1
|
King DE, Copeland WC. DNA repair pathways in the mitochondria. DNA Repair (Amst) 2025; 146:103814. [PMID: 39914164 PMCID: PMC11848857 DOI: 10.1016/j.dnarep.2025.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
Mitochondria contain their own small, circular genome that is present in high copy number. The mitochondrial genome (mtDNA) encodes essential subunits of the electron transport chain. Mutations in the mitochondrial genome are associated with a wide range of mitochondrial diseases and the maintenance and replication of mtDNA is crucial to cellular health. Despite the importance of maintaining mtDNA genomic integrity, fewer DNA repair pathways exist in the mitochondria than in the nucleus. However, mitochondria have numerous pathways that allow for the removal and degradation of DNA damage that may prevent accumulation of mutations. Here, we briefly review the DNA repair pathways present in the mitochondria, sources of mtDNA mutations, and discuss the passive role that mtDNA mutagenesis may play in cancer progression.
Collapse
Affiliation(s)
- Dillon E King
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
2
|
King DE, Beard EE, Satusky MJ, Ryde IT, George A, Johnson C, Dolan EL, Zhang Y, Zhu W, Wilkins H, Corden E, Murphy SK, Erie D, Gordan R, Meyer JN. TFAM as a sensor of UVC-induced mitochondrial DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620005. [PMID: 39484377 PMCID: PMC11527015 DOI: 10.1101/2024.10.24.620005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria lack nucleotide excision DNA repair; however, mitochondrial DNA (mtDNA) is resistant to mutation accumulation following DNA damage. These observations suggest additional damage sensing or protection mechanisms. Transcription Factor A, Mitochondrial (TFAM) compacts mtDNA into nucleoids. As such, TFAM has emerged as a candidate for protecting DNA or sensing damage. To examine these possibilities, we used live-cell imaging, cell-based assays, atomic force microscopy, and high-throughput protein-DNA binding assays to characterize the binding properties of TFAM to UVC-irradiated DNA and cellular consequences of UVC irradiation. Our data indicate an increase in mtDNA degradation and turnover, without a loss in mitochondrial membrane potential that might trigger mitophagy. We identified a reduction in sequence specificity of TFAM associated with UVC irradiation and a redistribution of TFAM binding throughout the mitochondrial genome. Our AFM data show increased compaction of DNA by TFAM in the presence of damage. Despite the TFAM-mediated compaction of mtDNA, we do not observe any protective effect on DNA damage accumulation in cells or in vitro. Taken together, these studies indicate that UVC-induced DNA damage promotes compaction by TFAM, suggesting that TFAM may act as a damage sensor, sequestering damaged genomes to prevent mutagenesis by direct removal or suppression of replication.
Collapse
|
3
|
Hosseinpour S, Razmara E, Heidari M, Rezaei Z, Ashrafi MR, Dehnavi AZ, Kameli R, Bereshneh AH, Vahidnezhad H, Azizimalamiri R, Zamani Z, Pak N, Rasulinezhad M, Mohammadi B, Ghabeli H, Ghafouri M, Mohammadi M, Zamani GR, Badv RS, Saket S, Rabbani B, Mahdieh N, Ahani A, Garshasbi M, Tavasoli AR. A comprehensive study of mutation and phenotypic heterogeneity of childhood mitochondrial leukodystrophies. Brain Dev 2024; 46:167-179. [PMID: 38129218 DOI: 10.1016/j.braindev.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Mitochondrial leukodystrophies (MLs) are mainly caused by impairments of the mitochondrial respiratory chains. This study reports the mutation and phenotypic spectrum of a cohort of 41 pediatric patients from 39 distinct families with MLs among 320 patients with a molecular diagnosis of leukodystrophies. METHODS This study summarizes the clinical, imaging, and molecular data of these patients for five years. RESULTS The three most common symptoms were neurologic regression (58.5%), pyramidal signs (58.5%), and extrapyramidal signs (43.9%). Because nuclear DNA mutations are responsible for a high percentage of pediatric MLs, whole exome sequencing was performed on all patients. In total, 39 homozygous variants were detected. Additionally, two previously reported mtDNA variants were identified with different levels of heteroplasmy in two patients. Among 41 mutant alleles, 33 (80.4%) were missense, 4 (9.8%) were frameshift (including 3 deletions and one duplication), and 4 (9.8%) were splicing mutations. Oxidative phosphorylation in 27 cases (65.8%) and mtDNA maintenance pathways in 8 patients (19.5%) were the most commonly affected mitochondrial pathways. In total, 5 novel variants in PDSS1, NDUFB9, FXBL4, SURF1, and NDUSF1 were also detected. In silico analyses showed how each novel variant may contribute to ML pathogenesis. CONCLUSIONS The findings of this study suggest whole-exome sequencing as a strong diagnostic genetic tool to identify the causative variants in pediatric MLs. In comparison between oxidative phosphorylation (OXPHOS) and mtDNA maintenance groups, brain stem and periaqueductal gray matter (PAGM) involvement were more commonly seen in OXPHOS group (P value of 0.002 and 0.009, respectively), and thinning of corpus callosum was observed more frequently in mtDNA maintenance group (P value of 0.042).
Collapse
Affiliation(s)
- Sareh Hosseinpour
- Department of Pediatric Neurology, Vali-e-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Morteza Heidari
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Reyhaneh Kameli
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hosseini Bereshneh
- Prenatal Diagnosis and Genetic Research Center, Dastgheib Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Vahidnezhad
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, USA; Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Zamani
- MD, MPH, Community Medicine Specialist, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Department of Radiology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasulinezhad
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Mohammadi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Ghabeli
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghafouri
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Mohammadi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Zamani
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Saket
- Iranian Child Neurology Center of Excellence, Pediatric Neurology Research Center, Research Institute for Children Health, Mofid Children's and Shohada-e Tajrish Hospitals, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ahani
- Mendel Medical Genetics Laboratory, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Jalal-Al Ahmad Hwy, Tarbiat Modares University, Tehran, Iran.
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Neurology Division, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
| |
Collapse
|
4
|
Abstract
In all living cells, the ribosome translates the genetic information carried by messenger RNAs (mRNAs) into proteins. The process of ribosome recycling, a key step during protein synthesis that ensures ribosomal subunits remain available for new rounds of translation, has been largely overlooked. Despite being essential to the survival of the cell, several mechanistic aspects of ribosome recycling remain unclear. In eubacteria and mitochondria, recycling of the ribosome into subunits requires the concerted action of the ribosome recycling factor (RRF) and elongation factor G (EF-G). Recently, the conserved protein HflX was identified in bacteria as an alternative factor that recycles the ribosome under stress growth conditions. The homologue of HflX, the GTP-binding protein 6 (GTPBP6), has a dual role in mitochondrial translation by facilitating ribosome recycling and biogenesis. In this review, mechanisms of ribosome recycling in eubacteria and mitochondria are described based on structural studies of ribosome complexes.
Collapse
Affiliation(s)
- Savannah M Seely
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Matthieu G Gagnon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1019, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
5
|
Lee YG, Park DH, Chae YC. Role of Mitochondrial Stress Response in Cancer Progression. Cells 2022; 11:cells11050771. [PMID: 35269393 PMCID: PMC8909674 DOI: 10.3390/cells11050771] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are subcellular organelles that are a hub for key biological processes, such as bioenergetic, biosynthetic, and signaling functions. Mitochondria are implicated in all oncogenic processes, from malignant transformation to metastasis and resistance to chemotherapeutics. The harsh tumor environment constantly exposes cancer cells to cytotoxic stressors, such as nutrient starvation, low oxygen, and oxidative stress. Excessive or prolonged exposure to these stressors can cause irreversible mitochondrial damage, leading to cell death. To survive hostile microenvironments that perturb mitochondrial function, cancer cells activate a stress response to maintain mitochondrial protein and genome integrity. This adaptive mechanism, which is closely linked to mitochondrial function, enables rapid adjustment and survival in harsh environmental conditions encountered during tumor dissemination, thereby promoting cancer progression. In this review, we describe how the mitochondria stress response contributes to the acquisition of typical malignant traits and highlight the potential of targeting the mitochondrial stress response as an anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Yu Geon Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Korea Food Research Institute, Wanju 55365, Korea
| | - Do Hong Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Correspondence: ; Tel.: +82-52-217-2524 or +82-52-217-2638
| |
Collapse
|
6
|
Gayathri N, Deepha S, Sharma S. Diagnosis of primary mitochondrial disorders -Emphasis on myopathological aspects. Mitochondrion 2021; 61:69-84. [PMID: 34592422 DOI: 10.1016/j.mito.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial disorders are one of the most common neurometabolic disorders affecting all age groups. The phenotype-genotype heterogeneity in these disorders can be attributed to the dual genetic control on mitochondrial functions, posing a challenge for diagnosis. Though the advancement in the high-throughput sequencing and other omics platforms resulted in a "genetics-first" approach, the muscle biopsy remains the benchmark in most of the mitochondrial disorders. This review focuses on the myopathological aspects of primary mitochondrial disorders. The utility of muscle biopsy is not limited to analyse the structural abnormalities; rather it also proves to be a potential tool to understand the deranged sub-cellular functions.
Collapse
Affiliation(s)
- Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India.
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| | - Shivani Sharma
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| |
Collapse
|
7
|
Sirtuins and Renal Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10081198. [PMID: 34439446 PMCID: PMC8388938 DOI: 10.3390/antiox10081198] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure is a major health problem that is increasing worldwide. To improve clinical outcomes, we need to understand the basic mechanisms of kidney disease. Aging is a risk factor for the development and progression of kidney disease. Cells develop an imbalance of oxidants and antioxidants as they age, resulting in oxidative stress and the development of kidney damage. Calorie restriction (CR) is recognized as a dietary approach that promotes longevity, reduces oxidative stress, and delays the onset of age-related diseases. Sirtuins, a type of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, are considered to be anti-aging molecules, and CR induces their expression. The sirtuin family consists of seven enzymes (Sirt1–7) that are involved in processes and functions related to antioxidant and oxidative stress, such as DNA damage repair and metabolism through histone and protein deacetylation. In fact, a role for sirtuins in the regulation of antioxidants and redox substances has been suggested. Therefore, the activation of sirtuins in the kidney may represent a novel therapeutic strategy to enhancing resistance to many causative factors in kidney disease through the reduction of oxidative stress. In this review, we discuss the relationship between sirtuins and oxidative stress in renal disease.
