1
|
Desidério CS, Flávio-Reis VHP, Pessoa-Gonçalves YM, Tiveron RDR, Sales-Campos H, Felice AG, Soares SDC, Guillermo-Ferreira R, Rodrigues WF, Oliveira CJF. Binding Molecules in Tick Saliva for Targeting Host Cytokines, Chemokines, and Beyond. Biomolecules 2024; 14:1647. [PMID: 39766354 PMCID: PMC11674731 DOI: 10.3390/biom14121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Ticks have coevolved with their hosts over millions of years, developing the ability to evade hemostatic, inflammatory, and immunological responses. Salivary molecules from these vectors bind to cytokines, chemokines, antibodies, complement system proteins, vasodilators, and molecules involved in coagulation and platelet aggregation, among others, inhibiting or blocking their activities. Initially studied to understand the complexities of tick-host interactions, these molecules have been more recently recognized for their potential clinical applications. Their ability to bind to soluble molecules and modulate important physiological systems, such as immunity, hemostasis, and coagulation, positions them as promising candidates for future therapeutic development. This review aims to identify the binding molecules present in tick saliva, determine their primary targets, and explore the tick species involved in these processes. By associating the binding molecules, the molecules to which they bind, and the effect caused, the review provides a basis for understanding how these molecules can contribute to possible future advances in clinical applications.
Collapse
Affiliation(s)
- Chamberttan Souza Desidério
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Victor Hugo Palhares Flávio-Reis
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Yago Marcos Pessoa-Gonçalves
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Rafael Destro Rosa Tiveron
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Helioswilton Sales-Campos
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania 74605-050, GO, Brazil;
| | - Andrei Giacchetto Felice
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Siomar de Castro Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Rhainer Guillermo-Ferreira
- LESTES Laboratory, Department of Biological Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil;
| | - Wellington Francisco Rodrigues
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| | - Carlo José Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (C.S.D.); (V.H.P.F.-R.); (Y.M.P.-G.); (R.D.R.T.); (A.G.F.); (S.d.C.S.); (W.F.R.)
| |
Collapse
|
2
|
Jo GH, Jung SA, Yoon JS, Lee JH. Inhibition of Cancer Cell Migration and Invasion In Vitro by Recombinant Tyrosine-Sulfated Haemathrin, A Thrombin Inhibitor. Int J Mol Sci 2024; 25:11822. [PMID: 39519372 PMCID: PMC11546549 DOI: 10.3390/ijms252111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Thrombin, a key enzyme in the regulation of hemostasis, has been implicated in cancer progression. This study explored the effect of recombinant tyrosine-sulfated haemathrin on cancer cell behavior and signaling pathways compared to wild-type (WT) haemathrin 2. The recombinant proteins, tyrosine-sulfated haemathrin 2 (haemathrin 2S), and WT haemathrin 2 were produced in Escherichia coli and subsequently purified and applied to SKOV3 and MDA-MB-231 cells with and without thrombin stimulation. Cell migration and invasion were assessed using wound healing and Transwell assays, respectively. Haemathrin 2S treatment significantly diminished cell migration and invasion promoted by thrombin in both SKOV3 and MDA-MB-231 cells (p < 0.05). Additionally, haemathrin 2S effectively inhibited thrombin-induced phosphorylation of serine/threonine kinase (Akt) in both cell lines (p < 0.05), while WT haemathrin 2 had this effect only in MDA-MB-231 cells. Furthermore, haemathrin 2S significantly reduced thrombin-activated phosphorylation of extracellular signal-regulated kinases (ERK) and p38 in both cell lines (p < 0.05) and reversed E/N-cadherin expression in thrombin-treated MDA-MB-231 cells (p < 0.05), which were not observed with WT haemathrin 2. Overall, haemathrin 2S was more effective than WT haemathrin 2 in reducing cancer cell migration and invasion, indicating that targeting thrombin with sulfated haemathrin is a promising strategy for cancer therapy. However, further in vivo studies are needed to confirm these results.
Collapse
Affiliation(s)
- Guk Heui Jo
- Department of Cell Biology, Myung-Gok Eye Research Institute, Konyang University College of Medicine, Daejeon 35365, Republic of Korea; (G.H.J.); (S.A.J.)
| | - Sun Ah Jung
- Department of Cell Biology, Myung-Gok Eye Research Institute, Konyang University College of Medicine, Daejeon 35365, Republic of Korea; (G.H.J.); (S.A.J.)
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Joon H. Lee
- Department of Cell Biology, Myung-Gok Eye Research Institute, Konyang University College of Medicine, Daejeon 35365, Republic of Korea; (G.H.J.); (S.A.J.)
| |
Collapse
|
3
|
de Sousa-Paula LC, Berger M, Talyuli OAC, Schwartz CL, Saturday GA, Ribeiro JMC, Tirloni L. Exploring the transcriptome of immature stages of Ornithodoros hermsi, the soft-tick vector of tick-borne relapsing fever. Sci Rep 2024; 14:12466. [PMID: 38816418 PMCID: PMC11140000 DOI: 10.1038/s41598-024-62732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Blood-feeding behavior has independently evolved in arthropods multiple times. Unlike hard ticks, soft ticks employ a rapid-feeding strategy for hematophagy, and there are comparatively limited studies on the transcriptomes of these organisms. This study investigates the soft tick Ornithodoros hermsi, conducting histopathological examinations at bitten skin sites and tick whole-body transcriptomic analyses across various developmental and feeding stages, including larvae, 1st-nymphal, and 2nd-nymphal stages. The results revealed the ability of O. hermsi to induce skin hemorrhage at the bite sites. Transcriptomic analyses identified three consistent transcriptional profiles: unfed, early-fed (6 h, 12 h, 24 h), and late-fed (5 days). The unfed profile exhibited high transcriptional activity across most of the functional classes annotated. In contrast, early-fed stages exhibited decreased expression of most functional classes, except for the unknown, which is highly expressed. Finally, transcriptional expression of most functional classes increased in the late-fed groups, resembling the baseline expression observed in the unfed groups. These findings highlight intense pre-feeding transcriptional activity in O. hermsi ticks, aligning with their rapid-feeding strategy. Moreover, besides shedding light on the temporal dynamics of key pathways during blood meal processing and tick development, this study contributes significantly to the transcriptome repertoire of a medically relevant soft tick species with relatively limited prior knowledge.
Collapse
Affiliation(s)
- Lucas C de Sousa-Paula
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Markus Berger
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Octavio A C Talyuli
- Mosquito Immunity and Vector Competence Section, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Cindi L Schwartz
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Greg A Saturday
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - José M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
4
|
Balakrishnan N, Katkar R, Pham PV, Downey T, Kashyap P, Anastasiu DC, Ramasubramanian AK. Prospection of Peptide Inhibitors of Thrombin from Diverse Origins Using a Machine Learning Pipeline. Bioengineering (Basel) 2023; 10:1300. [PMID: 38002424 PMCID: PMC10669389 DOI: 10.3390/bioengineering10111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Thrombin is a key enzyme involved in the development and progression of many cardiovascular diseases. Direct thrombin inhibitors (DTIs), with their minimum off-target effects and immediacy of action, have greatly improved the treatment of these diseases. However, the risk of bleeding, pharmacokinetic issues, and thrombotic complications remain major concerns. In an effort to increase the effectiveness of the DTI discovery pipeline, we developed a two-stage machine learning pipeline to identify and rank peptide sequences based on their effective thrombin inhibitory potential. The positive dataset for our model consisted of thrombin inhibitor peptides and their binding affinities (KI) curated from published literature, and the negative dataset consisted of peptides with no known thrombin inhibitory or related activity. The first stage of the model identified thrombin inhibitory sequences with Matthew's Correlation Coefficient (MCC) of 83.6%. The second stage of the model, which covers an eight-order of magnitude range in KI values, predicted the binding affinity of new sequences with a log room mean square error (RMSE) of 1.114. These models also revealed physicochemical and structural characteristics that are hidden but unique to thrombin inhibitor peptides. Using the model, we classified more than 10 million peptides from diverse sources and identified unique short peptide sequences (<15 aa) of interest, based on their predicted KI. Based on the binding energies of the interaction of the peptide with thrombin, we identified a promising set of putative DTI candidates. The prediction pipeline is available on a web server.
