mol Med Rep 2015; 12:77-82. [PMID: 25695373 PMCID: PMC4438937 DOI: 10.3892/mmr.2015.3373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022] Open
Abstract
The present study aimed to investigate the expression of Nischarin protein in primary breast cancer (PBC), and to evaluate its role in tumor metastasis. Paired specimens of breast cancer tissues and adjacent normal tissues were surgically obtained from 60 patients with PBC at the Zhejiang Cancer Hospital (Hangzhou, China). Nischarin protein concentrations were determined by an ELISA assay. Breast cancer tissues exhibited a significantly lower concentration of Nischarin (5.86±3.19 ng/ml) compared with that of the adjacent noncancerous tissues (9.25±3.65 ng/ml; P<0.001). Furthermore, cancer tissue from patients with lymph node metastasis had significantly lower levels of Nischarin protein (4.69±2.40 ng/ml) than those of patients without lymph node metastasis (7.04±3.47 ng/ml; P=0.004). There was no significant difference in Nischarin protein expression levels between patients with grade I, II or III PBC (grade I, 5.44±3.57 ng/ml; grade II, 6.42±3.85 ng/ml and grade III, 5.10±1.18 ng/ml; P=0.765). The significant differences in the expression of Nischarin between: i) Cancer tissue and noncancerous tissue and ii) patients with and without lymph node metastasis, suggested that Nischarin may have a significant role in tumor occurrence and metastasis of breast cancer. Nischarin expression may therefore be used as a marker to predict the invasiveness and metastasis of PBC.
Collapse
Affiliation(s)
- Jie Chen
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Wei-Liang Feng
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Wen-Ju Mo
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiao-Wen Ding
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Shang-Nao Xie
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
23
|
Gupta CL, Akhtar S, Kumar N, Ali J, Pathak N, Bajpai P. In silico elucidation and inhibition studies of selected phytoligands against Mitogen activated protein kinases of protozoan parasites. Interdiscip Sci 2014. [PMID: 25373634 DOI: 10.1007/s12539-014-0210-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/10/2014] [Accepted: 09/22/2014] [Indexed: 09/29/2022]
Abstract
Parasitic MAPKs exhibiting significant divergence with humans and playing an imperative role in parasitic metabolic activities have been exploited from several years as important targets for development of novel therapeutics. In addition, the emergence of the drug resistant variants of parasitic diseases in the recent years has aroused a great need for the development of potent inhibitors against them. In the present study we selected the metabolically active MAPKs LmxMPK4, PfMAP2 and TbMAPK5 of the three parasitic protozoans Leishmania mexicana, Plasmodium falciparum and Trypanosoma brucei respectively. The homology modeling technique was used to develop the 3D structures of these proteins and the same was validated by PROCHECK, ERRAT, ProQ and ProSA web servers to check the reliability. Ten phytoligands were employed for molecular docking studies with these proteins to search for potent phytoligand as a broad spectrum inhibitor. In this regard two phytoligands (Aspidocarpine for LmxMPK4 & TbMAPK5 and Cubebin for PfMAP2) were found to be more effective inhibitors, in term of robust binding energy, strong inhibition constant and better interactions between protein-ligand complexes. Furthermore predicted ADME & Toxicity properties suggested that these identified phytoligands exhibited comparable results to control drugs potentiating them as persuasive therapeutic agents for Leishmania, Trypanosoma and Plasmodium sp.
Collapse
Affiliation(s)
- Chhedi Lal Gupta
- Department of Biosciences, Integral University, Lucknow, 226026, India
| | | | | | | | | | | |
Collapse
|
24
|
Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ, Haagmans BL, Pelkmans L, Rottier PJM, Bosch BJ, de Haan CAM. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog 2014; 10:e1004502. [PMID: 25375324 PMCID: PMC4223067 DOI: 10.1371/journal.ppat.1004502] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/02/2014] [Indexed: 02/07/2023] Open
Abstract
Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion. Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. In the present study we investigated the entry of coronaviruses (CoVs). CoVs are important pathogens of animals and man with high zoonotic potential as demonstrated by the emergence of SARS- and MERS-CoVs. Previous studies resulted in apparently conflicting results with respect to CoV cell entry, particularly regarding the fusion-activating requirements of the CoV S protein. By combining cell-biological, infection, and fusion assays we demonstrated that murine hepatitis virus (MHV), a prototypic member of the CoV family, enters cells via clathrin-mediated endocytosis. Moreover, although MHV does not depend on a low pH for fusion, the virus was shown to rely on trafficking to lysosomes for proteolytic cleavage of its spike (S) protein and membrane fusion to occur. Based on these results we predicted and subsequently demonstrated that MERS- and feline CoV require cleavage by different proteases and escape the endo/lysosomal system from different compartments. In conclusion, we elucidated the MHV entry pathway in detail and demonstrate that a proteolytic cleavage site in the S protein of different CoVs is an essential determinant of the intracellular site of fusion.
