1
|
Cao Y, Huang C, Zhao X, Yu J. Regulation of SUMOylation on RNA metabolism in cancers. Front Mol Biosci 2023; 10:1137215. [PMID: 36911524 PMCID: PMC9998694 DOI: 10.3389/fmolb.2023.1137215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Post-translational modifications of proteins play very important roles in regulating RNA metabolism and affect many biological pathways. Here we mainly summarize the crucial functions of small ubiquitin-like modifier (SUMO) modification in RNA metabolism including transcription, splicing, tailing, stability and modification, as well as its impact on the biogenesis and function of microRNA (miRNA) in particular. This review also highlights the current knowledge about SUMOylation regulation in RNA metabolism involved in many cellular processes such as cell proliferation and apoptosis, which is closely related to tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Yingting Cao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
|
3
|
Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression. Mol Ther 2016; 24:1581-91. [PMID: 27357627 DOI: 10.1038/mt.2016.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/21/2016] [Indexed: 12/27/2022] Open
Abstract
Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.
Collapse
|
4
|
Nuro-Gyina PK, Parvin JD. Roles for SUMO in pre-mRNA processing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:105-12. [PMID: 26563097 DOI: 10.1002/wrna.1318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
When the small ubiquitin-like modifier (SUMO)-1 protein is localized on the genome, it is found on proteins bound to the promoters of the most highly active genes and on proteins bound to the DNA-encoding exons. Inhibition of the SUMO-1 modification leads to reductions in initiation of messenger RNA (mRNA) synthesis and splicing. In this review, we discuss what is known about the SUMOylation of factors involved in transcription initiation, pre-mRNA processing, and polyadenylation. We suggest a mechanism by which SUMO modifications of factors at the promoters of high-activity genes trigger the formation of an RNA polymerase II complex that coordinates and integrates the stimulatory signals for each process to catalyze an extremely high level of gene expression. WIREs RNA 2016, 7:105-112. doi: 10.1002/wrna.1318 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Patrick K Nuro-Gyina
- Department of Biomedical Informatics and the Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics and the Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Marschalek R. MLL Leukemia and Future Treatment Strategies. Arch Pharm (Weinheim) 2015; 348:221-8. [DOI: 10.1002/ardp.201400449] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/05/2014] [Accepted: 01/16/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Rolf Marschalek
- Institute of Pharmaceutical Biology; Goethe-University; Frankfurt/Main Germany
| |
Collapse
|
6
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
7
|
Affiliation(s)
- Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich,
Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
8
|
Forget D, Lacombe AA, Cloutier P, Lavallée-Adam M, Blanchette M, Coulombe B. Nuclear import of RNA polymerase II is coupled with nucleocytoplasmic shuttling of the RNA polymerase II-associated protein 2. Nucleic Acids Res 2013; 41:6881-91. [PMID: 23723243 PMCID: PMC3737550 DOI: 10.1093/nar/gkt455] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The RNA polymerase II (RNAP II)-associated protein (RPAP) 2 has been discovered through its association with various subunits of RNAP II in affinity purification coupled with mass spectrometry experiments. Here, we show that RPAP2 is a mainly cytoplasmic protein that shuttles between the cytoplasm and the nucleus. RPAP2 shuttling is tightly coupled with nuclear import of RNAP II, as RPAP2 silencing provokes abnormal accumulation of RNAP II in the cytoplasmic space. Most notably, RPAP4/GPN1 silencing provokes the retention of RPAP2 in the nucleus. Our results support a model in which RPAP2 enters the nucleus in association with RNAP II and returns to the cytoplasm in association with the GTPase GPN1/RPAP4. Although binding of RNAP II to RPAP2 is mediated by an N-terminal domain (amino acids 1–170) that contains a nuclear retention domain, and binding of RPAP4/GPN1 to RPAP2 occurs through a C-terminal domain (amino acids 156–612) that has a dominant cytoplasmic localization domain. In conjunction with previously published data, our results have important implications, as they indicate that RPAP2 controls gene expression by two distinct mechanisms, one that targets RNAP II activity during transcription and the other that controls availability of RNAP II in the nucleus.
Collapse
Affiliation(s)
- Diane Forget
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada H2W 1R7, McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Québec, Canada H3A 2B4
| | | | | | | | | | | |
Collapse
|
9
|
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119-37. [PMID: 23028141 DOI: 10.1101/gad.200303.112] [Citation(s) in RCA: 496] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.
Collapse
Affiliation(s)
- Jing-Ping Hsin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
10
|
Visconte V, Makishima H, Maciejewski JP, Tiu RV. Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia 2012; 26:2447-54. [PMID: 22678168 DOI: 10.1038/leu.2012.130] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In humans, the majority of all protein-coding transcripts contain introns that are removed by mRNA splicing carried out by spliceosomes. Mutations in the spliceosome machinery have recently been identified using whole-exome/genome technologies in myelodysplastic syndromes (MDS) and in other hematological disorders. Alterations in splicing factor 3 subunit b1 (SF3b1) were the first spliceosomal mutations described, immediately followed by identification of other splicing factor mutations, including U2 small nuclear RNA auxillary factor 1 (U2AF1) and serine arginine-rich splicing factor 2 (SRSF2). SF3b1/U2AF1/SRSF2 mutations occur at varying frequencies in different disease subtypes, each contributing to differences in survival outcomes. However, the exact functional consequences of these spliceosomal mutations in the pathogenesis of MDS and other hematological malignancies remain largely unknown and subject to intense investigation. For SF3b1, a gain of function mutation may offer the promise of new targeted therapies for diseases that carry this molecular abnormality that can potentially lead to cure. This review aims to provide a comprehensive overview of the emerging role of the spliceosome machinery in the biology of MDS/hematological disorders with an emphasis on the functional consequences of mutations, their clinical significance, and perspectives on how they may influence our understanding and management of diseases affected by these mutations.
