1
|
Song PY, Tsai CE, Chen YC, Huang YW, Chen PP, Wang TH, Hu CY, Chen PY, Ku C, Hsia KC, Ting SY. An interbacterial cysteine protease toxin inhibits cell growth by targeting type II DNA topoisomerases GyrB and ParE. PLoS Biol 2025; 23:e3003208. [PMID: 40424468 DOI: 10.1371/journal.pbio.3003208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Bacteria deploy a diverse arsenal of toxic effectors to antagonize competitors, profoundly influencing the composition of microbial communities. Previous studies have identified an interbacterial toxin predicted to exhibit proteolytic activity that is broadly distributed among gram-negative bacteria. However, the precise mechanism of intoxication remains unresolved. Here, we demonstrate that one such protease toxin from Escherichia coli, Cpe1, disrupts DNA replication and chromosome segregation by cleaving conserved sequences within the ATPase domain of type II DNA topoisomerases GyrB and ParE. This cleavage effectively inhibits topoisomerase-mediated relaxation of supercoiled DNA, resulting in impaired bacterial growth. Cpe1 belongs to the papain-like cysteine protease family and is associated with toxin delivery pathways, including the type VI secretion system and contact-dependent growth inhibition. The structure of Cpe1 in complex with its immunity protein reveals a neutralization mechanism involving competitive substrate binding rather than active site occlusion, distinguishing it from previously characterized effector-immunity pairs. Our findings unveil a unique mode of interbacterial intoxication and provide insights into how bacteria protect themselves from self-poisoning by protease toxins.
Collapse
Affiliation(s)
- Pin-Yi Song
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chia-En Tsai
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yung-Chih Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Wen Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Po-Pang Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Haw Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chao-Yuan Hu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Po-Yin Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chiang Hsia
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - See-Yeun Ting
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Koirala M, Fagerquist CK. Binding Free Energy Analysis of Colicin D, E3 and E8 to Their Respective Cognate Immunity Proteins Using Computational Simulations. Molecules 2025; 30:1277. [PMID: 40142054 PMCID: PMC11944403 DOI: 10.3390/molecules30061277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Colicins are antimicrobial proteins produced by bacteria for the purpose of destroying neighboring bacteria. Colicin activity is neutralized by a specific cognate immunity protein in order to protect the host. This study investigates the structural and binding mechanisms underlying the interaction of colicin-D, -E3 and -E8 to their respective immunity proteins (ImD, Im3 and Im8) using structure prediction, molecular dynamics (MD) simulations and MM-PBSA approach of free energy calculations. High-confidence colicin-immunity (Col-Im) complex structures predicted using AlphaFold2 were subjected to MD simulations of 150 ns with GROMACS and were analyzed for the binding free energy calculation using gmx_MMPBSA. Results showed that the complex of Col_E3-Im3 exhibited the most favorable binding free energy, driven by strong van der Waals and electrostatic interactions. Col_D-ImD and Col_E8-Im8 also showed the favorable binding. Electrostatics and hydrogen bonding emerged as a key factor driving binding and stability, while polar solvation acted as a destabilizing factor across all systems. These outcomes provide an understanding of the molecular mechanisms of Col-Im systems, with potential applications for developing natural antimicrobials for food safety.
Collapse
Affiliation(s)
- Mahesh Koirala
- Department of Agriculture, Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, U.S., Albany, CA 94710, USA;
- Department of Energy, Research Participation Program Administered by the Oak Ridge Institute for Science and Education, U.S., Oak Ridge, TN 37830, USA
| | - Clifton K. Fagerquist
- Department of Agriculture, Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, U.S., Albany, CA 94710, USA;
| |
Collapse
|
3
|
Krause KD, Rees K, Darwish GH, Bernal-Escalante J, Algar WR. Bait and Cleave: Exosite-Binding Peptides on Quantum Dots Selectively Accelerate Protease Activity for Sensing with Enhanced Sensitivity. ACS NANO 2024; 18:17018-17030. [PMID: 38845136 DOI: 10.1021/acsnano.4c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The advantageous optical properties of quantum dots (QDs) motivate their use in a wide variety of applications related to imaging and bioanalysis, including the detection of proteases and their activity. Recent studies have shown that surface chemistry on QDs is able to modulate protease activity, but only nonspecifically. Here, we present a strategy to selectively accelerate the activity of a particular target protease by as much as two orders of magnitude. Exosite-binding "bait" peptides were derived from proteins that span a range of biological roles─substrate, receptor, and inhibitor─and were used to increase the affinity of the QD-peptide conjugates for either thrombin or factor Xa, resulting in increased rates of proteolysis for coconjugated substrates. Unlike effects from QD surface chemistry, the acceleration was specific to the target protease with negligible acceleration of other proteases. Benefits of this "bait and cleave" sensing approach included detection limits that improved by more than an order of magnitude, reenabled detection of target protease against an overwhelming background of nontarget proteolysis, and mitigation of the action of inhibitors. The cumulative results point to a generalizable strategy, where the mechanism of acceleration, considerations for the design of bait peptides and conjugates, and routes to expanding the scope of this approach are discussed. Overall, this research represents a major step forward in the rational design of nanoparticle-based enzyme sensors that enhance sensitivity and selectivity.
Collapse
Affiliation(s)
- Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - Jasmine Bernal-Escalante
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver , BC V6T 1Z1, Canada
| |
Collapse
|
4
|
Bosch DE, Abbasian R, Parajuli B, Peterson SB, Mougous JD. Structural disruption of Ntox15 nuclease effector domains by immunity proteins protects against type VI secretion system intoxication in Bacteroidales. mBio 2023; 14:e0103923. [PMID: 37345922 PMCID: PMC10470768 DOI: 10.1128/mbio.01039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023] Open
Abstract
Bacteroidales use type VI secretion systems (T6SS) to competitively colonize and persist in the colon. We identify a horizontally transferred T6SS with Ntox15 family nuclease effector (Tde1) that mediates interbacterial antagonism among Bacteroidales, including several derived from a single human donor. Expression of cognate (Tdi1) or orphan immunity proteins in acquired interbacterial defense systems protects against Tde1-dependent attack. We find that immunity protein interaction induces a large effector conformational change in Tde nucleases, disrupting the active site and altering the DNA-binding site. Crystallographic snapshots of isolated Tde1, the Tde1/Tdi1 complex, and homologs from Phocaeicola vulgatus (Tde2/Tdi2) illustrate a conserved mechanism of immunity inserting into the central core of Tde, splitting the nuclease fold into two subdomains. The Tde/Tdi interface and immunity mechanism are distinct from all other polymorphic toxin-immunity interactions of known structure. Bacteroidales abundance has been linked to inflammatory bowel disease activity in prior studies, and we demonstrate that Tde and T6SS structural genes are each enriched in fecal metagenomes from ulcerative colitis subjects. Genetically mobile Tde1-encoding T6SS in Bacteroidales mediate competitive growth and may be involved in inflammatory bowel disease. Broad immunity is conferred by Tdi1 homologs through a fold-disrupting mechanism unique among polymorphic effector-immunity pairs of known structure. IMPORTANCE Bacteroidales are related to inflammatory bowel disease severity and progression. We identify type VI secretion system (T6SS) nuclease effectors (Tde) which are enriched in ulcerative colitis and horizontally transferred on mobile genetic elements. Tde-encoding T6SSs mediate interbacterial competition. Orphan and cognate immunity proteins (Tdi) prevent intoxication by multiple Tde through a new mechanism among polymorphic toxin systems. Tdi inserts into the effector central core, splitting Ntox15 into two subdomains and disrupting the active site. This mechanism may allow for evolutionary diversification of the Tde/Tdi interface as observed in colicin nuclease-immunity interactions, promoting broad neutralization of Tde by orphan Tdi. Tde-dependent T6SS interbacterial antagonism may contribute to Bacteroidales diversity in the context of ulcerative colitis.
Collapse
Affiliation(s)
- Dustin E. Bosch
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Romina Abbasian
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Bishal Parajuli
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - S. Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Joseph D. Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
- Microbial Interactions and Microbiome Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Premsuriya J, Mosbahi K, Atanaskovic I, Kleanthous C, Walker D. Outer membrane translocation of pyocins via the copper regulated TonB-dependent transporter CrtA. Biochem J 2023; 480:1035-1049. [PMID: 37399084 PMCID: PMC10422930 DOI: 10.1042/bcj20220552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Pseudomonas aeruginosa is a common cause of serious hospital-acquired infections, the leading proven cause of mortality in people with cystic fibrosis and is associated with high levels of antimicrobial resistance. Pyocins are narrow-spectrum protein antibiotics produced by P. aeruginosa that kill strains of the same species and have the potential to be developed as therapeutics targeting multi-drug resistant isolates. We have identified two novel pyocins designated SX1 and SX2. Pyocin SX1 is a metal-dependent DNase while pyocin SX2 kills cells through inhibition of protein synthesis. Mapping the uptake pathways of SX1 and SX2 shows these pyocins utilize a combination of the common polysaccharide antigen (CPA) and a previously uncharacterized TonB-dependent transporter (TBDT) PA0434 to traverse the outer membrane. In addition, TonB1 and FtsH are required by both pyocins to energize their transport into cells and catalyze their translocation across the inner membrane, respectively. Expression of PA0434 was found to be specifically regulated by copper availability and we have designated PA0434 as Copper Responsive Transporter A, or CrtA. To our knowledge these are the first S-type pyocins described that utilize a TBDT that is not involved in iron uptake.
Collapse
Affiliation(s)
- Jiraphan Premsuriya
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, U.K
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Khedidja Mosbahi
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, U.K
| | - Iva Atanaskovic
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Daniel Walker
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, U.K
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| |
Collapse
|
6
|
Williamson MP. Protein Binding: A Fuzzy Concept. Life (Basel) 2023; 13:life13040855. [PMID: 37109384 PMCID: PMC10145316 DOI: 10.3390/life13040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Our understanding of protein binding interactions has matured significantly over the last few years, largely as a result of trying to make sense of the binding interactions of intrinsically disordered proteins. Here, we bring together some disparate ideas that have largely developed independently, and show that they can be linked into a coherent picture that provides insight into quantitative aspects of protein interactions, in particular that transient protein interactions are often optimised for speed, rather than tight binding.