Collapse
|
8
|
Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators. Int J Mol Sci 2021; 22:ijms22020630. [PMID: 33435263 PMCID: PMC7827102 DOI: 10.3390/ijms22020630] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Sirtuins (SIRTs), enzymes from the family of NAD+-dependent histone deacetylases, play an important role in the functioning of the body at the cellular level and participate in many biochemical processes. The multi-directionality of SIRTs encourages scientists to undertake research aimed at understanding the mechanisms of their action and the influence that SIRTs have on the organism. At the same time, new substances are constantly being sought that can modulate the action of SIRTs. Extensive research on the expression of SIRTs in various pathological conditions suggests that regulation of their activity may have positive results in supporting the treatment of certain metabolic, neurodegenerative or cancer diseases or this connected with oxidative stress. Due to such a wide spectrum of activity, SIRTs may also be a prognostic markers of selected pathological conditions and prove helpful in assessing their progression, especially by modulating their activity. The article presents and discusses the activating or inhibiting impact of individual SIRTs modulators. The review also gathered selected currently available information on the expression of SIRTs in individual disease cases as well as the biological role that SIRTs play in the human organism, also in connection with oxidative stress condition, taking into account the progress of knowledge about SIRTs over the years, with particular reference to the latest research results.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-(71)-784-01-52
| | - Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| |
Collapse
|
9
|
Napoli E, McLennan YA, Schneider A, Tassone F, Hagerman RJ, Giulivi C. Characterization of the Metabolic, Clinical and Neuropsychological Phenotype of Female Carriers of the Premutation in the X-Linked FMR1 Gene. Front Mol Biosci 2020; 7:578640. [PMID: 33195422 PMCID: PMC7642626 DOI: 10.3389/fmolb.2020.578640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
The X-linked FMR1 premutation (PM) is characterized by a 55-200 CGG triplet expansion in the 5'-untranslated region (UTR). Carriers of the PM were originally thought to be asymptomatic; however, they may present general neuropsychiatric manifestations including learning disabilities, depression and anxiety, among others. With age, both sexes may also develop the neurodegenerative disease fragile X-associated tremor/ataxia syndrome (FXTAS). Among carriers, females are at higher risk for developing immune disorders, hypertension, seizures, endocrine disorders and chronic pain, among others. Some female carriers younger than 40 years old may develop fragile X-associated primary ovarian insufficiency (FXPOI). To date, no studies have addressed the metabolic footprint - that includes mitochondrial metabolism - of female carriers and its link to clinical/cognitive manifestations. To this end, we performed a comprehensive biochemical assessment of 42 female carriers (24-70 years old) compared to sex-matched non-carriers. By applying a multivariable correlation matrix, a generalized bioenergetics impairment was correlated with diagnoses of the PM, FXTAS and its severity, FXPOI and anxiety. Intellectual deficits were strongly correlated with both mitochondrial dysfunction and with CGG repeat length. A combined multi-omics approach identified a down-regulation of RNA and mRNA metabolism, translation, carbon and protein metabolism, unfolded protein response, and up-regulation of glycolysis and antioxidant response. The suboptimal activation of the unfolded protein response (UPR) and endoplasmic-reticulum-associated protein degradation (ERAD) response challenges and further compromises the PM genetic background to withstand other, more severe forms of stress. Mechanistically, some of the deficits were linked to an altered protein expression due to decreased protein translation, but others seemed secondary to oxidative stress originated from the accumulation of either toxic mRNA or RAN-derived protein products or as a result of a direct toxicity of accumulated metabolites from deficiencies in critical enzymes.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | | | - Andrea Schneider
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA, United States
| | - Flora Tassone
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randi J Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
10
|
Long L, Zhu Y, Li Z, Zhang H, Liu L, Bai J. Differential expression of skeletal muscle mitochondrial proteins in yak, dzo, and cattle: a proteomics-based study. J Vet Med Sci 2020; 82:1178-1186. [PMID: 32641622 PMCID: PMC7468061 DOI: 10.1292/jvms.19-0218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in yak mitochondria by natural selection in a hypoxic environment could be
utilized to understand adaptation to low-oxygen conditions. Therefore, the differences in
proteome profile of skeletal muscle mitochondria from yak, dzo, and cattle were analyzed
by mass spectrometry, which were then classified into 3 groups, comparing between yak and
dzo, yak and cattle, and dzo and cattle. 376 unique mitochondrial proteins were
identified, including 192, 191, and 281 proteins in the yak-dzo, yak-cattle, and
dzo-cattle groups, respectively. NRDP1 and COQ8A were expressed at higher levels in yak
and dzo compared to those in cattle, indicating higher endurance capacity of yak and dzo
in a low-oxygen environment. Gene Ontology (GO) terms of biological processes were
significantly enriched in oxidation-reduction process, and that of molecular functions and
cellular component were enriched in oxidoreductase activity and the mitochondrion,
respectively. The most significantly affected pathways in Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis were Parkinson’s disease, Huntington’s disease, and oxidative
phosphorylation between the yak-cattle and dzo-cattle groups; while metabolic pathways,
citrate cycle, and carbon metabolism were significantly affected pathways in the yak-dzo
group. ATP synthases, MTHFD1, MDH2, and SDHB were the most enriched hub proteins in the
protein-protein interaction (PPI) network. These results indicated that mammals living at
high altitudes could possibly possess better bioenergy metabolism than those living in the
plains. The key proteins identified in the present study may be exploited as candidate
proteins for understanding and fine-tuning mammalian adaptation to high altitudes.
Collapse
Affiliation(s)
- Ling Long
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730124, China
| | - Yipan Zhu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Zhenzi Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730124, China
| | - Haixia Zhang
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730124, China
| | - Lixia Liu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730124, China
| | - Jialin Bai
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730124, China
| |
Collapse
|
11
|
He H, Lin X, Guo J, Wang J, Xu B. Perimitochondrial Enzymatic Self-Assembly for Selective Targeting the Mitochondria of Cancer Cells. ACS NANO 2020; 14:6947-6955. [PMID: 32383849 PMCID: PMC7316614 DOI: 10.1021/acsnano.0c01388] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Emerging evidence indicates that mitochondria contribute to drug resistance in cancer, but how to selectively target the mitochondria of cancer cells remains less explored. Here, we show perimitochondrial enzymatic self-assembly for selectively targeting the mitochondria of liver cancer cells. Nanoparticles of a peptide-lipid conjugate, being a substrate of enterokinase (ENTK), encapsulate chloramphenicol (CLRP), a clinically used antibiotic that is deactivated by glucuronidases in cytosol but not in mitochondria. Perimitochondrial ENTK cleaves the Flag-tag on the conjugate to deliver CLRP selectively into the mitochondria of cancer cells, thus inhibiting the mitochondrial protein synthesis, inducing the release of cytochrome c into the cytosol and resulting in cancer cell death. This strategy selectively targets liver cancer cells over normal liver cells. Moreover, blocking the mitochondrial protein synthesis sensitizes the cancer cells, relying on glycolysis and/or OXPHOS, to cisplatin. This work illustrates a facile approach, selectively targeting mitochondria of cancer cells and repurposing clinically approved ribosome inhibitors, to interrupt the metabolism of cancer cells for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Bing Xu
- Corresponding Author: Bing Xu-Department of Chemistry, Brandeis University,
| |
Collapse
|
12
|
Kong M, Xiang H, Wang J, Liu J, Zhang X, Zhao X. Mitochondrial DNA Haplotypes Influence Energy Metabolism across Chicken Transmitochondrial Cybrids. Genes (Basel) 2020; 11:genes11010100. [PMID: 31963157 PMCID: PMC7017162 DOI: 10.3390/genes11010100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
The association between mitochondrial DNA haplotype and productive performances has been widely reported in chicken breeds. However, there has not been physiological evidence of this seen previously. In this study, chicken transmitochondrial cells were generated using the nucleus of the DF-1 cell line and mitochondria of primary cell lines derived from two native chicken breeds, Tibetan chicken and Shouguang chicken. Generally, Tibetan chicken primary cells showed a stronger metabolic capacity than Shouguang chicken primary cells. However, the Tibetan chicken cybrids had a dramatic drop in relative mtDNA copies and oxygen consumption. Higher rates of oxygen consumption (OCR) and expression levels of mitochondrial biogenesis and fusion genes were observed in Shouguang chicken cybrids, potentially reflecting that the mitochondrial DNA haplotype of Shouguang chicken had better coordination with the DF-1 nucleus than others. Meanwhile, mitonuclear incompatibility occurred in Tibetan chicken cybrids. The results demonstrate functional differences among mitochondrial DNA haplotypes and may shed light on the interaction between the mitochondria and nucleus in Gallus gallus domesticus.
Collapse
Affiliation(s)
- Minghua Kong
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, China;
| | - Jian Liu
- Guizhou Nayong Professor Workstation, Bijie 553300, China; (J.L.); (X.Z.)
| | - Xiben Zhang
- Guizhou Nayong Professor Workstation, Bijie 553300, China; (J.L.); (X.Z.)
- Institute of Animal Husbandry and Veterinary Medicine, Bijie 551700, China
| | - Xingbo Zhao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Guizhou Nayong Professor Workstation, Bijie 553300, China; (J.L.); (X.Z.)