Collapse
Affiliation(s)
- Christine Burkard
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Monique H. Verheije
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Oliver Wicht
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sander I. van Kasteren
- Division of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frank J. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Peter J. M. Rottier
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berend Jan Bosch
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A. M. de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Gupta CL, Akhtar S, Kumar N, Ali J, Pathak N, Bajpai P. In silico elucidation and inhibition studies of selected phytoligands against Mitogen activated protein kinases of protozoan parasites. Interdiscip Sci 2014. [PMID: 25519156 DOI: 10.1007/s12539-014-0234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/10/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
Parasitic MAPKs exhibiting significant divergence with humans and playing an imperative role in parasitic metabolic activities have been exploited from several years as important targets for development of novel therapeutics. In addition, the emergence of the drug resistant variants of parasitic diseases in the recent years has aroused a great need for the development of potent inhibitors against them. In the present study we selected the metabolically active MAPKs LmxMPK4, PfMAP2 and TbMAPK5 of the three parasitic protozoans Leishmania mexicana, Plasmodium falciparum and Trypanosoma brucei respectively. The homology modeling technique was used to develop the 3D structures of these proteins and the same was validated by PROCHECK, ERRAT, ProQ and ProSA web servers to check the reliability. Ten phytoligands were employed for molecular docking studies with these proteins to search for potent phytoligand as a broad spectrum inhibitor. In this regard two phytoligands (Aspidocarpine for LmxMPK4 & TbMAPK5 and Cubebin for PfMAP2) were found to be more effective inhibitors, in term of robust binding energy, strong inhibition constant and better interactions between protein-ligand complexes. Furthermore predicted ADME & Toxicity properties suggested that these identified phytoligands exhibited comparable results to control drugs potentiating them as persuasive therapeutic agents for Leishmania, Trypanosoma and Plasmodium sp.
Collapse
Affiliation(s)
- Chhedi Lal Gupta
- Department of Biosciences, Integral University, Lucknow, 226026, India
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Members of the Arf family of small GTP-binding proteins, or GTPases, are activated by guanine nucleotide exchange factors (GEFs) that catalyze GDP release from their substrate Arf, allowing GTP to bind. In the secretory pathway, Arf1 is first activated by GBF1 at the cis-Golgi, then by BIG1 and BIG2 at the trans-Golgi and trans-Golgi network (TGN). Upon activation, Arf1-GTP interacts with effectors such as coat complexes, and is able to recruit different coat complexes to different membrane sites in cells. The COPI coat is primarily recruited to cis-Golgi membranes, whereas other coats, such as AP-1/clathrin, and GGA/clathrin, are recruited to the trans-Golgi and the TGN. Although Arf1-GTP is required for stable association of these various coats to membranes, and is sufficient in vitro, other molecules, such as vesicle cargo and coat receptors on the membrane, contribute to specificity of coat recruitment in cells. Another mechanism to achieve specificity is interaction of effectors such as coats with the GEF itself, which would increase the concentration of a given coat in proximity to the site where Arf is activated, thus favoring its recruitment. This interaction between a GEF and an effector could also provide a mechanism for spatial organization of vesicle budding sites, similar to that described for Cdc42-mediated establishment of polarity sites such as the emerging bud in yeast. Another factor affecting the amount of freely diffusible Arf1-GTP in membranes is the GEF(s) themselves acting as effectors. Sec7p, the yeast homolog of mammalian BIG1 and BIG2, and Arno/cytohesin 2, a PM-localized Arf1 GEF, both bind to Arf1-GTP. This binding to the products of the exchange reaction establishes a positive feedback loop for activation.
Collapse
Affiliation(s)
- Catherine L Jackson
- Institut Jacques Monod, CNRS; Université Paris Diderot; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
27
|
Abstract
p21-Activated protein kinases (PAKs) are centrally involved in a plethora of cellular processes and functions. Their function as effectors of small GTPases Rac1 and Cdc42 has been extensively studied during the past two decades, particularly in the realms of cell proliferation, apoptosis, and hence tumorigenesis, as well as cytoskeletal remodeling and related cellular events in health and disease. In recent years, a large number of studies have shed light onto the fundamental role of group I PAKs, most notably PAK1, in metabolic homeostasis. In skeletal muscle, PAK1 was shown to mediate the function of insulin on stimulating GLUT4 translocation and glucose uptake, while in pancreatic β-cells, PAK1 participates in insulin granule localization and vesicle release. Furthermore, we demonstrated that PAK1 mediates the cross talk between insulin and Wnt/β-catenin signaling pathways and hence regulates gut proglucagon gene expression and the production of the incretin hormone glucagon-like peptide-1 (GLP-1). The utilization of chemical inhibitors of PAK and the characterization of Pak1(-/-) mice enabled us to gain mechanistic insights as well as to assess the overall contribution of PAKs in metabolic homeostasis. This review summarizes our current understanding of PAKs, with an emphasis on the emerging roles of PAK1 in glucose homeostasis.