Collapse
Affiliation(s)
- Mike P Williamson
- School of Biosciences, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| |
Collapse
|
7
|
Redkar A, Cevik V, Bailey K, Zhao H, Kim DS, Zou Z, Furzer OJ, Fairhead S, Borhan MH, Holub EB, Jones JDG. The Arabidopsis WRR4A and WRR4B paralogous NLR proteins both confer recognition of multiple Albugo candida effectors. THE NEW PHYTOLOGIST 2023; 237:532-547. [PMID: 35838065 PMCID: PMC10087428 DOI: 10.1111/nph.18378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 05/26/2023]
Abstract
The oomycete Albugo candida causes white blister rust, an important disease of Brassica crops. Distinct races of A. candida are defined by their capacity to infect different host plant species. Each A. candida race encodes secreted proteins with a CX2 CX5 G ('CCG') motif that are polymorphic and show presence/absence variation, and are therefore candidate effectors. The White Rust Resistance 4 (WRR4) locus in Arabidopsis thaliana accession Col-0 contains three genes that encode intracellular nucleotide-binding domain leucine-rich repeat immune receptors. The Col-0 alleles of WRR4A and WRR4B confer resistance to multiple A. candida races, although both WRR4A and WRR4B can be overcome by the Col-0-virulent race 4 isolate AcEx1. Comparison of CCG candidate effectors in avirulent and virulent races, and transient co-expression of CCG effectors from four A. candida races in Nicotiana sp. or A. thaliana, revealed CCG effectors that trigger WRR4A- or WRR4B-dependent hypersensitive responses. We found eight WRR4A-recognised CCGs and four WRR4B-recognised CCGs, the first recognised proteins from A. candida for which the cognate immune receptors in A. thaliana are known. This multiple recognition capacity potentially explains the broad-spectrum resistance to several A. candida races conferred by WRR4 paralogues. We further show that of five tested CCGs, three confer enhanced disease susceptibility when expressed in planta, consistent with A. candida CCG proteins being effectors.
Collapse
Affiliation(s)
- Amey Redkar
- The Sainsbury LaboratoryUniversity of East AngliaNorwichNR4 7UHUK
- Department of BotanySavitribai Phule Pune UniversityGaneshkhindPune411007India
| | - Volkan Cevik
- The Sainsbury LaboratoryUniversity of East AngliaNorwichNR4 7UHUK
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBathBA2 7AYUK
| | - Kate Bailey
- The Sainsbury LaboratoryUniversity of East AngliaNorwichNR4 7UHUK
| | - He Zhao
- The Sainsbury LaboratoryUniversity of East AngliaNorwichNR4 7UHUK
| | - Dae Sung Kim
- The Sainsbury LaboratoryUniversity of East AngliaNorwichNR4 7UHUK
- Present address:
State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei UniversityWuhan430062China
| | - Zhou Zou
- The Milner Centre for Evolution, Department of Biology and BiochemistryUniversity of BathBathBA2 7AYUK
| | - Oliver J. Furzer
- The Sainsbury LaboratoryUniversity of East AngliaNorwichNR4 7UHUK
- Department of BiologyUniversity of North CarolinaChapel HillNC27599USA
| | - Sebastian Fairhead
- The Sainsbury LaboratoryUniversity of East AngliaNorwichNR4 7UHUK
- School of Life SciencesWarwick Crop Centre, University of WarwickWellesbourneCV35 9EFUK
| | - M. Hossein Borhan
- Agriculture and Agri‐Food Canada107 Science PlaceSaskatoonSKS7N 0X2Canada
| | - Eric B. Holub
- School of Life SciencesWarwick Crop Centre, University of WarwickWellesbourneCV35 9EFUK
| | | |
Collapse
|
8
|
Liu Z, Busscher BM, Storl-Desmond M, Xiao TS. Mechanisms of Gasdermin Recognition by Proteases. J Mol Biol 2022; 434:167274. [PMID: 34599940 PMCID: PMC8844061 DOI: 10.1016/j.jmb.2021.167274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Members of the gasdermin family contain positively charged N-terminal domains (NTDs) capable of binding phospholipids and assembling membrane pores, and C-terminal domains (CTDs) that bind the NTDs to prevent pore formation in the resting states. The flexible NTD-CTD linker regions of gasdermins are highly variable in length and sequences, which may be attributable to gasdermin recognition by diverse proteases. In addition, protease cleavage within the NTDs is known to inactivate several gasdermin family members. Recognition and cleavage of the gasdermin family members by different proteases share common and distinct features at the protease active sites, as well as exosites recently identified for the inflammatory caspases. Utilization of exosites may strengthen enzyme-substrate interaction, improve efficiency of proteolysis, and enhance substrate selectivity. It remains to be determined if the dual site recognition of gasdermin D (GSDMD) by the inflammatory caspases is employed by other GSDMD-targeting proteases, or is involved in proteolytic processing of other gasdermins. Biochemical and structural approaches will be instrumental in revealing how potential exosites in diverse proteases engage different gasdermin substrates. Different features of gasdermin sequence, structure, expression characteristics, and post-translational modifications may dictate distinct mechanisms of protease-dependent activation or inactivation. Such diverse mechanisms may underlie the divergent physiological and pathological functions of gasdermins, and furnish opportunities for therapeutic targeting of gasdermins in infectious diseases and inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
9
|
Calcuttawala F, Pal A, Nath P, Kar R, Hazra D, Pal R. Structural and functional insights into colicin: a new paradigm in drug discovery. Arch Microbiol 2021; 204:37. [PMID: 34928429 DOI: 10.1007/s00203-021-02689-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
Colicins are agents of allelopathic interactions produced by certain enterobacteria which give them a competitive advantage in the environment. These protein molecules are mostly encoded by plasmids. The colicin operon consists of the activity, immunity and the lysis genes. The activity protein is responsible for the killing activity, the immunity protein protects the producer cell from the lethal action of colicin and the lysis protein facilitates its release. Colicins are primarily composed of three domains, namely the receptor-binding domain, the translocation domain and the cytotoxic domain. The protein molecule binds to its cognate receptor on the target cell via the receptor-binding domain and undergoes translocation into the cell either via the Tol system or the Ton system. After gaining entry into the target cell, there are various mechanisms by which colicins exert their lethality. These comprise DNase activity, RNase activity and pore formation in the target cell membrane or peptidoglycan synthesis inhibition. This review gives a detailed insight into the structural and functional aspect of colicins and their mode of action. This knowledge is of immense significance because colicins are being considered as very useful alternatives to conventional antibiotics in the treatment of multidrug-resistant infections. Besides, they also have a negligible harmful impact on the commensals. Thus, before tapping their therapeutic potential, it is imperative to know their structure and mechanism of action in detail.
Collapse
Affiliation(s)
- Fatema Calcuttawala
- Department of Microbiology, Sister Nivedita University, Kolkata, 700156, India.
| | - Ankita Pal
- Department of Microbiology, Sister Nivedita University, Kolkata, 700156, India
| | - Papri Nath
- Department of Microbiology, Sister Nivedita University, Kolkata, 700156, India
| | - Riya Kar
- Department of Microbiology, Sister Nivedita University, Kolkata, 700156, India
| | - Debraj Hazra
- Department of Microbiology, Sister Nivedita University, Kolkata, 700156, India
| | - Rajat Pal
- Department of Microbiology, Sister Nivedita University, Kolkata, 700156, India
| |
Collapse
|
10
|
Fagerquist CK, Dodd CE. Top-down proteomic identification of plasmid and host proteins produced by pathogenic Escherichia coli using MALDI-TOF-TOF tandem mass spectrometry. PLoS One 2021; 16:e0260650. [PMID: 34843608 PMCID: PMC8629258 DOI: 10.1371/journal.pone.0260650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Fourteen proteins produced by three pathogenic Escherichia coli strains were identified using antibiotic induction, MALDI-TOF-TOF tandem mass spectrometry (MS/MS) and top-down proteomic analysis using software developed in-house. Host proteins as well as plasmid proteins were identified. Mature, intact protein ions were fragmented by post-source decay (PSD), and prominent fragment ions resulted from the aspartic acid effect fragmentation mechanism wherein polypeptide backbone cleavage (PBC) occurs on the C-terminal side of aspartic acid (D), glutamic acid (E) and asparagine (N) residues. These highly specific MS/MS-PSD fragment ions were compared to b- and y-type fragment ions on the C-terminal side of D-, E- and N-residues of in silico protein sequences derived from whole genome sequencing. Nine proteins were found to be post-translationally modified with either removal of an N-terminal methionine or a signal peptide. The protein sequence truncation algorithm of our software correctly identified all full and truncated protein sequences. Truncated sequences were compared to those predicted by SignalP. Nearly complete concurrence was obtained except for one protein where SignalP mis-identified the cleavage site by one residue. Two proteins had intramolecular disulfide bonds that were inferred by the absence of PBC on the C-terminal side of a D-residue located within the disulfide loop. These results demonstrate the utility of MALDI-TOF-TOF for identification of full and truncated bacterial proteins.