Collapse
Affiliation(s)
- V Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | |
Collapse
|
11
|
McKay SL, Johnson TL. An investigation of a role for U2 snRNP spliceosomal components in regulating transcription. PLoS One 2011; 6:e16077. [PMID: 21283673 PMCID: PMC3025917 DOI: 10.1371/journal.pone.0016077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/04/2010] [Indexed: 11/18/2022] Open
Abstract
There is mounting evidence to suggest that the synthesis of pre-mRNA transcripts and their subsequent splicing are coordinated events. Previous studies have implicated the mammalian spliceosomal U2 snRNP as having a novel role in stimulating transcriptional elongation in vitro through interactions with the elongation factors P-TEFb and Tat-SF1; however, the mechanism remains unknown [1]. These factors are conserved in Saccharomyces cerevisiae, a fact that suggests that a similar interaction may occur in yeast to stimulate transcriptional elongation in vivo. To address this possibility we have looked for evidence of a role for the yeast Tat-SF1 homolog, Cus2, and the U2 snRNA in regulating transcription. Specifically, we have performed a genetic analysis to look for functional interactions between Cus2 or U2 snRNA and the P-TEFb yeast homologs, the Bur1/2 and Ctk1/2/3 complexes. In addition, we have analyzed Cus2-deleted or -overexpressing cells and U2 snRNA mutant cells to determine if they show transcription-related phenotypes similar to those displayed by the P-TEFb homolog mutants. In no case have we been able to observe phenotypes consistent with a role for either spliceosomal factor in transcription elongation. Furthermore, we did not find evidence for physical interactions between the yeast U2 snRNP factors and the P-TEFb homologs. These results suggest that in vivo, S. cerevisiae do not exhibit functional or physical interactions similar to those exhibited by their mammalian counterparts in vitro. The significance of the difference between our in vivo findings and the previously published in vitro results remains unclear; however, we discuss the potential importance of other factors, including viral proteins, in mediating the mammalian interactions.
Collapse
Affiliation(s)
- Susannah L. McKay
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Tracy L. Johnson
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Hossain MJ, Korde R, Singh PK, Kanodia S, Ranjan R, Ram G, Kalsey GS, Singh R, Malhotra P. Plasmodium falciparum Tudor Staphylococcal Nuclease interacting proteins suggest its role in nuclear as well as splicing processes. Gene 2010; 468:48-57. [DOI: 10.1016/j.gene.2010.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 01/21/2023]
|
13
|
Lunde BM, Reichow SL, Kim M, Suh H, Leeper TC, Yang F, Mutschler H, Buratowski S, Meinhart A, Varani G. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat Struct Mol Biol 2010; 17:1195-201. [PMID: 20818393 PMCID: PMC2950884 DOI: 10.1038/nsmb.1893] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 07/19/2010] [Indexed: 01/18/2023]
Abstract
Phosphorylation of the C-terminal domain (CTD) of RNA polymerase II controls the co-transcriptional assembly of RNA processing and transcription factors. Recruitment relies on conserved CTD-interacting domains (CIDs) that recognize different CTD phosphoisoforms during the transcription cycle, but the molecular basis for their specificity remains unclear. We show that the CIDs of two transcription termination factors, Rtt103 and Pcf11, achieve high affinity and specificity both by specifically recognizing the phosphorylated CTD and by cooperatively binding to neighboring CTD repeats. Single-residue mutations at the protein-protein interface abolish cooperativity and affect recruitment at the 3' end processing site in vivo. We suggest that this cooperativity provides a signal-response mechanism to ensure that its action is confined only to proper polyadenylation sites where Ser2 phosphorylation density is highest.
Collapse
Affiliation(s)
- Bradley M. Lunde
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Biomolecular Structure and Design Program, University of Washington, Seattle, Washington 98195, USA
| | - Steve L. Reichow
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Minkyu Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-742, Korea
| | - Hyunsuk Suh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| | - Thomas C. Leeper
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Fan Yang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Hannes Mutschler
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstr 29, 69120 Heidelberg, Germany
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| | - Anton Meinhart
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstr 29, 69120 Heidelberg, Germany
| | - Gabriele Varani
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
14
|
Liu P, Kenney JM, Stiller JW, Greenleaf AL. Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain. Mol Biol Evol 2010; 27:2628-41. [PMID: 20558594 DOI: 10.1093/molbev/msq151] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With a simple tandem iterated sequence, the carboxyl terminal domain (CTD) of eukaryotic RNA polymerase II (RNAP II) serves as the central coordinator of mRNA synthesis by harmonizing a diversity of sequential interactions with transcription and processing factors. Despite intense research interest, many key questions regarding functional and evolutionary constraints on the CTD remain unanswered; for example, what selects for the canonical heptad sequence, its tandem array across organismal diversity, and constant CTD length within given species and finally and how a sequence-identical, repetitive structure can orchestrate a diversity of simultaneous and sequential, stage-dependent interactions with both modifying enzymes and binding partners? Here we examine comparative sequence evolution of 58 RNAP II CTDs from diverse taxa representing all six major eukaryotic supergroups and employ integrated evolutionary genetic, biochemical, and biophysical analyses of the yeast CTD to further clarify how this repetitive sequence must be organized for optimal RNAP II function. We find that the CTD is composed of indivisible and independent functional units that span diheptapeptides and not only a flexible conformation around each unit but also an elastic overall structure is required. More remarkably, optimal CTD function always is achieved at approximately wild-type CTD length rather than number of functional units, regardless of the characteristics of the sequence present. Our combined observations lead us to advance an updated CTD working model, in which functional, and therefore, evolutionary constraints require a flexible CTD conformation determined by the CTD sequence and tandem register to accommodate the diversity of CTD-protein interactions and a specific CTD length rather than number of functional units to correctly order and organize global CTD-protein interactions. Patterns of conservation of these features across evolutionary diversity have important implications for comparative RNAP II function in eukaryotes and can more clearly direct specific research on CTD function in currently understudied organisms.
Collapse
Affiliation(s)
- Pengda Liu
- Department of Biology, East Carolina University, USA
| | | | | | | |
Collapse
|
15
|
The herpes simplex virus type 1 infected cell protein 22. Virol Sin 2010; 25:1-7. [PMID: 20960278 DOI: 10.1007/s12250-010-3080-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 07/16/2009] [Indexed: 10/19/2022] Open
Abstract
As one of the immediate-early (IE) proteins of herpes simplex virus type 1 (HSV-1), ICP22 is a multifunctional viral regulator that localizes in the nucleus of infected cells. It is required in experimental animal systems and some nonhuman cell lines, but not in Vero or HEp-2 cells. ICP22 is extensively phosphorylated by viral and cellular kinases and nucleotidylylated by casein kinase II. It has been shown to be required for efficient expression of early (E) genes and a subset of late (L) genes. ICP22, in conjunction with the UL13 kinase, mediates the phosphorylation of RNA polymerase II. Both ICP22 and UL13 are required for the activation of cdc2, the degradation of cyclins A and B and the acquisition of a new cdc2 partner, the UL42 DNA polymerase processivity factor. The cdc2-UL42 complex mediates postranscriptional modification of topoisomerase IIα in an ICP22-dependent manner to promote L gene expression. In addition, ICP22 interacts with cdk9 in a Us3 kinase dependent fashion to phosphorylate RNA polymerase II.