- Correspondence: ; Tel.: +86-010-62733417; Fax: +86-010-62733417
| |
Collapse
|
13
|
Abstract
The maternally inherited mitochondrial DNA (mtDNA) is a circular 16,569bp double stranded DNA that encodes 37 genes, 24 of which (2 rRNAs and 22 tRNAs) are necessary for transcription and translation of 13 polypeptides that are all subunits of respiratory chain. Pathogenic mutations in mtDNA cause respiratory chain dysfunction, and are the underlying defect in an ever-increasing number of mtDNA-related encephalomyopathies with distinct phenotypes. In this chapter, we present an overview of mtDNA mutations and describe the molecular techniques currently employed in our laboratory to detect two types of mtDNA mutations: single-large-scale rearrangements and point mutations.
Collapse
|
14
|
Berenguel Hernández AM, de la Cruz M, Alcázar-Fabra M, Prieto-Rodríguez A, Sánchez-Cuesta A, Martin J, Tormo JR, Rodríguez-Aguilera JC, Cortés-Rodríguez AB, Navas P, Reyes F, Vicente F, Genilloud O, Santos-Ocaña C. Design of High-Throughput Screening of Natural Extracts to Identify Molecules Bypassing Primary Coenzyme Q Deficiency in Saccharomyces cerevisiae. SLAS DISCOVERY 2019; 25:299-309. [PMID: 31751168 DOI: 10.1177/2472555219877185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coenzyme Q10 (CoQ10) deficiency syndrome is a rare disease included in the family of mitochondrial diseases, which is a heterogeneous group of genetic disorders characterized by defective energy production. CoQ10 biosynthesis in humans requires at least 11 gene products acting in a multiprotein complex within mitochondria. The high-throughput screening (HTS) method based on the stabilization of the CoQ biosynthesis complex (Q-synthome) produced by the COQ8 gene overexpression is proven here to be a successful method for identifying new molecules from natural extracts that are able to bypass the CoQ6 deficiency in yeast mutant cells. The main features of the new approach are the combination of two yeast targets defective in genes with different functions on CoQ6 biosynthesis to secure the versatility of the molecule identified, the use of glycerol as a nonfermentable carbon source providing a wide growth window, and the stringent conditions required to mark an extract as positive. The application of this pilot approach to a representative subset of 1200 samples of the Library of Natural Products of Fundación MEDINA resulted in the finding of nine positive extracts. The fractionation of three of the nine extracts allowed the identification of five molecules; two of them are present in molecule databases of natural extracts and three are nondescribed molecules. The use of this screening method opens the possibility of discovering molecules with CoQ10-bypassing action useful as therapeutic agents to fight against mitochondrial diseases in human patients.
Collapse
Affiliation(s)
| | | | - María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Juan Carlos Rodríguez-Aguilera
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Cortés-Rodríguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Tahmasebi S, Khoutorsky A, Mathews MB, Sonenberg N. Translation deregulation in human disease. Nat Rev Mol Cell Biol 2019; 19:791-807. [PMID: 30038383 DOI: 10.1038/s41580-018-0034-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in sequencing and high-throughput techniques have provided an unprecedented opportunity to interrogate human diseases on a genome-wide scale. The list of disease-causing mutations is expanding rapidly, and mutations affecting mRNA translation are no exception. Translation (protein synthesis) is one of the most complex processes in the cell. The orchestrated action of ribosomes, tRNAs and numerous translation factors decodes the information contained in mRNA into a polypeptide chain. The intricate nature of this process renders it susceptible to deregulation at multiple levels. In this Review, we summarize current evidence of translation deregulation in human diseases other than cancer. We discuss translation-related diseases on the basis of the molecular aberration that underpins their pathogenesis (including tRNA dysfunction, ribosomopathies, deregulation of the integrated stress response and deregulation of the mTOR pathway) and describe how deregulation of translation generates the phenotypic variability observed in these disorders.
Collapse
Affiliation(s)
- Soroush Tahmasebi
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada. .,Department of Biochemistry, McGill University, Montreal, Quebec, Canada. .,Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Arkady Khoutorsky
- Department of Anesthesia and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada. .,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Mir DA, Balamurugan K. A proteomic analysis of Caenorhabditis elegans mitochondria during bacterial infection. Mitochondrion 2019; 48:37-50. [PMID: 30926536 DOI: 10.1016/j.mito.2019.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/13/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria are involved in a variety of cellular metabolic processes and their functions are regulated by intrinsic and extrinsic stimuli. Recent studies have revealed functional diversity and importance of mitochondria in many cellular processes, including the innate immune response. This study evaluated the specific response and proteomic changes in host Caenorhabditis elegans mitochondria during Pseudomonas aeruginosa PAO1 infection. We performed an inclusive approach to determine the C. elegans mitochondria proteome. The protein fractions of mitochondria were analysed by tandem LC-MS/MS, 129 differentially regulated proteins were identified, indicating an involvement of various mitochondrial processes. The several known components of the oxidative phosphorylation (OXPHOS) machinery, the tricarboxylic acid (TCA) cycle, mitochondrial unfolded protein response (UPRmt) and stable mitochondria-encoded proteins were found to be differentially expressed. Our results in-depth provide new horizons for mitochondria-associated protein functions and the classification of mitochondrial diseases during host-pathogen interaction.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | | |
Collapse
|
17
|
Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid Redox Signal 2018; 28:643-661. [PMID: 28891317 PMCID: PMC5824489 DOI: 10.1089/ars.2017.7290] [Citation(s) in RCA: 559] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Antioxidant and redox signaling (ARS) events are regulated by critical molecules that modulate antioxidants, reactive oxygen species (ROS) or reactive nitrogen species (RNS), and/or oxidative stress within the cell. Imbalances in these molecules can disturb cellular functions to become pathogenic. Sirtuins serve as important regulators of ARS in cells. Recent Advances: Sirtuins (SIRTs 1-7) are a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases with the ability to deacetylate histone and nonhistone targets. Recent studies show that sirtuins modulate the regulation of a variety of cellular processes associated with ARS. SIRT1, SIRT3, and SIRT5 protect the cell from ROS, and SIRT2, SIRT6, and SIRT7 modulate key oxidative stress genes and mechanisms. Interestingly, SIRT4 has been shown to induce ROS production and has antioxidative roles as well. CRITICAL ISSUES A complete understanding of the roles of sirtuins in redox homeostasis of the cell is very important to understand the normal functioning as well as pathological manifestations. In this review, we have provided a critical discussion on the role of sirtuins in the regulation of ARS. We have also discussed mechanistic interactions among different sirtuins. Indeed, a complete understanding of sirtuin biology could be critical at multiple fronts. FUTURE DIRECTIONS Sirtuins are emerging to be important in normal mammalian physiology and in a variety of oxidative stress-mediated pathological situations. Studies are needed to dissect the mechanisms of sirtuins in maintaining redox homeostasis. Efforts are also required to assess the targetability of sirtuins in the management of redox-regulated diseases. Antioxid. Redox Signal. 28, 643-661.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | | | - Nicholas J Mack
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
18
|
Santos D, Santos MJ, Alves-Ferreira M, Coelho T, Sequeiros J, Alonso I, Oliveira P, Sousa A, Lemos C, Grazina M. mtDNA copy number associated with age of onset in familial amyloid polyneuropathy. J Neurol Neurosurg Psychiatry 2018; 89:300-304. [PMID: 29018163 DOI: 10.1136/jnnp-2017-316657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Transthyretin-related familial amyloid polyneuropathy (TTR-FAP Val30Met) shows a wide variation in age-at-onset (AO) between generations and genders, as in Portuguese families, where women display a later onset and a larger anticipation (>10 years). Mitochondrial DNA (mtDNA) copy number was assessed to clarify whether it has a modifier effect on AO variability in Portuguese patients. METHODS The mtDNA copy number of 262 samples (175 Val30Met TTR carriers and 87 controls (proven Val30Val)) was quantified by quantitative real-time PCR. Statistical analysis was performed using IBM SPSS V.23 software. RESULTS This study shows that Val30Met TTR carriers have a significantly higher (p<0.001) mean mtDNA copy number than controls. Furthermore, the highest mtDNA copy number mean was observed in early-onset patients (AO <40 years). Importantly, early-onset offspring showed a significant increase (p=0.002) in the mtDNA copy number, when compared with their late AO parents. CONCLUSIONS The present findings suggest, for the first time, that mtDNA copy number may be associated with earlier events and may therefore be further explored as a potential biomarker for follow-up of TTR-FAP Val30Met carriers.
Collapse
Affiliation(s)
- Diana Santos
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria João Santos
- Centre for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics (LGB), Universidade de Coimbra, Coimbra, Portugal.,Faculdade de Medicina da Universidade de Coimbra (FMUC), Coimbra, Portugal
| | - Miguel Alves-Ferreira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Teresa Coelho
- Unidade Corino de Andrade (UCA), Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Jorge Sequeiros
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Centro de Genética Preditiva e Preventiva (CGPP), Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Centro de Genética Preditiva e Preventiva (CGPP), Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Pedro Oliveira
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Instituto de Saúde Pública (ISPUP), Universidade do Porto, Porto, Portugal
| | - Alda Sousa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Manuela Grazina
- Centre for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics (LGB), Universidade de Coimbra, Coimbra, Portugal.,Faculdade de Medicina da Universidade de Coimbra (FMUC), Coimbra, Portugal
| |
Collapse
|
19
|
Li H, Shen L, Hu P, Huang R, Cao Y, Deng J, Yuan W, Liu D, Yang J, Gu H, Bai Y. Aging-associated mitochondrial DNA mutations alter oxidative phosphorylation machinery and cause mitochondrial dysfunctions. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2266-2273. [PMID: 28559044 DOI: 10.1016/j.bbadis.2017.05.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Our previous study generated a series of cybrids containing mitochondria of synaptosomes from mice at different ages. The following functional analysis on these cybrids revealed an age-dependent decline of mitochondrial function. To understand the underlying mechanisms that contribute to the age-related mitochondrial dysfunction, we focused on three cybrids carrying mitochondria derived from synaptosomes of the old mice that exhibited severe respiratory deficiencies. In particular, we started with a comprehensive analysis of mitochondrial genome by high resolution, high sensitive deep sequencing method. Compared with young control, we detected a significant accumulation of heteroplasmic mtDNA mutations. These mutations included six alterations in main control region that has been shown to regulate overall gene-expression, and four alterations in protein coding region, two of which led to significant changes in complex I subunit ND5 and complex III subunit CytB. Interestingly, a reduced mtDNA-encoded protein synthesis was associated with the changes in the main control region. Likewise, mutations in ND5 and CytB were associated with defects in assembly of respiratory complexes. Altogether, the identified age-dependent accumulation of mtDNA mutations in mouse brain likely contributes to the decline in mitochondrial function.