Collapse
Affiliation(s)
- Clifton K. Fagerquist
- Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| | - Claire E. Dodd
- Produce Safety & Microbiology, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| |
Collapse
|
11
|
Shushan A, Kosloff M. Structural design principles for specific ultra-high affinity interactions between colicins/pyocins and immunity proteins. Sci Rep 2021; 11:3789. [PMID: 33589691 PMCID: PMC7884437 DOI: 10.1038/s41598-021-83265-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
The interactions of the antibiotic proteins colicins/pyocins with immunity proteins is a seminal model system for studying protein–protein interactions and specificity. Yet, a precise and quantitative determination of which structural elements and residues determine their binding affinity and specificity is still lacking. Here, we used comparative structure-based energy calculations to map residues that substantially contribute to interactions across native and engineered complexes of colicins/pyocins and immunity proteins. We show that the immunity protein α1–α2 motif is a unique structurally-dissimilar element that restricts interaction specificity towards all colicins/pyocins, in both engineered and native complexes. This motif combines with a diverse and extensive array of electrostatic/polar interactions that enable the exquisite specificity that characterizes these interactions while achieving ultra-high affinity. Surprisingly, the divergence of these contributing colicin residues is reciprocal to residue conservation in immunity proteins. The structurally-dissimilar immunity protein α1–α2 motif is recognized by divergent colicins similarly, while the conserved immunity protein α3 helix interacts with diverse colicin residues. Electrostatics thus plays a key role in setting interaction specificity across all colicins and immunity proteins. Our analysis and resulting residue-level maps illuminate the molecular basis for these protein–protein interactions, with implications for drug development and rational engineering of these interfaces.
Collapse
Affiliation(s)
- Avital Shushan
- The Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
12
|
Meseguer A, Dominguez L, Bota PM, Aguirre‐Plans J, Bonet J, Fernandez‐Fuentes N, Oliva B. Using collections of structural models to predict changes of binding affinity caused by mutations in protein-protein interactions. Protein Sci 2020; 29:2112-2130. [PMID: 32797645 PMCID: PMC7513729 DOI: 10.1002/pro.3930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022]
Abstract
Protein-protein interactions (PPIs) in all the molecular aspects that take place both inside and outside cells. However, determining experimentally the structure and affinity of PPIs is expensive and time consuming. Therefore, the development of computational tools, as a complement to experimental methods, is fundamental. Here, we present a computational suite: MODPIN, to model and predict the changes of binding affinity of PPIs. In this approach we use homology modeling to derive the structures of PPIs and score them using state-of-the-art scoring functions. We explore the conformational space of PPIs by generating not a single structural model but a collection of structural models with different conformations based on several templates. We apply the approach to predict the changes in free energy upon mutations and splicing variants of large datasets of PPIs to statistically quantify the quality and accuracy of the predictions. As an example, we use MODPIN to study the effect of mutations in the interaction between colicin endonuclease 9 and colicin endonuclease 2 immune protein from Escherichia coli. Finally, we have compared our results with other state-of-art methods.
Collapse
Affiliation(s)
- Alberto Meseguer
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health ScienceUniversitat Pompeu FabraBarcelonaCataloniaSpain
| | - Lluis Dominguez
- Integrative Biomedical Informatics Group (GRIB‐IMIM). Department of Experimental and Life SciencesUniversitat Pompeu FabraBarcelonaCataloniaSpain
| | - Patricia M. Bota
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health ScienceUniversitat Pompeu FabraBarcelonaCataloniaSpain
- Department of BiosciencesUniversitat de Vic‐Universitat Central de CatalunyaVicCataloniaSpain
| | - Joaquim Aguirre‐Plans
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health ScienceUniversitat Pompeu FabraBarcelonaCataloniaSpain
| | - Jaume Bonet
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health ScienceUniversitat Pompeu FabraBarcelonaCataloniaSpain
| | - Narcis Fernandez‐Fuentes
- Department of BiosciencesUniversitat de Vic‐Universitat Central de CatalunyaVicCataloniaSpain
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Baldo Oliva
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health ScienceUniversitat Pompeu FabraBarcelonaCataloniaSpain
| |
Collapse
|
13
|
Mazurek-Popczyk J, Pisarska J, Bok E, Baldy-Chudzik K. Antibacterial Activity of Bacteriocinogenic Commensal Escherichia coli against Zoonotic Strains Resistant and Sensitive to Antibiotics. Antibiotics (Basel) 2020; 9:E411. [PMID: 32679778 PMCID: PMC7400030 DOI: 10.3390/antibiotics9070411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Antibiotic resistance concerns various areas with high consumption of antibiotics, including husbandry. Resistant strains are transmitted to humans from livestock and agricultural products via the food chain and may pose a health risk. The commensal microbiota protects against the invasion of environmental strains by secretion of bacteriocins, among other mechanisms. The present study aims to characterize the bactericidal potential of bacteriocinogenic Escherichia coli from healthy humans against multidrug-resistant and antibiotic-sensitive strains from pigs and cattle. Bacteriocin production was tested by the double-layer plate method, and bacteriocin genes were identified by the PCR method. At least one bacteriocinogenic E. coli was detected in the fecal samples of 55% of tested individuals, adults and children. Among all isolates (n = 210), 37.1% were bacteriocinogenic and contained genes of colicin (Col) Ib, ColE1, microcin (Mcc) H47, ColIa, ColM, MccV, ColK, ColB, and single ColE2 and ColE7. Twenty-five E. coli carrying various sets of bacteriocin genes were further characterized and tested for their activity against zoonotic strains (n = 60). Strains with ColE7 (88%), ColE1-ColIa-ColK-MccH47 (85%), MccH47-MccV (85%), ColE1-ColIa-ColM (82%), ColE1 (75%), ColM (67%), and ColK (65%) were most active against zoonotic strains. Statistically significant differences in activity toward antibiotic-resistant strains were shown by commensal E. coli carrying MccV, ColK-MccV, and ColIb-ColK. The study demonstrates that bacteriocinogenic commensal E. coli exerts antagonistic activity against zoonotic strains and may constitute a defense line against multidrug-resistant strains.
Collapse
Affiliation(s)
- Justyna Mazurek-Popczyk
- Department of Microbiology and Molecular Biology, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland; (J.P.); (E.B.); (K.B.-C.)
| | | | | | | |
Collapse
|
14
|
Liu Z, Wang C, Yang J, Chen Y, Zhou B, Abbott DW, Xiao TS. Caspase-1 Engages Full-Length Gasdermin D through Two Distinct Interfaces That Mediate Caspase Recruitment and Substrate Cleavage. Immunity 2020; 53:106-114.e5. [PMID: 32553275 PMCID: PMC7382298 DOI: 10.1016/j.immuni.2020.06.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
The recognition and cleavage of gasdermin D (GSDMD) by inflammatory caspases-1, 4, 5, and 11 are essential steps in initiating pyroptosis after inflammasome activation. Previous work has identified cleavage site signatures in substrates such as GSDMD, but it is unclear whether these are the sole determinants for caspase engagement. Here we report the crystal structure of a complex between human caspase-1 and the full-length murine GSDMD. In addition to engagement of the GSDMD N- and C-domain linker by the caspase-1 active site, an anti-parallel β sheet at the caspase-1 L2 and L2' loops bound a hydrophobic pocket within the GSDMD C-terminal domain distal to its N-terminal domain. This "exosite" interface endows an additional function for the GSDMD C-terminal domain as a caspase-recruitment module besides its role in autoinhibition. Our study thus reveals dual-interface engagement of GSDMD by caspase-1, which may be applicable to other physiological substrates of caspases.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chuanping Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jie Yang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, TRY-21, La Jolla, CA 92037, USA
| | - Yinghua Chen
- Protein Expression Purification Crystallization and Molecular Biophysics Core, Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bowen Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
15
|
Kaundal S, Deep A, Kaur G, Thakur KG. Molecular and Biochemical Characterization of YeeF/YezG, a Polymorphic Toxin-Immunity Protein Pair From Bacillus subtilis. Front Microbiol 2020; 11:95. [PMID: 32117125 PMCID: PMC7033585 DOI: 10.3389/fmicb.2020.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022] Open
Abstract
Polymorphic toxins are important and widespread elements of bacterial warfare that help in restricting the growth of competitors, aiding kin selection, and shaping the bacterial communities. Although widespread, polymorphic toxin systems (PTS) have been extensively studied in Gram-negative bacteria, there are limited studies describing PTS in Gram-positive bacteria. The present study characterizes YeeF/YezG, a predicted member of a PF04740 family of the polymorphic toxin-immunity system from a Gram-positive bacteria Bacillus subtilis. The expression of the C-terminal toxic domain of YeeF (YeeF-CT) causes growth inhibition and gross morphological changes in Escherichia coli. The observed toxic effects are neutralized by the co-expression of yezG, a gene present downstream of yeeF, confirming YeeF-CT/YezG as a toxin/immunity protein pair. Biochemical and in vivo studies reveal that YeeF-CT causes toxicity due to its non-specific metal-dependent DNase activity. This is different from the previously reported RNase activity from the three B. subtilis toxins belonging to PF04740 family. Isothermal titration calorimetry (ITC) data analysis suggests that YeeF-CT binds YezG with a dissociation constant in the nanomolar range. Analytical ultracentrifugation studies revealed that YeeF-CT forms a homodimer and binds with two molecules of monomeric YezG immunity protein to form a 2:2 stochiometric heterotetrameric complex. Biolayer interferometry and electrophoretic mobility shift assays show that YeeF-CT/YezG/DNA forms a stable ternary complex implicating that YezG is an exosite inhibitor of YeeF-CT. This study extends the molecular targets of the toxins in the PF04740 family and thus, this family of toxins can be broadly classified as nucleases harboring either DNases or RNases activities.
