1
|
Shen M, Wang Y, Chen Y, Peng J, Wu G, Rao S, Wu J, Zheng H, Chen J, Yan F, Lu Y, Wu G. Potato Type I Protease Inhibitor Mediates Host Defence Against Potato Virus X Infection by Interacting With a Viral RNA Silencing Suppressor. MOLECULAR PLANT PATHOLOGY 2025; 26:e70073. [PMID: 40083063 PMCID: PMC11906362 DOI: 10.1111/mpp.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Counteracting plant RNA silencing ensures successful viral infection. The P25 protein encoded by potato virus X (PVX) is a multifunctional protein that acts as a viral RNA silencing suppressor (VSR). In this study, we screened out a potato type I protease inhibitor (PI) in Nicotiana benthamiana (NbPI) that interacts with P25. Silencing of NbPI by tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) promoted the infection of PVX. Overexpression of NbPI in transgenic plants conferred resistance to PVX infection. Moreover, transient expression of NbPI impaired the VSR activity and cell-to-cell movement complementation ability of P25. Further experiments showed that P25 protein degradation was through the combination of autophagy and the ubiquitin-26S proteasome system (UPS), leading to impairment of P25. Taken together, we have identified NbPI as a new host factor that compromises PVX infection by targeting and degrading the VSR P25.
Collapse
Affiliation(s)
- Minjie Shen
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yonghao Wang
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yi Chen
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jiejun Peng
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Guanwei Wu
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Shaofei Rao
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jian Wu
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Hongying Zheng
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Fei Yan
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yuwen Lu
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| |
Collapse
|
2
|
Khalifa ME, Ayllón MA, Rodriguez Coy L, Plummer KM, Gendall AR, Chooi KM, van Kan JAL, MacDiarmid RM. Mycologists and Virologists Align: Proposing Botrytis cinerea for Global Mycovirus Studies. Viruses 2024; 16:1483. [PMID: 39339959 PMCID: PMC11437445 DOI: 10.3390/v16091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mycoviruses are highly genetically diverse and can significantly change their fungal host's phenotype, yet they are generally under-described in genotypic and biological studies. We propose Botrytis cinerea as a model mycovirus system in which to develop a deeper understanding of mycovirus epidemiology including diversity, impact, and the associated cellular biology of the host and virus interaction. Over 100 mycoviruses have been described in this fungal host. B. cinerea is an ideal model fungus for mycovirology as it has highly tractable characteristics-it is easy to culture, has a worldwide distribution, infects a wide range of host plants, can be transformed and gene-edited, and has an existing depth of biological resources including annotated genomes, transcriptomes, and isolates with gene knockouts. Focusing on a model system for mycoviruses will enable the research community to address deep research questions that cannot be answered in a non-systematic manner. Since B. cinerea is a major plant pathogen, new insights may have immediate utility as well as creating new knowledge that complements and extends the knowledge of mycovirus interactions in other fungi, alone or with their respective plant hosts. In this review, we set out some of the critical steps required to develop B. cinerea as a model mycovirus system and how this may be used in the future.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Lorena Rodriguez Coy
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kim M Plummer
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Anthony R Gendall
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Liu S, Han Y, Li WX, Ding SW. Infection Defects of RNA and DNA Viruses Induced by Antiviral RNA Interference. Microbiol Mol Biol Rev 2023; 87:e0003522. [PMID: 37052496 PMCID: PMC10304667 DOI: 10.1128/mmbr.00035-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Immune recognition of viral genome-derived double-stranded RNA (dsRNA) molecules and their subsequent processing into small interfering RNAs (siRNAs) in plants, invertebrates, and mammals trigger specific antiviral immunity known as antiviral RNA interference (RNAi). Immune sensing of viral dsRNA is sequence-independent, and most regions of viral RNAs are targeted by virus-derived siRNAs which extensively overlap in sequence. Thus, the high mutation rates of viruses do not drive immune escape from antiviral RNAi, in contrast to other mechanisms involving specific virus recognition by host immune proteins such as antibodies and resistance (R) proteins in mammals and plants, respectively. Instead, viruses actively suppress antiviral RNAi at various key steps with a group of proteins known as viral suppressors of RNAi (VSRs). Some VSRs are so effective in virus counter-defense that potent inhibition of virus infection by antiviral RNAi is undetectable unless the cognate VSR is rendered nonexpressing or nonfunctional. Since viral proteins are often multifunctional, resistance phenotypes of antiviral RNAi are accurately defined by those infection defects of VSR-deletion mutant viruses that are efficiently rescued by host deficiency in antiviral RNAi. Here, we review and discuss in vivo infection defects of VSR-deficient RNA and DNA viruses resulting from the actions of host antiviral RNAi in model systems.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Yanhong Han
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wan-Xiang Li
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
4
|
Voloudakis AE, Kaldis A, Patil BL. RNA-Based Vaccination of Plants for Control of Viruses. Annu Rev Virol 2022; 9:521-548. [PMID: 36173698 DOI: 10.1146/annurev-virology-091919-073708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant viruses cause nearly half of the emerging plant diseases worldwide, contributing to 10-15% of crop yield losses. Control of plant viral diseases is mainly accomplished by extensive chemical applications targeting the vectors (i.e., insects, nematodes, fungi) transmitting these viruses. However, these chemicals have a significant negative effect on human health and the environment. RNA interference is an endogenous, cellular, sequence-specific RNA degradation mechanism in eukaryotes induced by double-stranded RNA molecules that has been exploited as an antiviral strategy through transgenesis. Because genetically modified crop plants are not accepted for cultivation in several countries globally, there is an urgent demand for alternative strategies. This has boosted research on exogenous application of the RNA-based biopesticides that are shown to exhibit significant protective effect against viral infections. Such environment-friendly and efficacious antiviral agents for crop protection will contribute to global food security, without adverse effects on human health.
Collapse
Affiliation(s)
- Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Basavaprabhu L Patil
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka State, India
| |
Collapse
|
5
|
Shang K, Xu Y, Cao W, Xie X, Zhang Y, Zhang J, Liu H, Zhou S, Zhu X, Zhu C. Potato (Solanum tuberosum L.) non-specific lipid transfer protein StLTP6 promotes viral infection by inhibiting virus-induced RNA silencing. PLANTA 2022; 256:54. [PMID: 35927530 DOI: 10.1007/s00425-022-03948-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
For the first time it is reported that members of the nsLTP protein family could promote viral infection by inhibiting virus-induced RNA silencing. Non-specific lipid transfer proteins (nsLTPs) are a class of soluble proteins with low relative molecular weight and widely present in higher plants. The role of nsLTPs in biotic and abiotic stresses has been studied, but no report has shown that nsLTPs play a role in the process of viral infection. We report the function and mechanism of the classical nsLTP protein StLTP6 in viral infection. We found that StLTP6 expression was remarkably upregulated in potato infected with potato virus Y and potato virus S. The infection efficiency and virus content of StLTP6-overexpressed potato and Nicotiana benthamiana were remarkable increased. Further study found that the overexpression of StLTP6 inhibited the expression of multiple genes in the RNA silencing pathway, thereby inhibiting virus-induced RNA silencing. This result indicated that StLTP6 expression was induced during viral infection to inhibit the resistance of virus-induced RNA silencing and promote viral infection. In summary, we reported the role of StLTP6 in viral infection, broadening the biological function range of the nsLTP family and providing valuable information for the study of viral infection mechanism.
Collapse
Affiliation(s)
- Kaijie Shang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yang Xu
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Weilin Cao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiaoying Xie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yanru Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jingfeng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Hongmei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Shumei Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
6
|
Akhtar S, Tahir MN, Amin I, Mansoor S. Amplicon-based RNAi construct targeting beta-C1 gene gives enhanced resistance against cotton leaf curl disease. 3 Biotech 2021; 11:256. [PMID: 33987073 PMCID: PMC8106552 DOI: 10.1007/s13205-021-02816-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Cotton leaf curl disease (CLCuD) is one of the major limiting factors affecting cotton production in Pakistan for the last three decades. The disease is caused by begomoviruses of the family Geminiviridae. RNA interference (RNAi) is a promising tool that has been proved effective against several pathogens. Using RNAi, different genomic regions of geminiviruses have been targeted to attain sustainable resistance. However, the silencing of the transgene upon virus infection is a limiting factor. Here, we have developed for the first time an amplicon-based RNAi construct to target βC1 gene of betasatellite associated with cotton leaf curl begomoviruses. In addition to producing short interfering (si) RNAs, Rep-based activation or looping out of the construct induced upon virus infection produces multiple copies of transgene that results in accumulation of defective molecules of betasatellite. Subsequent transcription gives rise to increased number of siRNAs that gives enhanced resistance. Transgenic Nicotiana benthamiana plants having RCβ (RNAi construct for betasatellite) were challenged against Cotton leaf curl Khokran virus (CLCuKV) and Cotton leaf curl Multan betasatellite (CLCuMB). Reduced titer of the virus and betasatellite were detected through Southern blot hybridization. Significance of the study has been discussed. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02816-6.