Collapse
Affiliation(s)
- Nivedha Balakrishnan
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA 95192, USA (P.K.)
| | - Rahul Katkar
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA 95192, USA (P.K.)
| | - Peter V. Pham
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA 95192, USA (P.K.)
| | - Taylor Downey
- Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA 95053, USA (D.C.A.)
| | - Prarthna Kashyap
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA 95192, USA (P.K.)
| | - David C. Anastasiu
- Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA 95053, USA (D.C.A.)
| | - Anand K. Ramasubramanian
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA 95192, USA (P.K.)
| |
Collapse
|
5
|
A Deeper Insight into the Tick Salivary Protein Families under the Light of Alphafold2 and Dali: Introducing the TickSialoFam 2.0 Database. Int J Mol Sci 2022; 23:ijms232415613. [PMID: 36555254 PMCID: PMC9779611 DOI: 10.3390/ijms232415613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Hard ticks feed for several days or weeks on their hosts and their saliva contains thousands of polypeptides belonging to dozens of families, as identified by salivary transcriptomes. Comparison of the coding sequences to protein databases helps to identify putative secreted proteins and their potential functions, directing and focusing future studies, usually done with recombinant proteins that are tested in different bioassays. However, many families of putative secreted peptides have a unique character, not providing significant matches to known sequences. The availability of the Alphafold2 program, which provides in silico predictions of the 3D polypeptide structure, coupled with the Dali program which uses the atomic coordinates of a structural model to search the Protein Data Bank (PDB) allows another layer of investigation to annotate and ascribe a functional role to proteins having so far being characterized as "unique". In this study, we analyzed the classification of tick salivary proteins under the light of the Alphafold2/Dali programs, detecting novel protein families and gaining new insights relating the structure and function of tick salivary proteins.
Collapse
|
6
|
Lukas P, Melikian G, Hildebrandt JP, Müller C. Make it double: identification and characterization of a Tandem-Hirudin from the Asian medicinal leech Hirudinaria manillensis. Parasitol Res 2022; 121:2995-3006. [PMID: 36006484 PMCID: PMC9464118 DOI: 10.1007/s00436-022-07634-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022]
Abstract
Haematophagous leeches express a broad variety of secretory proteins in their salivary glands, among them are hirudins and hirudin-like factors. Here, we describe the identification, molecular and initial functional characterization of Tandem-Hirudin (TH), a novel salivary gland derived factor identified in the Asian medicinal leech, Hirudinaria manillensis. In contrast to the typical structure of hirudins, TH comprises two globular domains arranged in a tandem-like orientation and lacks the elongated C-terminal tail. Similar structures of thrombin inhibitors have so far been identified only in kissing bugs and ticks. Expression of TH was performed in both cell-based and cell-free bacterial systems. A subsequent functional characterization revealed no evidence for a thrombin-inhibitory potency of TH.
Collapse
Affiliation(s)
- Phil Lukas
- Animal Physiology, Zoological Institute and Museum, University of Greifswald, Felix-Hausdorff-Str. 1, D-17489, Greifswald, Germany
| | - Georgij Melikian
- Animal Physiology, Zoological Institute and Museum, University of Greifswald, Felix-Hausdorff-Str. 1, D-17489, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology, Zoological Institute and Museum, University of Greifswald, Felix-Hausdorff-Str. 1, D-17489, Greifswald, Germany
| | - Christian Müller
- Animal Physiology, Zoological Institute and Museum, University of Greifswald, Felix-Hausdorff-Str. 1, D-17489, Greifswald, Germany.
| |
Collapse
|
7
|
Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022; 12:809052. [PMID: 35372098 PMCID: PMC8966233 DOI: 10.3389/fcimb.2022.809052] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick's blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts' defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick's salivary immunomodulatory and cement proteins facilitate the tick's attachment to the host to enhance prolonged blood-feeding and to modulate the host's innate and adaptive immune responses. Recent advances implemented in the field of "omics" have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick-host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Rafha, Saudi Arabia
| | - Mohammed Alrouji
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
8
|
Reck J, Webster A, Dall'Agnol B, Pienaar R, de Castro MH, Featherston J, Mans BJ. Transcriptomic Analysis of Salivary Glands of Ornithodoros brasiliensis Aragão, 1923, the Agent of a Neotropical Tick-Toxicosis Syndrome in Humans. Front Physiol 2021; 12:725635. [PMID: 34421661 PMCID: PMC8378177 DOI: 10.3389/fphys.2021.725635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/12/2021] [Indexed: 12/04/2022] Open
Abstract
Tick salivary glands produce and secrete a variety of compounds that modulate host responses and ensure a successful blood meal. Despite great progress made in the identification of ticks salivary compounds in recent years, there is still a paucity of information concerning salivary molecules of Neotropical argasid ticks. Among this group of ticks, considering the number of human cases of parasitism, including severe syndromes and hospitalization, Ornithodoros brasiliensis can be considered one of the major Neotropical argasid species with impact in public health. Here, we describe the transcriptome analysis of O. brasiliensis salivary glands (ObSG). The transcriptome yielded ~14,957 putative contigs. A total of 368 contigs were attributed to secreted proteins (SP), which represent approximately 2.5% of transcripts but ~53% expression coverage transcripts per million. Lipocalins are the major protein family among the most expressed SP, accounting for ~16% of the secretory transcripts and 51% of secretory protein abundance. The most expressed transcript is an ortholog of TSGP4 (tick salivary gland protein 4), a lipocalin first identified in Ornithodoros kalahariensis that functions as a leukotriene C4 scavenger. A total of 55 lipocalin transcripts were identified in ObSG. Other transcripts potentially involved in tick-host interaction included as: basic/acid tail secretory proteins (second most abundant expressed group), serine protease inhibitors (including Kunitz inhibitors), 5' nucleotidases (tick apyrases), phospholipase A2, 7 disulfide bond domain, cystatins, and tick antimicrobial peptides. Another abundant group of proteins in ObSG is metalloproteases. Analysis of these major protein groups suggests that several duplication events after speciation were responsible for the abundance of redundant compounds in tick salivary glands. A full mitochondrial genome could be assembled from the transcriptome data and confirmed the close genetic identity of the tick strain sampled in the current study, to a tick strain previously implicated in tick toxicoses. This study provides novel information on the molecular composition of ObSG, a Brazilian endemic tick associated with several human cases of parasitism. These results could be helpful in the understanding of clinical findings observed in bitten patients, and also, could provide more information on the evolution of Neotropical argasids.
Collapse
Affiliation(s)
- Jose Reck
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, Brazil
| | - Anelise Webster
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, Brazil
| | - Bruno Dall'Agnol
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, Brazil
| | - Ronel Pienaar
- Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Minique H de Castro
- Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
| | | | - Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, Vector and Vector-borne Disease Research Programme, University of Pretoria, Pretoria, South Africa.,Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
9
|
Mans BJ. Quantitative Visions of Reality at the Tick-Host Interface: Biochemistry, Genomics, Proteomics, and Transcriptomics as Measures of Complete Inventories of the Tick Sialoverse. Front Cell Infect Microbiol 2020; 10:574405. [PMID: 33042874 PMCID: PMC7517725 DOI: 10.3389/fcimb.2020.574405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Species have definitive genomes. Even so, the transcriptional and translational products of the genome are dynamic and subject to change over time. This is especially true for the proteins secreted by ticks at the tick-host feeding interface that represent a complex system known as the sialoverse. The sialoverse represent all of the proteins derived from tick salivary glands for all tick species that may be involved in tick-host interaction and the modulation of the host's defense mechanisms. The current study contemplates the advances made over time to understand and describe the complexity present in the sialoverse. Technological advances at given periods in time allowed detection of functions, genes, and proteins enabling a deeper insight into the complexity of the sialoverse and a concomitant expansion in complexity with as yet, no end in sight. The importance of systematic classification of the sialoverse is highlighted with the realization that our coverage of transcriptome and proteome space remains incomplete, but that complete descriptions may be possible in the future. Even so, analysis and integration of the sialoverse into a comprehensive understanding of tick-host interactions may require further technological advances given the high level of expected complexity that remains to be uncovered.