Collapse
Affiliation(s)
- Soni Kaundal
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific & Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Amar Deep
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific & Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Gundeep Kaur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific & Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific & Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| |
Collapse
|
16
|
Su Z, Wu Y. Computational studies of protein-protein dissociation by statistical potential and coarse-grained simulations: a case study on interactions between colicin E9 endonuclease and immunity proteins. Phys Chem Chem Phys 2019; 21:2463-2471. [PMID: 30652698 DOI: 10.1039/c8cp05644g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteins carry out their diverse functions in cells by forming interactions with each other. The dynamics of these interactions are quantified by the measurement of association and dissociation rate constants. Relative to the efforts made to model the association of biomolecules, little has been studied to understand the principles of protein complex dissociation. Using the interaction between colicin E9 endonucleases and immunity proteins as a test system, here we develop a coarse-grained simulation method to explore the dissociation mechanisms of protein complexes. The interactions between proteins in the complex are described by the knowledge-based potential that was constructed by the statistics from available protein complexes in the structural database. Our study provides the supportive evidences to the dual recognition mechanism for the specificity of binding between E9 DNase and immunity proteins, in which the conserved residues of helix III of Im2 and Im9 proteins act as the anchor for binding, while the sequence variations in helix II make positive or negative contributions to specificity. Beyond that, we further suggest that this binding specificity is rooted in the process of complex dissociation instead of association. While we increased the flexibility of protein complexes, we further found that they are less prone to dissociation, suggesting that conformational fluctuations of protein complexes play important functional roles in regulating their binding and dissociation. Our studies therefore bring new insights to the molecule mechanisms of protein-protein interactions, while the method can serve as a new addition to a suite of existing computational tools for the simulations of protein complexes.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
17
|
Netzer R, Listov D, Lipsh R, Dym O, Albeck S, Knop O, Kleanthous C, Fleishman SJ. Ultrahigh specificity in a network of computationally designed protein-interaction pairs. Nat Commun 2018; 9:5286. [PMID: 30538236 PMCID: PMC6290019 DOI: 10.1038/s41467-018-07722-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/21/2018] [Indexed: 01/21/2023] Open
Abstract
Protein networks in all organisms comprise homologous interacting pairs. In these networks, some proteins are specific, interacting with one or a few binding partners, whereas others are multispecific and bind a range of targets. We describe an algorithm that starts from an interacting pair and designs dozens of new pairs with diverse backbone conformations at the binding site as well as new binding orientations and sequences. Applied to a high-affinity bacterial pair, the algorithm results in 18 new ones, with cognate affinities from pico- to micromolar. Three pairs exhibit 3-5 orders of magnitude switch in specificity relative to the wild type, whereas others are multispecific, collectively forming a protein-interaction network. Crystallographic analysis confirms design accuracy, including in new backbones and polar interactions. Preorganized polar interaction networks are responsible for high specificity, thus defining design principles that can be applied to program synthetic cellular interaction networks of desired affinity and specificity. The molecular basis of ultrahigh specificity in protein-protein interactions remains obscure. The authors present a computational method to design atomically accurate new pairs exhibiting >100,000-fold specificity switches, generating a large and complex interaction network.
Collapse
Affiliation(s)
- Ravit Netzer
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Dina Listov
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Rosalie Lipsh
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Orly Dym
- Structural Proteomics Unit, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Shira Albeck
- Structural Proteomics Unit, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Orli Knop
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
18
|
Ma Y, Guo H, Hu L, Martinez PP, Moschou PN, Cevik V, Ding P, Duxbury Z, Sarris PF, Jones JDG. Distinct modes of derepression of an Arabidopsis immune receptor complex by two different bacterial effectors. Proc Natl Acad Sci U S A 2018; 115:10218-10227. [PMID: 30254172 PMCID: PMC6187137 DOI: 10.1073/pnas.1811858115] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors often function in pairs to detect pathogen effectors and activate defense. The Arabidopsis RRS1-R-RPS4 NLR pair recognizes the bacterial effectors AvrRps4 and PopP2 via an integrated WRKY transcription factor domain in RRS1-R that mimics the effector's authentic targets. How the complex activates defense upon effector recognition is unknown. Deletion of the WRKY domain results in an RRS1 allele that triggers constitutive RPS4-dependent defense activation, suggesting that in the absence of effector, the WRKY domain contributes to maintaining the complex in an inactive state. We show the WRKY domain interacts with the adjacent domain 4, and that the inactive state of RRS1 is maintained by WRKY-domain 4 interactions before ligand detection. AvrRps4 interaction with the WRKY domain disrupts WRKY-domain 4 association, thus derepressing the complex. PopP2-triggered activation is less easily explained by such disruption and involves the longer C-terminal extension of RRS1-R. Furthermore, some mutations in RPS4 and RRS1 compromise PopP2 but not AvrRps4 recognition, suggesting that AvrRps4 and PopP2 derepress the complex differently. Consistent with this, a "reversibly closed" conformation of RRS1-R, engineered in a method exploiting the high affinity of colicin E9 and Im9 domains, reversibly loses AvrRps4, but not PopP2 responsiveness. Following RRS1 derepression, interactions between domain 4 and the RPS4 C-terminal domain likely contribute to activation. Simultaneous relief of autoinhibition and activation may contribute to defense activation in many immune receptors.
Collapse
Affiliation(s)
- Yan Ma
- The Sainsbury Laboratory, NR4 7UH Norwich, United Kingdom
| | - Hailong Guo
- The Sainsbury Laboratory, NR4 7UH Norwich, United Kingdom
| | - Lanxi Hu
- The Sainsbury Laboratory, NR4 7UH Norwich, United Kingdom
| | | | | | - Volkan Cevik
- The Sainsbury Laboratory, NR4 7UH Norwich, United Kingdom
| | - Pingtao Ding
- The Sainsbury Laboratory, NR4 7UH Norwich, United Kingdom
| | - Zane Duxbury
- The Sainsbury Laboratory, NR4 7UH Norwich, United Kingdom
| | | | | |
Collapse
|
19
|
Jin X, Kightlinger W, Kwon YC, Hong SH. Rapid production and characterization of antimicrobial colicins using Escherichia coli-based cell-free protein synthesis. Synth Biol (Oxf) 2018; 3:ysy004. [PMID: 32995513 PMCID: PMC7445778 DOI: 10.1093/synbio/ysy004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022] Open
Abstract
Colicins are antimicrobial proteins produced by Escherichia coli, which, upon secretion from the host, kill non-host E. coli strains by forming pores in the inner membrane and degrading internal cellular components such as DNA and RNA. Due to their unique cell-killing activities, colicins are considered viable alternatives to conventional antibiotics. Recombinant production of colicins requires co-production of immunity proteins to protect host cells; otherwise, the colicins are lethal to the host. In this study, we used cell-free protein synthesis (CFPS) to produce active colicins without the need for protein purification and co-production of immunity proteins. Cell-free synthesized colicins were active in killing model E. coli cells with different modes of cytotoxicity. Pore-forming colicins E1 and nuclease colicin E2 killed actively growing cells in a nutrient-rich medium, but the cytotoxicity of colicin Ia was low compared to E1 and E2. Moreover, colicin E1 effectively killed cells in a nutrient-free solution, while the activity of E2 was decreased compared to nutrient-rich conditions. Both colicins E1 and E2 decreased the level of persister cells (metabolically dormant cell populations that are insensitive to antibiotics) by up to six orders of magnitude compared to that of the rifampin pretreated persister cells. This study finds that colicins can eradicate non-growing cells including persisters, and that CFPS is a promising platform for rapid production and characterization of toxic proteins.
Collapse
Affiliation(s)
- Xing Jin
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yong-Chan Kwon
- Department of Biological and Agricultural Engineering, LSU Agricultural Center, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
20
|
Batot G, Michalska K, Ekberg G, Irimpan EM, Joachimiak G, Jedrzejczak R, Babnigg G, Hayes CS, Joachimiak A, Goulding CW. The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily. Nucleic Acids Res 2017; 45:5013-5025. [PMID: 28398546 PMCID: PMC5435912 DOI: 10.1093/nar/gkx230] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/31/2017] [Indexed: 01/01/2023] Open
Abstract
Contact-dependent growth inhibition (CDI) is an important mechanism of inter-bacterial competition found in many Gram-negative pathogens. CDI+ cells express cell-surface CdiA proteins that bind neighboring bacteria and deliver C-terminal toxin domains (CdiA-CT) to inhibit target-cell growth. CDI+ bacteria also produce CdiI immunity proteins, which specifically neutralize cognate CdiA-CT toxins to prevent self-inhibition. Here, we present the crystal structure of the CdiA-CT/CdiIYkris complex from Yersinia kristensenii ATCC 33638. CdiA-CTYkris adopts the same fold as angiogenin and other RNase A paralogs, but the toxin does not share sequence similarity with these nucleases and lacks the characteristic disulfide bonds of the superfamily. Consistent with the structural homology, CdiA-CTYkris has potent RNase activity in vitro and in vivo. Structure-guided mutagenesis reveals that His175, Arg186, Thr276 and Tyr278 contribute to CdiA-CTYkris activity, suggesting that these residues participate in substrate binding and/or catalysis. CdiIYkris binds directly over the putative active site and likely neutralizes toxicity by blocking access to RNA substrates. Significantly, CdiA-CTYkris is the first non-vertebrate protein found to possess the RNase A superfamily fold, and homologs of this toxin are associated with secretion systems in many Gram-negative and Gram-positive bacteria. These observations suggest that RNase A-like toxins are commonly deployed in inter-bacterial competition.
Collapse
Affiliation(s)
- Gaëlle Batot
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- These authors contributed equally to this work as first authors
| | - Karolina Michalska
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- These authors contributed equally to this work as first authors
| | - Greg Ekberg
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
- These authors contributed equally to this work as first authors
| | - Ervin M. Irimpan
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Grazyna Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Robert Jedrzejczak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Celia W. Goulding
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
- To whom correspondence should be addressed. Tel: +1 949 824 0337; Fax: +1 949 824 8551
| |
Collapse
|
21
|
Calcuttawala F, Hariharan C, Pazhani GP, Saha DR, Ramamurthy T. Characterization of E-type colicinogenic plasmids from Shigella sonnei. FEMS Microbiol Lett 2017; 364:3071828. [DOI: 10.1093/femsle/fnx060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
|
22
|
Structural and biophysical analysis of nuclease protein antibiotics. Biochem J 2016; 473:2799-812. [PMID: 27402794 PMCID: PMC5264503 DOI: 10.1042/bcj20160544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 01/28/2023]
Abstract
Protein antibiotics (bacteriocins) are a large and diverse family of multidomain toxins that kill specific Gram-negative bacteria during intraspecies competition for resources. Our understanding of the mechanism of import of such potent toxins has increased significantly in recent years, especially with the reporting of several structures of bacteriocin domains. Less well understood is the structural biochemistry of intact bacteriocins and how these compare across bacterial species. Here, we focus on endonuclease (DNase) bacteriocins that target the genomes of Escherichia coli and Pseudomonas aeruginosa, known as E-type colicins and S-type pyocins, respectively, bound to their specific immunity (Im) proteins. First, we report the 3.2 Å structure of the DNase colicin ColE9 in complex with its ultra-high affinity Im protein, Im9. In contrast with Im3, which when bound to the ribonuclease domain of the homologous colicin ColE3 makes contact with the translocation (T) domain of the toxin, we find that Im9 makes no such contact and only interactions with the ColE9 cytotoxic domain are observed. Second, we report small-angle X-ray scattering data for two S-type DNase pyocins, S2 and AP41, into which are fitted recently determined X-ray structures for isolated domains. We find that DNase pyocins and colicins are both highly elongated molecules, even though the order of their constituent domains differs. We discuss the implications of these architectural similarities and differences in the context of the translocation mechanism of protein antibiotics through the cell envelope of Gram-negative bacteria.