Collapse
|
28
|
P21-activated kinase 5 plays essential roles in the proliferation and tumorigenicity of human hepatocellular carcinoma. Acta Pharmacol Sin 2014; 35:82-8. [PMID: 23685956 DOI: 10.1038/aps.2013.31] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/08/2013] [Indexed: 12/15/2022]
Abstract
AIM To investigate the roles of P21-activated kinase 5 (PAK5) in proliferation and tumorigenicity of human hepatocellular carcinoma (HCC). METHODS HCC and matched paraneoplastictis tissue samples were obtained from 30 patients. Human HCC cell lines SMMC7721, HepG2, Hep3B, SK-HEP-1, Huh-7, and liver cell line HL-7702 were examined. The expression of PAK5 gene was studied using real-time qPCR and Western blotting. Cell proliferation was quantified with the MTT assay. Cell cycle was analyzed with flow cytometry. The tumorigenicity of Lv-shRNA-transfected HepG2 cells was evaluated in BALB/cA nude mice. RESULTS The mRNA level of PAK5 was significantly higher in 25 out of 30 HCC samples compared to the matched paraneoplastic tissues. The HCC cell lines showed varying expression of PAK5 protein, and the highest level was found in the HepG2 cells. PAK5 gene silencing in HepG2 cells markedly reduced the cell proliferation and colony formation, and induced cell cycle arrest in the G1 phase. Furthermore, PAK5 gene silencing suppressed the tumor formation in nude mice, and significantly decreased the expression of HCC-related genes Cyclin D1 and beta-catenin. CONCLUSION PAK5 may play essential roles in the initiation and progression of human HCC. Thus, it may be an effective therapeutic target or perhaps serve as a clinical diagnostic or prognostic marker in human HCC.
Collapse
|
29
|
Abstract
Increased endothelial permeability and reduction of alveolar liquid clearance capacity are two leading pathogenic mechanisms of pulmonary edema, which is a major complication of acute lung injury, severe pneumonia, and acute respiratory distress syndrome, the pathologies characterized by unacceptably high rates of morbidity and mortality. Besides the success in protective ventilation strategies, no efficient pharmacological approaches exist to treat this devastating condition. Understanding of fundamental mechanisms involved in regulation of endothelial permeability is essential for development of barrier protective therapeutic strategies. Ongoing studies characterized specific barrier protective mechanisms and identified intracellular targets directly involved in regulation of endothelial permeability. Growing evidence suggests that, although each protective agonist triggers a unique pattern of signaling pathways, selected common mechanisms contributing to endothelial barrier protection may be shared by different barrier protective agents. Therefore, understanding of basic barrier protective mechanisms in pulmonary endothelium is essential for selection of optimal treatment of pulmonary edema of different etiology. This article focuses on mechanisms of lung vascular permeability, reviews major intracellular signaling cascades involved in endothelial monolayer barrier preservation and summarizes a current knowledge regarding recently identified compounds which either reduce pulmonary endothelial barrier disruption and hyperpermeability, or reverse preexisting lung vascular barrier compromise induced by pathologic insults.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| | | | | |
Collapse
|
30
|
Functional deficits in PAK5, PAK6 and PAK5/PAK6 knockout mice. PLoS One 2013; 8:e61321. [PMID: 23593460 PMCID: PMC3620390 DOI: 10.1371/journal.pone.0061321] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/07/2013] [Indexed: 11/19/2022] Open
Abstract
The p21-activated kinases are effector proteins for Rho-family GTPases. PAK4, PAK5, and PAK6 are the group II PAKs associated with neurite outgrowth, filopodia formation, and cell survival. Pak4 knockout mice are embryonic lethal, while Pak5, Pak6, and Pak5/Pak6 double knockout mice are viable and fertile. Our previous work found that the double knockout mice exhibit locomotor changes and learning and memory deficits. We also found some differences with Pak5 and Pak6 single knockout mice and the present work further explores the potential differences of the Pak5 knockout and Pak6 knockout mice in comparison with wild type mice. The Pak6 knockout mice were found to weigh significantly more than the other genotypes. The double knockout mice were found to be less active than the other genotypes. The Pak5 knockout mice and the double knockout mice performed worse on the rotorod test. All the knockout genotypes were found to be less aggressive in the resident intruder paradigm. The double knockout mice were, once again, found to perform worse in the active avoidance assay. These results indicate, that although some behavioral differences are seen in the Pak5 and Pak6 single knockout mice, the double knockout mice exhibit the greatest changes in locomotion and learning and memory.