Collapse
Affiliation(s)
- Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa.,Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
10
|
RNA-seq analysis of the salivary glands and midgut of the Argasid tick Ornithodoros rostratus. Sci Rep 2019; 9:6764. [PMID: 31043627 PMCID: PMC6494864 DOI: 10.1038/s41598-019-42899-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/21/2019] [Indexed: 01/28/2023] Open
Abstract
Ornithodoros rostratus is a South American argasid tick which importance relies on its itchy bite and potential as disease vector. They feed on a wide variety of hosts and secrete different molecules in their saliva and intestinal content that counteract host defences and help to accommodate and metabolize the relatively large quantity of blood upon feeding. The present work describes the transcriptome profile of salivary gland (SG) and midgut (MG) of O. rostratus using Illumina sequencing. A total of 8,031 contigs were assembled and assigned to different functional classes. Secreted proteins were the most abundant in the SG and accounted for ~67% of all expressed transcripts with contigs with identity to lipocalins and acid tail proteins being the most representative. On the other hand, immunity genes were upregulated in MG with a predominance of defensins and lysozymes. Only 10 transcripts in SG and 8 in MG represented ~30% of all RNA expressed in each tissue and one single contig (the acid tail protein ORN-9707) represented ~7% of all expressed contigs in SG. Results highlight the functional difference of each organ and identified the most expressed classes and contigs of O. rostratus SG and MG.
Collapse
|
11
|
Mans BJ, Featherston J, Kvas M, Pillay KA, de Klerk DG, Pienaar R, de Castro MH, Schwan TG, Lopez JE, Teel P, Pérez de León AA, Sonenshine DE, Egekwu NI, Bakkes DK, Heyne H, Kanduma EG, Nyangiwe N, Bouattour A, Latif AA. Argasid and ixodid systematics: Implications for soft tick evolution and systematics, with a new argasid species list. Ticks Tick Borne Dis 2018; 10:219-240. [PMID: 30309738 DOI: 10.1016/j.ttbdis.2018.09.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/02/2018] [Accepted: 09/22/2018] [Indexed: 10/28/2022]
Abstract
The systematics of the genera and subgenera within the soft tick family Argasidae is not adequately resolved. Different classification schemes, reflecting diverse schools of scientific thought that elevated or downgraded groups to genera or subgenera, have been proposed. In the most recent classification scheme, Argas and Ornithodoros are paraphyletic and the placement of various subgenera remains uncertain because molecular data are lacking. Thus, reclassification of the Argasidae is required. This will enable an understanding of soft tick systematics within an evolutionary context. This study addressed that knowledge gap using mitochondrial genome and nuclear (18S and 28S ribosomal RNA) sequence data for representatives of the subgenera Alectorobius, Argas, Chiropterargas, Ogadenus, Ornamentum, Ornithodoros, Navis (subgen. nov.), Pavlovskyella, Persicargas, Proknekalia, Reticulinasus and Secretargas, from the Afrotropical, Nearctic and Palearctic regions. Hard tick species (Ixodidae) and a new representative of Nuttalliella namaqua (Nuttalliellidae), were also sequenced with a total of 83 whole mitochondrial genomes, 18S rRNA and 28S rRNA genes generated. The study confirmed the utility of next-generation sequencing to retrieve systematic markers. Paraphyly of Argas and Ornithodoros was resolved by systematic analysis and a new species list is proposed. This corresponds broadly with the morphological cladistic analysis of Klompen and Oliver (1993). Estimation of divergence times using molecular dating allowed dissection of phylogeographic patterns for argasid evolution. The discovery of cryptic species in the subgenera Chiropterargas, Ogadenus and Ornithodoros, suggests that cryptic speciation is common within the Argasidae. Cryptic speciation has implications for past biological studies of soft ticks. These are discussed in particular for the Ornithodoros (Ornithodoros) moubata and Ornithodoros (Ornithodoros) savignyi groups.
Collapse
Affiliation(s)
- Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa; Department of Life and Consumer Sciences, University of South Africa, South Africa.
| | - Jonathan Featherston
- The Biotechnology Platform, Agricultural Research Council-Biotechnology Platform, Onderstepoort 0110, South Africa
| | - Marija Kvas
- The Biotechnology Platform, Agricultural Research Council-Biotechnology Platform, Onderstepoort 0110, South Africa
| | - Kerry-Anne Pillay
- The Biotechnology Platform, Agricultural Research Council-Biotechnology Platform, Onderstepoort 0110, South Africa
| | - Daniel G de Klerk
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Ronel Pienaar
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Minique H de Castro
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Tom G Schwan
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Job E Lopez
- Department of Paediatrics, National School of Tropical Medicine, Paediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Pete Teel
- Department of Entomology, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, United States
| | - Adalberto A Pérez de León
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX, United States
| | - Daniel E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States; Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIH), Rockville, MD, United States
| | - Noble I Egekwu
- Agricultural Research Service, United States Department of Agriculture, Washington, D.C., United States
| | - Deon K Bakkes
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Heloise Heyne
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Esther G Kanduma
- Department of Biochemistry, School of Medicine, University of Nairobi, P.O BOX 30197, 00100, Nairobi, Kenya
| | - Nkululeko Nyangiwe
- Döhne Agricultural Development Institute, Private Bag X15, Stutterheim, 4930, South Africa
| | - Ali Bouattour
- Laboratoire d'Entomologie, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Abdalla A Latif
- School of Life Sciences, University of KwaZulu-Natal, Durban, Westville, South Africa
| |
Collapse
|
12
|
Parizi LF, Ali A, Tirloni L, Oldiges DP, Sabadin GA, Coutinho ML, Seixas A, Logullo C, Termignoni C, DA Silva Vaz I. Peptidase inhibitors in tick physiology. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:129-144. [PMID: 29111611 DOI: 10.1111/mve.12276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 06/23/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction.
Collapse
Affiliation(s)
- L F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
- Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - L Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - D P Oldiges
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G A Sabadin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - M L Coutinho
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Seixas
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Logullo
- Laboratório de Química e Função de Proteínas e Peptídeos-CBB and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Porto Alegre, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - I DA Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Bensaoud C, Nishiyama MY, Ben Hamda C, Lichtenstein F, Castro de Oliveira U, Faria F, Loiola Meirelles Junqueira-de-Azevedo I, Ghedira K, Bouattour A, M'Ghirbi Y, Chudzinski-Tavassi AM. De novo assembly and annotation of Hyalomma dromedarii tick (Acari: Ixodidae) sialotranscriptome with regard to gender differences in gene expression. Parasit Vectors 2018; 11:314. [PMID: 29793520 PMCID: PMC5968504 DOI: 10.1186/s13071-018-2874-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hard ticks are hematophagous ectoparasites characterized by their long-term feeding. The saliva that they secrete during their blood meal is their crucial weapon against host-defense systems including hemostasis, inflammation and immunity. The anti-hemostatic, anti-inflammatory and immune-modulatory activities carried out by tick saliva molecules warrant their pharmacological investigation. The Hyalomma dromedarii Koch, 1844 tick is a common parasite of camels and probably the best adapted to deserts of all hard ticks. Like other hard ticks, the salivary glands of this tick may provide a rich source of many compounds whose biological activities interact directly with host system pathways. Female H. dromedarii ticks feed longer than males, thereby taking in more blood. To investigate the differences in feeding behavior as reflected in salivary compounds, we performed de novo assembly and annotation of H. dromedarii sialotranscriptome paying particular attention to variations in gender gene expression. RESULTS The quality-filtered Illumina sequencing reads deriving from a cDNA library of salivary glands led to the assembly of 15,342 transcripts. We deduced that the secreted proteins included: metalloproteases, glycine-rich proteins, mucins, anticoagulants of the mandanin family and lipocalins, among others. Expression analysis revealed differences in the expression of transcripts between male and female H. dromedarii that might explain the blood-feeding strategies employed by both genders. CONCLUSIONS The annotated sialome of H. dromedarii helps understand the interaction of tick-host molecules during blood-feeding and can lead to the discovery of new pharmacologically active proteins of ticks of the genus Hyalomma.
Collapse
Affiliation(s)
- Chaima Bensaoud
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | - Milton Yutaka Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | - Cherif Ben Hamda
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT09, Laboratoire de Bioinformatique, Biomathematique et biostatiqtiques, 1002, Tunis, Tunisie
| | - Flavio Lichtenstein
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | - Ursula Castro de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | - Fernanda Faria
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | | | - Kais Ghedira
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT09, Laboratoire de Bioinformatique, Biomathematique et biostatiqtiques, 1002, Tunis, Tunisie
| | - Ali Bouattour
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie.
| | - Youmna M'Ghirbi
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | | |
Collapse
|
14
|
Blisnick AA, Foulon T, Bonnet SI. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:199. [PMID: 28589099 PMCID: PMC5438962 DOI: 10.3389/fcimb.2017.00199] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/04/2017] [Indexed: 01/01/2023] Open
Abstract
New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs), whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials.