Collapse
|
23
|
Morse RP, Willett JLE, Johnson PM, Zheng J, Credali A, Iniguez A, Nowick JS, Hayes CS, Goulding CW. Diversification of β-Augmentation Interactions between CDI Toxin/Immunity Proteins. J Mol Biol 2015; 427:3766-84. [PMID: 26449640 DOI: 10.1016/j.jmb.2015.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023]
Abstract
Contact-dependent growth inhibition (CDI) is a widespread mechanism of inter-bacterial competition mediated by the CdiB/CdiA family of two-partner secretion proteins. CdiA effectors carry diverse C-terminal toxin domains (CdiA-CT), which are delivered into neighboring target cells to inhibit growth. CDI(+) bacteria also produce CdiI immunity proteins that bind specifically to cognate CdiA-CT toxins and protect the cell from auto-inhibition. Here, we compare the structures of homologous CdiA-CT/CdiI complexes from Escherichia coli EC869 and Yersinia pseudotuberculosis YPIII to explore the evolution of CDI toxin/immunity protein interactions. Both complexes share an unusual β-augmentation interaction, in which the toxin domain extends a β-hairpin into the immunity protein to complete a six-stranded anti-parallel sheet. However, the specific contacts differ substantially between the two complexes. The EC869 β-hairpin interacts mainly through direct H-bond and ion-pair interactions, whereas the YPIII β-hairpin pocket contains more hydrophobic contacts and a network of bridging water molecules. In accord with these differences, we find that each CdiI protein only protects target bacteria from its cognate CdiA-CT toxin. The compact β-hairpin binding pocket within the immunity protein represents a tractable system for the rationale design of small molecules to block CdiA-CT/CdiI complex formation. We synthesized a macrocyclic peptide mimic of the β-hairpin from EC869 toxin and solved its structure in complex with cognate immunity protein. These latter studies suggest that small molecules could potentially be used to disrupt CDI toxin/immunity complexes.
Collapse
Affiliation(s)
- Robert P Morse
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Julia L E Willett
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Parker M Johnson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jing Zheng
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Alfredo Credali
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Angelina Iniguez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - James S Nowick
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA; Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
24
|
Joshi A, Grinter R, Josts I, Chen S, Wojdyla JA, Lowe ED, Kaminska R, Sharp C, McCaughey L, Roszak AW, Cogdell RJ, Byron O, Walker D, Kleanthous C. Structures of the Ultra-High-Affinity Protein-Protein Complexes of Pyocins S2 and AP41 and Their Cognate Immunity Proteins from Pseudomonas aeruginosa. J Mol Biol 2015; 427:2852-66. [PMID: 26215615 PMCID: PMC4548480 DOI: 10.1016/j.jmb.2015.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 11/25/2022]
Abstract
How ultra-high-affinity protein-protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase-Im interaction is a model system for the study of high-affinity protein-protein interactions. However, despite the fact that closely related colicin-like bacteriocins are widely produced by Gram-negative bacteria, this interaction has only been studied using colicins from Escherichia coli. In this work, we present the first crystal structures of two pyocin DNase-Im complexes from Pseudomonas aeruginosa, pyocin S2 DNase-ImS2 and pyocin AP41 DNase-ImAP41. These structures represent divergent DNase-Im subfamilies and are important in extending our understanding of protein-protein interactions for this important class of high-affinity protein complex. A key finding of this work is that mutations within the immunity protein binding energy hotspot, helix III, are tolerated by complementary substitutions at the DNase-Immunity protein binding interface. Im helix III is strictly conserved in colicins where an Asp forms polar interactions with the DNase backbone. ImAP41 contains an Asp-to-Gly substitution in helix III and our structures show the role of a co-evolved substitution where Pro in DNase loop 4 occupies the volume vacated and removes the unfulfilled hydrogen bond. We observe the co-evolved mutations in other DNase-Immunity pairs that appear to underpin the split of this family into two distinct groups.
Collapse
Affiliation(s)
- Amar Joshi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Rhys Grinter
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Inokentijs Josts
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sabrina Chen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Justyna A Wojdyla
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Edward D Lowe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Connor Sharp
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Laura McCaughey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Aleksander W Roszak
- WestCHEM, School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard J Cogdell
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Olwyn Byron
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
25
|
Slutzki M, Reshef D, Barak Y, Haimovitz R, Rotem-Bamberger S, Lamed R, Bayer EA, Schueler-Furman O. Crucial roles of single residues in binding affinity, specificity, and promiscuity in the cellulosomal cohesin-dockerin interface. J Biol Chem 2015; 290:13654-66. [PMID: 25833947 PMCID: PMC4447945 DOI: 10.1074/jbc.m115.651208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 11/06/2022] Open
Abstract
Interactions between cohesin and dockerin modules play a crucial role in the assembly of multienzyme cellulosome complexes. Although intraspecies cohesin and dockerin modules bind in general with high affinity but indiscriminately, cross-species binding is rare. Here, we combined ELISA-based experiments with Rosetta-based computational design to evaluate the contribution of distinct residues at the Clostridium thermocellum cohesin-dockerin interface to binding affinity, specificity, and promiscuity. We found that single mutations can show distinct and significant effects on binding affinity and specificity. In particular, mutations at cohesin position Asn(37) show dramatic variability in their effect on dockerin binding affinity and specificity: the N37A mutant binds promiscuously both to cognate (C. thermocellum) as well as to non-cognate Clostridium cellulolyticum dockerin. N37L in turn switches binding specificity: compared with the wild-type C. thermocellum cohesin, this mutant shows significantly increased preference for C. cellulolyticum dockerin combined with strongly reduced binding to its cognate C. thermocellum dockerin. The observation that a single mutation can overcome the naturally observed specificity barrier provides insights into the evolutionary dynamics of this system that allows rapid modulation of binding specificity within a high affinity background.
Collapse
Affiliation(s)
- Michal Slutzki
- From the Department of Biological Chemistry, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Dan Reshef
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, 9112102 Jerusalem, Israel, and
| | - Yoav Barak
- From the Department of Biological Chemistry, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Rachel Haimovitz
- From the Department of Biological Chemistry, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Shahar Rotem-Bamberger
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, 9112102 Jerusalem, Israel, and
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 6997801 Ramat Aviv, Israel
| | - Edward A Bayer
- From the Department of Biological Chemistry, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, 9112102 Jerusalem, Israel, and
| |
Collapse
|
26
|
Kim YC, Tarr AW, Penfold CN. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1717-31. [PMID: 24746518 DOI: 10.1016/j.bbamcr.2014.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/03/2023]
Abstract
Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein-protein interactions (PPI), protein-lipid interactions and the role of order-disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Young Chan Kim
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Alexander W Tarr
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Christopher N Penfold
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
27
|
Vankemmelbeke M, Housden NG, James R, Kleanthous C, Penfold CN. Immunity protein release from a cell-bound nuclease colicin complex requires global conformational rearrangement. Microbiologyopen 2013; 2:853-61. [PMID: 24039240 PMCID: PMC3831645 DOI: 10.1002/mbo3.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/12/2013] [Accepted: 07/21/2013] [Indexed: 11/24/2022] Open
Abstract
Nuclease colicins bind their target receptor BtuB in the outer membrane of sensitive Escherichia coli cells in the form of a high-affinity complex with their cognate immunity proteins. The release of the immunity protein from the colicin complex is a prerequisite for cell entry of the colicin and occurs via a process that is still relatively poorly understood. We have previously shown that an energy input in the form of the cytoplasmic membrane proton motive force is required to promote immunity protein (Im9) release from the colicin E9/Im9 complex and colicin cell entry. We report here that engineering rigidity in the structured part of the colicin translocation domain via the introduction of disulfide bonds prevents immunity protein release from the colicin complex. Reduction of the disulfide bond by the addition of DTT leads to immunity protein release and resumption of activity. Similarly, the introduction of a disulfide bond in the DNase domain previously shown to abolish channel formation in planar bilayers also prevented immunity protein release. Importantly, all disulfide bonds, in the translocation as well as the DNase domain, also abolished the biological activity of the Im9-free colicin E9, the reduction of which led to a resumption of activity. Our results show, for the first time, that conformational flexibility in the structured translocation and DNase domains of a nuclease colicin is essential for immunity protein release, providing further evidence for the hypothesis that global structural rearrangement of the colicin molecule is required for disassembly of this high-affinity toxin-immunity protein complex prior to outer membrane translocation.
Collapse
Affiliation(s)
- Mireille Vankemmelbeke
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Gyurcsik B, Czene A, Jankovics H, Jakab-Simon NI, Ślaska-Kiss K, Kiss A, Kele Z. Cloning, purification and metal binding of the HNH motif from colicin E7. Protein Expr Purif 2013; 89:210-8. [DOI: 10.1016/j.pep.2013.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 11/26/2022]
|
29
|
Abstract
Gram-negative phytopathogens cause significant losses in a diverse range of economically important crop plants. The effectiveness of traditional countermeasures, such as the breeding and introduction of resistant cultivars, is often limited by the dearth of available sources of genetic resistance. An alternative strategy to reduce loss to specific bacterial phytopathogens is to use narrow-spectrum protein antibiotics such as colicin-like bacteriocins as biocontrol agents. A number of colicin-like bacteriocins active against phytopathogenic bacteria have been described previously as have strategies for their application to biocontrol. In the present paper, we discuss these strategies and our own recent work on the identification and characterization of candidate bacteriocins and how these potent and selective antimicrobial agents can be effectively applied to the control of economically important plant disease.