Collapse
|
31
|
Gu J, Li K, Li M, Wu X, Zhang L, Ding Q, Wu W, Yang J, Mu J, Wen H, Ding Q, Lu J, Hao Y, Chen L, Zhang W, Li S, Liu Y. A role for p21-activated kinase 7 in the development of gastric cancer. FEBS J 2012; 280:46-55. [PMID: 23106939 DOI: 10.1111/febs.12048] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/29/2012] [Accepted: 10/19/2012] [Indexed: 01/14/2023]
Abstract
p21-activated kinase (PAK)7 (also known as PAK5) is a member of the group B PAK family of serine/threonine protein kinases, which are effectors of the small GTPases Rac and CDC42. PAK7 can promote neurite outgrowth, induce microtubule stabilization, and activate cell survival signaling pathways. However, the role of PAK7 in cancer is still poorly understood. Here, we showed that PAK7 expression was upregulated in different gastric cancer cell lines and gastric cancer tissues, as compared with human embryonic kidney 293 cells and adjacent normal tissues, respectively. The results suggested that PAK7 expression was related to gastric cancer progression. Thus, we employed lentivirus-mediated small interfering RNA to inhibit PAK7 expression, to investigate the role of PAK7 in human gastric carcinogenesis. RNA interference efficiently downregulated expression of PAK7 in SGC-7901 and MGC-803 cells at both mRNA and protein levels. Knockdown of PAK7 inhibited human gastric cancer cell proliferation by inducing cell cycle arrest in G(0)/G(1) phase, in concordance with the downregulation of CDK2, CDC25A, and cyclin D1. Our data suggest that PAK7 is a new hallmark of gastric cancer, in which PAK7 might contribute to gain of tumor growth potential, acting by affecting the expression of cell cycle regulators. Therefore, PAK7 may be an attractive candidate as a therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Jun Gu
- Department of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pignatelli J, LaLonde SE, LaLonde DP, Clarke D, Turner CE. Actopaxin (α-parvin) phosphorylation is required for matrix degradation and cancer cell invasion. J Biol Chem 2012; 287:37309-20. [PMID: 22955285 DOI: 10.1074/jbc.m112.385229] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dysregulation of cell adhesion and motility is known to be an important factor in the development of tumor malignancy. Actopaxin (α-parvin) is a paxillin, integrin-linked kinase, and F-actin binding focal adhesion protein with several serine phosphorylation sites in the amino terminus that contribute to the regulation of cell spreading and migration. Here, phosphorylation of actopaxin is shown to contribute to the regulation of matrix degradation and cell invasion. Osteosarcoma cells stably expressing wild type (WT), nonphosphorylatable (Quint), and phosphomimetic (S4D/S8D) actopaxin demonstrate that actopaxin phosphorylation is necessary for efficient Src and matrix metalloproteinase-driven degradation of extracellular matrix. Rac1 was found to be required for actopaxin-induced matrix degradation whereas inhibition of myosin contractility promoted degradation in the phosphomutant-expressing Quint cells, indicating that a balance of Rho GTPase signaling and regulation of cellular tension are important for the process. Furthermore, actopaxin forms a complex with the Rac1/Cdc42 GEF β-PIX and Rac1/Cdc42 effector PAK1, to regulate actopaxin-dependent matrix degradation. Actopaxin phosphorylation is elevated in the invasive breast cancer cell line MDA-MB-231 compared with normal breast epithelial MCF10A cells. Expression of the nonphosphorylatable Quint actopaxin in MDA-MB-231 cells inhibits cell invasion whereas overexpression of WT actopaxin promotes invasion in MCF10A cells. Taken together, this study demonstrates a new role for actopaxin phosphorylation in matrix degradation and cell invasion via regulation of Rho GTPase signaling.
Collapse
Affiliation(s)
- Jeanine Pignatelli
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | |
Collapse
|
33
|
Purohit AA, Li W, Qu C, Dwyer T, Shao Q, Guan KL, Liu G. Down syndrome cell adhesion molecule (DSCAM) associates with uncoordinated-5C (UNC5C) in netrin-1-mediated growth cone collapse. J Biol Chem 2012; 287:27126-38. [PMID: 22685302 DOI: 10.1074/jbc.m112.340174] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the developing nervous system, neuronal growth cones explore the extracellular environment for guidance cues, which can guide them along specific trajectories toward their targets. Netrin-1, a bifunctional guidance cue, binds to deleted in colorectal cancer (DCC) and DSCAM mediating axon attraction, and UNC5 mediating axon repulsion. Here, we show that DSCAM interacts with UNC5C and this interaction is stimulated by netrin-1 in primary cortical neurons and postnatal cerebellar granule cells. DSCAM partially co-localized with UNC5C in primary neurons and brain tissues. Netrin-1 induces axon growth cone collapse of mouse cerebellum external granule layer (EGL) cells, and the knockdown of DSCAM or UNC5C by specific shRNAs or blocking their signaling by overexpressing dominant negative mutants suppresses netrin-1-induced growth cone collapse. Similarly, the simultaneous knockdown of DSCAM and UNC5C also blocks netrin-1-induced growth cone collapse in EGL cells. Netrin-1 increases tyrosine phosphorylation of endogenous DSCAM, UNC5C, FAK, Fyn, and PAK1, and promotes complex formation of DSCAM with these signaling molecules in primary postnatal cerebellar neurons. Inhibition of Src family kinases efficiently reduces the interaction of DSCAM with UNC5C, FAK, Fyn, and PAK1 and tyrosine phosphorylation of these proteins as well as growth cone collapse of mouse EGL cells induced by netrin-1. The knockdown of DSCAM inhibits netrin-induced tyrosine phosphorylation of UNC5C and Fyn as well as the interaction of UNC5C with Fyn. The double knockdown of both receptors abolishes the induction of Fyn tyrosine phosphorylation by netrin-1. Our study reveals the first evidence that DSCAM coordinates with UNC5C in netrin-1 repulsion.
Collapse
Affiliation(s)
- Anish A Purohit
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Yan X, Zhang J, Sun Q, Tuazon PT, Wu X, Traugh JA, Chen YG. p21-Activated kinase 2 (PAK2) inhibits TGF-β signaling in Madin-Darby canine kidney (MDCK) epithelial cells by interfering with the receptor-Smad interaction. J Biol Chem 2012; 287:13705-12. [PMID: 22393057 DOI: 10.1074/jbc.m112.346221] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
TGF-β (transforming growth factor β) plays a variety of cellular functions mainly through the Smad pathway. Phosphorylation of the carboxyl SXS motif in R-Smads (Smad2 and Smad3) by the type I receptor TβRI is a key step for their activation. It has been reported that the serine/threonine kinase PAK2 (p21-activated kinase 2) can mediate TGF-β signaling in mesenchymal cells. Here, we report that PAK2 restricts TGF-β-induced Smad2/3 activation and transcriptional responsiveness in MDCK epithelial cells. Mechanistically, PAK2 associates with Smad2 and Smad3 in a kinase activity-dependent manner and blocks their activation. PAK2 phosphorylates Smad2 at Ser-417, which is adjacent to the L3 loop that contributes to the TβRI-R-Smad association. Consistently, substitution of Ser-417 with glutamic acid attenuates the interaction of Smad2 with TβRI. Together, our results indicate that PAK2 negatively modulate TGF-β signaling by attenuating the receptor-Smad interaction and thus Smad activation.