Collapse
Affiliation(s)
| | - Thierry Foulon
- Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Biogenèse des Signaux Peptidiques, Sorbonne Universités, UPMC Univ. Paris 06Paris, France
| | | |
Collapse
|
15
|
Brahma RK, Blanchet G, Kaur S, Manjunatha Kini R, Doley R. Expression and characterization of haemathrins, madanin-like thrombin inhibitors, isolated from the salivary gland of tick Haemaphysalis bispinosa (Acari: Ixodidae). Thromb Res 2017; 152:20-29. [DOI: 10.1016/j.thromres.2017.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022]
|
16
|
Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis 2016; 7:509-35. [DOI: 10.1016/j.ttbdis.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
|
17
|
TcCYPR04, a Cacao Papain-Like Cysteine-Protease Detected in Senescent and Necrotic Tissues Interacts with a Cystatin TcCYS4. PLoS One 2015; 10:e0144440. [PMID: 26641247 PMCID: PMC4671599 DOI: 10.1371/journal.pone.0144440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
The interaction amongst papain-like cysteine-proteases (PLCP) and their substrates and inhibitors, such as cystatins, can be perceived as part of the molecular battlefield in plant-pathogen interaction. In cacao, four cystatins were identified and characterized by our group. We identified 448 proteases in cacao genome, whereof 134 were cysteine-proteases. We expressed in Escherichia coli a PLCP from cacao, named TcCYSPR04. Immunoblottings with anti-TcCYSPR04 exhibited protein increases during leaf development. Additional isoforms of TcCYSPR04 appeared in senescent leaves and cacao tissues infected by Moniliophthora perniciosa during the transition from the biotrophic to the saprophytic phase. TcCYSPR04 was induced in the apoplastic fluid of Catongo and TSH1188 cacao genotypes, susceptible and resistant to M. perniciosa, respectively, but greater intensity and additional isoforms were observed in TSH1188. The fungal protein MpNEP induced PLCP isoform expression in tobacco leaves, according to the cross reaction with anti-TcCYSPR04. Several protein isoforms were detected at 72 hours after treatment with MpNEP. We captured an active PLCP from cacao tissues, using a recombinant cacao cystatin immobilized in CNBr-Sepharose. Mass spectrometry showed that this protein corresponds to TcCYSPR04. A homology modeling was obtained for both proteins. In order to become active, TcCYSPR04 needs to lose its inhibitory domain. Molecular docking showed the physical-chemical complementarities of the interaction between the cacao enzyme and its inhibitor. We propose that TcCYSPR04 and its interactions with cacao cystatins are involved in the senescence and necrosis events related to witches' broom symptoms. This molecular interaction may be the target for future interventions to control witches' broom disease.
Collapse
|
18
|
Radulović ŽM, Kim TK, Porter LM, Sze SH, Lewis L, Mulenga A. A 24-48 h fed Amblyomma americanum tick saliva immuno-proteome. BMC Genomics 2014; 15:518. [PMID: 24962723 PMCID: PMC4099483 DOI: 10.1186/1471-2164-15-518] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/12/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Multiple tick saliva proteins, the majority of which are unknown, confer tick resistance in repeatedly infested animals. The objective of this study was to identify the 24-48 h fed Amblyomma americanum tick saliva immuno-proteome. The 24-48 h tick-feeding phase is critical to tick parasitism as it precedes important events in tick biology, blood meal feeding and disease agent transmission. Fed male, 24 and 96 h fed female phage display cDNA expression libraries were biopanned using rabbit antibodies to 24 and 48 h fed A. americanum female tick saliva proteins. Biopanned immuno-cDNA libraries were subjected to next generation sequencing, de novo assembly, and bioinformatic analysis. RESULTS More than 800 transcripts that code for 24-48 h fed A. americanum immuno-proteins are described. Of the 895 immuno-proteins, 52% (464/895) were provisionally identified based on matches in GenBank. Of these, ~19% (86/464) show high level of identity to other tick hypothetical proteins, and the rest include putative proteases (serine, cysteine, leukotriene A-4 hydrolase, carboxypeptidases, and metalloproteases), protease inhibitors (serine and cysteine protease inhibitors, tick carboxypeptidase inhibitor), and transporters and/or ligand binding proteins (histamine binding/lipocalin, fatty acid binding, calreticulin, hemelipoprotein, IgG binding protein, ferritin, insulin-like growth factor binding proteins, and evasin). Others include enzymes (glutathione transferase, cytochrome oxidase, protein disulfide isomerase), ribosomal proteins, and those of miscellaneous functions (histamine release factor, selenoproteins, tetraspanin, defensin, heat shock proteins). CONCLUSIONS Data here demonstrate that A. americanum secretes a complex cocktail of immunogenic tick saliva proteins during the first 24-48 h of feeding. Of significance, previously validated immunogenic tick saliva proteins including AV422 protein, calreticulin, histamine release factor, histamine binding/lipocalins, selenoproteins, and paramyosin were identified in this screen, supporting the specificity of the approach in this study. While descriptive, this study opens opportunities for in-depth tick feeding physiology studies.
Collapse
Affiliation(s)
- Željko M Radulović
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Tae K Kim
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Lindsay M Porter
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Sing-Hoi Sze
- />Department of Computer Sciences and Engineering, Texas A & M University, College Station, TX77843 USA
- />Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX77843 USA
| | - Lauren Lewis
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| | - Albert Mulenga
- />Department of Entomology, AgriLife Research, Texas A & M University, 2475 TAMU, College Station, TX77843 USA
| |
Collapse
|
19
|
Abreu PA, Soares TS, Buarque DS, Torquato RS, Tanaka AS. RmKK, a tissue kallikrein inhibitor from Rhipicephalus microplus eggs. Biochem Biophys Res Commun 2014; 449:69-73. [DOI: 10.1016/j.bbrc.2014.04.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
20
|
Louw E, van der Merwe NA, Neitz AWH, Maritz-Olivier C. Evolution of the tissue factor pathway inhibitor-like Kunitz domain-containing protein family in Rhipicephalus microplus. Int J Parasitol 2012; 43:81-94. [PMID: 23220044 DOI: 10.1016/j.ijpara.2012.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 01/26/2023]
Abstract
One of the principle mechanisms utilised by ticks to obtain a blood meal is the subversion of the host's haemostatic response. This is achieved through the secretion of saliva containing anti-haemostatic proteins into the feeding lesion. Lineage-specific expansion of predicted secretory protein families have been observed in all previously studied ticks and occurred in response to adaptation to a blood-feeding environment. Of these, the predominant families are common between both hard and soft ticks. One of these families, namely the Kunitz domain-containing protein family, includes proven tissue factor pathway inhibitor-like (TFPI-like) anti-haemostatics such as ixolaris and penthalaris that play a crucial role during tick feeding. Although Kunitz-type proteins have been found in Rhipicephalus microplus, the TFPI-like Kunitz protein family has not yet been studied. We report a comprehensive search for TFPI-like Kunitz domain-containing proteins in R. microplus expressed sequence tag libraries, resulting in the identification of 42 homologues. The homologues were bioinformatically and phylogenetically studied, including the application of an intensive Bayesian Markov Chain Monte Carlo (MCMC) analysis of the individual Kunitz domain nucleotide sequences. We show that the R. microplus TFPI-like Kunitz protein family groups into two main clades that presumably underwent ancient duplication, which indicates that a whole genome duplication event occurred at least 150 million years ago. Evidence for recent and ancient gene and domain duplication events was also found. Furthermore, the divergence times of the various tick lineages estimated in this paper correspond with those presented in previous studies. The elucidation of this large protein family's evolution within R. microplus adds to current knowledge of this economically important tick.