Collapse
|
30
|
Colicin-like bacteriocins as novel therapeutic agents for the treatment of chronic biofilm-mediated infection. Biochem Soc Trans 2013; 40:1549-52. [PMID: 23176515 DOI: 10.1042/bst20120241] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The emergence of pan-resistant strains of Gram-negative pathogens and the ability of many bacteria to form multidrug-resistant biofilms during chronic infection poses the grave threat of bacterial infections that are truly untreatable with our current armoury of antibiotics. Despite obvious clinical need, few new antibiotics have entered clinical practice in recent years. For 'difficult to treat' Gram-negative bacteria such as Pseudomonas aeruginosa and Escherichia coli, where the presence of outer membrane and multidrug-efflux pumps severely limit the effectiveness of whole classes of antibiotics, the need is particularly pressing. An alternative approach to antimicrobial treatment is to use the well-characterized species-specific colicin-like bacteriocins which are produced by a wide range of Gram-negative bacteria, including Pseudomonas aeruginosa and Escherichia coli. Our current work on colicin-like bacteriocins aims to determine whether these potent antimicrobial agents are effective at killing bacteria growing in the biofilm state and during infection.
Collapse
|
31
|
Czene A, Németh E, Zóka IG, Jakab-Simon NI, Körtvélyesi T, Nagata K, Christensen HEM, Gyurcsik B. The role of the N-terminal loop in the function of the colicin E7 nuclease domain. J Biol Inorg Chem 2013; 18:309-21. [DOI: 10.1007/s00775-013-0975-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/31/2012] [Indexed: 01/10/2023]
|
32
|
Ho D, Lugo MR, Merrill AR. Harmonic analysis of the fluorescence response of bimane adducts of colicin E1 at helices 6, 7, and 10. J Biol Chem 2012; 288:5136-48. [PMID: 23264635 DOI: 10.1074/jbc.m112.436303] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pre-channel state of helices 6, 7, and 10 (Val(447)-Gly(475) and Ile(508)-Ile(522)) of colicin E1 was investigated by a site-directed fluorescence labeling technique. A total of 44 cysteine variants were purified and covalently labeled with monobromobimane fluorescent probe. A variety of fluorescence properties of the bimane fluorophore were measured for both the soluble and membrane-bound states of the channel peptide, including the fluorescence emission maximum, fluorescence anisotropy, and membrane bilayer penetration depth. Using site-directed fluorescence labeling combined with our novel helical periodicity analysis method, the data revealed that helices 6, 7, and 10 are separate amphipathic α-helices with a calculated periodicity of T = 3.34 ± 0.08 for helix 6, T = 3.56 ± 0.03 for helix 7, and T = 2.99 ± 0.12 for helix 10 in the soluble state. In the membrane-bound state, the helical periodicity was determined to be T = 3.00 ± 0.15 for helix 6, T = 3.68 ± 0.03 for helix 7, and T = 3.47 ± 0.04 for helix 10. Dual fluorescence quencher analysis showed that both helices 6 and 7 adopt a tilted topology that correlates well with the analysis based on the fluorescence anisotropy profile. These data provide further support for the umbrella model of the colicin E1 channel domain.
Collapse
Affiliation(s)
- Derek Ho
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
33
|
Luitz MP, Zacharias M. Role of tyrosine hot-spot residues at the interface of colicin E9 and immunity protein 9: a comparative free energy simulation study. Proteins 2012; 81:461-8. [PMID: 23070925 DOI: 10.1002/prot.24203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/08/2012] [Accepted: 09/21/2012] [Indexed: 11/06/2022]
Abstract
The endonuclease activity of the bacterial colicin 9 enzyme is controlled by the specific and high-affinity binding of immunity protein 9 (Im9). Molecular dynamics simulation studies in explicit solvent were used to investigate the free energy change associated with the mutation of two hot-spot interface residues [tyrosine (Tyr): Tyr54 and Tyr55] of Im9 to Ala. In addition, the effect of several other mutations (Leu33Ala, Leu52Ala, Val34Ala, Val37Ala, Ser48Ala, and Ile53Ala) with smaller influence on binding affinity was also studied. Good qualitative agreement of calculated free energy changes and experimental data on binding affinity of the mutations was observed. The simulation studies can help to elucidate the molecular details on how the mutations influence protein-protein binding affinity. The role of solvent and conformational flexibility of the partner proteins was studied by comparing the results in the presence or absence of solvent and with or without positional restraints. Restriction of the conformational mobility of protein partners resulted in significant changes of the calculated free energies but of similar magnitude for isolated Im9 and for the complex and therefore in only modest changes of binding free energy differences. Although the overall binding free energy change was similar for the two Tyr-Ala mutations, the physical origin appeared to be different with solvation changes contributing significantly to the Tyr55Ala mutation and to a loss of direct protein-protein interactions dominating the free energy change due to the Tyr54Ala mutation.
Collapse
Affiliation(s)
- Manuel P Luitz
- Physik-Department T38, Technische Universität München, 85748 Garching, Germany
| | | |
Collapse
|
34
|
Grinter R, Roszak AW, Cogdell RJ, Milner JJ, Walker D. The crystal structure of the lipid II-degrading bacteriocin syringacin M suggests unexpected evolutionary relationships between colicin M-like bacteriocins. J Biol Chem 2012; 287:38876-88. [PMID: 22995910 DOI: 10.1074/jbc.m112.400150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colicin-like bacteriocins show potential as next generation antibiotics with clinical and agricultural applications. Key to these potential applications is their high potency and species specificity that enables a single pathogenic species to be targeted with minimal disturbance of the wider microbial community. Here we present the structure and function of the colicin M-like bacteriocin, syringacin M from Pseudomonas syringae pv. tomato DC3000. Syringacin M kills susceptible cells through a highly specific phosphatase activity that targets lipid II, ultimately inhibiting peptidoglycan synthesis. Comparison of the structures of syringacin M and colicin M reveals that, in addition to the expected similarity between the homologous C-terminal catalytic domains, the receptor binding domains of these proteins, which share no discernible sequence homology, share a striking structural similarity. This indicates that the generation of the novel receptor binding and species specificities of these bacteriocins has been driven by diversifying selection rather than diversifying recombination as suggested previously. Additionally, the structure of syringacin M reveals the presence of an active site calcium ion that is coordinated by a conserved aspartic acid side chain and is essential for catalytic activity. We show that mutation of this residue to alanine inactivates syringacin M and that the metal ion is absent from the structure of the mutant protein. Consistent with the presence of Ca(2+) in the active site, we show that syringacin M activity is supported by Ca(2+), along with Mg(2+) and Mn(2+), and the protein is catalytically inactive in the absence of these ions.
Collapse
Affiliation(s)
- Rhys Grinter
- Institute of Infection, Immunity, and Inflammation, School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Structural basis for type VI secretion effector recognition by a cognate immunity protein. PLoS Pathog 2012; 8:e1002613. [PMID: 22511866 PMCID: PMC3325213 DOI: 10.1371/journal.ppat.1002613] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 02/14/2012] [Indexed: 11/29/2022] Open
Abstract
The type VI secretion system (T6SS) has emerged as an important mediator of interbacterial interactions. A T6SS from Pseudomonas aeruginosa targets at least three effector proteins, type VI secretion exported 1–3 (Tse1–3), to recipient Gram-negative cells. The Tse2 protein is a cytoplasmic effector that acts as a potent inhibitor of target cell proliferation, thus providing a pronounced fitness advantage for P. aeruginosa donor cells. P. aeruginosa utilizes a dedicated immunity protein, type VI secretion immunity 2 (Tsi2), to protect against endogenous and intercellularly-transferred Tse2. Here we show that Tse2 delivered by the T6SS efficiently induces quiescence, not death, within recipient cells. We demonstrate that despite direct interaction of Tsi2 and Tse2 in the cytoplasm, Tsi2 is dispensable for targeting the toxin to the secretory apparatus. To gain insights into the molecular basis of Tse2 immunity, we solved the 1.00 Å X-ray crystal structure of Tsi2. The structure shows that Tsi2 assembles as a dimer that does not resemble previously characterized immunity or antitoxin proteins. A genetic screen for Tsi2 mutants deficient in Tse2 interaction revealed an acidic patch distal to the Tsi2 homodimer interface that mediates toxin interaction and immunity. Consistent with this finding, we observed that destabilization of the Tsi2 dimer does not impact Tse2 interaction. The molecular insights into Tsi2 structure and function garnered from this study shed light on the mechanisms of T6 effector secretion, and indicate that the Tse2–Tsi2 effector–immunity pair has features distinguishing it from previously characterized toxin–immunity and toxin–antitoxin systems. Bacterial species have been at war with each other for over a billion years. During this period they have evolved many pathways for besting the competition; one of the most recent of these to be described is the type VI secretion system (T6SS). The T6SS of Pseudomonas aeruginosa is a complex machine that the bacterium uses to intoxicate neighboring cells. Among the toxins this system delivers is type VI secretion exported 2 (Tse2). In addition to acting on competing organisms, this toxin can act on P. aeruginosa; thus, the organism synthesizes a protein, type VI secretion immunity 2 (Tsi2), which neutralizes the toxin. In this paper we dissect the function and structure of Tsi2. We show that although Tsi2 interacts with and stabilizes Tse2 inside the bacterium, the toxin does not require the immunity protein to reach the secretion apparatus. Our structure of Tsi2 shows that the protein adopts a dimeric configuration; however, we find that its dimerization is not required for Tse2 interaction. Instead, our findings indicate that Tse2 interacts with an acidic surface of Tsi2 that is opposite the homodimer interface. Our results provide key molecular insights into the process of T6 toxin secretion and immunity.