Collapse
|
16
|
Lolli G. Binding to DNA of the RNA-polymerase II C-terminal domain allows discrimination between Cdk7 and Cdk9 phosphorylation. Nucleic Acids Res 2009; 37:1260-8. [PMID: 19136461 PMCID: PMC2651791 DOI: 10.1093/nar/gkn1061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II regulates transcription through spatially and temporally coordinated events. Previous work had established that the CTD binds DNA but the significance of this interaction has not been determined. The present work shows that the CTD binds DNA in its unphosphorylated form, the form in which it is present in the pre-initiation complex. The CTD/DNA complex is recognized by and is phosphorylated by Cdk7 but not by Cdk9. Model-building studies indicate the structural mechanism underlying such specificity involves interaction of Cdk7 with DNA in the context of the CTD/DNA complex. The model has been tested by mutagenesis experiments. CTD dissociates from DNA following phosphorylation by Cdk7, allowing transcription initiation. The CTD then becomes accessible for further phosphorylation by Cdk9 that drives the transition to transcription elongation.
Collapse
Affiliation(s)
- Graziano Lolli
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
17
|
Das R, Yu J, Zhang Z, Gygi MP, Krainer AR, Gygi SP, Reed R. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol Cell 2007; 26:867-81. [PMID: 17588520 DOI: 10.1016/j.molcel.2007.05.036] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/06/2007] [Accepted: 05/25/2007] [Indexed: 01/11/2023]
Abstract
Transcription and splicing are functionally coupled, resulting in highly efficient splicing of RNA polymerase II (RNAP II) transcripts. The mechanism involved in this coupling is not known. To identify potential coupling factors, we carried out a comprehensive proteomic analysis of immunopurified human RNAP II, identifying >100 specifically associated proteins. Among these are the SR protein family of splicing factors and all of the components of U1 snRNP, but no other snRNPs or splicing factors. We show that SR proteins function in coupling transcription to splicing and provide evidence that the mechanism involves cotranscriptional recruitment of SR proteins to RNAP II transcripts. We propose that the exclusive association of U1 snRNP/SR proteins with RNAP II positions these splicing factors, which are known to function early in spliceosome assembly, close to the nascent pre-mRNA. Thus, these factors readily out-compete inhibitory hnRNP proteins, resulting in efficient spliceosome assembly on nascent RNAP II transcripts.
Collapse
Affiliation(s)
- Rita Das
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Yang J, Välineva T, Hong J, Bu T, Yao Z, Jensen ON, Frilander MJ, Silvennoinen O. Transcriptional co-activator protein p100 interacts with snRNP proteins and facilitates the assembly of the spliceosome. Nucleic Acids Res 2007; 35:4485-94. [PMID: 17576664 PMCID: PMC1935017 DOI: 10.1093/nar/gkm470] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription and pre-mRNA splicing are the key nuclear processes in eukaryotic gene expression, and identification of factors common to both processes has suggested that they are functionally coordinated. p100 protein has been shown to function as a transcriptional co-activator for several transcription factors. p100 consists of staphylococcal nuclease (SN)-like and Tudor-SN (TSN) domains of which the SN-like domains have been shown to function in transcription, but the function of TSN domain has remained elusive. Here we identified interaction between p100 and small nuclear ribonucleoproteins (snRNP) that function in pre-mRNA splicing. The TSN domain of p100 specifically interacts with components of the U5 snRNP, but also with the other spliceosomal snRNPs. In vitro splicing assays revealed that the purified p100, and specifically the TSN domain of p100, accelerates the kinetics of the spliceosome assembly, particularly the formation of complex A, and the transition from complex A to B. Consistently, the p100 protein, as well as the separated TSN domain, enhanced the kinetics of the first step of splicing in an in vitro splicing assay in dose-dependent manner. Thus our results suggest that p100 protein is a novel dual function regulator of gene expression that participates via distinct domains in both transcription and splicing.
Collapse
Affiliation(s)
- Jie Yang
- Department of Immunology, Tianjin Medical University, Heping District Qixiangtai Road No.22, 300070 Tianjin, P.R. China, Institute of Medical Technology, University of Tampere, Biokatu 8, 33520 Tampere, Finland, Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark, Institute of Biotechnology, Program on Development Biology, PL56, 00014 University of Helsinki and Department of Clinical Microbiology, Tampere University Hospital, 33520 Tampere, Finland
| | - Tuuli Välineva
- Department of Immunology, Tianjin Medical University, Heping District Qixiangtai Road No.22, 300070 Tianjin, P.R. China, Institute of Medical Technology, University of Tampere, Biokatu 8, 33520 Tampere, Finland, Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark, Institute of Biotechnology, Program on Development Biology, PL56, 00014 University of Helsinki and Department of Clinical Microbiology, Tampere University Hospital, 33520 Tampere, Finland
| | - Jingxin Hong
- Department of Immunology, Tianjin Medical University, Heping District Qixiangtai Road No.22, 300070 Tianjin, P.R. China, Institute of Medical Technology, University of Tampere, Biokatu 8, 33520 Tampere, Finland, Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark, Institute of Biotechnology, Program on Development Biology, PL56, 00014 University of Helsinki and Department of Clinical Microbiology, Tampere University Hospital, 33520 Tampere, Finland
| | - Tianxu Bu
- Department of Immunology, Tianjin Medical University, Heping District Qixiangtai Road No.22, 300070 Tianjin, P.R. China, Institute of Medical Technology, University of Tampere, Biokatu 8, 33520 Tampere, Finland, Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark, Institute of Biotechnology, Program on Development Biology, PL56, 00014 University of Helsinki and Department of Clinical Microbiology, Tampere University Hospital, 33520 Tampere, Finland
| | - Zhi Yao
- Department of Immunology, Tianjin Medical University, Heping District Qixiangtai Road No.22, 300070 Tianjin, P.R. China, Institute of Medical Technology, University of Tampere, Biokatu 8, 33520 Tampere, Finland, Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark, Institute of Biotechnology, Program on Development Biology, PL56, 00014 University of Helsinki and Department of Clinical Microbiology, Tampere University Hospital, 33520 Tampere, Finland
| | - Ole N. Jensen
- Department of Immunology, Tianjin Medical University, Heping District Qixiangtai Road No.22, 300070 Tianjin, P.R. China, Institute of Medical Technology, University of Tampere, Biokatu 8, 33520 Tampere, Finland, Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark, Institute of Biotechnology, Program on Development Biology, PL56, 00014 University of Helsinki and Department of Clinical Microbiology, Tampere University Hospital, 33520 Tampere, Finland
| | - Mikko J. Frilander
- Department of Immunology, Tianjin Medical University, Heping District Qixiangtai Road No.22, 300070 Tianjin, P.R. China, Institute of Medical Technology, University of Tampere, Biokatu 8, 33520 Tampere, Finland, Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark, Institute of Biotechnology, Program on Development Biology, PL56, 00014 University of Helsinki and Department of Clinical Microbiology, Tampere University Hospital, 33520 Tampere, Finland
| | - Olli Silvennoinen
- Department of Immunology, Tianjin Medical University, Heping District Qixiangtai Road No.22, 300070 Tianjin, P.R. China, Institute of Medical Technology, University of Tampere, Biokatu 8, 33520 Tampere, Finland, Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark, Institute of Biotechnology, Program on Development Biology, PL56, 00014 University of Helsinki and Department of Clinical Microbiology, Tampere University Hospital, 33520 Tampere, Finland
- *To whom correspondence should be addressed. Tel:+358 3 3551 7845; Fax:+358 3 3551 7332; Correspondence may also be addressed to Jie Yang. Tel:+86 22 23542520 +86 22 23542581
| |
Collapse
|
19
|
Abstract
The C-terminal repeat domain (CTD), an unusual extension appended to the C terminus of the largest subunit of RNA polymerase II, serves as a flexible binding scaffold for numerous nuclear factors; which factors bind is determined by the phosphorylation patterns on the CTD repeats. Changes in phosphorylation patterns, as polymerase transcribes a gene, are thought to orchestrate the association of different sets of factors with the transcriptase and strongly influence functional organization of the nucleus. In this review we appraise what is known, and what is not known, about patterns of phosphorylation on the CTD of RNA polymerases II at the beginning, the middle, and the end of genes; the proposal that doubly phosphorylated repeats are present on elongating polymerase is explored. We discuss briefly proteins known to associate with the phosphorylated CTD at the beginning and ends of genes; we explore in more detail proteins that are recruited to the body of genes, the diversity of their functions, and the potential consequences of tethering these functions to elongating RNA polymerase II. We also discuss accumulating structural information on phosphoCTD-binding proteins and how it illustrates the variety of binding domains and interaction modes, emphasizing the structural flexibility of the CTD. We end with a number of open questions that highlight the extent of what remains to be learned about the phosphorylation and functions of the CTD.