Collapse
Affiliation(s)
- Sohail Akhtar
- Molecular Virology and Gene Silencing Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Postal code 38000 Pakistan
- Present Address: Sub-Campus Burewala, University of Agriculture, Faisalabad, Postal code 61010 Pakistan
| | - Muhammad Nouman Tahir
- Molecular Virology and Gene Silencing Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Postal code 38000 Pakistan
- Present Address: Department of Plant Pathology, Bahauddin Zakariya University, Multan, Postal code 66000 Pakistan
| | - Imran Amin
- Molecular Virology and Gene Silencing Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Postal code 38000 Pakistan
| | - Shahid Mansoor
- Molecular Virology and Gene Silencing Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Postal code 38000 Pakistan
| |
Collapse
|
7
|
Unknown Areas of Activity of Human Ribonuclease Dicer: A Putative Deoxyribonuclease Activity. Molecules 2020; 25:molecules25061414. [PMID: 32244942 PMCID: PMC7144382 DOI: 10.3390/molecules25061414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/03/2022] Open
Abstract
The Dicer ribonuclease plays a crucial role in the biogenesis of small regulatory RNAs (srRNAs) by processing long double-stranded RNAs and single-stranded hairpin RNA precursors into small interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. Dicer-generated srRNAs can control gene expression by targeting complementary transcripts and repressing their translation or inducing their cleavage. Human Dicer (hDicer) is a multidomain enzyme comprising a putative helicase domain, a DUF283 domain, platform, a PAZ domain, a connector helix, two RNase III domains (RNase IIIa and RNase IIIb) and a dsRNA-binding domain. Specific, ~20-base pair siRNA or miRNA duplexes with 2 nucleotide (nt) 3’-overhangs are generated by Dicer when an RNA substrate is anchored within the platform-PAZ-connector helix (PPC) region. However, increasing number of reports indicate that in the absence of the PAZ domain, binding of RNA substrates can occur by other Dicer domains. Interestingly, truncated variants of Dicer, lacking the PPC region, have been found to display a DNase activity. Inspired by these findings, we investigated how the lack of the PAZ domain, or the entire PPC region, would influence the cleavage activity of hDicer. Using immunopurified 3xFlag-hDicer produced in human cells and its two variants: one lacking the PAZ domain, and the other lacking the entire PPC region, we show that the PAZ domain deletion variants of hDicer are not able to process a pre-miRNA substrate, a dsRNA with 2-nt 3ʹ-overhangs, and a blunt-ended dsRNA. However, the PAZ deletion variants exhibit both RNase and DNase activity on short single-stranded RNA and DNAs, respectively. Collectively, our results indicate that when the PAZ domain is absent, other hDicer domains may contribute to substrate binding and in this case, non-canonical products can be generated.
Collapse
|
8
|
Huang X, Yu R, Li W, Geng L, Jing X, Zhu C, Liu H. Identification and characterisation of a glycine-rich RNA-binding protein as an endogenous suppressor of RNA silencing from Nicotiana glutinosa. PLANTA 2019; 249:1811-1822. [PMID: 30840177 DOI: 10.1007/s00425-019-03122-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/27/2019] [Indexed: 05/08/2023]
Abstract
MAIN CONCLUSION This study shows that NgRBP suppresses both local and systemic RNA silencing induced by sense- or double-stranded RNA, and the RNA binding activity is essential for its function. To counteract host defence, many plant viruses encode viral suppressors of RNA silencing targeting various stages of RNA silencing. There is increasing evidence that the plants also encode endogenous suppressors of RNA silencing (ESR) to regulate this pathway. In this study, using Agrobacterium infiltration assays, we characterized NgRBP, a glycine-rich RNA-binding protein from Nicotiana glutinosa, as an ESR. Our results indicated that NgRBP suppressed both local and systemic RNA silencing induced by sense- or double-stranded RNA. We also demonstrated that NgRBP could promote Potato Virus X (PVX) infection in N. benthamiana. NgRBP knockdown by virus-induced gene silencing enhanced PVX and Cucumber mosaic virus resistance in N. glutinosa. RNA immunoprecipitation and electrophoretic mobility shift assays showed that NgRBP bound to GFP mRNA, dsRNA rather than siRNA. These findings provide the evidence that NgRBP acts as an ESR and the RNA affinity of NgRBP plays the key role in its ESR activity. NgRBP responds to multiple signals such as ABA, MeJA, SA, and Tobacco mosaic virus infection. Therefore, it could participate in the regulation of gene expression under specific conditions.
Collapse
Affiliation(s)
- Xu Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ru Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Wenjing Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Liwei Geng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiuli Jing
- Institute of Immunology, Taishan Medical University, Tai'an, Shandong, China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongmei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
9
|
Ban Y, Morita Y, Ogawa M, Higashi K, Nakatsuka T, Nishihara M, Nakayama M. Inhibition of post-transcriptional gene silencing of chalcone synthase genes in petunia picotee petals by fluacrypyrim. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1513-1523. [PMID: 30690559 DOI: 10.1093/jxb/erz009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
In petals of picotee petunia (Petunia hybrida) cultivars, margin-specific post-transcriptional gene silencing (PTGS) of chalcone synthase A (CHSA) inhibits anthocyanin biosynthesis, resulting in marginal white tissue formation. In this study, we found that a low molecular mass compound, fluacrypyrim, inhibits PTGS of CHSA, and we explored the site-specific PTGS mechanism of operation. Fluacrypyrim treatment abolished the picotee pattern and eliminated site-specific differences in the levels of anthocyanin-related compounds, CHSA expression, and CHSA small interfering RNA (siRNA). In addition, fluacrypyrim abolished the petunia star-type pattern, which is also caused by PTGS of CHSA. Fluacrypyrim treatment was effective only at the early floral developmental stage and predominantly eliminated siRNA derived from CHS genes; i.e. siRNA derived from other genes remained at a comparable level. Fluacrypyrim probably targets the induction of PTGS that specifically operates for CHS genes in petunia picotee flowers, rather than common PTGS maintenance mechanisms that degrade mRNAs and generate siRNA. Upon treatment, the proportion of colored tissue increased due to a shift of the border between white and colored sites toward the margin in a time- and dose-dependent manner. These findings imply that the fluacrypyrim-targeted PTGS induction is completed gradually and its strength is attenuated from the margins to the center of petunia picotee petals.
Collapse
Affiliation(s)
- Yusuke Ban
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Western Region Agricultural Research Center, NARO, Fukuyama, Hiroshima, Japan
| | - Yasumasa Morita
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Experimental Farm, Faculty of Agriculture, Meijo University, Kasugai, Aichi, Japan
| | - Mika Ogawa
- Teikyo University of Science, Adachi, Tokyo, Japan
| | | | - Takashi Nakatsuka
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Graduate School of Agriculture, Shizuoka University, Shizuoka, Shizuoka, Japan
| | | | - Masayoshi Nakayama
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Yu R, Jing X, Li W, Xu J, Xu Y, Geng L, Zhu C, Liu H. Non-structural protein 1 from avian influenza virus H9N2 is an efficient RNA silencing suppressor with characteristics that differ from those of Tomato bushy stunt virus p19. Virus Genes 2018; 54:368-375. [PMID: 29480423 DOI: 10.1007/s11262-018-1544-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 02/19/2018] [Indexed: 10/17/2022]
Abstract
Non-structural protein 1 (NS1) of influenza A virus is a multifunctional dimeric protein that contains a conserved N-terminal RNA binding domain. Studies have shown that NS1 suppresses RNA silencing and the NS1 proteins encoded by different influenza A virus strains exhibit differential RNA silencing suppression activities. In this study, we showed that the NS1 protein from avian influenza virus (AIV) H9N2 suppressed systemic RNA silencing induced by sense RNA or dsRNA. It resulted in more severe Potato virus X symptom, but could not reverse established systemic green fluorescent protein silencing in Nicotiana benthamiana. In addition, its systemic silencing suppression activity was much weaker than that of p19. The local silencing suppression activity of AIV H9N2 NS1 was most powerful at 7 dpi and was even stronger than that of p19. And the inhibition ability to RNA silencing of NS1 is stronger than that of p19 in human cells. Collectively, these results indicate that AIV H9N2 NS1 is an effective RNA silencing suppressor that likely targets downstream step(s) of dsRNA formation at an early stage in RNA silencing. Although NS1 and p19 both bind siRNA, their suppression mechanisms seem to differ because of differences in their suppression activities at various times post-infiltration and because p19 can reverse established systemic RNA silencing, but NS1 cannot.
Collapse
Affiliation(s)
- Ru Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiuli Jing
- Institute of Immunology, Taishan Medical University, Tai'an, 271000, China
| | - Wenjing Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jie Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yang Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liwei Geng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hongmei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
11
|
Kenesi E, Carbonell A, Lózsa R, Vértessy B, Lakatos L. A viral suppressor of RNA silencing inhibits ARGONAUTE 1 function by precluding target RNA binding to pre-assembled RISC. Nucleic Acids Res 2017; 45:7736-7750. [PMID: 28499009 PMCID: PMC5737661 DOI: 10.1093/nar/gkx379] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 11/23/2022] Open
Abstract
In most eukaryotes, RNA silencing is an adaptive immune system regulating key biological processes including antiviral defense. To evade this response, viruses of plants, worms and insects have evolved viral suppressors of RNA silencing proteins (VSRs). Various VSRs, such as P1 from Sweet potato mild mottle virus (SPMMV), inhibit the activity of RNA-induced silencing complexes (RISCs) including an ARGONAUTE (AGO) protein loaded with a small RNA. However, the specific mechanisms explaining this class of inhibition are unknown. Here, we show that SPMMV P1 interacts with AGO1 and AGO2 from Arabidopsis thaliana, but solely interferes with AGO1 function. Moreover, a mutational analysis of a newly identified zinc finger domain in P1 revealed that this domain could represent an effector domain as it is required for P1 suppressor activity but not for AGO1 binding. Finally, a comparative analysis of the target RNA binding capacity of AGO1 in the presence of wild-type or suppressor-defective P1 forms revealed that P1 blocks target RNA binding to AGO1. Our results describe the negative regulation of RISC, the small RNA containing molecular machine.