Collapse
|
36
|
Grinter R, Milner J, Walker D. Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in Pectobacterium spp. PLoS One 2012; 7:e33033. [PMID: 22427936 PMCID: PMC3302902 DOI: 10.1371/journal.pone.0033033] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/09/2012] [Indexed: 11/19/2022] Open
Abstract
In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium Pectobacterium carotovorum carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of Pectobacterium carotovorum and Pectobacterium atrosepticum with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that Pectobacterium spp. carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of Pectobacterium carotovorum and atrosepticum that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells.
Collapse
Affiliation(s)
- Rhys Grinter
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Joel Milner
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Wojdyla JA, Fleishman SJ, Baker D, Kleanthous C. Structure of the ultra-high-affinity colicin E2 DNase--Im2 complex. J Mol Biol 2012; 417:79-94. [PMID: 22306467 DOI: 10.1016/j.jmb.2012.01.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 11/18/2022]
Abstract
How proteins achieve high-affinity binding to a specific protein partner while simultaneously excluding all others is a major biological problem that has important implications for protein design. We report the crystal structure of the ultra-high-affinity protein-protein complex between the endonuclease domain of colicin E2 and its cognate immunity (Im) protein, Im2 (K(d)∼10(-)(15) M), which, by comparison to previous structural and biophysical data, provides unprecedented insight into how high affinity and selectivity are achieved in this model family of protein complexes. Our study pinpoints the role of structured water molecules in conjoining hotspot residues that govern stability with residues that control selectivity. A key finding is that a single residue, which in a noncognate context massively destabilizes the complex through frustration, does not participate in specificity directly but rather acts as an organizing center for a multitude of specificity interactions across the interface, many of which are water mediated.
Collapse
|
38
|
Abstract
It is more than 80 years since Gratia first described 'a remarkable antagonism between two strains of Escherichia coli'. Shown subsequently to be due to the action of proteins (or peptides) produced by one bacterium to kill closely related species with which it might be cohabiting, such bacteriocins have since been shown to be commonplace in the internecine warfare between bacteria. Bacteriocins have been studied primarily from the twin perspectives of how they shape microbial communities and how they penetrate bacteria to kill them. Here, we review the modes of action of a family of bacteriocins that cleave nucleic acid substrates in E. coli, known collectively as nuclease colicins, and the specific immunity (inhibitor) proteins that colicin-producing organisms make in order to avoid committing suicide. In a process akin to targeting in mitochondria, nuclease colicins engage in a variety of cellular associations in order to translocate their cytotoxic domains through the cell envelope to the cytoplasm. As well as informing on the process itself, the study of nuclease colicin import has also illuminated functional aspects of the host proteins they parasitize. We also review recent studies where nuclease colicins and their immunity proteins have been used as model systems for addressing fundamental problems in protein folding and protein-protein interactions, areas of biophysics that are intimately linked to the role of colicins in bacterial competition and to the import process itself.
Collapse
|
39
|
Cukuroglu E, Gursoy A, Keskin O. HotRegion: a database of predicted hot spot clusters. Nucleic Acids Res 2011; 40:D829-33. [PMID: 22080558 PMCID: PMC3245113 DOI: 10.1093/nar/gkr929] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.
Collapse
Affiliation(s)
- Engin Cukuroglu
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | | | | |
Collapse
|
40
|
Macromolecular assembly-driven processing of the 2/3 cleavage site in the alphavirus replicase polyprotein. J Virol 2011; 86:553-65. [PMID: 22031949 DOI: 10.1128/jvi.05195-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Semliki Forest virus (SFV) is a member of the Alphavirus genus, which produces its replicase proteins in the form of a nonstructural (ns) polyprotein precursor P1234. The maturation of the replicase occurs in a temporally controlled manner by protease activity of nsP2. The template preference and enzymatic capabilities of the alphaviral replication complex have a very important connection with its composition, which is irreversibly altered by proteolysis. The final cleavage of the 2/3 site in the ns polyprotein apparently leads to significant rearrangements within the replication complex and thus denotes the "point of no return" for viral replication progression. Numerous studies have devised rules for when and how ns protease acts, but how the alphaviral 2/3 site is recognized remained largely unexplained. In contrast to the other two cleavage sites within the ns polyprotein, the 2/3 site evidently lacks primary sequence elements in the vicinity of the scissile bond sufficient for specific protease recognition. In this study, we sought to investigate the molecular details of the regulation of the 2/3 site processing in the SFV ns polyprotein. We present evidence that correct macromolecular assembly, presumably strengthened by exosite interactions rather than the functionality of the individual nsP2 protease, is the driving force for specific substrate targeting. We conclude that structural elements within the macrodomain of nsP3 are used for precise positioning of a substrate recognition sequence at the catalytic center of the protease and that this process is coordinated by the exact N-terminal end of nsP2, thus representing a unique regulation mechanism used by alphaviruses.
Collapse
|
41
|
Abstract
Bacteriocins are selective protein antibiotics that bind and kill specific bacterial species, the best studied of which are the colicins that target Escherichia coli. Colicins tend to parasitize cell envelope systems that are important for cell viability under nutrient-limited conditions or environmental stress. In this chapter, we review how in conjunction with other biophysical methods and structural information, isothermal titration calorimetry (ITC) has been used to investigate how colicins enter E. coli cells. In particular, we summarize current understanding of the thermodynamics of outer membrane receptor binding and how this has been linked to biological function. We also summarize thermodynamic investigations using ITC that have helped elucidate the mechanisms by which colicins bind and parasitize proteins in the periplasm, forming protein-protein interactions that ultimately trigger translocation across the outer membrane. Our review focuses on the two major cytotoxic classes of colicin that have been the subject of intense investigation, pore-forming toxins, and nonspecific endonucleases (DNases). DNase colicin-producing E. coli avoid committing suicide through the production of a small antidote protein known as the immunity (Im) protein, with the Im protein only released once cell-entry is initiated. Exosite binding by Im proteins has driven an evolutionary arms race among colicin-producing bacteria whereby markedly different colicin DNase-Im protein interaction specificities have evolved without impacting on cytotoxicity. Extensive investigations have shown that homologous colicin DNase-Im protein complexes have K(d)s, for cognate and noncognate complexes, that vary by 10-orders of magnitude, essentially matching the entire spectrum of binding affinities seen for protein-protein interactions in biology. Hence, this system has proved to be a powerful model for investigating the thermodynamics of specificity in protein-protein interactions, with ITC being the principal tool. We review this literature and point to how the thermodynamic information that has been generated complements various other kinetic and structural data.
Collapse
Affiliation(s)
- Nicholas G Housden
- Department of Biology (Area 10), University of York, York, United Kingdom
| | | |
Collapse
|
42
|
Housden NG, Wojdyla JA, Korczynska J, Grishkovskaya I, Kirkpatrick N, Brzozowski AM, Kleanthous C. Directed epitope delivery across the Escherichia coli outer membrane through the porin OmpF. Proc Natl Acad Sci U S A 2010; 107:21412-7. [PMID: 21098297 PMCID: PMC3003033 DOI: 10.1073/pnas.1010780107] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The porins OmpF and OmpC are trimeric β-barrel proteins with narrow channels running through each monomer that exclude molecules > 600 Da while mediating the passive diffusion of small nutrients and metabolites across the Gram-negative outer membrane (OM). Here, we elucidate the mechanism by which an entire soluble protein domain (> 6 kDa) is delivered through the lumen of such porins. Following high-affinity binding to the vitamin B(12) receptor in Escherichia coli, the bacteriocin ColE9 recruits OmpF or OmpC using an 83-residue intrinsically unstructured translocation domain (IUTD) to deliver a 16-residue TolB-binding epitope (TBE) in the center of the IUTD to the periplasm where it triggers toxin entry. We demonstrate that the IUTD houses two OmpF-binding sites, OBS1 (residues 2-18) and OBS2 (residues 54-63), which flank the TBE and bind with K(d)s of 2 and 24 μM, respectively, at pH 6.5 and 25 ºC. We show the two OBSs share the same binding site on OmpF and that the colicin must house at least one of them for antibiotic activity. Finally, we report the structure of the OmpF-OBS1 complex that shows the colicin bound within the porin lumen spanning the membrane bilayer. Our study explains how colicins exploit porins to deliver epitope signals to the bacterial periplasm and, more broadly, how the inherent flexibility and narrow cross-sectional area of an IUP domain can endow it with the ability to traverse a biological membrane via the constricted lumen of a β-barrel membrane protein.
Collapse
Affiliation(s)
| | | | - Justyna Korczynska
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | | | | | - A. Marek Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | | |
Collapse
|
43
|
Kleanthous C. Swimming against the tide: progress and challenges in our understanding of colicin translocation. Nat Rev Microbiol 2010; 8:843-8. [PMID: 21060316 DOI: 10.1038/nrmicro2454] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Colicins are folded protein toxins that face the formidable task of translocating across one or both of the Escherichia coli cell membranes in order to induce cell death. This translocation is achieved by parasitizing host proteins. There has been much recent progress in our understanding of the early stages of colicin entry, including the binding of outer-membrane nutrient transporters and porins and the subsequent recruitment of periplasmic and inner-membrane proteins that, together, trigger translocation. As well as providing insights into how these toxins enter cells, these studies have highlighted some surprising similarities in the modes of action of the systems that colicins subvert.