Collapse
Affiliation(s)
- Hemali P Phatnani
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
20
|
Riedmann EM, Jantsch MF. An editor controlled by transcription. EMBO Rep 2006; 7:269-70. [PMID: 16607395 PMCID: PMC1456897 DOI: 10.1038/sj.embor.7400650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 02/01/2006] [Indexed: 11/08/2022] Open
Affiliation(s)
- Eva M Riedmann
- Eva M. Riedmann & Michael F. Jantsch are in the Department of Chromosome Biology, Max F. Perutz Laboratories at the University of Vienna, A-1030 Vienna, Austria
| | - Michael F Jantsch
- Eva M. Riedmann & Michael F. Jantsch are in the Department of Chromosome Biology, Max F. Perutz Laboratories at the University of Vienna, A-1030 Vienna, Austria
- Tel: +43 1 4277 56230; Fax: +43 1 4277 9562; E-mail:
| |
Collapse
|
21
|
Das R, Dufu K, Romney B, Feldt M, Elenko M, Reed R. Functional coupling of RNAP II transcription to spliceosome assembly. Genes Dev 2006; 20:1100-9. [PMID: 16651655 PMCID: PMC1472470 DOI: 10.1101/gad.1397406] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 02/27/2006] [Indexed: 11/25/2022]
Abstract
The pathway of gene expression in higher eukaryotes involves a highly complex network of physical and functional interactions among the different machines involved in each step of the pathway. Here we established an efficient in vitro system to determine how RNA polymerase II (RNAP II) transcription is functionally coupled to pre-mRNA splicing. Strikingly, our data show that nascent pre-messenger RNA (pre-mRNA) synthesized by RNAP II is immediately and quantitatively directed into the spliceosome assembly pathway. In contrast, nascent pre-mRNA synthesized by T7 RNA polymerase is quantitatively assembled into the nonspecific H complex, which consists of heterogeneous nuclear ribonucleoprotein (hnRNP) proteins and is inhibitory for spliceosome assembly. Consequently, RNAP II transcription results in a dramatic increase in both the kinetics of splicing and overall yield of spliced mRNA relative to that observed for T7 transcription. We conclude that RNAP II mediates the functional coupling of transcription to splicing by directing the nascent pre-mRNA into spliceosome assembly, thereby bypassing interaction of the pre-mRNA with the inhibitory hnRNP proteins.
Collapse
Affiliation(s)
- Rita Das
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
22
|
Chapman RD, Conrad M, Eick D. Role of the mammalian RNA polymerase II C-terminal domain (CTD) nonconsensus repeats in CTD stability and cell proliferation. Mol Cell Biol 2005; 25:7665-74. [PMID: 16107713 PMCID: PMC1190292 DOI: 10.1128/mcb.25.17.7665-7674.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The C-terminal domain (CTD) of mammalian RNA polymerase II (Pol II) consists of 52 repeats of the consensus heptapeptide YSPTSPS and links transcription to the processing of pre-mRNA. The length of the CTD and the number of repeats diverging from the consensus sequence have increased through evolution, but their functional importance remains unknown. Here, we show that the deletion of repeats 1 to 3 or 52 leads to cleavage and degradation of the CTD from Pol II in vivo. Including these repeats, however, allowed the construction of stable, synthetic CTDs. To our surprise, polymerases consisting of just consensus repeats could support normal growth and viability of cells. We conclude that all other nonconsensus CTD repeats are dispensable for the transcription and pre-mRNA processing of genes essential for proliferation.
Collapse
Affiliation(s)
- Rob D Chapman
- GSF-Research Centre for Environment and Health, Institute for Clinical Molecular Biology and Tumour Genetics, Munich, Germany.
| | | | | |
Collapse
|
23
|
Dossin FDM, Schenkman S. Actively transcribing RNA polymerase II concentrates on spliced leader genes in the nucleus of Trypanosoma cruzi. EUKARYOTIC CELL 2005; 4:960-70. [PMID: 15879530 PMCID: PMC1140094 DOI: 10.1128/ec.4.5.960-970.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RNA polymerase II of trypanosomes, early diverging eukaryotes, transcribes long polycistronic messages, which are not capped but are processed by trans-splicing and polyadenylation to form mature mRNAs. The same RNA polymerase II also transcribes the genes coding for the spliced leader RNA, which are capped, exported to the cytoplasm, processed, and reimported into the nucleus before they are used as splicing donors to form mRNAs from pre-mRNA polycistronic transcripts. As pre-mRNA and spliced leader transcription events appear to be uncoupled, we studied how the RNA polymerase II is distributed in the nucleus of Trypanosoma cruzi. Using specific antibodies to the T. cruzi RNA polymerase II unique carboxy-terminal domain, we demonstrated that large amounts of the enzyme are found concentrated in a domain close to the parasite nucleolus and containing the spliced leader genes. The remaining RNA polymerase II is diffusely distributed in the nucleoplasm. The spliced leader-associated RNA polymerase II localization is dependent on the cell transcriptional state. It disperses when transcription is blocked by alpha-amanitin and actinomycin D. Tubulin genes are excluded from this domain, suggesting that it may exclusively be the transcriptional site of spliced leader genes. Trypomastigote forms of the parasite, which have reduced spliced leader transcription, show less RNA polymerase II labeling, and the spliced leader genes are more dispersed in the nucleoplasm. These results provide strong evidences that transcription of spliced leader RNAs occurs in a particular domain in the T. cruzi nucleus.