Collapse
Affiliation(s)
- Erzsébet Kenesi
- Department of Dermatology and Allergology, University of Szeged, Szeged H-6720, Hungary
| | - Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Rita Lózsa
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest H-1116, Hungary
| | - Beáta Vértessy
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1114, Hungary
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest H-1114, Hungary
| | - Lóránt Lakatos
- Department of Dermatology and Allergology, University of Szeged, Szeged H-6720, Hungary
- MTA-SZTE Dermatological Research Group
- Department of Pharmacognosy, University of Szeged, Szeged H-6720, Hungary
| |
Collapse
|
12
|
Abstract
Virus-Induced Gene Silencing (VIGS) creates a natural antiviral defense in plants. However, it has been also a powerful tool for endogenous gene silencing in dicot and monocot plants by exploitation of recombinant viruses, harboring silencing inducing sequences. The Barley Stripe Mosaic Virus (BSMV) based VIGS system is an efficient and rapid RNAi approach that is routinely applied in functional genomics studies of cereals. We present here a protocol for BSMV VIGS application in barley based on mechanical inoculation of the plants with in vitro transcribed recombinant BSMV RNAs as the silencing triggers.
Collapse
|
13
|
Hedil M, Sterken MG, de Ronde D, Lohuis D, Kormelink R. Analysis of Tospovirus NSs Proteins in Suppression of Systemic Silencing. PLoS One 2015; 10:e0134517. [PMID: 26275304 PMCID: PMC4537313 DOI: 10.1371/journal.pone.0134517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/09/2015] [Indexed: 01/05/2023] Open
Abstract
RNA silencing is a sequence-specific gene regulation mechanism that in plants also acts antiviral. In order to counteract antiviral RNA silencing, viruses have evolved RNA silencing suppressors (RSS). In the case of tospoviruses, the non-structural NSs protein has been identified as the RSS. Although the tomato spotted wilt virus (TSWV) tospovirus NSs protein has been shown to exhibit affinity to long and small dsRNA molecules, its ability to suppress the non-cell autonomous part of RNA silencing has only been studied to a limited extent. Here, the NSs proteins of TSWV, groundnut ringspot virus (GRSV) and tomato yellow ring virus (TYRV), representatives for three distinct tospovirus species, have been studied on their ability and strength to suppress local and systemic silencing. A system has been developed to quantify suppression of GFP silencing in Nicotiana benthamiana 16C lines, to allow a comparison of relative RNA silencing suppressor strength. It is shown that NSs of all three tospoviruses are suppressors of local and systemic silencing. Unexpectedly, suppression of systemic RNA silencing by NSsTYRV was just as strong as those by NSsTSWV and NSsGRSV, even though NSsTYRV was expressed in lower amounts. Using the system established, a set of selected NSsTSWV gene constructs mutated in predicted RNA binding domains, as well as NSs from TSWV isolates 160 and 171 (resistance breakers of the Tsw resistance gene), were analyzed for their ability to suppress systemic GFP silencing. The results indicate another mode of RNA silencing suppression by NSs that acts further downstream the biogenesis of siRNAs and their sequestration. The findings are discussed in light of the affinity of NSs for small and long dsRNA, and recent mutant screen of NSsTSWV to map domains required for RSS activity and triggering of Tsw-governed resistance.
Collapse
Affiliation(s)
- Marcio Hedil
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Mark G. Sterken
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Dryas de Ronde
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Dick Lohuis
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
14
|
Faoro F, Gozzo F. Is modulating virus virulence by induced systemic resistance realistic? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:1-13. [PMID: 25804804 DOI: 10.1016/j.plantsci.2015.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Induction of plant resistance, either achieved by chemicals (systemic acquired resistance, SAR) or by rhizobacteria (induced systemic resistance, ISR) is a possible and/or complementary alternative to manage virus infections in crops. SAR mechanisms operating against viruses are diverse, depending on the pathosystem, and may inhibit virus replication as well as cell-to-cell and long-distance movement. Inhibition is often mediated by salicylic acid with the involvement of alternative oxidase and reactive oxygen species. However, salicylate may also stimulate a separate downstream pathway, leading to the induction of an additional mechanism, based on RNA-dependent RNA polymerase 1-mediated RNA silencing. Thus, SAR and RNA silencing would closely cooperate in the defence against virus infection. Despite tremendous recent progress in the knowledge of SAR mechanisms, only a few compounds, including benzothiadiazole and chitosan have been shown to reduce the severity of systemic virus disease in controlled environment and, more modestly, in open field. Finally, ISR induction, has proved to be a promising strategy to control virus disease, particularly by seed bacterization with a mixture of plant growth-promoting rhizobacteria. However, the use of any of these treatments should be integrated with cultivation practices that reduce vector pressure by the use of insecticides, or by Bt crops.
Collapse
Affiliation(s)
- Franco Faoro
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133 Milano, Italy; CNR, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Turin, Italy.
| | - Franco Gozzo
- Department of Food, Environmental and Nutritional Sciences, Section of Chemistry and Biomolecular Sciences, University of Milano, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
15
|
Maneechoat P, Takeshita M, Uenoyama M, Nakatsukasa M, Kuroda A, Furuya N, Tsuchiya K. A single amino acid at N-terminal region of the 2b protein of cucumber mosaic virus strain m1 has a pivotal role in virus attenuation. Virus Res 2015; 197:67-74. [PMID: 25541532 DOI: 10.1016/j.virusres.2014.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/16/2022]
Abstract
Host responses to infection by a mild strain of cucumber mosaic virus, termed CMV-m1, were re-examined in several plant species in comparison with those by a severe strain CMV-Y. Mild systemic symptoms were developed on the six plant species inoculated with CMV-m1. Virus titer in the Nicotiana benthamiana plants infected with CMV-m1 was significantly lower than those infected with CMV-Y, although infection by CMV-m1 interfered with further infection by CMV-Y in the plants. Subsequently, the attenuated virulence of CMV-m1 was analyzed by reassortment and recombination analyses between CMV-m1 and CMV-Y RNAs. The results suggested that the 2b protein of CMV-m1 (m1-2b) is involved in the formation of mild symptoms in N. benthamiana. Furthermore, site-directed mutagenesis demonstrated that Thr18 of m1-2b is responsible for formation of mild symptoms. Local RNA silencing suppressor activity of m1-2b was a little lower than that of severe strain CMV-Y. We discuss the relationship between attenuation of CMV-m1 and the features of m1-2b.
Collapse
Affiliation(s)
- Phoowanarth Maneechoat
- Laboratory of Plant Pathology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Minoru Takeshita
- Laboratory of Plant Pathology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Misa Uenoyama
- Laboratory of Plant Pathology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Maki Nakatsukasa
- Laboratory of Plant Pathology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Atsuko Kuroda
- Laboratory of Plant Pathology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Naruto Furuya
- Laboratory of Plant Pathology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kenichi Tsuchiya
- Laboratory of Plant Pathology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
16
|
Rossi M, Vallino M, Abbà S, Ciuffo M, Balestrini R, Genre A, Turina M. The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:30-41. [PMID: 25494356 DOI: 10.1094/mpmi-07-14-0197-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The N-terminal region of the Ourmia melon virus (OuMV) coat protein (CP) contains a short lysine/arginine-rich (KR) region. By alanine scanning mutagenesis, we showed that the KR region influences pathogenicity and virulence of OuMV without altering viral particle assembly. A mutant, called OuMV6710, with three basic residue substitutions in the KR region, was impaired in the ability to maintain the initial systemic infection in Nicotiana benthamiana and to infect both cucumber and melon plants systemically. The integrity of this protein region was also crucial for encapsidation of viral genomic RNA; in fact, certain mutations within the KR region partially compromised the RNA encapsidation efficiency of the CP. In Arabidopsis thaliana Col-0, OuMV6710 was impaired in particle accumulation; however, this phenotype was abolished in dcl2/dcl4 and dcl2/dcl3/dcl4 Arabidopsis mutants defective for antiviral silencing. Moreover, in contrast to CPwt, in situ immunolocalization experiments indicated that CP6710 accumulates efficiently in the spongy mesophyll tissue of infected N. benthamiana and A. thaliana leaves but only occasionally infects palisade tissues. These results provided strong evidence of a crucial role for OuMV CP during viral infection and highlighted the relevance of the KR region in determining tissue tropism, host range, pathogenicity, and RNA affinity, which may be all correlated with a possible CP silencing-suppression activity.
Collapse
|
17
|
Li Q, Wang J, Sun HY, Shang X. Flower color patterning in pansy (Viola × wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:134-141. [PMID: 25270164 DOI: 10.1016/j.plaphy.2014.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/23/2014] [Indexed: 05/20/2023]
Abstract
The petals of pansy (Viola × wittrockiana Gams.) 'Mengdie' exhibit a cyanic blotched pigmentation pattern. The accumulation of anthocyanins, cyanidin and delphinidin, was detected in the upper epidermal cells of the cyanic blotches. In order to elucidate the mechanism by which cyanic blotches are formed in pansy petal, the expression level of genes involved in anthocyanin synthesis was measured and compared between cyanic blotches and acyanic areas of the flower. The use of primers in conserved regions allowed the successful isolation of six cDNA clones encoding putative anthocyanin enzymes from pansy petals. The clones isolated encoded chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS). The transcription patterns of seven genes (VwCHS, VwCHI, VwF3H, VwF3'H, VwDFR, VwF3'5'H, and VwANS) in cyanic blotches and acyanic areas of the petals at seven stages of flower development were determined by real-time quantitative PCR. Transcription of VwF3'5'H, VwDFR and VwANS was significantly increased in cyanic blotches at stages III-V of flower development, implicating these genes in the pigmentation of Viola × wittrockiana Gams. petals.