Collapse
Affiliation(s)
- Hongzhi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Luxi Shen
- Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Peiqing Hu
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Rong Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ying Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Janice Deng
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Weihua Yuan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Danhui Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jifeng Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yidong Bai
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
20
|
Tavares WC, Seuánez HN. Disease-associated mitochondrial mutations and the evolution of primate mitogenomes. PLoS One 2017; 12:e0177403. [PMID: 28510580 PMCID: PMC5433710 DOI: 10.1371/journal.pone.0177403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023] Open
Abstract
Several human diseases have been associated with mutations in mitochondrial genes comprising a set of confirmed and reported mutations according to the MITOMAP database. An analysis of complete mitogenomes across 139 primate species showed that most confirmed disease-associated mutations occurred in aligned codon positions and gene regions under strong purifying selection resulting in a strong evolutionary conservation. Only two confirmed variants (7.1%), coding for the same amino acids accounting for severe human diseases, were identified without apparent pathogenicity in non-human primates, like the closely related Bornean orangutan. Conversely, reported disease-associated mutations were not especially concentrated in conserved codon positions, and a large fraction of them occurred in highly variable ones. Additionally, 88 (45.8%) of reported mutations showed similar variants in several non-human primates and some of them have been present in extinct species of the genus Homo. Considering that recurrent mutations leading to persistent variants throughout the evolutionary diversification of primates are less likely to be severely damaging to fitness, we suggest that these 88 mutations are less likely to be pathogenic. Conversely, 69 (35.9%) of reported disease-associated mutations occurred in extremely conserved aligned codon positions which makes them more likely to damage the primate mitochondrial physiology.
Collapse
Affiliation(s)
- William Corrêa Tavares
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Héctor N. Seuánez
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Ansari A, Rahman MS, Saha SK, Saikot FK, Deep A, Kim KH. Function of the SIRT3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging Cell 2017; 16:4-16. [PMID: 27686535 PMCID: PMC5242307 DOI: 10.1111/acel.12538] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 12/11/2022] Open
Abstract
In mammals, seven members of the sirtuin protein family known as class III histone deacetylase have been identified for their characteristic features. These distinguished characteristics include the tissues where they are distributed or located, enzymatic activities, molecular functions, and involvement in diseases. Among the sirtuin members, SIRT3 has received much attention for its role in cancer genetics, aging, neurodegenerative disease, and stress resistance. SIRT3 controls energy demand during stress conditions such as fasting and exercise as well as metabolism through the deacetylation and acetylation of mitochondrial enzymes. SIRT3 is well known for its ability to eliminate reactive oxygen species and to prevent the development of cancerous cells or apoptosis. This review article provides a comprehensive review on numerous (noteworthy) molecular functions of SIRT3 and its effect on cancer cells and various diseases including Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Aneesa Ansari
- Department of Genetic Engineering and Biotechnology; Jessore University of Science and Technology; Jessore 7408 Bangladesh
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology; Jessore University of Science and Technology; Jessore 7408 Bangladesh
| | - Subbroto K. Saha
- Department of Stem Cell and Regenerative Biology; Konkuk University; 120 Neungdong-Ro Seoul 05029 Korea
| | - Forhad K. Saikot
- Department of Genetic Engineering and Biotechnology; Jessore University of Science and Technology; Jessore 7408 Bangladesh
| | - Akash Deep
- Central Scientific Instruments Organisation (CSIR-CSIO); Sector 30 C Chandigarh 160030 India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering; Hanyang University; 222 Wangsimni-Ro Seoul 04763 Korea
| |
Collapse
|
22
|
Qi Y, Wei Y, Wang Q, Xu H, Wang Y, Yao A, Yang H, Gao Y, Zhou F. Heteroplasmy of mutant mitochondrial DNA A10398G and analysis of its prognostic value in non-small cell lung cancer. Oncol Lett 2016; 12:3081-3088. [PMID: 27899967 PMCID: PMC5103904 DOI: 10.3892/ol.2016.5086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/25/2016] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial dysfunction is associated with pathogenic mitochondrial (mt)DNA mutations. The majority of mtDNA point mutations have a heteroplasmic status, which is defined as the coexistence of wild-type and mutated DNA within a cell or tissue. Previous findings demonstrated that certain mtDNA heteroplasmic mutations contribute to widely spread chronic diseases, including cancer, and alterations in the heteroplasmy level are associated with the clinical phenotype and severity of cancer. In the present study, the proportions of mutant mtDNA 10398G were assessed using amplification-refractory mutation system-quantitative polymerase chain reaction (PCR) assay in 129 non-small cell lung cancer (NSCLC) tissue samples. Wild-type and mutant sequences were separately amplified using allele-specific primers and, subsequently, the PCR products containing the mtDNA 10398 site were ligated into vectors to construct a standard plasmid DNA construct. The association between mtDNA A10398G and the prognosis of patients was analyzed by survival analysis and Cox proportional hazards model. For the patient cohort, the median follow-up time and overall survival time were 20.6 and 26.3 months, respectively. The ratios of mutant heteroplasmy ranged between 0.31 and 97.04%. Patients with a high degree of mutant mtDNA 10398G had a significantly longer overall survival time compared with those with a low degree of mutant mtDNA 10398G (28.7 vs. 22.5 months, respectively; P<0.05). In addition, multivariate analysis demonstrated that epidermal growth factor receptor mutation status, tumor stage and the possession of a low degree of mutant 10398G were the three most independent prognostic factors. In conclusion, the present study suggests that, among NSCLC patients, there are large shifts in mutant mtDNA 10398G heteroplasmy and a low degree of mutant mtDNA 10398G heteroplasmy may be a marker of poor prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- Yuexiao Qi
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yuehua Wei
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qiaoli Wang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hui Xu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - You Wang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Anqi Yao
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hui Yang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yan Gao
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
23
|
|
24
|
Pallotti F, Binelli G, Fabbri R, Valentino ML, Vicenti R, Macciocca M, Cevoli S, Baruzzi A, DiMauro S, Carelli V. A wide range of 3243A>G/tRNALeu(UUR) (MELAS) mutation loads may segregate in offspring through the female germline bottleneck. PLoS One 2014; 9:e96663. [PMID: 24805791 PMCID: PMC4013013 DOI: 10.1371/journal.pone.0096663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
Segregation of mutant mtDNA in human tissues and through the germline is debated, with no consensus about the nature and size of the bottleneck hypothesized to explain rapid generational shifts in mutant loads. We investigated two maternal lineages with an apparently different inheritance pattern of the same pathogenic mtDNA 3243A>G/tRNALeu(UUR) (MELAS) mutation. We collected blood cells, muscle biopsies, urinary epithelium and hair follicles from 20 individuals, as well as oocytes and an ovarian biopsy from one female mutation carrier, all belonging to the two maternal lineages to assess mutant mtDNA load, and calculated the theoretical germline bottleneck size (number of segregating units). We also evaluated “mother-to-offspring” segregations from the literature, for which heteroplasmy assessment was available in at least three siblings besides the proband. Our results showed that mutation load was prevalent in skeletal muscle and urinary epithelium, whereas in blood cells there was an inverse correlation with age, as previously reported. The histoenzymatic staining of the ovarian biopsy failed to show any cytochrome-c-oxidase defective oocyte. Analysis of four oocytes and one offspring from the same unaffected mother of the first family showed intermediate heteroplasmic mutant loads (10% to 75%), whereas very skewed loads of mutant mtDNA (0% or 81%) were detected in five offspring of another unaffected mother from the second family. Bottleneck size was 89 segregating units for the first mother and 84 for the second. This was remarkably close to 88, the number of “segregating units” in the “mother-to-offspring” segregations retrieved from literature. In conclusion, a wide range of mutant loads may be found in offspring tissues and oocytes, resulting from a similar theoretical bottleneck size.