Collapse
Affiliation(s)
- Fernando de Macedo Dossin
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8 andar, 04023-062 São Paulo, Brazil.
| | | |
Collapse
|
24
|
Katsarou ME, Papakyriakou A, Katsaros N, Scorilas A. Expression of the C-terminal domain of novel human SR-A1 protein: Interaction with the CTD domain of RNA polymerase II. Biochem Biophys Res Commun 2005; 334:61-8. [PMID: 15992770 DOI: 10.1016/j.bbrc.2005.06.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 06/13/2005] [Indexed: 11/21/2022]
Abstract
We have recently cloned a new member of the human Ser/Arg-rich superfamily (SR) of pre-mRNA splicing factors, SR-A1. Members of the SR family of proteins have been shown to interact with the C-terminal domain (CTD) of the large subunit of RNA polymerase II, and participate in pre-mRNA splicing. The largest subunit of RNA polymerase II contains at the carboxy-terminus a peculiar repetitive sequence that consists of 52 tandem repeats of the consensus motif Tyr-Ser-Pro-Thr-Ser-Pro-Ser, referred to as the CTD. There is evidence that SR protein splicing factors are involved in cancer pathobiology through their involvement in alternative processing events. The CTD of human SR-A1 protein (aa 1187-1312), containing a conserved CTD-interaction domain and bearing a decahistidine (His10) tag was produced by DNA recombinant overexpression techniques in Escherichia coli from the vector pET16b and it was localized in the periplasmic space. The protein was further purified using a HiTrap chelating column and its circular dichroism spectra indicate that it assumes a defined structure in solution. Performing a pull-down assay we proved that the novel SR-A1 [1187-1312 His10] protein interacts with the CTD domain of RNA polymerase II.
Collapse
Affiliation(s)
- Maria E Katsarou
- Institute of Physical Chemistry, NCSR Demokritos, 153 10 Ag. Paraskevi Attikis, Greece
| | | | | | | |
Collapse
|
25
|
Araya N, Hiraga H, Kako K, Arao Y, Kato S, Fukamizu A. Transcriptional down-regulation through nuclear exclusion of EWS methylated by PRMT1. Biochem Biophys Res Commun 2005; 329:653-60. [PMID: 15737635 DOI: 10.1016/j.bbrc.2005.02.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Indexed: 01/05/2023]
Abstract
The EWS gene is known to be chromosomally translocated and fused to various members of the DNA-binding transcription factors in Ewing's sarcoma and primitive neuroectodermal tumor. The product of this gene encodes the N-terminal transcriptional activation domain and the C-terminal RNA-binding domain containing an RNA-recognition motif and three arginine-glycine-glycine rich (RGG) motifs. Recently, we demonstrated EWS as a coactivator for hepatocyte nuclear factor 4 (HNF4)-mediated transcription. However, regulatory factors controlling EWS function are poorly characterized. In this study, we found that a protein arginine methyltransferase, PRMT1, physically interacts with EWS, whose cellular localization depends upon its RGG motifs targeted for methylation. Overexpression of PRMT1 down-regulates coactivator activity of EWS for HNF4-mediated transcription, because of the cytoplasmic retention of EWS from the nucleus. These results suggest that PRMT1 plays a post-translationally important role in regulating the transcriptional activity.
Collapse
Affiliation(s)
- Natsumi Araya
- Center for Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Phatnani HP, Jones JC, Greenleaf AL. Expanding the functional repertoire of CTD kinase I and RNA polymerase II: novel phosphoCTD-associating proteins in the yeast proteome. Biochemistry 2005; 43:15702-19. [PMID: 15595826 PMCID: PMC2879061 DOI: 10.1021/bi048364h] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CTD kinase I (CTDK-I) of Saccharomyces cerevisiae is required for normal phosphorylation of the C-terminal repeat domain (CTD) on elongating RNA polymerase II. To elucidate cellular roles played by this kinase and the hyperphosphorylated CTD (phosphoCTD) it generates, we systematically searched yeast extracts for proteins that bound to the phosphoCTD made by CTDK-I in vitro. Initially, using a combination of far-western blotting and phosphoCTD affinity chromatography, we discovered a set of novel phosphoCTD-associating proteins (PCAPs) implicated in a variety of nuclear functions. We identified the phosphoCTD-interacting domains of a number of these PCAPs, and in several test cases (namely, Set2, Ssd1, and Hrr25) adduced evidence that phosphoCTD binding is functionally important in vivo. Employing surface plasmon resonance (BIACORE) analysis, we found that recombinant versions of these and other PCAPs bind preferentially to CTD repeat peptides carrying SerPO(4) residues at positions 2 and 5 of each seven amino acid repeat, consistent with the positional specificity of CTDK-I in vitro [Jones, J. C., et al. (2004) J. Biol. Chem. 279, 24957-24964]. Subsequently, we used a synthetic CTD peptide with three doubly phosphorylated repeats (2,5P) as an affinity matrix, greatly expanding our search for PCAPs. This resulted in identification of approximately 100 PCAPs and associated proteins representing a wide range of functions (e.g., transcription, RNA processing, chromatin structure, DNA metabolism, protein synthesis and turnover, RNA degradation, snRNA modification, and snoRNP biogenesis). The varied nature of these PCAPs and associated proteins points to an unexpectedly diverse set of connections between Pol II elongation and other processes, conceptually expanding the role played by CTD phosphorylation in functional organization of the nucleus.
Collapse
Affiliation(s)
| | | | - Arno L. Greenleaf
- To whom correspondence should be addressed. Phone: 919-684-4030. Fax: 919-684-8885. E-mail:
| |
Collapse
|
27
|
Millhouse S, Manley JL. The C-terminal domain of RNA polymerase II functions as a phosphorylation-dependent splicing activator in a heterologous protein. Mol Cell Biol 2005; 25:533-44. [PMID: 15632056 PMCID: PMC543425 DOI: 10.1128/mcb.25.2.533-544.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 10/18/2004] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II, and specifically the C-terminal domain (CTD) of its largest subunit, has been demonstrated to play important roles in capping, splicing, and 3' processing of mRNA precursors. But how the CTD functions in these reactions, especially splicing, is not well understood. To address some of the basic questions concerning CTD function in splicing, we constructed and purified two fusion proteins, a protein in which the CTD is positioned at the C terminus of the splicing factor ASF/SF2 (ASF-CTD) and an RS domain deletion mutant protein (ASFDeltaRS-CTD). Significantly, compared to ASF/SF2, ASF-CTD increased the reaction rate during the early stages of splicing, detected as a 20- to 60-min decrease in splicing lag time depending on the pre-mRNA substrate. The increased splicing rate correlated with enhanced production of prespliceosomal complex A and the early spliceosomal complex B but, interestingly, not the very early ATP-independent complex E. Additional assays indicate that the RS domain and CTD perform distinct functions, as exemplified by our identification of an activity that cooperates only with the CTD. Dephosphorylated ASFDeltaRS-CTD and a glutathione S-transferase-CTD fusion protein were both inactive, suggesting that an RNA-targeting domain and CTD phosphorylation were necessary. Our results provide new insights into the mechanism by which the CTD functions in splicing.