Collapse
Affiliation(s)
- Xiaohua Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Goggs R, Poole AW. Platelet signaling-a primer. J Vet Emerg Crit Care (San Antonio) 2012; 22:5-29. [PMID: 22316389 DOI: 10.1111/j.1476-4431.2011.00704.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review the receptors and signal transduction pathways involved in platelet plug formation and to highlight links between platelets, leukocytes, endothelium, and the coagulation system. DATA SOURCES Original studies, review articles, and book chapters in the human and veterinary medical fields. DATA SYNTHESIS Platelets express numerous surface receptors. Critical among these are glycoprotein VI, the glycoprotein Ib-IX-V complex, integrin α(IIb) β(3) , and the G-protein-coupled receptors for thrombin, ADP, and thromboxane. Activation of these receptors leads to various important functional events, in particular activation of the principal adhesion receptor α(IIb) β(3) . Integrin activation allows binding of ligands such as fibrinogen, mediating platelet-platelet interaction in the process of aggregation. Signals activated by these receptors also couple to 3 other important functional events, secretion of granule contents, change in cell shape through cytoskeletal rearrangement, and procoagulant membrane expression. These processes generate a stable thrombus to limit blood loss and promote restoration of endothelial integrity. CONCLUSIONS Improvements in our understanding of how platelets operate through their signaling networks are critical for diagnosis of unusual primary hemostatic disorders and for rational antithrombotic drug design.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, UK.
| | | |
Collapse
|
36
|
Abstract
Studies of the processes leading to the construction of a bud and its separation from the mother cell in Saccharomyces cerevisiae have provided foundational paradigms for the mechanisms of polarity establishment, cytoskeletal organization, and cytokinesis. Here we review our current understanding of how these morphogenetic events occur and how they are controlled by the cell-cycle-regulatory cyclin-CDK system. In addition, defects in morphogenesis provide signals that feed back on the cyclin-CDK system, and we review what is known regarding regulation of cell-cycle progression in response to such defects, primarily acting through the kinase Swe1p. The bidirectional communication between morphogenesis and the cell cycle is crucial for successful proliferation, and its study has illuminated many elegant and often unexpected regulatory mechanisms. Despite considerable progress, however, many of the most puzzling mysteries in this field remain to be resolved.
Collapse
Affiliation(s)
- Audrey S. Howell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
37
|
Ishaq M, Lin BR, Bosche M, Zheng X, Yang J, Huang D, Lempicki RA, Aguilera-Gutierrez A, Natarajan V. LIM kinase 1 - dependent cofilin 1 pathway and actin dynamics mediate nuclear retinoid receptor function in T lymphocytes. BMC Mol Biol 2011; 12:41. [PMID: 21923909 PMCID: PMC3187726 DOI: 10.1186/1471-2199-12-41] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 09/16/2011] [Indexed: 11/21/2022] Open
Abstract
Background It is known that retinoid receptor function is attenuated during T cell activation, a phenomenon that involves actin remodeling, suggesting that actin modification may play a role in such inhibition. Here we have investigated the role of actin dynamics and the effect of actin cytoskeleton modifying agents on retinoid receptor-mediated transactivation. Results Agents that disturb the F-actin assembly or disassembly attenuated receptor-mediated transcription indicating that actin cytoskeletal homeostasis is important for retinoid receptor function. Overexpression or siRNA-induced knockdown of cofilin-1 (CFL1), a key regulator of F-actin assembly, induced the loss of receptor function. In addition, expression of either constitutively active or inactive/dominant-negative mutants of CFL1or CFL1 kinase LIMK1 induced loss of receptor function suggesting a critical role of the LIMK1-mediated CFL1 pathway in receptor-dependent transcription. Further evidence of the role of LMK1/CFL1-mediated actin dynamics, was provided by studying the effect of Nef, an actin modifying HIV-1 protein, on receptor function. Expression of Nef induced phosphorylation of CFL1 at serine 3 and LIMK1 at threonine 508, inhibited retinoid-receptor mediated reporter activity, and the expression of a number of genes that contain retinoid receptor binding sites in their promoters. The results suggest that the Nef-mediated inhibition of receptor function encompasses deregulation of actin filament dynamics by LIMK1 activation and phosphorylation of CFL1. Conclusion We have identified a critical role of LIMK1-mediated CFL1 pathway and actin dynamics in modulating retinoid receptor mediated function and shown that LIMK1-mediated phosphocycling of CFL1 plays a crucial role in maintaining actin homeostasis and receptor activity. We suggest that T cell activation-induced repression of nuclear receptor-dependent transactivation is in part through the modification of actin dynamics.