Collapse
Affiliation(s)
- Elizabeth Louw
- Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | | | | | | |
Collapse
|
21
|
Soares TS, Watanabe RMO, Tanaka-Azevedo AM, Torquato RJS, Lu S, Figueiredo AC, Pereira PJB, Tanaka AS. Expression and functional characterization of boophilin, a thrombin inhibitor from Rhipicephalus (Boophilus) microplus midgut. Vet Parasitol 2012; 187:521-8. [PMID: 22341830 DOI: 10.1016/j.vetpar.2012.01.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/17/2012] [Accepted: 01/22/2012] [Indexed: 10/14/2022]
Abstract
Rhipicephalus (Boophilus) microplus is an ectoparasite responsible for an important decrease in meat, milk and leather production, caused both by cattle blood loss and by the transmission of anaplasmosis and babesiosis. R. microplus is a rich source of serine protease inhibitors, including the trypsin inhibitors BmTI-A and BmTI-6, the subtilisin inhibitor BmSI, and the recently described thrombin inhibitor, boophilin. Boophilin is a double Kunitz-type thrombin inhibitor, with the unusual ability to form a ternary complex with a second (non-thrombin) serine proteinase molecule. The large-scale expression and purification of boophilin and of its isolated N-terminal (D1) domain in Pichia pastoris, its expression profile, and the effect of RNAi-mediated gene silencing in tick egg production are reported. Full-length boophilin and D1 were expressed at 21 and 37.5mg/L of culture, respectively. Purified boophilin inhibited trypsin (K(i) 0.65 nM), neutrophil elastase (K(i) 21 nM) and bovine thrombin (K(i) 57 pM), while D1 inhibited trypsin and neutrophil elastase (K(i) of 2.0 and 129 nM, respectively), but not thrombin. Boophilin gene silencing using RNAi resulted in 20% reduction in egg weight production, suggesting that the expression of boophilin in this life stage would be important but not vital, probably due to functional overlap with other serine proteinase inhibitors in the midgut of R. microplus. Considering our data, Boophilin could be combining with other antigen in a vaccine production for tick control.
Collapse
Affiliation(s)
- Tatiane Sanches Soares
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua 3 de Maio 100, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Watanabe RMO, Tanaka-Azevedo AM, Araujo MS, Juliano MA, Tanaka AS. Characterization of thrombin inhibitory mechanism of rAaTI, a Kazal-type inhibitor from Aedes aegypti with anticoagulant activity. Biochimie 2010; 93:618-23. [PMID: 21167902 DOI: 10.1016/j.biochi.2010.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 12/09/2010] [Indexed: 11/16/2022]
Abstract
Saliva of blood-sucking arthropods contains a complex mixture of anti-haemostatic, anti-inflammatory and immune-modulator compounds. Among anti-haemostatic factors, there are anticoagulants, vasodilators and platelet aggregation inhibitors. Previous analyses of the sialotranscriptome of Aedes aegypti showed the potential presence of a Kazal-type serine protease inhibitor in the female salivary glands, carcass and also in the whole male, which inhibitor we named AaTI (A. aegypti thrombin inhibitor). Recently, we expressed and characterized rAaTI as a trypsin inhibitor, and its anticoagulant activity [1]. In this work we characterized the thrombin inhibition mechanism of rAaTI. Recombinant AaTI was able to prolong prothrombin time, activated partial thromboplastin time and thrombin time. In contrast, AaTIΔ (rAaTI truncated form) and C-terminal AaTI acidic tail prolong only thrombin time. In the competition assay, rAaTI, AaTIΔ or C-terminal AaTI acidic tail-thrombin interactions seem to be affected by heparin but not by hirudin, suggesting that rAaTI binds to thrombin exosite 2. Finally, the thrombin inhibition assay of rAaTI showed an uncompetitive inhibition mechanism. In conclusion, rAaTI can probably inhibit thrombin by interacting with thrombin exosite 2, and the interaction is not mediated by the AaTI C-terminal region, since the truncated AaTIΔ form also prolongs thrombin time.
Collapse
Affiliation(s)
- Renata M O Watanabe
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua 3 de Maio 100, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
23
|
Lima CA, Torquato RJ, Sasaki SD, Justo GZ, Tanaka AS. Biochemical characterization of a Kunitz type inhibitor similar to dendrotoxins produced by Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) hemocytes. Vet Parasitol 2010; 167:279-87. [DOI: 10.1016/j.vetpar.2009.09.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Corral-Rodríguez MA, Macedo-Ribeiro S, Barbosa Pereira PJ, Fuentes-Prior P. Tick-derived Kunitz-type inhibitors as antihemostatic factors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:579-595. [PMID: 19631744 DOI: 10.1016/j.ibmb.2009.07.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 05/28/2023]
Abstract
Endogenous Kunitz-type inhibitors target a large number of serine proteinases, including coagulation factors VIIa and Xa, but not thrombin. By contrast, several two-domain Kunitz inhibitors of this major procoagulant proteinase have been isolated from both soft ticks (e.g., ornithodorin from Ornithodoros moubata) and hard ticks (e.g., boophilin from Rhipicephalus (Boophilus) microplus). Surprisingly, these anticoagulants do not follow the canonical mechanism of proteinase inhibition. Instead, their N-terminal residues bind across the thrombin active-site cleft, while C-terminal modules interact with the basic exosite I. The reactive-site loop of boophilin remains fully accessible in its complex with thrombin, and might interact with FXa according to the standard mechanism. A conceptually similar inhibition mechanism is employed by a related inhibitor of the TF-FVIIa complex isolated from Ixodes scapularis, ixolaris. Significant variations to the Kunitz fold are encountered in several of these factors, and are particularly evident in the single-domain FXa inhibitor, O. moubata TAP, and in soft tick-derived platelet antiaggregants (e.g., O. moubata disagregin). Altogether, these antihemostatic factors illustrate the divergence between hard and soft ticks. The unsurpassed versatility of tick-derived Kunitz inhibitors establishes them as valuable tools for biochemical investigations, but also as lead compounds for the development of novel antithrombotics.
Collapse
|
25
|
Prediction of non-canonical polyadenylation signals in human genomic sequences based on a novel algorithm using a fuzzy membership function. J Biosci Bioeng 2009; 107:569-78. [DOI: 10.1016/j.jbiosc.2009.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 01/05/2009] [Accepted: 01/05/2009] [Indexed: 11/23/2022]
|
26
|
Stutzer C, Mans BJ, Gaspar ARM, Neitz AWH, Maritz-Olivier C. Ornithodoros savignyi: soft tick apyrase belongs to the 5'-nucleotidase family. Exp Parasitol 2009; 122:318-27. [PMID: 19393241 DOI: 10.1016/j.exppara.2009.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/03/2009] [Accepted: 04/09/2009] [Indexed: 11/30/2022]
Abstract
Salivary apyrases are nucleotide-metabolising enzymes that blood-feeding parasites utilise for modulation of extracellular nucleotides to prevent platelet activation and aggregation. In this study a 5'-nucleotidase specific degenerate primer was used to identify homologous transcripts from Ornithodoros savignyi salivary gland cDNA. Two 5'-nucleotidase isoforms that share significant sequence identity to putative apyrases from Rhipicephalus appendiculatus and Ixodes scapularis were identified. Structure prediction showed a tertiary structure similar to periplasmic ecto-5'-nucleotidase from Escherichia coli, with high conservation of functional residues. The O. savignyi 5'-nucleotidase isoform I was recombinantly expressed in Pichia pastoris. Cross-reactivity was demonstrated with polyclonal anti-apyrase antisera produced against O. savignyi apyrase. Subsequent Edman sequencing and MS/MS analysis of purified O. savignyi apyrase identified peptide sequence fragments that shared sequence identity with both newly identified 5'-nucleotidase isoforms. It was concluded that wild-type apyrase is a mixture of the isoforms identified from the salivary glands of O. savignyi. These results represent the first confirmation of a soft (argasid) tick apyrase that belongs to the 5'-nucleotidase family of enzymes.