Collapse
Affiliation(s)
- Francesco Pallotti
- Department of Neurology, Columbia University, New York City, New York, United States of America
- Dipartimento di Scienze Chirurgiche e Morfologiche, University of Insubria, Varese, Italy
| | - Giorgio Binelli
- Dipartimento di Scienze Teoriche e Applicate, University of Insubria, Varese, Italy
| | - Raffaella Fabbri
- Unità Operativa di Ginecologia e Fisiopatologia della Riproduzione Umana, Ospedale S.Orsola-Malpighi, University of Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), University of Bologna, Bologna, Italy
| | - Maria L. Valentino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy
| | - Rossella Vicenti
- Unità Operativa di Ginecologia e Fisiopatologia della Riproduzione Umana, Ospedale S.Orsola-Malpighi, University of Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), University of Bologna, Bologna, Italy
| | - Maria Macciocca
- Unità Operativa di Ginecologia e Fisiopatologia della Riproduzione Umana, Ospedale S.Orsola-Malpighi, University of Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), University of Bologna, Bologna, Italy
| | - Sabina Cevoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy
| | - Agostino Baruzzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy
| | - Salvatore DiMauro
- Department of Neurology, Columbia University, New York City, New York, United States of America
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
25
|
Tavares MV, Santos MJ, Domingues AP, Pratas J, Mendes C, Simões M, Moura P, Diogo L, Grazina M. Antenatal manifestations of mitochondrial disorders. J Inherit Metab Dis 2013; 36:805-11. [PMID: 23361304 DOI: 10.1007/s10545-012-9567-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/14/2012] [Accepted: 11/18/2012] [Indexed: 12/30/2022]
Abstract
Mitochondrial respiratory chain diseases are a heterogeneous group of pathologies caused by genetic alterations affecting mitochondrial energy production. Theoretically, this deficiency may lead to any symptoms, in any organ or tissue, at any age even before birth. The aim of our study was to identify the frequency and characterize antenatal manifestations identifying possible associations between mitochondrial disease and more specific and earlier manifestation. We retrospectively review the files of 44 paediatric subjects with genetic and biochemical alterations of respiratory chain identified in the first decade of life and compare data with a control group (n = 88). Our results show that maternal age was similar in both groups. The female gender was predominant in patients group. Gestational age at delivery was similar in both groups. Concerning birth weight, it was significantly lower (p = 0.001) in patients (2899.9 ± 538.3 vs. 3246.6 ± 460.2 g). Fifteen pregnancies of the patients group were considered abnormal. Our findings show that intrauterine growth restriction was the most frequent antenatal feature observed. Neonatal morbidity was significantly higher (fivefold) in patients (p < 0.001). The clinical findings are independent of the molecular defect type. Our results are preliminary and more studies are needed, in order to learn more about mitochondrial physiology and activity in embryological development for the assessment of mitochondrial disease progress in fetal life. However, the present work is a significant contribution, given the scarcity of information in this field.
Collapse
Affiliation(s)
- Mariana Vide Tavares
- Obstetric Unit, University Hospital of Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
IGF-1-induced enhancement of PRNP expression depends on the negative regulation of transcription factor FOXO3a. PLoS One 2013; 8:e71896. [PMID: 23967259 PMCID: PMC3743769 DOI: 10.1371/journal.pone.0071896] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/04/2013] [Indexed: 01/14/2023] Open
Abstract
The conformational conversion of the cellular prion protein (PrPC) into its β-sheet-rich scrapie isoform (PrPSc) causes fatal prion diseases, which are also called transmissible spongiform encephalopathies (TSEs). Recent studies suggest that the expression of PrPC by the PRNP gene is crucial for the development of TSEs. Therefore, the identification of the exogenous and endogenous stimulating factors that regulate PRNP expression would help to understand the pathogenesis of TSEs. Here, we demonstrate that forkhead box O3a (FOXO3a) negatively regulates PRNP expression by binding to the PRNP promoter, which is negatively regulated by insulin-like growth factor 1 (IGF-1). Our results show that the IGF-1-induced enhancement of PRNP mRNA and protein levels is due to the activation of the PI3K-Akt signaling pathway. The activation of Akt then induces the phosphorylation of FOXO3a, leading to its translocation from the nucleus to the cytoplasm and preventing its binding to the PRNP promoter. Treatment with the PI3K-Akt inhibitor LY294002 induces the nuclear retention of FOXO3a, which leads to a decrease in PRNP expression. We present a new IGF-1-PI3K-Akt-FOXO3a pathway, which influences PRNP expression. The results of this work are vital for understanding the function of PrPC and for future therapeutic approaches to human TSEs.
Collapse
|
27
|
Cheng Y, Ren X, Gowda ASP, Shan Y, Zhang L, Yuan YS, Patel R, Wu H, Huber-Keener K, Yang JW, Liu D, Spratt TE, Yang JM. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis 2013; 4:e731. [PMID: 23868064 PMCID: PMC3730425 DOI: 10.1038/cddis.2013.254] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/20/2013] [Accepted: 06/04/2013] [Indexed: 12/16/2022]
Abstract
Sirtuin 3 (Sirt3), a major mitochondrial NAD(+)-dependent deacetylase, targets various mitochondrial proteins for lysine deacetylation and regulates important cellular functions such as energy metabolism, aging, and stress response. In this study, we identified the human 8-oxoguanine-DNA glycosylase 1 (OGG1), a DNA repair enzyme that excises 7,8-dihydro-8-oxoguanine (8-oxoG) from damaged genome, as a new target protein for Sirt3. We found that Sirt3 physically associated with OGG1 and deacetylated this DNA glycosylase and that deacetylation by Sirt3 prevented the degradation of the OGG1 protein and controlled its incision activity. We further showed that regulation of the acetylation and turnover of OGG1 by Sirt3 played a critical role in repairing mitochondrial DNA (mtDNA) damage, protecting mitochondrial integrity, and preventing apoptotic cell death under oxidative stress. We observed that following ionizing radiation, human tumor cells with silencing of Sirt3 expression exhibited deteriorated oxidative damage of mtDNA, as measured by the accumulation of 8-oxoG and 4977 common deletion, and showed more severe mitochondrial dysfunction and underwent greater apoptosis in comparison with the cells without silencing of Sirt3 expression. The results reported here not only reveal a new function and mechanism for Sirt3 in defending the mitochondrial genome against oxidative damage and protecting from the genotoxic stress-induced apoptotic cell death but also provide evidence supporting a new mtDNA repair pathway.
Collapse
Affiliation(s)
- Y Cheng
- Department of Pharmacology, Milton S Hershey Medical Center, Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cherry ABC, Gagne KE, McLoughlin EM, Baccei A, Gorman B, Hartung O, Miller JD, Zhang J, Zon RL, Ince TA, Neufeld EJ, Lerou PH, Fleming MD, Daley GQ, Agarwal S. Induced pluripotent stem cells with a mitochondrial DNA deletion. Stem Cells 2013; 31:1287-1297. [PMID: 23400930 PMCID: PMC3692613 DOI: 10.1002/stem.1354] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/29/2012] [Indexed: 01/19/2023]
Abstract
In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here, we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases.
Collapse
MESH Headings
- Acyl-CoA Dehydrogenase, Long-Chain/deficiency
- Acyl-CoA Dehydrogenase, Long-Chain/metabolism
- Anemia, Sideroblastic/genetics
- Anemia, Sideroblastic/metabolism
- Anemia, Sideroblastic/pathology
- Cell Differentiation/genetics
- Cell Line
- Child, Preschool
- Congenital Bone Marrow Failure Syndromes
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Female
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Fibroblasts/physiology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/physiology
- Humans
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/physiology
- Lipid Metabolism, Inborn Errors/diagnosis
- Lipid Metabolism, Inborn Errors/metabolism
- Lipid Metabolism, Inborn Errors/pathology
- Mitochondrial Diseases/diagnosis
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/metabolism
- Mitochondrial Diseases/pathology
- Muscular Diseases/diagnosis
- Muscular Diseases/metabolism
- Muscular Diseases/pathology
- Sequence Deletion
Collapse
Affiliation(s)
- Anne B. C. Cherry
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana Farber Cancer Institute; Harvard Stem Cell Institute; Manton Center for Orphan Disease Research, Boston, MA
- Howard Hughes Medical Institute, Boston Children's Hospital; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Katelyn E. Gagne
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana Farber Cancer Institute; Harvard Stem Cell Institute; Manton Center for Orphan Disease Research, Boston, MA
| | - Erin M. McLoughlin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana Farber Cancer Institute; Harvard Stem Cell Institute; Manton Center for Orphan Disease Research, Boston, MA
- Howard Hughes Medical Institute, Boston Children's Hospital; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Anna Baccei
- Department of Newborn Medicine and Division of Genetics, Brigham and Women's Hospital; Division of Newborn Medicine, Boston Children's Hospital; Harvard Medical School; Boston, MA
| | - Bryan Gorman
- Department of Newborn Medicine and Division of Genetics, Brigham and Women's Hospital; Division of Newborn Medicine, Boston Children's Hospital; Harvard Medical School; Boston, MA
| | - Odelya Hartung
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana Farber Cancer Institute; Harvard Stem Cell Institute; Manton Center for Orphan Disease Research, Boston, MA
| | - Justine D. Miller
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana Farber Cancer Institute; Harvard Stem Cell Institute; Manton Center for Orphan Disease Research, Boston, MA
| | - Jin Zhang
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana Farber Cancer Institute; Harvard Stem Cell Institute; Manton Center for Orphan Disease Research, Boston, MA
| | - Rebecca L. Zon
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana Farber Cancer Institute; Harvard Stem Cell Institute; Manton Center for Orphan Disease Research, Boston, MA
| | - Tan A. Ince
- Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Ellis J. Neufeld
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Paul H. Lerou
- Department of Newborn Medicine and Division of Genetics, Brigham and Women's Hospital; Division of Newborn Medicine, Boston Children's Hospital; Harvard Medical School; Boston, MA
| | - Mark D. Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA
| | - George Q. Daley
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana Farber Cancer Institute; Harvard Stem Cell Institute; Manton Center for Orphan Disease Research, Boston, MA
- Howard Hughes Medical Institute, Boston Children's Hospital; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana Farber Cancer Institute; Harvard Stem Cell Institute; Manton Center for Orphan Disease Research, Boston, MA
| |
Collapse
|
29
|
Tomoum H, Elsayed SM, Berry-Kravis E. Hypothyroidism could be the only manifestation of mitochondrial T8993C mutation in Leigh syndrome. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2013. [DOI: 10.1016/j.ejmhg.2012.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
30
|
Murad NAA, Cullen JK, McKenzie M, Ryan MT, Thorburn D, Gueven N, Kobayashi J, Birrell G, Yang J, Dörk T, Becherel O, Grattan-Smith P, Lavin MF. Mitochondrial dysfunction in a novel form of autosomal recessive ataxia. Mitochondrion 2012. [PMID: 23178371 DOI: 10.1016/j.mito.2012.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defects in the recognition and/or repair of damage to DNA are responsible for a sub-group of autosomal recessive ataxias. Included in this group is a novel form of ataxia with oculomotor apraxia characterised by sensitivity to DNA damaging agents, a defect in p53 stabilisation, oxidative stress and resistance to apoptosis. We provide evidence here that the defect in this patient's cells is at the level of the mitochondrion. Mitochondrial membrane potential was markedly reduced in cells from the patient and ROS levels were elevated. This was accompanied by lipid peroxidation of mitochondrial proteins involved in electron transport and RNA synthesis. However, no gross changes or alteration in composition or activity of mitochondrial electron transport complexes was evident. Sequencing of mitochondrial DNA revealed a mutation, I349T, in the mitochondrial cytochrome b gene. These results describe a patient with an apparently novel form of AOA characterised by a defect at the level of the mitochondrion.