Collapse
Affiliation(s)
- Mohammad Ishaq
- Laboratory of Molecular Cell Biology, SAIC-Frederick, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lai Wing Sun K, Correia JP, Kennedy TE. Netrins: versatile extracellular cues with diverse functions. Development 2011; 138:2153-69. [PMID: 21558366 DOI: 10.1242/dev.044529] [Citation(s) in RCA: 329] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Netrins are secreted proteins that were first identified as guidance cues, directing cell and axon migration during neural development. Subsequent findings have demonstrated that netrins can influence the formation of multiple tissues, including the vasculature, lung, pancreas, muscle and mammary gland, by mediating cell migration, cell-cell interactions and cell-extracellular matrix adhesion. Recent evidence also implicates the ongoing expression of netrins and netrin receptors in the maintenance of cell-cell organisation in mature tissues. Here, we review the mechanisms involved in netrin signalling in vertebrate and invertebrate systems and discuss the functions of netrin signalling during the development of neural and non-neural tissues.
Collapse
Affiliation(s)
- Karen Lai Wing Sun
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | |
Collapse
|
39
|
Tian Y, Lei L, Minden A. A key role for Pak4 in proliferation and differentiation of neural progenitor cells. Dev Biol 2011; 353:206-16. [DOI: 10.1016/j.ydbio.2011.02.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 01/31/2011] [Accepted: 02/15/2011] [Indexed: 12/24/2022]
|
40
|
Control of mammary myoepithelial cell contractile function by α3β1 integrin signalling. EMBO J 2011; 30:1896-906. [PMID: 21487391 DOI: 10.1038/emboj.2011.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/15/2011] [Indexed: 11/09/2022] Open
Abstract
In the functionally differentiated mammary gland, basal myoepithelial cells contract to eject the milk produced by luminal epithelial cells from the body. We report that conditional deletion of a laminin receptor, α3β1 integrin, from myoepithelial cells leads to low rates of milk ejection due to a contractility defect but does not interfere with the integrity or functional differentiation of the mammary epithelium. In lactating mammary gland, in the absence of α3β1, focal adhesion kinase phosphorylation is impaired, the Rho/Rac balance is altered and myosin light-chain (MLC) phosphorylation is sustained. Cultured mammary myoepithelial cells depleted of α3β1 contract in response to oxytocin, but are unable to maintain the state of post-contractile relaxation. The expression of constitutively active Rac or its effector p21-activated kinase (PAK), or treatment with MLC kinase (MLCK) inhibitor, rescues the relaxation capacity of mutant cells, strongly suggesting that α3β1-mediated stimulation of the Rac/PAK pathway is required for the inhibition of MLCK activity, permitting completion of the myoepithelial cell contraction/relaxation cycle and successful lactation. This is the first study highlighting the impact of α3β1 integrin signalling on mammary gland function.
Collapse
|
41
|
Han J, Jiang DM, Du CQ, Hu SJ. Alteration of enzyme expressions in mevalonate pathway: possible role for cardiovascular remodeling in spontaneously hypertensive rats. Circ J 2011; 75:1409-17. [PMID: 21467659 DOI: 10.1253/circj.cj-10-1101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The mevalonate pathway is an important metabolic pathway that plays a key role in multiple cellular processes. The aim of this study was to define whether the enzyme expression in mevalonate pathway changes during cardiovascular remodelling in spontaneously hypertensive rats (SHR). METHODS AND RESULTS Hearts and thoracic aortas were removed for the study of cardiovascular remodeling in SHR and Wistar-Kyoto rats (WKY). The protein expression of the enzymes in hearts, aortas and livers was analyzed by western blot. The histological measurements showed that the mass and the size of cardiomyocytes, the media thickness and the media cross-sectional area (MCSA) of the thoracic aorta were all increased in SHR since 3 weeks of age. In the heart, there was overexpression of some enzymes, including 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), farnesyl diphosphate synthase (FDPS), and geranylgeranyltransferase type I (GGTase-I), and downregulation of squalene synthetase (SQS) in SHR since 3 weeks of age. In the aorta, besides similar expressions of HMGR, SQS, FDPS and GGTase-I as in the heart, there was upregulation of farnesyltransferase α at 16 and 25 weeks of age and of farnesyltransferase β in 25-weeks-old SHR. Western blot demonstrated overexpression of HMGR and downregulation of SQS in SHR livers at all ages tested. CONCLUSIONS The cardiovascular remodeling of SHR preceded the development of hypertension, and altered expression of several key enzymes in the mevalonate pathway may play a potential pathophysiological role in cardiovascular remodeling.
Collapse
Affiliation(s)
- Jie Han
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | | | | | | |
Collapse
|
42
|
Xu B, Bhullar RP. Regulation of Rac1 and Cdc42 activation in thrombin- and collagen-stimulated CHRF-288-11 cells. Mol Cell Biochem 2011; 353:73-9. [DOI: 10.1007/s11010-011-0776-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/07/2011] [Indexed: 11/30/2022]
|
43
|
Parasite mitogen-activated protein kinases as drug discovery targets to treat human protozoan pathogens. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:971968. [PMID: 21637385 PMCID: PMC3100106 DOI: 10.1155/2011/971968] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/12/2010] [Accepted: 12/07/2010] [Indexed: 11/25/2022]
Abstract
Protozoan pathogens are a highly diverse group of unicellular organisms, several of which are significant human pathogens. One group of protozoan pathogens includes obligate intracellular parasites such as agents of malaria, leishmaniasis, babesiosis, and toxoplasmosis. The other group includes extracellular pathogens such as agents of giardiasis and amebiasis. An unfortunate unifying theme for most human protozoan pathogens is that highly effective treatments for them are generally lacking. We will review targeting protozoan mitogen-activated protein kinases (MAPKs) as a novel drug discovery approach towards developing better therapies, focusing on Plasmodia, Leishmania, and Toxoplasma, about which the most is known.