Collapse
Affiliation(s)
- Christian Stutzer
- Department of Biochemistry, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | |
Collapse
|
27
|
Francischetti IMB, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JMC. The role of saliva in tick feeding. FRONT BIOSCI-LANDMRK 2009; 14:2051-88. [PMID: 19273185 PMCID: PMC2785505 DOI: 10.2741/3363] [Citation(s) in RCA: 384] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When attempting to feed on their hosts, ticks face the problem of host hemostasis (the vertebrate mechanisms that prevent blood loss), inflammation (that can produce itching or pain and thus initiate defensive behavior on their hosts) and adaptive immunity (by way of both cellular and humoral responses). Against these barriers, ticks evolved a complex and sophisticated pharmacological armamentarium, consisting of bioactive lipids and proteins, to assist blood feeding. Recent progress in transcriptome research has uncovered that hard ticks have hundreds of different proteins expressed in their salivary glands, the majority of which have no known function, and include many novel protein families (e.g., their primary structure is unique to ticks). This review will address the vertebrate mechanisms of these barriers as a guide to identify the possible targets of these large numbers of known salivary proteins with unknown function. We additionally provide a supplemental Table that catalogues over 3,500 putative salivary proteins from various tick species, which might assist the scientific community in the process of functional identification of these unique proteins. This supplemental file is accessble fromhttp://exon.niaid.nih.gov/transcriptome/tick_review/Sup-Table-1.xls.gz.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda MD, USA
| | | | | | | | | |
Collapse
|
28
|
Anderson JM, Sonenshine DE, Valenzuela JG. Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae). BMC Genomics 2008; 9:552. [PMID: 19021911 PMCID: PMC2644717 DOI: 10.1186/1471-2164-9-552] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 11/20/2008] [Indexed: 11/30/2022] Open
Abstract
Background Ticks are obligate blood feeders. The midgut is the first major region of the body where blood and microbes ingested with the blood meal come in contact with the tick's internal tissues. Little is known about protein expression in the digestive tract of ticks. In this study, for analysis of global gene expression during tick attachment and feeding, we generated and sequenced 1,679 random transcripts (ESTs) from cDNA libraries from the midguts of female ticks at varying stages of feeding. Results Sequence analysis of the 1,679 ESTs resulted in the identification of 835 distinct transcripts, from these, a total of 82 transcripts were identified as proteins putatively directly involved in blood meal digestion, including enzymes involved in oxidative stress reduction/antimicrobial activity/detoxification, peptidase inhibitors, protein digestion (cysteine-, aspartic-, serine-, and metallo-peptidases), cell, protein and lipid binding including mucins and iron/heme metabolism and transport. A lectin-like protein with a high match to lectins in other tick species, allergen-like proteins and surface antigens important in pathogen recognition and/or antimicrobial activity were also found. Furthermore, midguts collected from the 6-day-fed ticks expressed twice as many transcripts involved in bloodmeal processing as midguts from unfed/2-day-fed ticks. Conclusion This tissue-specific transcriptome analysis provides an opportunity to examine the global expression of transcripts in the tick midgut and to compare the gut response to host attachment versus blood feeding and digestion. In contrast to those in salivary glands of other Ixodid ticks, most proteins in the D. variabilis midgut cDNA library were intracellular. Of the total ESTs associated with a function, an unusually large number of transcripts were associated with peptidases, cell, lipid and protein binding, and oxidative stress or detoxification. Presumably, this is consistent with their role in intracellular processing of the blood meal and response to microbial infections. The presence of many proteins with similar functions is consistent with the hypothesis that gene duplication contributed to the successful adaptation of ticks to hematophagy. Furthermore, these transcripts may be useful to scientists investigating the role of the tick midgut in blood-meal digestion, antimicrobial activity or the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Jennifer M Anderson
- Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
29
|
Macedo-Ribeiro S, Almeida C, Calisto BM, Friedrich T, Mentele R, Stürzebecher J, Fuentes-Prior P, Pereira PJB. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS One 2008; 3:e1624. [PMID: 18286181 PMCID: PMC2230226 DOI: 10.1371/journal.pone.0001624] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 01/20/2008] [Indexed: 11/19/2022] Open
Abstract
Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine α-thrombin·boophilin complex, refined at 2.35 Å resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9° and is displaced by 6 Å, while the C-terminal domain rotates almost 6° accompanied by a 3 Å displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin·boophilin·trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo.
Collapse
Affiliation(s)
- Sandra Macedo-Ribeiro
- Centro de Neurociências e Biologia Celular (CNC), Coimbra, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Carla Almeida
- Centro de Neurociências e Biologia Celular (CNC), Coimbra, Portugal
| | - Bárbara M. Calisto
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | | | | | | | - Pablo Fuentes-Prior
- Cardiovascular Research Center, Consejo Superior de Investigaciones Científicas (CSIC)-Institut Català de Ciències Cardiovasculars (ICCC), Barcelona, Spain
- *E-mail: (PF); (PP)
| | - Pedro José Barbosa Pereira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- *E-mail: (PF); (PP)
| |
Collapse
|
30
|
Abstract
Joppe Hovius and colleagues review anticoagulant and immunosuppressive proteins present in tick saliva, and discuss how immunologically targeting such molecules could prevent transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Joppe W R Hovius
- Center for Experimental and Molecular Medicine, Department of Internal Medicine, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
31
|
Mans BJ, Andersen JF, Schwan TG, Ribeiro JMC. Characterization of anti-hemostatic factors in the argasid, Argas monolakensis: implications for the evolution of blood-feeding in the soft tick family. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:22-41. [PMID: 18070663 PMCID: PMC4274796 DOI: 10.1016/j.ibmb.2007.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/11/2007] [Accepted: 09/18/2007] [Indexed: 05/14/2023]
Abstract
To date, the only anti-hemostatic factors characterized for softs ticks are for Ornithodoros moubata and Ornithodoros savignyi, ticks that feeds mainly on mammals. This includes thrombin (ornithodorin and savignin), fXa (TAP and fXaI) and platelet aggregation (disagegin and savignygrin) inhibitors that belong to the BPTI-Kunitz protein family. This raises the question on how well anti-hemostatic factors will be conserved in other soft tick genera that feeds on other vertebrates such as birds. We characterized the anti-hemostatic factors from Argas monolakensis, a soft tick that feeds mainly on Californian gulls. The main anti-clotting factor (monobin) is an ortholog of ornithodorin and savignin and shows similar slow tight-binding kinetics. The main anti-platelet activities are apyrase and fibrinogen receptor antagonists (monogrins). The monogrins are orthologs of disagregin and savignygrin and like savignygrin presents the RGD integrin-recognition motif on the BPTI substrate-binding presenting loop. This implies that the anti-hemostatic factors evolved in the ancestral soft tick lineage and has been maintained in soft tick species from two distinct genera with different host preferences. The Argas derived anti-hemostatic factors bind to mammalian targets with affinities similar to that observed for their orthologs in the Ornithodoros genus. This cross-reactivity could have facilitated the switching of soft ticks from avian to mammalian hosts and can explain in part the ability of Argas ticks, to feed on humans, thereby remaining a possible health risk.
Collapse
Affiliation(s)
- Ben J Mans
- Laboratory for Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | | | | | | |
Collapse
|
32
|
Francischetti IM, Mans BJ, Meng Z, Guderra N, Veenstra TD, Pham VM, Ribeiro JM. An insight into the sialome of the soft tick, Ornithodorus parkeri. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:1-21. [PMID: 18070662 PMCID: PMC2233652 DOI: 10.1016/j.ibmb.2007.09.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/10/2007] [Accepted: 09/18/2007] [Indexed: 05/15/2023]
Abstract
While hard ticks (Ixodidae) take several days to feed on their hosts, soft ticks (Argasidae) feed faster, usually taking less than 1h per meal. Saliva assists in the feeding process by providing a cocktail of anti-hemostatic, anti-inflammatory and immunomodullatory compounds. Saliva of hard ticks has been shown to contain several families of genes each having multiple members, while those of soft ticks are relatively unexplored. Analysis of the salivary transcriptome of the soft tick Ornithodorus parkeri, the vector of the relapsing fever agent Borrelia parkeri, indicates that gene duplication events have led to a large expansion of the lipocalin family, as well as of several genes containing Kunitz domains indicative of serine protease inhibitors, and several other gene families also found in hard ticks. Novel protein families with sequence homology to insulin growth factor-binding protein (prostacyclin-stimulating factor), adrenomedulin, serum amyloid A protein precursor and similar to HIV envelope protein were also characterized for the first time in the salivary gland of a blood-sucking arthropod. The sialotranscriptome of O. parkeri confirms that gene duplication events are an important driving force in the creation of salivary cocktails of blood-feeding arthropods, as was observed with hard ticks and mosquitoes. Most of the genes coding for expanded families are homologous to those found in hard ticks, indicating a strong common evolutionary path between the two families. As happens to all genera of blood-sucking arthropods, several new proteins were also found, indicating the process of adaptation to blood feeding still continues to recent times.
Collapse
Affiliation(s)
- Ivo M.B. Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Ben J. Mans
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Zhaojing Meng
- Laboratory of Proteomics and Analytical Technologies, Advanced Technologies Program, SAIC-Frederick, Inc., P.O. Box B, Frederick, Maryland 21702, USA
| | - Nanda Guderra
- Biomedical Research Laboratory, George Mason University, Manassas, Virginia 20110
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, Advanced Technologies Program, SAIC-Frederick, Inc., P.O. Box B, Frederick, Maryland 21702, USA
| | - Van M. Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - José M.C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
- * Corresponding author. Tel.: + 1 301 496 9389 fax: + 1 301 480 2571
| |
Collapse
|
33
|
Maritz-Olivier C, Stutzer C, Jongejan F, Neitz AWH, Gaspar ARM. Tick anti-hemostatics: targets for future vaccines and therapeutics. Trends Parasitol 2007; 23:397-407. [PMID: 17656153 DOI: 10.1016/j.pt.2007.07.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Revised: 05/22/2007] [Accepted: 07/09/2007] [Indexed: 11/28/2022]
Abstract
For ticks, a significant obstacle in obtaining a blood meal is counteracting the hemostatic system of the host. To this end, ticks have developed a broad array of anti-hemostatics, which is reflected in the presence of structurally related tick proteins with different functions. Disruption of blood flow which blocks successful tick feeding makes anti-hemostatics attractive targets for anti-tick vaccines. Moreover, the limited number of drugs currently available for a range of important cardio-vascular diseases makes ticks a potential source of novel therapeutics. This review aims to summarize the key features of tick anti-hemostatics, their structures, mode of action and possible future application as vaccines and novel therapeutic agents.