Collapse
Affiliation(s)
- Nor Azian Abdul Murad
- Cancer and Cell Biology, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang C, Huang VH, Simon M, Sharma LK, Fan W, Haas R, Wallace DC, Bai Y, Huang T. Heteroplasmic mutations of the mitochondrial genome cause paradoxical effects on mitochondrial functions. FASEB J 2012; 26:4914-24. [PMID: 22925728 DOI: 10.1096/fj.12-206532] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mitochondrial genome (mtDNA) mutation causes highly variable clinical features, and its pathogenesis is not fully understood. In this study, we analyzed the heteroplasmic mtDNA mutation C4936T (p.T156I) in ND2 of complex I and the homoplasmic mtDNA mutation A9181G (p.S219G) in ATPase 6 of complex V. Using cybrid technology, we found that in a high-glucose medium in which cultured cells mainly depend on anaerobic glycolysis for energy, the C4936T mutation inhibited cell growth by 50%. Oxygen consumption and reactive oxygen species production were also reduced by 60 and 75%, respectively. Because the subject also had conjunctiva carcinoma, we further tested whether the C4936T mutation was associated with tumor formation. In an anchorage-dependant growth test, we found that only cells with a high level of C4936T mutation formed colonies. In contrast, when the cells grew in a galactose medium in which cells were forced to generate ATP through oxidative phosphorylation, the C4936T mutation protected cells from apoptosis probably caused by the A9181G mutation. Our results suggest that the phenotype caused by mtDNA mutations may depend on the availability of the nutrients. This gene-environment interaction may contribute to the complexity of pathogenesis and clinical phenotypes caused by mtDNA mutation.
Collapse
Affiliation(s)
- Chengkang Zhang
- Department of Pediatrics, University of California-Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Irwin MH, Parameshwaran K, Pinkert CA. Mouse models of mitochondrial complex I dysfunction. Int J Biochem Cell Biol 2012; 45:34-40. [PMID: 22903069 DOI: 10.1016/j.biocel.2012.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/21/2012] [Accepted: 08/04/2012] [Indexed: 12/21/2022]
Abstract
Diseases of the mitochondria generally affect cells with high-energy demand, and appear to most profoundly affect excitatory cells that have localized high energy requirements, such as neurons and cardiac and skeletal muscle cells. Complex I of the mammalian mitochondrial respiratory chain is a very large, 45 subunit enzyme, and functional deficiency of complex I is the most frequently observed cause of oxidative phosphorylation (OXPHOS) disorders. Impairment of complex I results in decreased cellular energy production and is responsible for a variety of human encephalopathies, myopathies and cardiomyopathies. Complex I deficiency may be caused by mutations in any of the seven mitochondrial or 38 nuclear genes that encode complex I subunits or by mutations in various other nuclear genes that affect complex I assembly or function. Mouse models that faithfully mimic human complex I disorders are needed to better understand the role of complex I in health and disease and for evaluation of potential therapies for mitochondrial diseases. In this review we discuss existing mouse models of mitochondrial complex I dysfunction, focusing on those with similarities to human mitochondrial disorders. We also discuss some of the noteworthy murine genetic models in which complex I genes are not disrupted, but complex I dysfunction is observed, along with some of the more popular chemical compounds that inhibit complex I function and are useful for modeling complex I deficiency in mice. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Michael H Irwin
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, USA.
| | | | | |
Collapse
|
33
|
Abstract
Mitochondrial DNA (mtDNA) is constantly exposed to oxidative injury. Due to its location close to the main site of reactive oxygen species, the inner mitochondrial membrane, mtDNA is more susceptible than nuclear DNA to oxidative damage. The accumulation of DNA damage is thought to be particularly deleterious in post-mitotic cells, including neurons, and to play a critical role in the aging process and in a variety of diseases. Thus, efficient mtDNA repair is important for the maintenance of genomic integrity and a healthy life. The base excision repair (BER) mechanism was the first to be described in mitochondria, and consequently it is the best known. This chapter outlines protocols for isolating mitochondria from mammalian cells in culture and from rodent tissues including liver and brain. It also covers the isolation of synaptic mitochondria. BER takes place in four distinct steps, and protocols describing in vitro assays for measuring these enzymatic steps in lysates of isolated mitochondria are included.
Collapse
Affiliation(s)
- Ricardo Gredilla
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | | |
Collapse
|
34
|
Shen L, Wei J, Chen T, He J, Qu J, He X, Jiang L, Qu Y, Fang H, Chen G, Lu J, Bai Y. Evaluating mitochondrial DNA in patients with breast cancer and benign breast disease. J Cancer Res Clin Oncol 2011; 137:669-75. [PMID: 20552226 DOI: 10.1007/s00432-010-0912-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 05/04/2010] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate the role of mtDNA in breast cancer. METHODS We carried out an investigation into the mtDNA major control region or D-loop region and an essential and the largest mtDNA protein-coding gene, NADH dehydrogenase subunit 5 (ND5), together with a mitochondrial haplogroup analysis in 64 patients with breast cancer (BC) and 54 patients with benign breast disease (BBD) as controls. RESULTS Mutations in D-loop region were found in 10/64 or 15.6% of patients with BC and 14/54 or 25.9% of patients with BBD, while mutations in ND5 were detected in 6/64 or 9.4% of patients with BC and 5/54 or 9.3% of patients with BBD. In addition, in patients with BBD, mtDNA mutations were more likely to rise in D-loop region and the mutations were more likely to be heteroplasmic. However, in patients with BC, those with metastatic feature were less likely to carry mutations in D-loop region. Finally, we found haplogroup M has an increased risk of breast cancer compared with haplogroup N. CONCLUSION mtDNA mutation may play a role in early stage of tumorigenesis, and mitochondrial haplogroup can also modulate breast cancer occurrence.
Collapse
Affiliation(s)
- Lijun Shen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou 325000, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Reactive oxygen species (ROS) and cellular oxidative stress are involved in many physiological and pathophysiological processes, including cellular and organismal aging, migration, proliferation, senescence or death of normal and cancer cells, and stress resistance of stem cells. The forkhead homeobox type O (FOXO) transcription factors FOXO1, FOXO3a, and FOXO4 are critical mediators of the cellular responses to oxidative stress and have been implicated in many of the above ROS-regulated processes. In cancer cells they converge oxidative stress signaling to cell cycle arrest and cell death or promote a motile phenotype. Dependent on their posttranslational modifications FOXOs can also actively regulate the detoxification of cells from ROS and promote stress resistance. Thus, FOXO transcription factors are of vital importance in processes regulating tumor survival or progression, stem cell maintenance, age-related pathological processes, and lifespan extension.
Collapse
Affiliation(s)
- Peter Storz
- Department for Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, USA.
| |
Collapse
|
36
|
Araújo WL, Nunes-Nesi A, Osorio S, Usadel B, Fuentes D, Nagy R, Balbo I, Lehmann M, Studart-Witkowski C, Tohge T, Martinoia E, Jordana X, DaMatta FM, Fernie AR. Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture. THE PLANT CELL 2011; 23:600-27. [PMID: 21307286 PMCID: PMC3077794 DOI: 10.1105/tpc.110.081224] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/07/2010] [Accepted: 01/13/2011] [Indexed: 05/19/2023]
Abstract
Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the Sl SDH2-2 gene encoding the iron sulfur subunit of the succinate dehydrogenase protein complex in the antisense orientation under the control of the 35S promoter exhibit an enhanced rate of photosynthesis. The rate of the tricarboxylic acid (TCA) cycle was reduced in these transformants, and there were changes in the levels of metabolites associated with the TCA cycle. Furthermore, in comparison to wild-type plants, carbon dioxide assimilation was enhanced by up to 25% in the transgenic plants under ambient conditions, and mature plants were characterized by an increased biomass. Analysis of additional photosynthetic parameters revealed that the rate of transpiration and stomatal conductance were markedly elevated in the transgenic plants. The transformants displayed a strongly enhanced assimilation rate under both ambient and suboptimal environmental conditions, as well as an elevated maximal stomatal aperture. By contrast, when the Sl SDH2-2 gene was repressed by antisense RNA in a guard cell-specific manner, changes in neither stomatal aperture nor photosynthesis were observed. The data obtained are discussed in the context of the role of TCA cycle intermediates both generally with respect to photosynthetic metabolism and specifically with respect to their role in the regulation of stomatal aperture.