Collapse
|
44
|
Neuroligin 2 is required for synapse development and function at the Drosophila neuromuscular junction. J Neurosci 2011; 31:687-99. [PMID: 21228178 DOI: 10.1523/jneurosci.3854-10.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neuroligins belong to a highly conserved family of cell adhesion molecules that have been implicated in synapse formation and function. However, the precise in vivo roles of Neuroligins remain unclear. In the present study, we have analyzed the function of Drosophila neuroligin 2 (dnl2) in synaptic development and function. We show that dnl2 is strongly expressed in the embryonic and larval CNS and at the larval neuromuscular junction (NMJ). dnl2 null mutants are viable but display numerous structural defects at the NMJ, including reduced axonal branching and fewer synaptic boutons. dnl2 mutants also show an increase in the number of active zones per bouton but a decrease in the thickness of the subsynaptic reticulum and length of postsynaptic densities. dnl2 mutants also exhibit a decrease in the total glutamate receptor density and a shift in the subunit composition of glutamate receptors in favor of GluRIIA complexes. In addition to the observed defects in synaptic morphology, we also find that dnl2 mutants show increased transmitter release and altered kinetics of stimulus-evoked transmitter release. Importantly, the defects in presynaptic structure, receptor density, and synaptic transmission can be rescued by postsynaptic expression of dnl2. Finally, we show that dnl2 colocalizes and binds to Drosophila neurexin (dnrx) in vivo. However, whereas homozygous mutants for either dnl2 or dnrx are viable, double mutants are lethal and display more severe defects in synaptic morphology. Altogether, our data show that, although dnl2 is not absolutely required for synaptogenesis, it is required postsynaptically for synapse maturation and function.
Collapse
|
45
|
Rimmele S, Gierschik P, Joos TO, Schneiderhan-Marra N. Bead-based protein-protein interaction assays for the analysis of Rho GTPase signaling. J Mol Recognit 2010; 23:543-50. [DOI: 10.1002/jmr.1051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Hamanaka Y, Meinertzhagen IA. Immunocytochemical localization of synaptic proteins to photoreceptor synapses of Drosophila melanogaster. J Comp Neurol 2010; 518:1133-55. [PMID: 20127822 DOI: 10.1002/cne.22268] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The location of proteins that contribute to synaptic function has been widely studied in vertebrate synapses, far more than at model synapses of the genetically manipulable fruit fly, Drosophila melanogaster. Drosophila photoreceptor terminals have been extensively exploited to characterize the actions of synaptic genes, and their distinct and repetitive synaptic ultrastructure is anatomically well suited for such studies. Synaptic release sites include a bipartite T-bar ribbon, comprising a platform surmounting a pedestal. So far, little is known about the composition and precise location of proteins at either the T-bar ribbon or its associated synaptic organelles, knowledge of which is required to understand many details of synaptic function. We studied the localization of candidate proteins to pre- or postsynaptic organelles, by using immuno-electron microscopy with the pre-embedding method, after first validating immunolabeling by confocal microscopy. We used monoclonal antibodies against Bruchpilot, epidermal growth factor receptor pathway substrate clone 15 (EPS-15), and cysteine string protein (CSP), all raised against a fly head homogenate, as well as sea urchin kinesin (antibody SUK4) and Discs large (DLG). All these antibodies labeled distinct synaptic structures in photoreceptor terminals in the first optic neuropil, the lamina, as did rabbit anti-DPAK (Drosophila p21 activated kinase) and anti-Dynamin. Validating reports from light microscopy, immunoreactivity to Bruchpilot localized to the edge of the platform, and immunoreactivity to SUK4 localized to the pedestal of the T-bar ribbon. Anti-DLG recognized the photoreceptor head of capitate projections, invaginating organelles from surrounding glia. For synaptic vesicles, immunoreactivity to EPS-15 localized to sites of endocytosis, and anti-CSP labeled vesicles lying close to the T-bar ribbon. These results provide markers for synaptic sites, and a basis for further functional studies.