Collapse
Affiliation(s)
- Qin Li
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Hainan University, Ministry of Education, Haikou 570228, China; College of Horticulture & Landscape Architecture, Hainan University, Haikou 570228, China
| | - Jian Wang
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Hainan University, Ministry of Education, Haikou 570228, China; College of Horticulture & Landscape Architecture, Hainan University, Haikou 570228, China.
| | - Hai-Yan Sun
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Hainan University, Ministry of Education, Haikou 570228, China; College of Horticulture & Landscape Architecture, Hainan University, Haikou 570228, China
| | - Xiao Shang
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Hainan University, Ministry of Education, Haikou 570228, China; College of Horticulture & Landscape Architecture, Hainan University, Haikou 570228, China
| |
Collapse
|
18
|
Ali M, Hameed S, Tahir M. Luteovirus: insights into pathogenicity. Arch Virol 2014; 159:2853-60. [DOI: 10.1007/s00705-014-2172-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/30/2014] [Indexed: 01/29/2023]
|
19
|
Sahu AK, Marwal A, Nehra C, Choudhary DK, Sharma P, Gaur RK. RNAi mediated gene silencing against betasatellite associated with Croton yellow vein mosaic begomovirus. Mol Biol Rep 2014; 41:7631-8. [PMID: 25086625 DOI: 10.1007/s11033-014-3653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/27/2014] [Indexed: 10/24/2022]
Abstract
Plant viruses encode suppressors of posttranscriptional gene silencing, an adaptive antiviral defense responses that confines virus infection. Previously, we identified single-stranded DNA satellite (also known as DNA-β) of ~1,350 nucleotides in length associated with Croton yellow vein mosaic begomovirus (CYVMV) in croton plants. The expression of genes from DNA-β requires the begomovirus for packaged, replication, insect transmission and movement in plants. The present study demonstrates the effect of the βC1 gene on the silencing pathway as analysed by using both transgenic systems and transient Agrobacterium tumefaciens based delivery. Plants that carry an intron-hairpin construct covering the βC1 gene accumulated cognate small-interfering RNAs and remained symptom-free after exposure to CYVMV and its satellite. These results suggest that βC1 interferes with silencing mechanism.
Collapse
Affiliation(s)
- Anurag Kumar Sahu
- Department of Science, Faculty of Arts, Science and Commerce, Mody Institute of Technology and Science, Lakshmangarh, Sikar, 332311, India
| | | | | | | | | | | |
Collapse
|
20
|
Non-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA). Mol Biotechnol 2014; 55:87-100. [PMID: 23381873 DOI: 10.1007/s12033-013-9648-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Of late non-coding RNAs (ncRNAs)-mediated gene silencing is an influential tool deliberately deployed to negatively regulate the expression of targeted genes. In addition to the widely employed small interfering RNA (siRNA)-mediated gene silencing approach, other variants like artificial miRNA (amiRNA), miRNA mimics, and artificial transacting siRNAs (tasiRNAs) are being explored and successfully deployed in developing non-coding RNA-based genetically modified plants. The ncRNA-based gene manipulations are typified with mobile nature of silencing signals, interference from viral genome-derived suppressor proteins, and an obligation for meticulous computational analysis to prevaricate any inadvertent effects. In a broad sense, risk assessment inquiries for genetically modified plants based on the expression of ncRNAs are competently addressed by the environmental risk assessment (ERA) models, currently in vogue, designed for the first generation transgenic plants which are based on the expression of heterologous proteins. Nevertheless, transgenic plants functioning on the foundation of ncRNAs warrant due attention with respect to their unique attributes like off-target or non-target gene silencing effects, small RNAs (sRNAs) persistence, food and feed safety assessments, problems in detection and tracking of sRNAs in food, impact of ncRNAs in plant protection measures, effect of mutations etc. The role of recent developments in sequencing techniques like next generation sequencing (NGS) and the ERA paradigm of the different countries in vogue are also discussed in the context of ncRNA-based gene manipulations.
Collapse
|
21
|
Antiviral RNA silencing initiated in the absence of RDE-4, a double-stranded RNA binding protein, in Caenorhabditis elegans. J Virol 2013; 87:10721-9. [PMID: 23885080 DOI: 10.1128/jvi.01305-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Small interfering RNAs (siRNAs) processed from double-stranded RNA (dsRNA) of virus origins mediate potent antiviral defense through a process referred to as RNA interference (RNAi) or RNA silencing in diverse organisms. In the simple invertebrate Caenorhabditis elegans, the RNAi process is initiated by a single Dicer, which partners with the dsRNA binding protein RDE-4 to process dsRNA into viral siRNAs (viRNAs). Notably, in C. elegans this RNA-directed viral immunity (RDVI) also requires a number of worm-specific genes for its full antiviral potential. One such gene is rsd-2 (RNAi spreading defective 2), which was implicated in RDVI in our previous studies. In the current study, we first established an antiviral role by showing that rsd-2 null mutants permitted higher levels of viral RNA accumulation, and that this enhanced viral susceptibility was reversed by ectopic expression of RSD-2. We then examined the relationship of rsd-2 with other known components of RNAi pathways and established that rsd-2 functions in a novel pathway that is independent of rde-4 but likely requires the RNA-dependent RNA polymerase RRF-1, suggesting a critical role for RSD-2 in secondary viRNA biogenesis, likely through coordinated action with RRF-1. Together, these results suggest that RDVI in the single-Dicer organism C. elegans depends on the collective actions of both RDE-4-dependent and RDE-4-independent mechanisms to produce RNAi-inducing viRNAs. Our study reveals, for the first time, a novel siRNA-producing mechanism in C. elegans that bypasses the need for a dsRNA-binding protein.
Collapse
|
22
|
Silencing of host genes directed by virus-derived short interfering RNAs in Caenorhabditis elegans. J Virol 2012; 86:11645-53. [PMID: 22896621 DOI: 10.1128/jvi.01501-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small interfering RNAs (siRNAs) processed from viral replication intermediates by RNase III-like enzyme Dicer guide sequence-specific antiviral silencing in fungi, plants, and invertebrates. In plants, virus-derived siRNAs (viRNAs) can target and silence cellular transcripts and, in some cases, are responsible for the induction of plant diseases. Currently it remains unclear whether viRNAs are also capable of modulating the expression of cellular genes in the animal kingdom, although animal virus-encoded microRNAs (miRNAs) are known to guide efficient silencing of host genes, thereby facilitating virus replication. In this report, we showed that viRNAs derived from a modified nodavirus triggered potent silencing of homologous cellular transcripts produced by the endogenous gene or transgene in the nematode worm Caenorhabditis elegans. Like that found in plants, virus-induced gene silencing (VIGS) in C. elegans also involves RRF-1, a worm RNA-dependent RNA polymerase (RdRP) that is known to produce single-stranded secondary siRNAs in a Dicer-independent manner. We further demonstrated that VIGS in C. elegans is inheritable, suggesting that VIGS has the potential to generate profound epigenetic consequences in future generations. Altogether, these findings, for the first time, confirmed that viRNAs have the potential to modulate host gene expression in the animal kingdom. Most importantly, the success in uncoupling the trigger and the target of the antiviral silencing would allow for the exploration of novel features of virus-host interactions mediated by viRNAs in the animal kingdom.
Collapse
|
23
|
Kasai M, Koseki M, Goto K, Masuta C, Ishii S, Hellens RP, Taneda A, Kanazawa A. Coincident sequence-specific RNA degradation of linked transgenes in the plant genome. PLANT MOLECULAR BIOLOGY 2012; 78:259-73. [PMID: 22146813 DOI: 10.1007/s11103-011-9863-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/18/2011] [Indexed: 05/23/2023]
Abstract
The expression of transgenes in plant genomes can be inhibited by either transcriptional gene silencing or posttranscriptional gene silencing (PTGS). Overexpression of the chalcone synthase-A (CHS-A) transgene triggers PTGS of CHS-A and thus results in loss of flower pigmentation in petunia. We previously demonstrated that epigenetic inactivation of CHS-A transgene transcription leads to a reversion of the PTGS phenotype. Although neomycin phosphotransferase II (nptII), a marker gene co-introduced into the genome with the CHS-A transgene, is not normally silenced in petunia, even when CHS-A is silenced, here we found that nptII was silenced in a petunia line in which CHS-A PTGS was induced, but not in the revertant plants that had no PTGS of CHS-A. Transcriptional activity, accumulation of short interfering RNAs, and restoration of mRNA level after infection with viruses that had suppressor proteins of gene silencing indicated that the mechanism for nptII silencing was posttranscriptional. Read-through transcripts of the CHS-A gene toward the nptII gene were detected. Deep-sequencing analysis revealed a striking difference between the predominant size class of small RNAs produced from the read-through transcripts (22 nt) and that from the CHS-A RNAs (21 nt). These results implicate the involvement of read-through transcription and distinct phases of RNA degradation in the coincident PTGS of linked transgenes and provide new insights into the destabilization of transgene expression.
Collapse
Affiliation(s)
- Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Yoon JY, Choi SK, Palukaitis P, Gray SM. Agrobacterium-mediated infection of whole plants by yellow dwarf viruses. Virus Res 2011; 160:428-34. [PMID: 21763366 DOI: 10.1016/j.virusres.2011.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
Barley yellow dwarf virus-PAV (BYDV-PAV) and cereal yellow dwarf virus-RPV (CYDV-RPV) are only transmitted between host plants by aphid vectors and not by mechanical transmission. This presents a severe limitation for the use of a reverse genetics approach to analyze the effects of mutations in these viruses on plant infection and aphid transmission. Here we describe the use of agroinfection to infect plants with BYDV-PAV and CYDV-RPV. The cDNAs corresponding to the complete RNA genomes of BYDV-PAV and CYDV-RPV were cloned into a binary vector under the control of the cauliflower mosaic virus 35S promoter and the nopaline synthase transcription termination signal. The self-cleaving ribozyme from hepatitis virus D was included to produce a transcript in planta with a 3' terminus identical to the natural viral RNA. ELISA and RT-PCR analysis showed that the replicons of BYDV-PAV and CYDV-RPV introduced by Agrobacterium into Nicotiana benthamiana and N. clevelandii gave rise to a local infection in the infiltrated mesophyll cells. After several weeks systemic infection of phloem tissue was detected, although no systemic symptoms were observed. Three heterologous virus silencing suppressors increased the efficiency of agroinfection and accumulation of BYDV-PAV and CYDV-RPV in the two Nicotiana species. The progeny viruses purified from infiltrated tissues were successfully transmitted to oat plants by aphids, and typical yellow dwarf symptoms were observed. This study reports the first agroinfection of eudicot plants using BYDV-PAV and CYDV-RPV.