Collapse
Affiliation(s)
- Wagner L. Araújo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Adriano Nunes-Nesi
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Sonia Osorio
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Björn Usadel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Daniela Fuentes
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Réka Nagy
- University of Zurich, Institute of Plant Biology, CH-8008 Zurich, Switzerland
| | - Ilse Balbo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Martin Lehmann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | | | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Enrico Martinoia
- University of Zurich, Institute of Plant Biology, CH-8008 Zurich, Switzerland
| | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| |
Collapse
|
37
|
Chen T, He J, Shen L, Fang H, Nie H, Jin T, Wei X, Xin Y, Jiang Y, Li H, Chen G, Lu J, Bai Y. The mitochondrial DNA 4,977-bp deletion and its implication in copy number alteration in colorectal cancer. BMC MEDICAL GENETICS 2011; 12:8. [PMID: 21232124 PMCID: PMC3025938 DOI: 10.1186/1471-2350-12-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 01/13/2011] [Indexed: 12/12/2022]
Abstract
Background Methods Results Conclusions
Collapse
|
38
|
Trost M, Bridon G, Desjardins M, Thibault P. Subcellular phosphoproteomics. MASS SPECTROMETRY REVIEWS 2010; 29:962-90. [PMID: 20931658 DOI: 10.1002/mas.20297] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Protein phosphorylation represents one of the most extensively studied post-translational modifications, primarily due to the emergence of sensitive methods enabling the detection of this modification both in vitro and in vivo. The availability of enrichment methods combined with sensitive mass spectrometry instrumentation has played a crucial role in uncovering the dynamic changes and the large expanding repertoire of this reversible modification. The structural changes imparted by the phosphorylation of specific residues afford exquisite mechanisms for the regulation of protein functions by modulating new binding sites on scaffold proteins or by abrogating protein-protein interactions. However, the dynamic interplay of protein phosphorylation is not occurring randomly within the cell but is rather finely orchestrated by specific kinases and phosphatases that are unevenly distributed across subcellular compartments. This spatial separation not only regulates protein phosphorylation but can also control the activity of other enzymes and the transfer of other post-translational modifications. While numerous large-scale phosphoproteomics studies highlighted the extent and diversity of phosphoproteins present in total cell lysates, the further understanding of their regulation and biological activities require a spatio-temporal resolution only achievable through subcellular fractionation. This review presents a first account of the emerging field of subcellular phosphoproteomics where cell fractionation approaches are combined with sensitive mass spectrometry methods to facilitate the identification of low abundance proteins and to unravel the intricate regulation of protein phosphorylation.
Collapse
Affiliation(s)
- Matthias Trost
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
39
|
Maynard S, de Souza-Pinto NC, Scheibye-Knudsen M, Bohr VA. Mitochondrial base excision repair assays. Methods 2010; 51:416-25. [PMID: 20188838 PMCID: PMC2916069 DOI: 10.1016/j.ymeth.2010.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 12/12/2022] Open
Abstract
The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur. Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA glycosylases, AP endonuclease, DNA polymerase (POLgamma in mitochondria) and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene-specific repair assays, chromatographic techniques as well as current optimizations for detecting 8-oxoG lesions in cells by immunofluorescence. Throughout the assay descriptions we will include methodological considerations that may help optimize the assays in terms of resolution and repeatability.
Collapse
Affiliation(s)
- Scott Maynard
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21236, USA
| | | | | | | |
Collapse
|
40
|
Antes A, Tappin I, Chung S, Lim R, Lu B, Parrott AM, Hill HZ, Suzuki CK, Lee CG. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res 2010; 38:6466-76. [PMID: 20530535 PMCID: PMC2965228 DOI: 10.1093/nar/gkq493] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mammalian mitochondria contain full-length genome and a single-stranded 7S DNA. Although the copy number of mitochondrial DNA (mtDNA) varies depending on the cell type and also in response to diverse environmental stresses, our understanding of how mtDNA and 7S DNA are maintained and regulated is limited, partly due to lack of reliable in vitro assay systems that reflect the in vivo functionality of mitochondria. Here we report an in vitro assay system to measure synthesis of both mtDNA and 7S DNA under a controllable in vitro condition. With this assay system, we demonstrate that the replication capacity of mitochondria correlates with endogenous copy numbers of mtDNA and 7S DNA. Our study also shows that higher nucleotide concentrations increasingly promote 7S DNA synthesis but not mtDNA synthesis. Consistently, the mitochondrial capacity to synthesize 7S DNA but not mtDNA noticeably varied along the cell cycle, reaching its highest level in S phase. These findings suggest that syntheses of mtDNA and 7S DNA proceed independently and that the mitochondrial capacity to synthesize 7S DNA dynamically changes not only with cell-cycle progression but also in response to varying nucleotide concentrations.
Collapse
Affiliation(s)
- Anita Antes
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fernández-Ayala DJM, Chen S, Kemppainen E, O'Dell KMC, Jacobs HT. Gene expression in a Drosophila model of mitochondrial disease. PLoS One 2010; 5:e8549. [PMID: 20066047 PMCID: PMC2798955 DOI: 10.1371/journal.pone.0008549] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 11/28/2009] [Indexed: 01/12/2023] Open
Abstract
Background A point mutation in the Drosophila gene technical knockout (tko), encoding mitoribosomal protein S12, was previously shown to cause a phenotype of respiratory chain deficiency, developmental delay, and neurological abnormalities similar to those presented in many human mitochondrial disorders, as well as defective courtship behavior. Methodology/Principal Findings Here, we describe a transcriptome-wide analysis of gene expression in tko25t mutant flies that revealed systematic and compensatory changes in the expression of genes connected with metabolism, including up-regulation of lactate dehydrogenase and of many genes involved in the catabolism of fats and proteins, and various anaplerotic pathways. Gut-specific enzymes involved in the primary mobilization of dietary fats and proteins, as well as a number of transport functions, were also strongly up-regulated, consistent with the idea that oxidative phosphorylation OXPHOS dysfunction is perceived physiologically as a starvation for particular biomolecules. In addition, many stress-response genes were induced. Other changes may reflect a signature of developmental delay, notably a down-regulation of genes connected with reproduction, including gametogenesis, as well as courtship behavior in males; logically this represents a programmed response to a mitochondrially generated starvation signal. The underlying signalling pathway, if conserved, could influence many physiological processes in response to nutritional stress, although any such pathway involved remains unidentified. Conclusions/Significance These studies indicate that general and organ-specific metabolism is transformed in response to mitochondrial dysfunction, including digestive and absorptive functions, and give important clues as to how novel therapeutic strategies for mitochondrial disorders might be developed.
Collapse
Affiliation(s)
| | - Shanjun Chen
- Institute of Medical Technology and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Esko Kemppainen
- Institute of Medical Technology and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Kevin M. C. O'Dell
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Howard T. Jacobs
- Institute of Medical Technology and Tampere University Hospital, University of Tampere, Tampere, Finland
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Sikorska M, Sandhu JK, Simon DK, Pathiraja V, Sodja C, Li Y, Ribecco-Lutkiewicz M, Lanthier P, Borowy-Borowski H, Upton A, Raha S, Pulst SM, Tarnopolsky MA. Identification of ataxia-associated mtDNA mutations (m.4052T>C and m.9035T>C) and evaluation of their pathogenicity in transmitochondrial cybrids. Muscle Nerve 2009; 40:381-94. [PMID: 19626676 DOI: 10.1002/mus.21355] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The potential pathogenicity of two homoplasmic mtDNA point mutations, 9035T>C and 4452T>C, found in a family afflicted with maternally transmitted cognitive developmental delay, learning disability, and progressive ataxia was evaluated using transmitochondrial cybrids. We confirmed that the 4452T>C transition in tRNA(Met) represented a polymorphism; however, 9035T>C conversion in the ATP6 gene was responsible for a defective F(0)-ATPase. Accordingly, mutant cybrids had a reduced oligomycin-sensitive ATP hydrolyzing activity. They had less than half of the steady-state content of ATP and nearly an 8-fold higher basal level of reactive oxygen species (ROS). Mutant cybrids were unable to cope with additional insults, i.e., glucose deprivation or tertiary-butyl hydroperoxide, and they succumbed to either apoptotic or necrotic cell death. Both of these outcomes were prevented by the antioxidants CoQ(10) and vitamin E, suggesting that the abnormally high levels of ROS were the triggers of cell death. In conclusion, the principal metabolic defects, i.e., energy deficiency and ROS burden, resulted from the 9035T>C mutation and could be responsible for the development of clinical symptoms in this family. Furthermore, antioxidant therapy might prove helpful in the management of this disease.
Collapse
Affiliation(s)
- Marianna Sikorska
- Neurogenesis and Brain Repair Group M54, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kemppainen E, Fernández-Ayala DJM, Galbraith LCA, O'Dell KMC, Jacobs HT. Phenotypic suppression of the Drosophila mitochondrial disease-like mutant tko(25t) by duplication of the mutant gene in its natural chromosomal context. Mitochondrion 2009; 9:353-63. [PMID: 19616644 DOI: 10.1016/j.mito.2009.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/24/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
A mutation in the Drosophila gene technical knockout (tko(25t)), encoding mitoribosomal protein S12, phenocopies human mitochondrial disease. We isolated three spontaneous X-dominant suppressors of tko(25t) (designated Weeble), exhibiting almost wild-type phenotype and containing overlapping segmental duplications including the mutant allele, plus a second mitoribosomal protein gene, mRpL14. Ectopic, expressed copies of tko(25t) and mRpL14 conferred no phenotypic suppression. When placed over a null allele of tko, Weeble retained the mutant phenotype, even in the presence of additional transgenic copies of tko(25t). Increased mutant gene dosage can thus compensate the mutant phenotype, but only when located in its normal chromosomal context.