Collapse
|
34
|
Sasaki SD, de Lima CA, Lovato DV, Juliano MA, Torquato RJS, Tanaka AS. BmSI-7, a novel subtilisin inhibitor from Boophilus microplus, with activity toward Pr1 proteases from the fungus Metarhizium anisopliae. Exp Parasitol 2007; 118:214-20. [PMID: 17889850 DOI: 10.1016/j.exppara.2007.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 08/08/2007] [Accepted: 08/09/2007] [Indexed: 11/25/2022]
Abstract
BmSI-7 and BmSI-6, two Boophilus microplus subtilisin inhibitors (BmSI) were purified and characterized from eggs. The inhibitors isolated by classical purification methods presented molecular masses of 7408 and 7271Da, respectively, by MALDI-TOF-MS. Both BmSI-7 and BmSI-6 inhibited neutrophil elastase (K(i) 0.4 and 0.3nM) and subtilisin A (K(i) 1.4nM for both inhibitors). They also strongly inhibited Pr1 proteases from the fungus Metarhizium anisopliae; BmSI-7 (K(i) 50nM) and BmSI-6 (K(i) 2.2nM). The BmSI-7 full length cDNA was obtained using amino acid sequence information of BmSI-7 peptides generated by proteolytic digestion. BmSI-7 belongs to trypsin inhibitor like cysteine rich domain family (TIL), and it is transcribed in ovary, fat body, gut, salivary gland and haemocytes. BmSI-7 is the first TIL inhibitor described with inhibitory activity toward subtilisin A and Pr1 proteases of entomopathogenic fungi.
Collapse
Affiliation(s)
- Sergio D Sasaki
- Departamento de Bioquímica, UNIFESP-EPM, Rua 3 de Maio, 100, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Ciprandi A, de Oliveira SK, Masuda A, Horn F, Termignoni C. Boophilus microplus: Its saliva contains microphilin, a small thrombin inhibitor. Exp Parasitol 2006; 114:40-6. [PMID: 16600217 DOI: 10.1016/j.exppara.2006.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 02/08/2006] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
Saliva of the cattle tick Boophilus microplus contains two thrombin inhibitors, BmAP and microphilin. This work presents the purification and characterization of microphilin. It was purified from the saliva by gel filtration, ultrafiltration through a 3 kDa cut-off membrane and affinity chromatography in a thrombin-Sepharose column. Analysis by mass spectrometry showed a molecular mass of 1770 Da. Microphilin is the smallest salivary thrombin inhibitor peptide known to date. It inhibits fibrinocoagulation and thrombin-induced platelet aggregation with an IC(50) of 5.5 microM, is temperature resistant and its inhibitory activity was abolished by protease K treatment. Microphilin did not inhibit the amidolytic activity of the enzyme upon a small chromogenic substrate, but inhibited the hydrolysis of a substrate that binds both catalytic site and exosite I. Therefore, we propose that microphilin blocks thrombin at exosite I.
Collapse
Affiliation(s)
- Alessandra Ciprandi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
36
|
Sasaki SD, Cotrin SS, Carmona AK, Tanaka AS. An unexpected inhibitory activity of Kunitz-type serine proteinase inhibitor derived from Boophilus microplus trypsin inhibitor on cathepsin L. Biochem Biophys Res Commun 2006; 341:266-72. [PMID: 16414023 DOI: 10.1016/j.bbrc.2005.12.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 12/29/2005] [Indexed: 11/21/2022]
Abstract
Several BPTI-Kunitz-type serine proteinase inhibitors were described in tick Boophilus microplus and Rhipicephalus sanguineus species. In this work, we present a synthetic gene based on two tick BPTI-Kunitz-type serine proteinase inhibitors, the first domain of B. microplus trypsin inhibitor-A (BmTI-A) and the carrapatin, the inhibitors were named BmTIsint and BmTIsint Mut. Our present results showed that BmTIsint and BmTIsint Mut inhibited trypsin (K(i) 3.3 and 1.0 nM) and human plasma kallikrein (K(i) 16.5 and 35 nM), but in contrast to BmTI-A, the inhibitors did not inhibit human neutrophil elastase. BmTIsint was able to produce immunological response in mice but not in bovines. In addition, it is the first description of a BPTI-Kunitz-type inhibitor as a cysteine proteinase inhibitor, BmTIsint apparent dissociation constant (K(i)) for cathepsin L was 108 nM. Our findings open the possibility up to obtain new molecules as potent serine or cysteine proteinase inhibitors using BmTIsint as a model.
Collapse
Affiliation(s)
- Sergio D Sasaki
- Department de Biochemistry, Universidade Federal of São Paulo, Escola Paulista de Medicina, Brazil
| | | | | | | |
Collapse
|
37
|
Arolas JL, Popowicz GM, Lorenzo J, Sommerhoff CP, Huber R, Aviles FX, Holak TA. The Three-Dimensional Structures of Tick Carboxypeptidase Inhibitor in Complex with A/B Carboxypeptidases Reveal a Novel Double-headed Binding Mode. J Mol Biol 2005; 350:489-98. [PMID: 15961103 DOI: 10.1016/j.jmb.2005.05.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 05/06/2005] [Accepted: 05/08/2005] [Indexed: 11/28/2022]
Abstract
The tick carboxypeptidase inhibitor (TCI) is a proteinaceous inhibitor of metallo-carboxypeptidases present in the blood-sucking tick Rhipicephalus bursa. The three-dimensional crystal structures of recombinant TCI bound to bovine carboxypeptidase A and to human carboxypeptidase B have been determined and refined at 1.7 A and at 2.0 A resolution, respectively. TCI consists of two domains that are structurally similar despite the low degree of sequence homology. The domains, each consisting of a short alpha-helix followed by a small twisted antiparallel beta-sheet, show a high level of structural homology to proteins of the beta-defensin-fold family. TCI anchors to the surface of mammalian carboxypeptidases in a double-headed manner not previously seen for carboxypeptidase inhibitors: the last three carboxy-terminal amino acid residues interact with the active site of the enzyme in a way that mimics substrate binding, and the N-terminal domain binds to an exosite distinct from the active-site groove. The structures of these complexes should prove valuable in the applications of TCI as a thrombolytic drug and as a basis for the design of novel bivalent carboxypeptidase inhibitors.
Collapse
Affiliation(s)
- Joan L Arolas
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Valenzuela JG. Exploring tick saliva: from biochemistry to ‘sialomes’ and functional genomics. Parasitology 2005; 129 Suppl:S83-94. [PMID: 15938506 DOI: 10.1017/s0031182004005189] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tick saliva, a fluid once believed to be only relevant for lubrication of mouthparts and water balance, is now well known to be a cocktail of potent anti-haemostatic, anti-inflammatory and immunomodulatory molecules that helps these arthropods obtain a blood meal from their vertebrate hosts. The repertoire of pharmacologically active components in this cocktail is impressive as well as the number of targets they specifically affect. These salivary components change the physiology of the host at the bite site and, consequently, some pathogens transmitted by ticks take advantage of this change and become more infective. Tick salivary proteins have therefore become an attractive target to control tick-borne diseases. Recent advances in molecular biology, protein chemistry and computational biology are accelerating the isolation, sequencing and analysis of a large number of transcripts and proteins from the saliva of different ticks. Many of these newly isolated genes code for proteins with homologies to known proteins allowing identification or prediction of their function. However, most of these genes code for proteins with unknown functions therefore opening the road to functional genomic approaches to identify their biological activities and roles in blood feeding and hence, vaccine development to control tick-borne diseases.