Collapse
Affiliation(s)
- Ju-Yeon Yoon
- Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, Republic of Korea
| | | | | | | |
Collapse
|
26
|
Mascia T, Cillo F, Fanelli V, Finetti-Sialer MM, De Stradis A, Palukaitis P, Gallitelli D. Characterization of the interactions between Cucumber mosaic virus and Potato virus Y in mixed infections in tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1514-24. [PMID: 20923355 DOI: 10.1094/mpmi-03-10-0064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mixed infection with the SON41 strain of Potato virus Y (PVY-SON41) in tomato increased accumulation of RNAs of strains Fny and LS of Cucumber mosaic virus (CMV-Fny and CMV-LS, respectively) and enhanced disease symptoms. By contrast, replication of PVY-SON41 was downregulated by CMV-Fny and this was due to the CMV-Fny 2b protein. The CMV-FnyΔ2b mutant was unable to systemically invade the tomato plant because its movement was blocked at the bundle sheath of the phloem. The function needed for invading the phloem was complemented by PVY-SON41 in plants grown at 22°C whereas this complementation was not necessary in plants grown at 15°C. Mutations in the 2b protein coding sequence of CMV-Fny as well as inhibition of translation of the 2a/2b overlapping region of the 2a protein lessened both the accumulation of viral RNAs and the severity of symptoms. Both of these functions were complemented by PVY-SON41. Infection of CMV-Fny supporting replication of the Tfn-satellite RNA reduced the accumulation of CMV RNA and suppressed symptom expression also in plants mixed-infected with PVY-SON41. The interaction between CMV and PVY-SON41 in tomato exhibited different features from that documented in other hosts. The results of this work are relevant from an ecological and epidemiological perspective due to the frequency of natural mixed infection of CMV and PVY in tomato.
Collapse
Affiliation(s)
- Tiziana Mascia
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi di Bari, Via Amendola 165/A, 70126 Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Citovsky V, Zaltsman A, Kozlovsky SV, Gafni Y, Krichevsky A. Proteasomal degradation in plant-pathogen interactions. Semin Cell Dev Biol 2009; 20:1048-54. [PMID: 19505586 DOI: 10.1016/j.semcdb.2009.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 11/30/2022]
Abstract
The ubiquitin/26S proteasome pathway is a basic biological mechanism involved in the regulation of a multitude of cellular processes. Increasing evidence indicates that plants utilize the ubiquitin/26S proteasome pathway in their immune response to pathogen invasion, emphasizing the role of this pathway during plant-pathogen interactions. The specific functions of proteasomal degradation in plant-pathogen interactions are diverse, and do not always benefit the host plant. Although in some cases, proteasomal degradation serves as an effective barrier to help plants ward off pathogens, in others, it is used by the pathogen to enhance the infection process. This review discusses the different roles of the ubiquitin/26S proteasome pathway during interactions of plants with pathogenic viruses, bacteria, and fungi.
Collapse
Affiliation(s)
- Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|
28
|
Xia Z, Zhu Z, Zhu J, Zhou R. Recognition mechanism of siRNA by viral p19 suppressor of RNA silencing: a molecular dynamics study. Biophys J 2009; 96:1761-9. [PMID: 19254536 DOI: 10.1016/j.bpj.2008.11.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 11/20/2008] [Indexed: 01/30/2023] Open
Abstract
The p19 protein (p19) encoded from Tombusvirus is involved in various activities such as pathogenicity and virus transport. Recent studies have found that p19 is a plant suppressor of RNA silencing, which binds to short interfering RNAs (siRNAs) with high affinity. We use molecular dynamics (MD) simulations of the wild-type and mutant p19 protein (W39 and W42G) binding with a 21-nt siRNA duplex to study the p19-siRNA recognition mechanism and mutation effects. Our simulations with standard MD and steered molecular dynamics have shown that the double mutant structure is indeed much less stable than the wild-type, consistent with the recent experimental findings. Comprehensive structural analysis also shows that the W39/42G mutations first induce the loss of stacking interactions between p19 and siRNA, Trp(42)-Cyt1 (Cyt1 from the 5' to 3' strand) and Trp(39)-Gua'19 (Gua19 from the 3' to 5' strand), and then breaks the hydrophobic core formed by W39-W42 with nucleotide basepairs in the wild-type. The steered molecular dynamics simulations also show that the mutant p19 complex is "decompounded" very fast under a constant separation force, whereas the wild-type remains largely intact under the same steering force. Moreover, we have used the free energy perturbation to predict a binding affinity loss of 6.98 +/- 0.95 kcal/mol for the single mutation W39G, and 12.8 +/- 1.0 kcal/mol loss for the double mutation W39/42G, with the van der Waals interactions dominating the contribution ( approximately 90%). These results indicate that the W39/42G mutations essentially destroy the important p19-siRNA recognition by breaking the strong stacking interaction between Cyt1 and Gua'19 with end-capping tryptophans. These large scale simulations might provide new insights to the interactions and co-evolution relationship between RNA virus proteins and their hosts.
Collapse
Affiliation(s)
- Zhen Xia
- Institute of Bioinformatics, Zhejang University, Hangzhou 310027, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Rebelo AR, Niewiadomski S, Prosser SW, Krell P, Meng B. Subcellular localization of the triple gene block proteins encoded by a Foveavirus infecting grapevines. Virus Res 2008; 138:57-69. [PMID: 18804498 DOI: 10.1016/j.virusres.2008.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 11/25/2022]
Abstract
Grapevine rupestris stem pitting-associated virus (GRSPaV; Foveavirus; Flexiviridae) contains a positive-sense, ssRNA genome. GRSPaV occurs worldwide in grapes and is involved in the Rugose Wood disease complex. The GRSPaV genome contains the triple gene block (TGB), a genetic module present in several genera of plant RNA viruses. TGB encodes three proteins (TGBp1, TGBp2 and TGBp3) that are believed to work together to achieve intra- and inter-cellular transport of virions in infected plants. To reveal the subcellular localization of each TGB protein and to examine the impact that different fusion positions may have on the behavior of the native protein, we made a series of expression constructs and expressed the corresponding protein fusions in Nicotiana tabacum BY-2 cells and protoplasts. We demonstrated that TGBp1 had both a cytosolic and nuclear distribution. Two TGBp1 fusions (GFP fused at the N- or C-terminus) differ in subcellular distribution. Through the use of truncation mutants, we mapped TGBp1 regions responsible for the formation of two distinct types of aggregates. Sequence analyses predicted two and one transmembrane domains in TGBp2 and TGBp3, respectively. GFP fusions at either terminus of TGBp2 revealed identical localization to the ER network and ER-derived structures. In contrast, the two TGBp3 fusions to mRFP differed in localization. This is the first report on the subcellular localization of the viral proteins of a member of the Foveavirus genus.
Collapse
Affiliation(s)
- Ana Rita Rebelo
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
30
|
Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci U S A 2007; 105:157-61. [PMID: 18165314 DOI: 10.1073/pnas.0709036105] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The V2 protein of tomato yellow leaf curl geminivirus (TYLCV) functions as an RNA-silencing suppressor that counteracts the innate immune response of the host plant. The host-cell target of V2, however, remains unknown. Here we show that V2 interacts directly with SlSGS3, the tomato homolog of the Arabidopsis SGS3 protein (AtSGS3), which is known to be involved in the RNA-silencing pathway. SlSGS3 genetically complemented an AtSGS3 mutation and restored RNA silencing, indicating that SlSGS3 is indeed a functional homolog of AtSGS3. A point mutant of V2 that is unable to bind SlSGS3 also lost its ability to suppress RNA silencing, suggesting a correlation between the V2-SlSGS3 interaction in planta and the suppressor activity of V2.
Collapse
|
31
|
Samuels TD, Ju HJ, Ye CM, Motes CM, Blancaflor EB, Verchot-Lubicz J. Subcellular targeting and interactions among the Potato virus X TGB proteins. Virology 2007; 367:375-89. [PMID: 17610926 DOI: 10.1016/j.virol.2007.05.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 04/24/2007] [Accepted: 05/03/2007] [Indexed: 12/16/2022]
Abstract
Potato virus X (PVX) encodes three proteins named TGBp1, TGBp2, and TGBp3 which are required for virus cell-to-cell movement. To determine whether PVX TGB proteins interact during virus cell-cell movement, GFP was fused to each TGB coding sequence within the viral genome. Confocal microscopy was used to study subcellular accumulation of each protein in virus-infected plants and protoplasts. GFP:TGBp2 and TGBp3:GFP were both seen in the ER, ER-associated granular vesicles, and perinuclear X-bodies suggesting that these proteins interact in the same subdomains of the endomembrane network. When plasmids expressing CFP:TGBp2 and TGBp3:GFP were co-delivered to tobacco leaf epidermal cells, the fluorescent signals overlapped in ER-associated granular vesicles indicating that these proteins colocalize in this subcellular compartment. GFP:TGBp1 was seen in the nucleus, cytoplasm, rod-like inclusion bodies, and in punctate sites embedded in the cell wall. The puncta were reminiscent of previous reports showing viral proteins in plasmodesmata. Experiments using CFP:TGBp1 and YFP:TGBp2 or TGBp3:GFP showed CFP:TGBp1 remained in the cytoplasm surrounding the endomembrane network. There was no evidence that the granular vesicles contained TGBp1. Yeast two hybrid experiments showed TGBp1 self associates but failed to detect interactions between TGBp1 and TGBp2 or TGBp3. These experiments indicate that the PVX TGB proteins have complex subcellular accumulation patterns and likely cooperate across subcellular compartments to promote virus infection.