Collapse
Affiliation(s)
- Scott Millhouse
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
28
|
Stiller JW, Cook MS. Functional unit of the RNA polymerase II C-terminal domain lies within heptapeptide pairs. EUKARYOTIC CELL 2004; 3:735-40. [PMID: 15189994 PMCID: PMC420137 DOI: 10.1128/ec.3.3.735-740.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2003] [Accepted: 03/15/2004] [Indexed: 11/20/2022]
Abstract
Unlike all other RNA polymerases, the largest subunit (RPB1) of eukaryotic DNA-dependent RNA polymerase II (RNAP II) has a C-terminal domain (CTD) comprising tandemly repeated heptapeptides with the consensus sequence Y-S-P-T-S-P-S. The tandem structure, heptad consensus, and most key functions of the CTD are conserved between yeast and mammals. In fact, all metazoans, fungi, and green plants examined to date, as well as the nearest protistan relatives of these multicellular groups, contain a tandemly repeated CTD. In contrast, the RNAP II largest subunits from many other eukaryotic organisms have a highly degenerate C terminus or show no semblance of the CTD whatsoever. The reasons for intense stabilizing selection on CTD structure in certain eukaryotes, and its apparent absence in others, are unknown. Here we demonstrate, through in vivo genetic complementation, that the essential functional unit of the yeast CTD is contained within pairs of heptapeptides. Insertion of a single alanine residue between diheptads has little phenotypic effect, while increasing the distance between diheptads produces a mostly quantitative effect on yeast cell growth. We further explore structural constraints on the CTD within an evolutionary context and propose selective mechanisms that could maintain a global tandem structure across hundreds of millions of years of eukaryotic evolution.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | | |
Collapse
|
29
|
Saitoh N, Spahr CS, Patterson SD, Bubulya P, Neuwald AF, Spector DL. Proteomic analysis of interchromatin granule clusters. Mol Biol Cell 2004; 15:3876-90. [PMID: 15169873 PMCID: PMC491843 DOI: 10.1091/mbc.e04-03-0253] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A variety of proteins involved in gene expression have been localized within mammalian cell nuclei in a speckled distribution that predominantly corresponds to interchromatin granule clusters (IGCs). We have applied a mass spectrometry strategy to identify the protein composition of this nuclear organelle purified from mouse liver nuclei. Using this approach, we have identified 146 proteins, many of which had already been shown to be localized to IGCs, or their functions are common to other already identified IGC proteins. In addition, we identified 32 proteins for which only sequence information is available and thus these represent novel IGC protein candidates. We find that 54% of the identified IGC proteins have known functions in pre-mRNA splicing. In combination with proteins involved in other steps of pre-mRNA processing, 81% of the identified IGC proteins are associated with RNA metabolism. In addition, proteins involved in transcription, as well as several other cellular functions, have been identified in the IGC fraction. However, the predominance of pre-mRNA processing factors supports the proposed role of IGCs as assembly, modification, and/or storage sites for proteins involved in pre-mRNA processing.
Collapse
Affiliation(s)
- Noriko Saitoh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ursic D, Chinchilla K, Finkel JS, Culbertson MR. Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Sen1p in transcription, transcription-coupled DNA repair and RNA processing. Nucleic Acids Res 2004; 32:2441-52. [PMID: 15121901 PMCID: PMC419450 DOI: 10.1093/nar/gkh561] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sen1p in Saccharomyces cerevisiae is a Type I DNA/RNA helicase. Mutations in the helicase domain perturb accumulation of diverse RNA classes, and Sen1p has been implicated in 3' end formation of non-coding RNAs. Using a combination of global and candidate-specific two hybrid screens, eight proteins were identified that interact with Sen1p. Interactions with three of the proteins were analyzed further: Rpo21p(Rpb1p), a subunit of RNA polymerase II, Rad2p, a deoxyribonuclease required in DNA repair, and Rnt1p (RNase III), an endoribonuclease required for RNA maturation. For all three interactions, the two-hybrid results were confirmed by co-immunoprecipitation experiments. Genetic tests designed to assess the biological significance of the interactions indicate that Sen1p plays functionally significant roles in transcription and transcription-coupled DNA repair. To investigate the potential role of Sen1p in RNA processing and to assess the functional significance of the Sen1p/Rnt1p interaction, we examined U5 snRNA biogenesis. We provide evidence that Sen1p functions in concert with Rnt1p and the exosome at a late step in 3' end formation of one of the two mature forms of U5 snRNA but not the other. The protein-protein and protein-RNA interactions reported here suggest that the DNA/RNA helicase activity of Sen1p is utilized for several different purposes in multiple gene expression pathways.
Collapse
Affiliation(s)
- Doris Ursic
- Laboratories of Molecular Biology and Genetics, R.M. Bock Laboratories, 1525 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
31
|
Dubourg B, Kamphausen T, Weiwad M, Jahreis G, Feunteun J, Fischer G, Modjtahedi N. The human nuclear SRcyp is a cell cycle-regulated cyclophilin. J Biol Chem 2004; 279:22322-30. [PMID: 15016823 DOI: 10.1074/jbc.m400736200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclophilins of the Moca family (Cavarec, L., Kamphausen, T., Dubourg, B., Callebaut, I., Lemeunier, F., Metivier, D., Feunteun, J., Fischer, G., and Modjtahedi, N. (2002) J. Biol. Chem. 277, 41171-41182) are found only in organisms of the animal kingdom and share several structural and enzymatic features. The presence of serine/arginine (S/R) dipeptide repeats in their C-terminal tail suggests that these enzymes belong to the SR protein family involved in the regulation of gene expression. The function of this group of cyclophilins is currently unknown. However, their C-terminal tails contain a highly conserved polypeptide signature segment (the moca domain), which may well be involved in the functional regulation of these proteins. We report here the identification of five Cdc2-type phosphorylation sites gathered in and around the moca domain of SRcyp, a human cyclophilin belonging to the Moca family. The segment of SRcyp containing the identified sites is specifically phosphorylated in mitotic cells. This mitosis-specific phosphorylation was inhibited by treatment of the cells with roscovitine, a specific inhibitor of cyclin-dependent kinases, suggesting that the unknown activity of the moca domain of SRcyp requires mitotic regulation by the Cdc2-cyclin B kinase complex. The Cdc2-cyclin B complex was found to phosphorylate four of the five identified phosphorylation sites in vitro, providing further support for this possibility. Like many factors stored in nuclear speckles and involved in the regulation of gene expression, this nuclear cyclophilin displays a predominantly diffuse cytoplasmic distribution at the onset of mitosis. Only in late telophase is SRcyp recruited to the newly formed nuclei. The transit of SRcyp through mitotic interchromatin granule clusters, before re-entering the nucleus, suggests that the timing of the appearance of this cyclophilin in the telophasic nuclei is tightly coordinated with post-mitotic events. Human SRcyp is the first cell cycle-regulated cyclophilin to be described.