Collapse
Affiliation(s)
- Yoshitaka Hamanaka
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
47
|
Zhu J, Attias O, Aoudjit L, Jiang R, Kawachi H, Takano T. p21-Activated kinases regulate actin remodeling in glomerular podocytes. Am J Physiol Renal Physiol 2010; 298:F951-61. [DOI: 10.1152/ajprenal.00536.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The tyrosine phosphorylation of nephrin is reported to regulate podocyte morphology via the Nck adaptor proteins. The Pak family of kinases are regulators of the actin cytoskeleton and are recruited to the plasma membrane via Nck. Here, we investigated the role of Pak in podocyte morphology. Pak1/2 were expressed in cultured podocytes. In mouse podocytes, Pak2 was predominantly phosphorylated, concentrated at the tips of the cellular processes, and its expression and/or phosphorylation were further increased when differentiated. Overexpression of rat nephrin in podocytes increased Pak1/2 phosphorylation, which was abolished when the Nck binding sites were mutated. Furthermore, dominant-negative Nck constructs blocked the Pak1 phosphorylation induced by antibody-mediated cross linking of nephrin. Transient transfection of constitutively kinase-active Pak1 into differentiated mouse podocytes decreased stress fibers, increased cortical F-actin, and extended the cellular processes, whereas kinase-dead mutant, kinase inhibitory construct, and Pak2 knockdown by shRNA had the opposite effect. In a rat model of puromycin aminonucleoside nephrosis, Pak1/2 phosphorylation was decreased in glomeruli, concomitantly with a decrease of nephrin tyrosine phosphorylation. These results suggest that Pak contributes to remodeling of the actin cytoskeleton in podocytes. Disturbed nephrin-Nck-Pak interaction may contribute to abnormal morphology of podocytes and proteinuria.
Collapse
Affiliation(s)
- Jianxin Zhu
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Ortal Attias
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Lamine Aoudjit
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Ruihua Jiang
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Hiroshi Kawachi
- Department of Cell Biology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; and
| |
Collapse
|
48
|
Lee JS, Lee YM, Kim JY, Park HW, Grinstein S, Orlowski J, Kim E, Kim KH, Lee MG. BetaPix up-regulates Na+/H+ exchanger 3 through a Shank2-mediated protein-protein interaction. J Biol Chem 2010; 285:8104-13. [PMID: 20080968 DOI: 10.1074/jbc.m109.055079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na(+)/H(+) exchanger 3 (NHE3) plays an important role in neutral Na(+) transport in mammalian epithelial cells. The Rho family of small GTPases and the PDZ (PSD-95/discs large/ZO-1) domain-based adaptor Shank2 are known to regulate the membrane expression and activity of NHE3. In this study we examined the role of betaPix, a guanine nucleotide exchange factor for the Rho GTPase and a strong binding partner to Shank2, in NHE3 regulation using integrated molecular and physiological approaches. Immunoprecipitation and pulldown assays revealed that NHE3, Shank2, and betaPix form a macromolecular complex when expressed heterologously in mammalian cells as well as endogenously in rat colon, kidney, and pancreas. In addition, these proteins co-segregated at the apical surface of rat colonic epithelial cells, as detected by immunofluorescence staining. When expressed in PS120/NHE3 cells, betaPix increased membrane expression and basal activity of NHE3. Interestingly, the effects of betaPix on NHE3 were abolished by cotransfection with dominant-negative Shank2 mutants and by treatment with Clostridium difficile toxin B, a Rho GTPase inhibitor, indicating that Shank2 and Rho GTPases are involved in betaPix-mediated NHE3 regulation. Knockdown of endogenous betaPix by RNA interference decreased Shank2-induced increase of NHE3 membrane expression in HEK 293T cells. These results indicate that betaPix up-regulates NHE3 membrane expression and activity by Shank2-mediated protein-protein interaction and by activating Rho GTPases in the apical regions of epithelial cells.
Collapse
Affiliation(s)
- Jung-Soo Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lisé MF, Srivastava DP, Arstikaitis P, Lett RL, Sheta R, Viswanathan V, Penzes P, O'Connor TP, El-Husseini A. Myosin-Va-interacting protein, RILPL2, controls cell shape and neuronal morphogenesis via Rac signaling. J Cell Sci 2010; 122:3810-21. [PMID: 19812310 DOI: 10.1242/jcs.050344] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuronal morphology plays an essential role in neuronal function. The establishment and maintenance of neuronal morphology is intimately linked to the actin cytoskeleton; however, the molecular mechanisms that regulate changes in neuronal morphology are poorly understood. Here we identify a novel myosin-Va (MyoVa)-interacting protein, RILPL2, which regulates cellular morphology. Overexpression of this protein in young or mature hippocampal neurons results in an increase in the number of spine-like protrusions. By contrast, knockdown of endogenous RILPL2 in neurons by short hairpin RNA (shRNA) interference results in reduced spine-like protrusions, a phenotype rescued by overexpression of an shRNA-insensitive RILPL2 mutant, suggesting a role for RILPL2 in both the establishment and maintenance of dendritic spines. Interestingly, we demonstrate that RILPL2 and the Rho GTPase Rac1 form a complex, and that RILPL2 is able to induce activation of Rac1 and its target, p21-activated kinase (Pak). Notably, both RILPL2-mediated morphological changes and activation of Rac1-Pak signaling were blocked by expression of a truncated tail form of MyoVa or MyoVa shRNA, demonstrating that MyoVa is crucial for proper RILPL2 function. This might represent a novel mechanism linking RILPL2, the motor protein MyoVa and Rac1 with neuronal structure and function.
Collapse
Affiliation(s)
- Marie-France Lisé
- Department of Psychiatry and Brain Research Center, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mammalian Ste20-like protein kinase 3 induces a caspase-independent apoptotic pathway. Int J Biochem Cell Biol 2010; 42:98-105. [DOI: 10.1016/j.biocel.2009.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 09/04/2009] [Accepted: 09/21/2009] [Indexed: 11/21/2022]
|