Collapse
Affiliation(s)
- Esko Kemppainen
- Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | | | | | | | | |
Collapse
|
44
|
Brantová O, Tesarová M, Hansíková H, Elleder M, Zeman J, Sládková J. Ultrastructural Changes of Mitochondria in the Cultivated Skin Fibroblasts of Patients with Point Mutations in Mitochondrial DNA. Ultrastruct Pathol 2009; 30:239-45. [PMID: 16971348 DOI: 10.1080/01913120600820112] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mitochondrial disorders represent a heterogeneous group of multisystem diseases with extreme variability in clinical phenotype. The diagnosis of mitochondrial disorders relies heavily on extensive biochemical and molecular analyses combined with morphological studies including electron microscopy. Although muscle is the tissue of choice for electron microscopic studies, the authors investigated cultivated human skin fibroblasts (HSF) harboring 3 different pathologic mtDNA mutations: 3243A > G, 8344A > G, 8993T > G. They addressed to the possibility of whether mtDNA mutations influence mitochondrial morphology in HSF and if ultrastructural changes of mitochondria may be used for differential diagnostics of mitochondrial disorders caused by mtDNA mutations. Ultrastructural analysis of patients' HSF revealed a heterogeneous mixture of mainly abnormal, partially swelling mitochondria with unusual and sparse cristae. The most characteristic cristal abnormalities were heterogeneity in size and shapes or their absence. Typical filamentous and branched mitochondria with numerous cristae as appeared in control HSF were almost not observed. In all lines of cultured HSF with various mtDNA mutations, similar ultrastructural abnormalities and severely changed mitochondrial interior were found, although no alterations in function and amount of OXPHOS were detected by routinely used biochemical methods in two lines of cultured HSF. This highlights the importance of morphological analysis, even in cultured fibroblasts, in diagnostics of mitochondrial disorders.
Collapse
Affiliation(s)
- Olga Brantová
- Department of Paediatrics, Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
45
|
Akbari M, Skjelbred C, Følling I, Sagen J, Krokan HE. A gel electrophoresis method for detection of mitochondrial DNA mutation (3243 tRNALeu (UUR)) applied to a Norwegian family with diabetes mellitus and hearing loss. Scand J Clin Lab Invest 2009; 64:86-92. [PMID: 15115244 DOI: 10.1080/00365510410004209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Blood cells of selected patients from a large Norwegian family with maternally transmitted diabetes mellitus, hearing loss and muscular dysfunction were screened for possible A3243G mutation tRNA(Leu (UUR)) in mitochondrial DNA. We selected 7 patients from 3 of the 4 generations of the family and 10 unrelated healthy control subjects for mutation analysis using denaturing gradient gel electrophoresis (DGGE) and both manual and automated DNA sequencing. The A3243G mutation was found in peripheral blood cells of all 7 patients, but in none of the controls. The mutation was in the form of heteroplasmy and the amount of mutant DNA was found to be between 10% and 35% of total mtDNA in individual patients. This is the first report of a Norwegian family with maternally inherited diabetes and hearing loss carrying the A3243G mutation in mitochondrial DNA.
Collapse
Affiliation(s)
- M Akbari
- Institute of Cancer Research and Molecular Biology, Regional Hospital Trondheim, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
46
|
Clay Montier LL, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics 2009; 36:125-31. [PMID: 19302968 PMCID: PMC4706993 DOI: 10.1016/s1673-8527(08)60099-5] [Citation(s) in RCA: 402] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/13/2009] [Accepted: 01/19/2009] [Indexed: 12/15/2022]
Abstract
Regulation of mitochondrial biogenesis is essential for proper cellular functioning. Mitochondrial DNA (mtDNA) depletion and the resulting mitochondrial malfunction have been implicated in cancer, neurodegeneration, diabetes, aging, and many other human diseases. Although it is known that the dynamics of the mammalian mitochondrial genome are not linked with that of the nuclear genome, very little is known about the mechanism of mtDNA propagation. Nevertheless, our understanding of the mode of mtDNA replication has advanced in recent years, though not without some controversies. This review summarizes our current knowledge of mtDNA copy number control in mammalian cells, while focusing on both mtDNA replication and turnover. Although mtDNA copy number is seemingly in excess, we reason that mtDNA copy number control is an important aspect of mitochondrial genetics and biogenesis and is essential for normal cellular function.
Collapse
Affiliation(s)
- Laura L Clay Montier
- Department of Cellular and Structural Biology, The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
47
|
Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, Lechleiter J, Naylor SL, Deng JJ, Lu J, Bai Y. A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 2009; 18:1578-89. [PMID: 19208652 DOI: 10.1093/hmg/ddp069] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial alteration has been long proposed to play a major role in tumorigenesis. Recently, mitochondrial DNA (mtDNA) mutations have been found in a variety of cancer cells. In this study, we examined the contribution of mtDNA mutation and mitochondrial dysfunction in tumorigenesis first using human cell lines carrying a frame-shift at NADH dehydrogenase (respiratory complex I) subunit 5 gene (ND5); the same homoplasmic mutation was also identified in a human colorectal cancer cell line earlier. With increasing mutant ND5 mtDNA content, respiratory function including oxygen consumption and ATP generation through oxidative phosphorylation declined progressively, while lactate production and dependence on glucose increased. Interestingly, the reactive oxygen species (ROS) levels and apoptosis exhibited antagonistic pleiotropy associated with mitochondrial defects. Furthermore, the anchorage-dependence phenotype and tumor-forming capacity of cells carrying wild-type and mutant mtDNA were tested by growth assay in soft agar and subcutaneous implantation of the cells in nude mice. Surprisingly, the cell line carrying the heteroplasmic ND5 mtDNA mutation showed significantly enhanced tumor growth, while cells with homoplasmic form of the same mutation inhibited tumor formation. Similar results were obtained from the analysis of a series of mouse cell lines carrying a nonsense mutation at ND5 gene. Our results indicate that the mtDNA mutations might play an important role in the early stage of cancer development, possibly through alteration of ROS generation and apoptosis.
Collapse
Affiliation(s)
- Jeong Soon Park
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 78229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ujvari B, Dowton M, Madsen T. Mitochondrial DNA recombination in a free-ranging Australian lizard. Biol Lett 2008; 3:189-92. [PMID: 17251121 PMCID: PMC2375962 DOI: 10.1098/rsbl.2006.0587] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is the traditional workhorse for reconstructing evolutionary events. The frequent use of mtDNA in such analyses derives from the apparent simplicity of its inheritance: maternal and lacking bi-parental recombination. However, in hybrid zones, the reproductive barriers are often not completely developed, resulting in the breakdown of male mitochondrial elimination mechanisms, leading to leakage of paternal mitochondria and transient heteroplasmy, resulting in an increased possibility of recombination. Despite the widespread occurrence of heteroplasmy and the presence of the molecular machinery necessary for recombination, we know of no documented example of recombination of mtDNA in any terrestrial wild vertebrate population. By sequencing the entire mitochondrial genome (16761bp), we present evidence for mitochondrial recombination in the hybrid zone of two mitochondrial haplotypes in the Australian frillneck lizard (Chlamydosaurus kingii).
Collapse
Affiliation(s)
- Beata Ujvari
- School of Biological Sciences, University of WollongongNew South Wales 2522, Australia
| | - Mark Dowton
- School of Biological Sciences, University of WollongongNew South Wales 2522, Australia
| | - Thomas Madsen
- School of Biological Sciences, University of WollongongNew South Wales 2522, Australia
- Department of Animal Ecology, Ecology Building, Lund University22362 Lund, Sweden
- Author for correspondence ()
| |
Collapse
|
49
|
Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 2008; 36:3926-38. [PMID: 18511461 PMCID: PMC2475635 DOI: 10.1093/nar/gkn313] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 05/01/2008] [Accepted: 05/01/2008] [Indexed: 11/14/2022] Open
Abstract
The selective degradation of mutated mitochondrial DNA (mtDNA) molecules is a potential strategy to re-populate cells with wild-type (wt) mtDNA molecules and thereby alleviate the defective mitochondrial function that underlies mtDNA diseases. Zinc finger nucleases (ZFNs), which are nucleases conjugated to a zinc-finger peptide (ZFP) engineered to bind a specific DNA sequence, could be useful for the selective degradation of particular mtDNA sequences. Typically, pairs of complementary ZFNs are used that heterodimerize on the target DNA sequence; however, conventional ZFNs were ineffective in our system. To overcome this, we created single-chain ZFNs by conjugating two FokI nuclease domains, connected by a flexible linker, to a ZFP with an N-terminal mitochondrial targeting sequence. Here we show that these ZFNs are efficiently transported into mitochondria in cells and bind mtDNA in a sequence-specific manner discriminating between two 12-bp long sequences that differ by a single base pair. Due to their selective binding they cleave dsDNA at predicted sites adjacent to the mutation. When expressed in heteroplasmic cells containing a mixture of mutated and wt mtDNA these ZFNs selectively degrade mutated mtDNA, thereby increasing the proportion of wt mtDNA molecules in the cell. Therefore, mitochondria-targeted single-chain ZFNs are a promising candidate approach for the treatment of mtDNA diseases.
Collapse
Affiliation(s)
- Michal Minczuk
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | | | |
Collapse
|
50
|
Haque ME, Grasso D, Miller C, Spremulli LL, Saada A. The effect of mutated mitochondrial ribosomal proteins S16 and S22 on the assembly of the small and large ribosomal subunits in human mitochondria. Mitochondrion 2008; 8:254-61. [PMID: 18539099 PMCID: PMC2517634 DOI: 10.1016/j.mito.2008.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/17/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
Mutations in mitochondrial small subunit ribosomal proteins MRPS16 or MRPS22 cause severe, fatal respiratory chain dysfunction due to impaired translation of mitochondrial mRNAs. The loss of either MRPS16 or MRPS22 was accompanied by the loss of most of another small subunit protein MRPS11. However, MRPS2 was reduced only about 2-fold in patient fibroblasts. This observation suggests that the small ribosomal subunit is only partially able to assemble in these patients. Two large subunit ribosomal proteins, MRPL13 and MRPL15, were present in substantial amounts suggesting that the large ribosomal subunit is still present despite a non-functional small subunit.
Collapse
Affiliation(s)
- Md. Emdadul Haque
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC-27599-3290
| | - Domenick Grasso
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC-27599-3290
| | - Chaya Miller
- Metabolic Disease Unit, Hadassah Medical Center, P.O.B. 12000, 91120 Jerusalem, Israel
| | - Linda L Spremulli
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC-27599-3290
| | - Ann Saada
- Metabolic Disease Unit, Hadassah Medical Center, P.O.B. 12000, 91120 Jerusalem, Israel
| |
Collapse
|