Collapse
Affiliation(s)
- Timmy D Samuels
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
32
|
Staginnus C, Gregor W, Mette MF, Teo CH, Borroto-Fernández EG, Machado MLDC, Matzke M, Schwarzacher T. Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species. BMC PLANT BIOLOGY 2007; 7:24. [PMID: 17517142 PMCID: PMC1899175 DOI: 10.1186/1471-2229-7-24] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 05/21/2007] [Indexed: 05/02/2023]
Abstract
BACKGROUND Endogenous pararetroviral sequences (EPRVs) are a recently discovered class of repetitive sequences that is broadly distributed in the plant kingdom. The potential contribution of EPRVs to plant pathogenicity or, conversely, to virus resistance is just beginning to be explored. Some members of the family Solanaceae are particularly rich in EPRVs. In previous work, EPRVs have been characterized molecularly in various species of Nicotiana including N.tabacum (tobacco) and Solanum tuberosum (potato). Here we describe a family of EPRVs in cultivated tomato (Solanum lycopersicum L.) and a wild relative (S.habrochaites). RESULTS Molecular cloning and DNA sequence analysis revealed that tomato EPRVs (named LycEPRVs) are most closely related to those in tobacco. The sequence similarity of LycEPRVs in S.lycopersicum and S.habrochaites indicates they are potentially derived from the same pararetrovirus. DNA blot analysis revealed a similar genomic organization in the two species, but also some independent excision or insertion events after species separation, or flanking sequence divergence. LycEPRVs share with the tobacco elements a disrupted genomic structure and frequent association with retrotransposons. Fluorescence in situ hybridization revealed that copies of LycEPRV are dispersed on all chromosomes in predominantly heterochromatic regions. Methylation of LycEPRVs was detected in CHG and asymmetric CHH nucleotide groups. Although normally quiescent EPRVs can be reactivated and produce symptoms of infection in some Nicotiana interspecific hybrids, a similar pathogenicity of LycEPRVs could not be demonstrated in Solanum L. section Lycopersicon [Mill.] hybrids. Even in healthy plants, however, transcripts derived from multiple LycEPRV loci and short RNAs complementary to LycEPRVs were detected and were elevated upon infection with heterologous viruses encoding suppressors of PTGS. CONCLUSION The analysis of LycEPRVs provides further evidence for the extensive invasion of pararetroviral sequences into the genomes of solanaceous plants. The detection of asymmetric CHH methylation and short RNAs, which are hallmarks of RNAi in plants, suggests that LycEPRVs are controlled by an RNA-mediated silencing mechanism.
Collapse
Affiliation(s)
- Christina Staginnus
- Gregor Mendel Institute of Plant Molecular Biology (GMI), 1030 Wien, Austria
| | - Wolfgang Gregor
- Research Institute of Biochemical Pharmacology and Molecular Toxicology, University of Veterinary Medicine, 1210 Wien, Austria
| | - M Florian Mette
- AG Epigenetik, Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Gatersleben, Germany
| | - Chee How Teo
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| | | | | | - Marjori Matzke
- Gregor Mendel Institute of Plant Molecular Biology (GMI), 1030 Wien, Austria
| | | |
Collapse
|
33
|
Andersson G, Xu N, Akusjärvi G. In Vitro Methods to Study RNA Interference During an Adenovirus Infection. ACTA ACUST UNITED AC 2007; 131:47-61. [PMID: 17656774 DOI: 10.1007/978-1-59745-277-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
RNA interference (RNAi) has attracted a lot of interest during recent years as a method to knock-down gene expression and as a possible antiviral system. Here we present a collection of in vitro methods to study RNAi and the effect of an adenovirus infection on RNAi. We describe methods to measure the two key enzymatic complexes involved in RNAi: Dicer and RISC.
Collapse
|
34
|
Zrachya A, Glick E, Levy Y, Arazi T, Citovsky V, Gafni Y. Suppressor of RNA silencing encoded by Tomato yellow leaf curl virus-Israel. Virology 2006; 358:159-65. [PMID: 16979684 DOI: 10.1016/j.virol.2006.08.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 07/12/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
The Israeli isolate of Tomato yellow leaf curl geminivirus (TYLCV-Is) is a major tomato pathogen, causing extensive crop losses both in the New and Old World. Surprisingly, however, little is known about the molecular mechanisms of TYLCV-Is interactions with tomato cells. Here, we have identified a TYLCV-Is protein, V2, which acts as a suppressor of RNA silencing and which is unrelated to presently known viral suppressors. Specifically, V2, but not other proteins of TYLCV-Is, inhibited RNA silencing of a reporter transgene, GFP. This inhibition elevated the cellular levels of the GFP transcript and the GFP protein, but it had no apparent effect on the accumulation of GFP-specific short interfering RNAs (siRNAs), suggesting that TYLCV-Is V2 targets a step in the RNA silencing pathway which is subsequent to the Dicer-mediated cleavage of dsRNA. Visualization of the sub-cellular localization of TYLCV-Is V2 in plant protoplasts and tissues showed that this protein is associated with cytoplasmic strands and inclusion bodies in the cortical regions of the cell.
Collapse
Affiliation(s)
- Avi Zrachya
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | |
Collapse
|
35
|
Buchon N, Vaury C. RNAi: a defensive RNA-silencing against viruses and transposable elements. Heredity (Edinb) 2006; 96:195-202. [PMID: 16369574 DOI: 10.1038/sj.hdy.6800789] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RNA silencing is a form of nucleic-acid-based immunity, targeting viruses and genomic repeated sequences. First documented in plants and invertebrate animals, this host defence has recently been identified in mammals. RNAi is viewed as a conserved ancient mechanism protecting genomes from nucleic acid invaders. However, these tamed sequences are known to occasionally escape this host surveillance and invade the genome of their host. This response is consistent with the overall idea that parasitic sequences compete with cells to systematically counter host defences. Using examples taken from the current literature, we illustrate the dynamic move-countermove game played between these two protagonists, the host cell and its parasitic sequences, and discuss the consequences of this game on genome stability.
Collapse
Affiliation(s)
- N Buchon
- INSERM U384, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | | |
Collapse
|
36
|
Kalantidis K, Tsagris M, Tabler M. Spontaneous short-range silencing of a GFP transgene in Nicotiana benthamiana is possibly mediated by small quantities of siRNA that do not trigger systemic silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:1006-16. [PMID: 16507090 DOI: 10.1111/j.1365-313x.2006.02664.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A green fluorescent protein (GFP) transgene under the control of the 35S cauliflower mosaic virus (CaMV) promoter was introduced by Agrobacterium-mediated transformation into Nicotiana benthamiana to generate fourteen transgenic lines. Homozygous lines that contained one or two copies of the transgene showed great variation of GFP expression under ultraviolet (UV) light, which allowed classification into three types of transgenic plants. Plants from more than half of the transgenic lines underwent systemic RNA silencing and produced short interfering RNA (siRNA) as young seedlings, while plants of the remaining lines developed, in a spontaneous manner, defined GFP-silenced zones on their leaves, mostly in the form of circular spots that expanded to about 4-7 mm in size. In some of the latter lines, the GFP-silenced spots remained stable, but no systemic silencing occurred. Here we characterize this phenomenon, which we term spontaneous short-range silencing (SSRS). Biochemical analysis of silenced spot tissue did not reveal detectable levels of siRNA. However, agro-infiltration with the suppressor proteins P19 of cymbidium ring spot virus (CymRSV), HC-Pro of tobacco etch virus (TEV), and crosses to a P19 transgenic line, nevertheless suggests that low concentrations of siRNA may have a functional role in the locally silenced zone. We propose that small alterations in the steady-state concentration of siRNAs and their cognate mRNA are decisive with regard to whether silencing remains local or spreads in a systemic manner.
Collapse
Affiliation(s)
- Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, PO Box 1527, GR-71110 Heraklion, Crete, Greece.
| | | | | |
Collapse
|
37
|
Krichevsky A, Kozlovsky SV, Gafni Y, Citovsky V. Nuclear import and export of plant virus proteins and genomes. MOLECULAR PLANT PATHOLOGY 2006; 7:131-146. [PMID: 20507434 DOI: 10.1111/j.1364-3703.2006.00321.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Nuclear import and export are crucial processes for any eukaryotic cell, as they govern substrate exchange between the nucleus and the cytoplasm. Proteins involved in the nuclear transport network are generally conserved among eukaryotes, from yeast and fungi to animals and plants. Various pathogens, including some plant viruses, need to enter the host nucleus to gain access to its replication machinery or to integrate their DNA into the host genome; the newly replicated viral genomes then need to exit the nucleus to spread between host cells. To gain the ability to enter and exit the nucleus, these pathogens encode proteins that recognize cellular nuclear transport receptors and utilize the host's nuclear import and export pathways. Here, we review and discuss our current knowledge about the molecular mechanisms by which plant viruses find their way into and out of the host cell nucleus.