Collapse
Affiliation(s)
- J G Valenzuela
- Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, 4 Center Drive, 4/B2-35, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Sasaki SD, Azzolini SS, Hirata IY, Andreotti R, Tanaka AS. Boophilus microplus tick larvae, a rich source of Kunitz type serine proteinase inhibitors. Biochimie 2005; 86:643-9. [PMID: 15556274 DOI: 10.1016/j.biochi.2004.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 09/21/2004] [Indexed: 11/26/2022]
Abstract
Serine proteinase inhibitors from Boophilus microplus tick larvae (BmTIs) were purified by affinity chromatography on a trypsin-Sepharose column. BmTIs presented molecular weight between M(r) 6200 and 18,400 and inhibitory activity for trypsin, HuPK (human plasma kallikrein) and neutrophil elastase. Using ion exchange chromatography, BmTIs were separated in several protein pools named BmTI-A to BmTI-F and BmTI-1 to BmTI-7. All BmTI forms presented inhibitory activity for trypsin with apparent dissociation constants (K(i)) in the nM range. In this work, we describe the purification of BmTI-D, BmTI-2, and BmTI-3. These three inhibitors affected neutrophil elastase and HuPK with K(i) also in nM range. BmTI-D proved to be the best HuPK inhibitor, while BmTI-3 was more efficient for neutrophil elastase with dissociation constants (K(i)) of 12 and 0.5 nM, respectively. BmTI-D, BmTI-2, and BmTI-3 N-terminal amino acid sequences allowed us to include them into the BPTI-Kunitz type serine proteinase inhibitor family. BmTIs purified on trypsin-Sepharose were also used in a bovine immunization assay, resulting in antibody (anti-BmTIs) production.
Collapse
Affiliation(s)
- Sergio Daishi Sasaki
- Departamento de Bioquímica, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua 3 de Maio 100, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
40
|
Mans BJ, Neitz AWH. Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:1-17. [PMID: 14723893 DOI: 10.1016/j.ibmb.2003.09.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ticks had to adapt to an existing and complex vertebrate hemostatic system from being free-living scavengers. A large array of anti-hemostatic mechanisms evolved during this process and includes blood coagulation as well as platelet aggregation inhibitors. Several questions regarding tick evolution exist. What was the nature of the ancestral tick? When did ticks evolve blood-feeding capabilities? How did these capabilities evolve? Did host specificity influence the adaptation of ticks to a blood-feeding environment? What are the implications of tick evolution for future research into tick biology and vaccine development? We investigate these questions in the light of recent research into protein superfamilies from tick saliva. Our conclusions are that the main tick families adapted independently to a blood-feeding environment. This is supported by major differences observed in all processes involved with blood-feeding for hard and soft ticks. Gene duplication events played a major role in the evolution of novel protein functions involved in tick-host interactions. This occurred during the late Cretaceous and was stimulated by the radiation of birds and placental mammals, which provided numerous new niches for ticks to adapt to a new lifestyle. Independent adaptation of the main tick families to a blood-feeding environment has several implications for future tick research in terms of tick genome projects and vaccine development.
Collapse
Affiliation(s)
- Ben J Mans
- Department of Biochemistry, University of Pretoria, Pretoria 0002, South Africa.
| | | |
Collapse
|
41
|
Sant'Anna Azzolini S, Sasaki SD, Torquato RJS, Andreotti R, Andreotti E, Tanaka AS. Rhipicephalus sanguineus trypsin inhibitors present in the tick larvae: isolation, characterization, and partial primary structure determination. Arch Biochem Biophys 2003; 417:176-82. [PMID: 12941299 DOI: 10.1016/s0003-9861(03)00344-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Blood sucking animals are a rich source of proteinase inhibitors mainly those that interfere in their host hemostatic systems. The tick Rhipicephalus sanguineus is an ectoparasite of dogs and other animals. The aims of this work were the purification and characterization of serine proteinase inhibitors present in R. sanguineus larvae (RsTI). The inhibitors (RsTI) were isolated by affinity chromatography on trypsin-Sepharose and ion exchange chromatographies in Resource Q and Mono S columns. These RsTIs were separated in around 12 different protein peaks, when they showed molecular masses between 8 and 18 kDa, by SDS-PAGE. Purified RsTIs presented differences in the specificity for different serine proteinases. RsTIQ2 was, better inhibitor than RsTIQ7 and RsTIS5 for neutrophil elastase, plasmin, and HuPK with dissociation constants (K(i)) of 1.3, 3.2, and 22 nM, respectively. Other inhibitors such as RsTIQ7, RsTIS3, and RsTIS5 also affected neutrophil elastase and plasmin with K(i) in the nM range. The RsTIQ2, RsTIQ7, and RsTIS5 amino acid sequence data allowed classifying them as members of the Kunitz-type serine proteinase inhibitor family, even though the RsTI role is still unknown. Our present results showed that serine proteinase inhibitors from R. sanguineus are similar to inhibitors from Boophilus microplus other hard tick species, suggesting a similar role of these inhibitors in hard tick species and also as a potential tool to generate or improve vaccine against different ectoparasites with an unique antigen.
Collapse
Affiliation(s)
- Simone Sant'Anna Azzolini
- Departamento de Bioquímica, Universidade Federal de São Paulo, Escola Paulista de Medicina, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
Mans BJ, Louw AI, Neitz AWH. Evolution of Hematophagy in Ticks: Common Origins for Blood Coagulation and Platelet Aggregation Inhibitors from Soft Ticks of the Genus Ornithodoros. Mol Biol Evol 2002; 19:1695-705. [PMID: 12270896 DOI: 10.1093/oxfordjournals.molbev.a003992] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Identification and characterization of antihemostatic components from hematophagous organisms are useful for the elucidation of the evolutionary mechanisms involved in adaptation to a highly complex host hemostatic system. Although many bioactive components involved in the regulation of the host's hemostatic system have been described, the evolutionary mechanisms of how arthropods adapted to a blood-feeding environment have not been elucidated. This study describes common origins of both blood coagulation inhibitors and platelet aggregation inhibitors (PAIs) from soft ticks of the genus Ornithodoros. Neighbor-joining analysis indicates that fXa, thrombin, and PAIs share a common ancestor. Maximum parsimony analysis and a phylogeny based on root mean square deviation values of alpha-carbon backbone structures suggest a novel evolutionary pathway by which different antihemostatic functions have evolved through a series of paralogous gene duplication events. In this scenario, the thrombin inhibitors preceded the fXa and PAIs. This evolutionary model explains why the tick serine protease inhibitors have inhibition mechanisms that differ from that of the canonical bovine pancreatic trypsin inhibitor (BPTI)-like inhibitors. Higher nonsynonymous-to-synonymous substitution rates indicate positive Darwinian selection for the fXa and PAIs. Comparison with hemostatic inhibitors of hard ticks suggests that the two main tick families have independently evolved novel antihemostatic mechanisms. Independent evolution of these mechanisms in ticks points to a rapid divergence between tick families that could be dated between 120 and 92 MYA. This coincides with current molecular phylogeny views on the early divergence of modern birds and placental mammals in the Late Cretaceous, which suggests that this event might have been a driving force in the evolution of hematophagy in ticks.
Collapse
Affiliation(s)
- Ben J Mans
- Department of Biochemistry, University of Pretoria, South Africa
| | | | | |
Collapse
|
43
|
Ehebauer MT, Mans BJ, Gaspar ARM, Neitz AWH. Identification of extrinsic blood coagulation pathway inhibitors from the tick Ornithodoros savignyi (Acari: Argasidae). Exp Parasitol 2002; 101:138-48. [PMID: 12427468 DOI: 10.1016/s0014-4894(02)00102-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The salt BaSO(4) selectively adsorbs two proteins from crude Ornithodoros savignyi salivary gland extract. They co-purify during reversed-phase HPLC, but can be separated by hydrophobic-interaction chromatography. Their molecular masses are 9333 and 9173Da. The 9.3kDa protein was designated BSAP1 and the 9.1kDa protein BSAP2. Their amino acid compositions show significant differences, in particular the presence of seven and eight cysteine residues in BSAP1 and BSAP2, respectively. The proteins do not contain gamma-carboxyglutamic acid, hydroxyproline, or hydroxylysine. The proteins do not inhibit the intrinsic coagulation cascade, but inhibit the extrinsic pathway. The observed inhibition is not due to inhibition of factor VII. Both proteins bind to membranes. BSAP1 binds neutral and negatively charged membranes more strongly than BSAP2. Its affinity for negative membranes is, however, much lower than for neutral membranes. In contrast, BSAP2 binds both membranes equally strongly. The binding of the proteins to the membranes was significantly lowered upon pre-incubation with Ca(2+).
Collapse
Affiliation(s)
- M T Ehebauer
- Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | | | | | | |
Collapse
|