Collapse
Affiliation(s)
- Bérangère Dubourg
- Laboratoire de Génétique Oncologique-UMR8125, Institut Gustave Roussy-PR1, 39 Rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Kim M, Ahn SH, Krogan NJ, Greenblatt JF, Buratowski S. Transitions in RNA polymerase II elongation complexes at the 3' ends of genes. EMBO J 2004; 23:354-64. [PMID: 14739930 PMCID: PMC1271760 DOI: 10.1038/sj.emboj.7600053] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 12/05/2003] [Indexed: 11/08/2022] Open
Abstract
To understand the factor interactions of transcribing RNA polymerase II (RNApII) in vivo, chromatin immunoprecipitations were used to map the crosslinking patterns of multiple elongation and polyadenylation factors across transcribed genes. Transcription through the polyadenylation site leads to a reduction in the levels of the Ctk1 kinase and its associated phosphorylation of the RNApII C-terminal domain. One group of elongation factors (Spt4/5, Spt6/Iws1, and Spt16/Pob3), thought to mediate transcription through chromatin, shows patterns matching that of RNApII. In contrast, the Paf and TREX/THO complexes partially overlap RNApII, but do not crosslink to transcribed regions downstream of polyadenylation sites. In a complementary pattern, polyadenylation factors crosslink strongly at the 3' ends of genes. Mutation of the 3' polyadenylation sequences or the Rna14 protein causes loss of polyadenylation factor crosslinking and read-through of termination sequences. Therefore, transcription termination and polyadenylation involve transitions at the 3' end of genes that may include an exchange of elongation and polyadenylation/termination factors.
Collapse
Affiliation(s)
- Minkyu Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Seong-Hoon Ahn
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nevan J Krogan
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | - Jack F Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Kubodera T, Watanabe M, Yoshiuchi K, Yamashita N, Nishimura A, Nakai S, Gomi K, Hanamoto H. Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5'-UTR. FEBS Lett 2004; 555:516-20. [PMID: 14675766 DOI: 10.1016/s0014-5793(03)01335-8] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exogenous thiamine regulates Aspergillus oryzae thiA, which is involved in thiamine synthesis. One of the two introns in its 5'-untranslated region (5'-UTR) contains motifs (regions A and B) highly conserved among fungal thiamine biosynthesis genes. Deletion of either region relieved the repression by thiamine and thiamine inhibited intron splicing, suggesting that regions A and B are required for efficient splicing. Furthermore, transcript splicing was essential for thiA gene expression. These observations suggest a novel gene expression regulatory mechanism in filamentous fungi, in which exogenous thiamine controls intron splicing to regulate gene expression. Interestingly, regions A and B constitute a part of a thiamine pyrophosphate-binding riboswitch-like domain that has been quite recently found in the 5'-UTR of thiA.
Collapse
Affiliation(s)
- Takafumi Kubodera
- Research and Development Department, Hakutsuru Sake Brewing Co. Ltd., 4-5-5, Sumiyoshiminami-machi, Higashinada-ku, Kobe 658-0041, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bourgeois CF, Lejeune F, Stévenin J. Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:37-88. [PMID: 15210328 DOI: 10.1016/s0079-6603(04)78002-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alternative splicing of pre-messenger RNA (pre-mRNA) is a highly regulated process that allows expansion of the potential of expression of the genome in higher eukaryotes and involves many factors. Among them, the family of the serine- and arginine-rich proteins (SR proteins) plays a pivotal role: it has essential functions during spliceosome assembly and also interacts with RNA regulatory sequences on the pre-mRNA as well as with multiple cofactors. Collectively, SR proteins, because of their capacity to recognize multiple RNA sequences with a broad specificity, are at the heart of the regulation pathways that lead to the choice of alternative splice sites. Moreover, a growing body of evidence shows that the mechanisms of splicing regulation are not limited to the basic involvement of cis- and trans-acting factors at the pre-mRNA level, but result from intricate pathways, initiated sometimes by stimuli that are external to the cell and integrate SR proteins (and other factors) within an extremely sophisticated network of molecular machines associated with one another. This review focuses on the molecular aspects of the functions of SR proteins. In particular, we discuss the different ways in which SR proteins manage to achieve a high level of specificity in splicing regulation, even though they are also involved in the constitutive reaction.
Collapse
Affiliation(s)
- Cyril F Bourgeois
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, C.U. Strasbourg, France
| | | | | |
Collapse
|
35
|
Yang L, Li N, Wang C, Yu Y, Yuan L, Zhang M, Cao X. Cyclin L2, a novel RNA polymerase II-associated cyclin, is involved in pre-mRNA splicing and induces apoptosis of human hepatocellular carcinoma cells. J Biol Chem 2003; 279:11639-48. [PMID: 14684736 DOI: 10.1074/jbc.m312895200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning and functional characterization of human cyclin L2, a novel member of the cyclin family. Human cyclin L2 shares significant homology to cyclin L1, K, T1, T2, and C, which are involved in transcriptional regulation via phosphorylation of the C-terminal domain of RNA polymerase II. The cyclin L2 protein contains an N-terminal "cyclin box" and C-terminal dipeptide repeats of alternating arginines and serines, a hallmark of the SR family of splicing factors. A new isoform and the mouse homologue of human cyclin L2 have also been cloned in this study. Human cyclin L2 is expressed ubiquitously in normal human tissues and tumor cells. We show here that cyclin L2 co-localizes with splicing factors SC-35 and 9G8 within nuclear speckles and that it associates with hyperphosphorylated, but not hypophosphorylated, RNA polymerase II and CDK p110 PITSLRE kinase via its N-terminal cyclin domains. It can also associate with the SC-35 and 9G8 through its RS repeat region. Recombinant cyclin L2 protein can stimulate in vitro mRNA splicing. Overexpression of human cyclin L2 suppresses the growth of human hepatocellular carcinoma SMMC 7721 cells both in vitro and in vivo, inducing cellular apoptosis. This process involves up-regulation of p53 and Bax and decreased expression of Bcl-2. The data suggest that cyclin L2 represents a new member of the cyclin family, which might regulate the transcription and RNA processing of certain apoptosis-related factors, resulting in tumor cell growth inhibition and apoptosis.