Collapse
Affiliation(s)
- Colin Kleanthous
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, UK.
| |
Collapse
|
44
|
Ng CL, Lang K, Meenan NAG, Sharma A, Kelley AC, Kleanthous C, Ramakrishnan V. Structural basis for 16S ribosomal RNA cleavage by the cytotoxic domain of colicin E3. Nat Struct Mol Biol 2010; 17:1241-1246. [PMID: 20852642 PMCID: PMC3755339 DOI: 10.1038/nsmb.1896] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 07/26/2010] [Indexed: 11/08/2022]
Abstract
The toxin colicin E3 targets the 30S subunit of bacterial ribosomes and cleaves a phosphodiester bond in the decoding center. We present the crystal structure of the 70S ribosome in complex with the cytotoxic domain of colicin E3 (E3-rRNase). The structure reveals how the rRNase domain of colicin binds to the A site of the decoding center in the 70S ribosome and cleaves the 16S ribosomal RNA (rRNA) between A1493 and G1494. The cleavage mechanism involves the concerted action of conserved residues Glu62 and His58 of the cytotoxic domain of colicin E3. These residues activate the 16S rRNA for 2' OH-induced hydrolysis. Conformational changes observed for E3-rRNase, 16S rRNA and helix 69 of 23S rRNA suggest that a dynamic binding platform is required for colicin E3 binding and function.
Collapse
MESH Headings
- Amino Acid Sequence
- Catalysis
- Colicins/chemistry
- Colicins/metabolism
- Conserved Sequence
- Crystallography, X-Ray
- Escherichia coli/metabolism
- Macromolecular Substances
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Conformation
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
- Thermus thermophilus/metabolism
Collapse
Affiliation(s)
- C Leong Ng
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Kathrin Lang
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | - Amit Sharma
- Department of Biology (Area 10), University of York, York, UK
| | - Ann C Kelley
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
45
|
Meenan NAG, Sharma A, Fleishman SJ, MacDonald CJ, Morel B, Boetzel R, Moore GR, Baker D, Kleanthous C. The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction. Proc Natl Acad Sci U S A 2010; 107:10080-5. [PMID: 20479265 PMCID: PMC2890441 DOI: 10.1073/pnas.0910756107] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-affinity, high-selectivity protein-protein interactions that are critical for cell survival present an evolutionary paradox: How does selectivity evolve when acquired mutations risk a lethal loss of high-affinity binding? A detailed understanding of selectivity in such complexes requires structural information on weak, noncognate complexes which can be difficult to obtain due to their transient and dynamic nature. Using NMR-based docking as a guide, we deployed a disulfide-trapping strategy on a noncognate complex between the colicin E9 endonuclease (E9 DNase) and immunity protein 2 (Im2), which is seven orders of magnitude weaker binding than the cognate femtomolar E9 DNase-Im9 interaction. The 1.77 A crystal structure of the E9 DNase-Im2 complex reveals an entirely noncovalent interface where the intersubunit disulfide merely supports the crystal lattice. In combination with computational alanine scanning of interfacial residues, the structure reveals that the driving force for binding is so strong that a severely unfavorable specificity contact is tolerated at the interface and as a result the complex becomes weakened through "frustration." As well as rationalizing past mutational and thermodynamic data, comparing our noncognate structure with previous cognate complexes highlights the importance of loop regions in developing selectivity and accentuates the multiple roles of buried water molecules that stabilize, ameliorate, or aggravate interfacial contacts. The study provides direct support for dual-recognition in colicin DNase-Im protein complexes and shows that weakened noncognate complexes are primed for high-affinity binding, which can be achieved by economical mutation of a limited number of residues at the interface.
Collapse
Affiliation(s)
- Nicola A. G. Meenan
- Department of Biology, P.O. Box 373, University of York, York, YO10 5YW, United Kingdom
| | - Amit Sharma
- Department of Biology, P.O. Box 373, University of York, York, YO10 5YW, United Kingdom
| | - Sarel J. Fleishman
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, HSB J559 Seattle, WA 98195; and
| | - Colin J. MacDonald
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Bertrand Morel
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Ruth Boetzel
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Geoffrey R. Moore
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - David Baker
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, HSB J559 Seattle, WA 98195; and
| | - Colin Kleanthous
- Department of Biology, P.O. Box 373, University of York, York, YO10 5YW, United Kingdom
| |
Collapse
|
46
|
Yang TY, Sung YM, Lei GS, Romeo T, Chak KF. Posttranscriptional repression of the cel gene of the ColE7 operon by the RNA-binding protein CsrA of Escherichia coli. Nucleic Acids Res 2010; 38:3936-51. [PMID: 20378712 PMCID: PMC2896534 DOI: 10.1093/nar/gkq177] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Carbon storage regulator (CsrA) is a eubacterial RNA-binding protein that acts as a global regulator of many functionally diverse chromosomal genes. Here, we reveal that CsrA represses expression from an extrachromosomal element of Escherichia coli, the lysis gene (cel) of the ColE7 operon (cea-cei-cel). This operon and colicin expression are activated upon SOS response. Disruption of csrA caused ∼5-fold increase of the lysis protein. Gel mobility shift assays established that both the single-stranded loop of the T1 stem–loop distal to cei, and the putative CsrA binding site overlapping the Shine–Dalgarno sequence (SD) of the cel gene are important for CsrA binding. Substitution mutations at SD relieved CsrA-dependent repression of the cel gene in vivo. Steady-state levels and half-life of the cel mRNA were not affected by CsrA, implying that regulation is mediated at the translational level. Levels of CsrB and CsrC sRNAs, which bind to and antagonize CsrA, were drastically reduced upon induction of the SOS response, while the CsrA protein itself remained unaffected. Thus, CsrA is a trans-acting modulator that downregulates the expression of lysis protein, which may confer a survival advantage on colicinogenic E. coli under environment stress conditions.
Collapse
Affiliation(s)
- Tsung-Yeh Yang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Abstract
The ability of Escherichia coli to kill other E. coli using protein antibiotics known as colicins has been known for many years, but the mechanisms involved poorly understood. Recent progress has been rapid, however, particularly concerning events on either side of the outer membrane (OM). Structures of colicins bound to OM receptors have been determined and we have detailed mechanistic information on how colicins subvert the periplasmic complexes of TolQRAB/Pal or TonB/ExbB/ExbD to trigger cell entry. In this issue of Molecular Microbiology, Jakes and Finkelstein answer a long-standing problem concerning the uptake mechanism of the pore-forming colicin ColIa: How does the TonB box of the colicin cross the OM following high-affinity binding of ColIa to its primary receptor, the siderophore transporter Cir? Through a series of chimeric protein constructions tested for their activity against a range of mutants and in cell death protection assays, the authors come up with the surprising observation that following binding of ColIa to Cir it recruits another Cir protein as its OM translocator. Not only does this settle various conundrums in the literature, but the translocation mechanism that stems from their study will likely be applicable to many TonB-dependent colicins.
Collapse
Affiliation(s)
- Colin Kleanthous
- Department of Biology, PO Box 373, University of York, York YO10 5YW, UK.
| |
Collapse
|
48
|
Bonsor DA, Hecht O, Vankemmelbeke M, Sharma A, Krachler AM, Housden NG, Lilly KJ, James R, Moore GR, Kleanthous C. Allosteric beta-propeller signalling in TolB and its manipulation by translocating colicins. EMBO J 2009; 28:2846-57. [PMID: 19696740 PMCID: PMC2750012 DOI: 10.1038/emboj.2009.224] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 07/13/2009] [Indexed: 01/09/2023] Open
Abstract
The Tol system is a five-protein assembly parasitized by colicins and bacteriophages that helps stabilize the Gram-negative outer membrane (OM). We show that allosteric signalling through the six-bladed beta-propeller protein TolB is central to Tol function in Escherichia coli and that this is subverted by colicins such as ColE9 to initiate their OM translocation. Protein-protein interactions with the TolB beta-propeller govern two conformational states that are adopted by the distal N-terminal 12 residues of TolB that bind TolA in the inner membrane. ColE9 promotes disorder of this 'TolA box' and recruitment of TolA. In contrast to ColE9, binding of the OM lipoprotein Pal to the same site induces conformational changes that sequester the TolA box to the TolB surface in which it exhibits little or no TolA binding. Our data suggest that Pal is an OFF switch for the Tol assembly, whereas colicins promote an ON state even though mimicking Pal. Comparison of the TolB mechanism to that of vertebrate guanine nucleotide exchange factor RCC1 suggests that allosteric signalling may be more prevalent in beta-propeller proteins than currently realized.
Collapse
Affiliation(s)
| | - Oliver Hecht
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UK
| | - Mireille Vankemmelbeke
- School of Molecular Medical Sciences, Institute of Infection, Inflammation and Immunity, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Amit Sharma
- Department of Biology, University of York, York, UK
| | | | | | | | - Richard James
- School of Molecular Medical Sciences, Institute of Infection, Inflammation and Immunity, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UK
| | | |
Collapse
|
49
|
Following evolutionary paths to protein-protein interactions with high affinity and selectivity. Nat Struct Mol Biol 2009; 16:1049-55. [PMID: 19749752 DOI: 10.1038/nsmb.1670] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 08/04/2009] [Indexed: 11/08/2022]
Abstract
How do intricate multi-residue features such as protein-protein interfaces evolve? To address this question, we evolved a new colicin-immunity binding interaction. We started with Im9, which inhibits its cognate DNase ColE9 at 10(-14) M affinity, and evolved it toward ColE7, which it inhibits promiscuously (Kd > 10(-8) M). Iterative rounds of random mutagenesis and selection toward higher affinity for ColE7, and selectivity (against ColE9 inhibition), led to an approximately 10(5)-fold increase in affinity and a 10(8)-fold increase in selectivity. Analysis of intermediates along the evolved variants revealed that changes in the binding configuration of the Im protein uncovered a latent set of interactions, thus providing the key to the rapid divergence of new Im7 variants. Overall, protein-protein interfaces seem to share the evolvability features of enzymes, that is, the exploitation of promiscuous interactions and alternative binding configurations via 'generalist' intermediates, and the key role of compensatory stabilizing mutations in facilitating the divergence of new functions.
Collapse
|
50
|
Meysick KC, Seidman J, Falconio JR. The Yersinia pseudotuberculosis YplA phospholipase differs in its activity, regulation and secretion from that of the Yersinia enterocolitica YplA. Microb Pathog 2009; 47:24-32. [DOI: 10.1016/j.micpath.2009.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 01/03/2023]
|