Collapse
Affiliation(s)
- Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
38
|
Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA. Structural basis for double-stranded RNA processing by Dicer. Science 2006; 311:195-8. [PMID: 16410517 DOI: 10.1126/science.1121638] [Citation(s) in RCA: 675] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The specialized ribonuclease Dicer initiates RNA interference by cleaving double-stranded RNA (dsRNA) substrates into small fragments about 25 nucleotides in length. In the crystal structure of an intact Dicer enzyme, the PAZ domain, a module that binds the end of dsRNA, is separated from the two catalytic ribonuclease III (RNase III) domains by a flat, positively charged surface. The 65 angstrom distance between the PAZ and RNase III domains matches the length spanned by 25 base pairs of RNA. Thus, Dicer itself is a molecular ruler that recognizes dsRNA and cleaves a specified distance from the helical end.
Collapse
Affiliation(s)
- Ian J Macrae
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Koseki M, Goto K, Masuta C, Kanazawa A. The Star-type Color Pattern in Petunia hybrida ‘Red Star’ Flowers is Induced by Sequence-Specific Degradation of Chalcone Synthase RNA. ACTA ACUST UNITED AC 2005; 46:1879-83. [PMID: 16143597 DOI: 10.1093/pcp/pci192] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Petunia hybrida 'Red Star' is a variety whose flowers exhibit a star-type red and white bicolor pattern. We analyzed the mRNA levels of six genes involved in anthocyanin biosynthesis. Only the level of chalcone synthase (CHS) mRNA was depressed in the unpigmented flower sectors. Both transcriptional activity and the accumulation of short interfering RNA of CHS in the unpigmented sectors were detected. Viral infection blocked the generation of CHS-silenced sectors. These results indicate that sequence-specific degradation of CHS RNA is the primary cause of the formation of white sectors in 'Red Star' flowers.
Collapse
Affiliation(s)
- Maiko Koseki
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | |
Collapse
|
40
|
Love AJ, Yun BW, Laval V, Loake GJ, Milner JJ. Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. PLANT PHYSIOLOGY 2005; 139:935-48. [PMID: 16169957 PMCID: PMC1256007 DOI: 10.1104/pp.105.066803] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 06/10/2005] [Accepted: 06/30/2005] [Indexed: 05/04/2023]
Abstract
We analyzed expression of marker genes for three defense pathways during infection by Cauliflower mosaic virus (CaMV), a compatible pathogen of Arabidopsis (Arabidopsis thaliana), using luciferase reporter transgenes and directly by measuring transcript abundance. Expression of PR-1, a marker for salicylic acid signaling, was very low until 8 d postinoculation and then rose sharply, coinciding with the rise in virus levels. In contrast, as early as 2 h postinoculation, transcriptional up-regulation of GST1-a marker for reactive oxygen species-and PDF1.2-a marker for jasmonic acid/ethylene defense signaling-was detectable in the virus-inoculated leaf and systemically. In parallel with the activation of GST1, H(2)O(2) accumulated locally and systemically in virus- but not mock-inoculated plants. However, in plants inoculated with infectious CaMV DNA rather than virus particles, the onset of systemic luciferase activity was delayed by 24 to 48 h, suggesting that virion structural proteins act as the elicitor. This phenomenon, which we term the rapid systemic response, preceded virus movement from the inoculated leaf; therefore, the systemic signal is not viral. Systemic, but not local, H(2)O(2) accumulation was abolished in rbohDF double mutants and in etr1-1 and ein2-1 mutants, implicating NADPH oxidase and ethylene signaling in the generation and transduction of the response. Ethylene, but not rbohDF mutants, also showed reduced susceptibility to CaMV, whereas in NahG transgenics, virus levels were similar to wild type. These findings implicate reactive oxygen species and ethylene in signaling in response to CaMV infection, but suggest that salicylic acid does not play an effective role.
Collapse
Affiliation(s)
- Andrew J Love
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | | | | | | | |
Collapse
|
41
|
Yamamura Y, Scholthof HB. Tomato bushy stunt virus: a resilient model system to study virus-plant interactions. MOLECULAR PLANT PATHOLOGY 2005; 6:491-502. [PMID: 20565674 DOI: 10.1111/j.1364-3703.2005.00301.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
UNLABELLED SUMMARY Taxonomy: Tomato bushy stunt virus (TBSV) (Fig. 1) is the type species of the plant-infecting Tombusvirus genus in the family Tombusviridae. Physical properties: TBSV virions are non-enveloped icosahedral T = 3 particles assembled from 180 coat protein subunits (42 kDa) whose arrangement causes a granular appearance on the surface structure. The particles are approximately 33 nm in diameter and composed of 17% ribonucleic acid and 83% protein. Encapsidated within the virion is the TBSV genome that consists of a positive-sense single-stranded RNA of approximately 4.8 kb, which lacks the 5'-cap or 3'-poly(A) tail typical for eukaryotic mRNAs. HOST RANGE In nature, TBSV has a fairly restricted host range, mostly encompassing a few dicotyledonous species in separate families, and affected agricultural crops comprise primarily vegetables. The experimental host range is broad, with over 120 plant species in more than 20 different families reported to be susceptible although in most plants the infection often remains localized around the site of entry. The differences between hosts with regards to requirements for cell-to-cell and long-distance movement have led to the development of TBSV as an attractive model system to obtain general insights into RNA transport through plants. SYMPTOMS SYMPTOMS induced by TBSV are largely dependent on the host genotype; they can vary from necrotic and chlorotic lesions, to a systemic mild or severe mosaic, or they may culminate in a lethal necrosis. The original TBSV isolates from tomato plants caused a mottle, crinkle and downward curling of leaves with the youngest leaves exhibiting tip necrosis upon systemic infection. Tomato fruit yield can be greatly reduced by virus infection. Plants may be stunted and a proliferation of lateral shoots leads to a bushy appearance of the infected tomato plants, hence the nomenclature of the pathogen. Useful sites: http://image.fs.uidaho.edu/vide/descr825.htm; http://www.ictvdb.rothamsted.ac.uk/ICTVdB/74010001.htm (general information); http://mmtsb.scripps.edu/viper/info_page.php?vipPDB=2tbv (structural information).
Collapse
Affiliation(s)
- Yoshimi Yamamura
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA
| | | |
Collapse
|
42
|
Panavas T, Hawkins CM, Panaviene Z, Nagy PD. The role of the p33:p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology 2005; 338:81-95. [PMID: 15936051 DOI: 10.1016/j.virol.2005.04.025] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/01/2005] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
Replication of plus-stranded RNA viruses is performed by the viral replicase complex, which, together with the viral RNA, must be targeted to intracellular membranes, where replication takes place in membraneous vesicles/spherules. Tombusviruses code for two overlapping replication proteins, the p33 auxiliary protein and the p92 polymerase. Using replication-competent fluorescent protein-tagged p33 of Cucumber necrosis virus (CNV), we determined that two domains affected p33 targeting to peroxisomal membranes in yeast: an N-proximal hydrophobic trans-membrane sequence and the C-proximal p33:p33/p92 interaction domain. On the contrary, only the deletion of the p33:p33/p92 interaction domain, but not the trans-membrane sequence, altered the intracellular targeting of p92 protein in the presence of wt p33 and DI-72(+) RNA. Moreover, unlike p33, p92 lacking the trans-membrane sequence was still functional in supporting the replication of a replicon RNA in yeast, whereas the p33:p33/p92 interaction domain in both p33 and p92 was essential for replication. In addition, p33 was also shown to facilitate the recruitment of the viral RNA to peroxisomal membranes and that p33 is colocalized with (+) and (-)-stranded viral RNAs. Also, FRET and pull-down analyses confirmed that p33 interacts with other p33 molecules in yeast cells. Based on these data, we propose that p33 facilitates the formation of multimolecular complexes, including p33, p92, viral RNA, and unidentified host factors, which are then targeted to the peroxisomal membranes, the sites of CNV replication.
Collapse
Affiliation(s)
- Tadas Panavas
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
43
|
Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM. Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 2005; 79:2517-27. [PMID: 15681452 PMCID: PMC546592 DOI: 10.1128/jvi.79.4.2517-2527.2005] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bipartite geminiviruses encode a small protein, AC2, that functions as a transactivator of viral transcription and a suppressor of RNA silencing. A relationship between these two functions had not been investigated before. We characterized both of these functions for AC2 from Mungbean yellow mosaic virus-Vigna (MYMV). When transiently expressed in plant protoplasts, MYMV AC2 strongly transactivated the viral promoter; AC2 was detected in the nucleus, and a split nuclear localization signal (NLS) was mapped. In a model Nicotiana benthamiana plant, in which silencing can be triggered biolistically, AC2 reduced local silencing and prevented its systemic spread. Mutations in the AC2 NLS or Zn finger or deletion of its activator domain abolished both these effects, suggesting that suppression of silencing by AC2 requires transactivation of host suppressor(s). In line with this, in Arabidopsis protoplasts, MYMV AC2 or its homologue from African cassava mosaic geminivirus coactivated >30 components of the plant transcriptome, as detected with Affymetrix ATH1 GeneChips. Several corresponding promoters cloned from Arabidopsis were strongly induced by both AC2 proteins. These results suggest that silencing suppression and transcription activation by AC2 are functionally connected and that some of the AC2-inducible host genes discovered here may code for components of an endogenous network that controls silencing.
Collapse
Affiliation(s)
- Daniela Trinks
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Nodamura virus (NoV) is a small RNA virus that is infectious for insect and mammalian hosts. We have developed a highly sensitive assay of RNA interference (RNAi) in mammalian cells that shows that the NoV B2 protein functions as an inhibitor of RNAi triggered by either short hairpin RNAs or small interfering RNAs. In the cell, NoV B2 binds to pre-Dicer substrate RNA and RNA-induced silencing complex (RISC)-processed RNAs and inhibits the Dicer cleavage reaction and, potentially, one or more post-Dicer activities. In vitro, NoV B2 inhibits Dicer-mediated RNA cleavage in the absence of any other host factors and specifically binds double-stranded RNAs corresponding in structure to Dicer substrates and products. Its abilities to bind to Dicer precursor and post-Dicer RISC-processed RNAs suggest a mechanism of inhibition that is unique among known viral inhibitors of RNAi.
Collapse
Affiliation(s)
- Christopher S Sullivan
- G. W. Hooper Research Foundation, University of California, San Francisco, 513 Parnassus Ave., HSW 1501, Box 0552, San Francisco, CA 94143-0552, USA.
| | | |
Collapse
|
45
|
Qi Y, Zhong X, Itaya A, Ding B. Dissecting RNA silencing in protoplasts uncovers novel effects of viral suppressors on the silencing pathway at the cellular level. Nucleic Acids Res 2004; 32:e179. [PMID: 15601991 PMCID: PMC545478 DOI: 10.1093/nar/gnh180] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 11/05/2004] [Accepted: 11/24/2004] [Indexed: 01/15/2023] Open
Abstract
Short interfering RNA (siRNA)-mediated RNA silencing plays an important role in cellular defence against viral infection and abnormal gene expression in multiple organisms. Many viruses have evolved silencing suppressors for counter-defence. We have developed an RNA silencing system in the protoplasts of Nicotiana benthamiana to investigate the functions of viral suppressors at the cellular level. We showed that RNA silencing against a green fluorescent protein (GFP) reporter gene in the protoplasts could be induced rapidly and specifically by co-transfection with the reporter gene and various silencing inducers [i.e. siRNA, double-stranded RNA (dsRNA) or plasmid encoding dsRNA]. Using this system, we uncovered novel roles of some viral suppressors. Notably, the Cucumber mosaic virus 2b protein, shown previously to function predominantly by preventing the long-distance transmission of systemic silencing signals, was a very strong silencing suppressor in the protoplasts. Some suppressors thought to interfere with upstream steps of siRNA production appeared to also act downstream. Therefore, a viral suppressor can affect multiple steps of the RNA silencing pathway. Our analyses suggest that protoplast-based transient RNA silencing is a useful experimental system to investigate the functions of viral suppressors and further dissect the mechanistic details of the RNA silencing pathway in single cells.
Collapse
Affiliation(s)
- Yijun Qi
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, 207 Rightmire Hall, Ohio State University, 1060 Carmack Road, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
46
|
Lu R, Folimonov A, Shintaku M, Li WX, Falk BW, Dawson WO, Ding SW. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci U S A 2004; 101:15742-7. [PMID: 15505219 PMCID: PMC524217 DOI: 10.1073/pnas.0404940101] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 09/27/2004] [Indexed: 11/18/2022] Open
Abstract
Viral infection in both plant and invertebrate hosts requires a virus-encoded function to block the RNA silencing antiviral defense. Here, we report the identification and characterization of three distinct suppressors of RNA silencing encoded by the approximately 20-kb plus-strand RNA genome of citrus tristeza virus (CTV). When introduced by genetic crosses into plants carrying a silencing transgene, both p20 and p23, but not coat protein (CP), restored expression of the transgene. Although none of the CTV proteins prevented DNA methylation of the transgene, export of the silencing signal (capable of mediating intercellular silencing spread) was detected only from the F(1) plants expressing p23 and not from the CP- or p20-expressing F(1) plants, demonstrating suppression of intercellular silencing by CP and p20 but not by p23. Thus, intracellular and intercellular silencing are each targeted by a CTV protein, whereas the third, p20, inhibits silencing at both levels. Notably, CP suppresses intercellular silencing without interfering with intracellular silencing. The novel property of CP suggests a mechanism distinct to p20 and all of the other viral suppressors known to interfere with intercellular silencing and that this class of viral suppressors may not be consistently identified by Agrobacterium coinfiltration because it also induces RNA silencing against the infiltrated suppressor transgene. Our analyses reveal a sophisticated viral counter-defense strategy that targets the silencing antiviral pathway at multiple steps and may be essential for protecting CTV with such a large RNA genome from antiviral silencing in the perennial tree host.
Collapse
Affiliation(s)
- Rui Lu
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Plant Pathology, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Ryang BS, Kobori T, Matsumoto T, Kosaka Y, Ohki ST. Cucumber mosaic virus 2b protein compensates for restricted systemic spread of Potato virus Y in doubly infected tobacco. J Gen Virol 2004; 85:3405-3414. [PMID: 15483258 DOI: 10.1099/vir.0.80176-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tobacco plants (Nicotiana tabacum cv. Xanthi-nc) inoculated with a necrotic strain of Potato virus Y (PVY, T01 isolate) developed necrotic symptoms in some systemically infected leaves, but not in younger leaves. However, PVY expressed distinct symptoms not only in the older leaves, but also in the younger leaves, of plants that had been doubly inoculated with PVY and with Cucumber mosaic virus (CMV, strain Pepo). A tissue blot immunoassay of tissues from various positions of the stem detected PVY weakly in each stem, but not in the shoot apex, of singly infected plants, whereas PVY was detected at high levels in almost all sections of doubly infected plants. CMV was also detected at high levels in sections of singly and doubly infected plants. Immunohistochemistry of stem tissues showed that in singly infected plants, PVY was confined to external phloem cells and was not detected in internal phloem cells. However, in doubly infected plants, PVY was distributed uniformly throughout whole tissues, including the external phloem, xylem parenchyma and internal phloem cells. In plants that were doubly infected with PVY and Pepo Delta 2b, a modified CMV that cannot translate the 2b protein, the spread of PVY was restricted as in singly infected plants. These results suggested that the plant host has a counterdefence mechanism that restricts systemic spread of PVY T01, and that the 2b protein of CMV strain Pepo negates this restriction.
Collapse
Affiliation(s)
- Bo-Song Ryang
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan
- Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | - Takashi Kobori
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan
| | - Tadashi Matsumoto
- Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | - Yoshitaka Kosaka
- Kyoto Prefectural Institute of Agricultural Biotechnology, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan
| | - Satoshi T Ohki
- Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
48
|
Taliansky M, Kim SH, Mayo MA, Kalinina NO, Fraser G, McGeachy KD, Barker H. Escape of a plant virus from amplicon-mediated RNA silencing is associated with biotic or abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:194-205. [PMID: 15225285 DOI: 10.1111/j.1365-313x.2004.02120.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Strong RNA silencing was induced in plants transformed with an amplicon consisting of full-length cDNA of potato leafroll virus (PLRV) expressing green fluorescent protein (GFP), as shown by low levels of PLRV-GFP accumulation, lack of symptoms and accumulation of amplicon-specific short interfering RNAs (siRNAs). Inoculation of these plants with various viruses known to encode silencing suppressor proteins induced a striking synergistic effect leading to the enhanced accumulation of PLRV-GFP, suggesting that it had escaped from silencing. However, PLRV-GFP escape also occurred following inoculation with viruses that do not encode known silencing suppressors and treatment of silenced plants with biotic or abiotic stress agents. We propose that viruses can evade host RNA-silencing defences by a previously unrecognized mechanism that may be associated with a host response to some types of abiotic stress such as heat shock.
Collapse
Affiliation(s)
- Michael Taliansky
- Gene Expression Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Gleba Y, Marillonnet S, Klimyuk V. Engineering viral expression vectors for plants: the 'full virus' and the 'deconstructed virus' strategies. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:182-8. [PMID: 15003219 DOI: 10.1016/j.pbi.2004.01.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant viral vectors are being successfully developed and exploited for the industrial-scale expression of heterologous proteins and as a research tool for studies of gene expression. The initial engineering strategy (the 'full virus' vector strategy) aimed to design a vector that was essentially a wildtype virus, which was modified to carry and express a heterologous sequence that encoded a gene of interest. The new emerging trend (the 'deconstructed virus' vector strategy) reflects an ideology that recognises the inherent limitations of the viral process. It attempts to 'deconstruct' the virus, by eliminating functions that are limiting or undesired, and to rebuild it, either by delegating the missing necessary functions to the host (which is genetically modified to provide those functions) or by replacing them with analogous functions that are not derived from a virus.
Collapse
Affiliation(s)
- Yuri Gleba
- Biozentrum Halle, Weinbergweg 22, D-06120 Halle (Saale), Germany.
| | | | | |
Collapse
|
50
|
Peremyslov VV, Andreev IA, Prokhnevsky AI, Duncan GH, Taliansky ME, Dolja VV. Complex molecular architecture of beet yellows virus particles. Proc Natl Acad Sci U S A 2004; 101:5030-5. [PMID: 15044703 PMCID: PMC387368 DOI: 10.1073/pnas.0400303101] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Closteroviruses possess exceptionally long filamentous virus particles that mediate protection and active transport of the genomic RNA within infected plants. These virions are composed of a long "body" and short "tail" whose principal components are the major and minor capsid proteins, respectively. Here we use biochemical, genetic, and ultrastructural analyses to dissect the molecular composition and architecture of particles of beet yellows virus, a closterovirus. We demonstrate that the virion tails encapsidate the 5'-terminal, approximately 650-nt-long, part of the viral RNA. In addition to the minor capsid protein, the viral Hsp70-homolog, 64-kDa protein, and 20-kDa protein are also incorporated into the virion tail. Atomic force microscopy of virions revealed that the tail possesses a striking, segmented morphology with the tip segment probably being built of 20-kDa protein. The unexpectedly complex structure of closterovirus virions has important mechanistic and functional implications that may also apply to other virus families.
Collapse
Affiliation(s)
- Valera V Peremyslov
- Department of Botany and Plant Pathology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|