Collapse
Affiliation(s)
- Lianjun Yang
- Institute of Immunology, Second Military Medical University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Alternative pre-mRNA splicing is a central mode of genetic regulation in higher eukaryotes. Variability in splicing patterns is a major source of protein diversity from the genome. In this review, I describe what is currently known of the molecular mechanisms that control changes in splice site choice. I start with the best-characterized systems from the Drosophila sex determination pathway, and then describe the regulators of other systems about whose mechanisms there is some data. How these regulators are combined into complex systems of tissue-specific splicing is discussed. In conclusion, very recent studies are presented that point to new directions for understanding alternative splicing and its mechanisms.
Collapse
Affiliation(s)
- Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, Howard Hughes Medical Institute, University of California-Los Angeles, Los Angeles, California 90095-1662, USA.
| |
Collapse
|
37
|
Sansam CL, Wells KS, Emeson RB. Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc Natl Acad Sci U S A 2003; 100:14018-23. [PMID: 14612560 PMCID: PMC283538 DOI: 10.1073/pnas.2336131100] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Indexed: 01/12/2023] Open
Abstract
The adenosine deaminases that act on RNA (ADARs) catalyze the site-specific conversion of adenosine to inosine (A to I) in primary mRNA transcripts, thereby affecting the splicing pattern or coding potential of mature mRNAs. Although the subnuclear localization of A-to-I editing has not been precisely defined, ADARs have been shown to act before splicing, suggesting that they function near nucleoplasmic sites of transcription. Here we demonstrate that ADAR2, a member of the vertebrate ADAR family, is concentrated in the nucleolus, a subnuclear domain disparate from the sites of mRNA transcription. Selective inhibition of ribosomal RNA synthesis or the introduction of mutations in the double-stranded RNA-binding domains within ADAR2 results in translocation of the protein to the nucleoplasm, suggesting that nucleolar association of ADAR2 depends on its ability to bind to ribosomal RNA. Fluorescence recovery after photobleaching reveals that ADAR2 can shuttle rapidly between subnuclear compartments. Enhanced translocation of endogenous ADAR2 from the nucleolus to the nucleoplasm results in increased editing of endogenous ADAR2 substrates. These observations indicate that the nucleolar localization of ADAR2 represents an important mechanism by which RNA editing can be modulated by the sequestration of enzymatic activity from potential RNA substrates in the nucleoplasm.
Collapse
|
38
|
Rosonina E, Bakowski MA, McCracken S, Blencowe BJ. Transcriptional activators control splicing and 3'-end cleavage levels. J Biol Chem 2003; 278:43034-40. [PMID: 12939267 DOI: 10.1074/jbc.m307289200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated whether transcriptional activators influence the efficiency of constitutive splicing and 3'-end formation, in addition to transcription levels. Remarkably, strong activators result in higher levels of splicing and 3'-cleavage than weak activators and can control the efficiency of these steps in pre-mRNA processing separately. The pre-mRNA processing stimulatory property of activators is dependent on their binding to promoters, but is not an indirect consequence of the levels of transcripts produced. Moreover, stimulation of splicing and cleavage by a strong activator operates by a mechanism that requires the carboxyl-terminal domain of RNA polymerase II. The splicing stimulatory property of activators was observed for unrelated transcripts and for separate introns within a transcript, indicating a possible general role for strong activators in facilitating pre-mRNA processing levels. The results suggest that the efficiency of constitutive splicing and 3'-end cleavage is closely coordinated with transcription levels by promoter-bound activators.
Collapse
Affiliation(s)
- Emanuel Rosonina
- Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
39
|
Shen L, Spector DJ. Local character of readthrough activation in adenovirus type 5 early region 1 transcription control. J Virol 2003; 77:9266-77. [PMID: 12915542 PMCID: PMC187422 DOI: 10.1128/jvi.77.17.9266-9277.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild-type early activity of the adenovirus 5 E1b gene promoter requires readthrough transcription originating from the adjacent upstream E1a gene. This unusual mode of viral transcription activation was identified by genetic manipulation of the mouse beta(maj)-globin gene transcription termination sequence (GGT) inserted into the E1a gene. To facilitate further study of the mechanism of readthrough activation, the activities of GGT and a composite termination sequence CT were tested in recombinant adenoviruses containing luciferase reporters driven by the E1b promoter. There was a strict correlation between readthrough and substantial downstream gene expression, indicating that interference with downstream transcription was not a unique property of GGT. Blockage of readthrough transcription of E1a had no apparent effect on early expression of the major late promoter, the next active promoter downstream of E1b. A test for epistatic interaction between termination sequence insertions and E1a enhancer mutations suggested that readthrough activation and E1a enhancer activation of the E1b promoter are mechanistically distinct. In addition, substitution of the human cytomegalovirus major immediate-early promoter for the E1b promoter suppressed the requirement for readthrough. These results suggest that readthrough activation is a "local" effect of a direct interaction between the invading transcription elongation complex and the E1b promoter. DNase I hypersensitivity footprinting provided evidence that this interaction altered an extensive E1b promoter DNA-protein complex that was assembled in the absence of readthrough transcription.
Collapse
Affiliation(s)
- Li Shen
- Department of Microbiology and Immunology and Inter-College Graduate Degree Program in Genetics, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
40
|
Fomenkov A, Huang YP, Topaloglu O, Brechman A, Osada M, Fomenkova T, Yuriditsky E, Trink B, Sidransky D, Ratovitski E. P63 alpha mutations lead to aberrant splicing of keratinocyte growth factor receptor in the Hay-Wells syndrome. J Biol Chem 2003; 278:23906-14. [PMID: 12692135 DOI: 10.1074/jbc.m300746200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p63, a p53 family member, is required for craniofacial and limb development as well as proper skin differentiation. However, p63 mutations associated with the ankyloblepharon-ectodermal dysplasia-clefting (AEC) syndrome (Hay-Wells syndrome) were found in the p63 carboxyl-terminal region with a sterile alpha-motif. By two-hybrid screen we identified several proteins that interact with the p63alpha carboxyl terminus and its sterile alpha-motif, including the apobec-1-binding protein-1 (ABBP1). AEC-associated mutations completely abolished the physical interaction between ABBP1 and p63alpha. Moreover the physical association of p63alpha and ABBP1 led to a specific shift of FGFR-2 alternative splicing toward the K-SAM isoform essential for epithelial differentiation. We thus propose that a p63alpha-ABBP1 complex differentially regulates FGFR-2 expression by supporting alternative splicing of the K-SAM isoform of FGFR-2. The inability of mutated p63alpha to support this splicing likely leads to the inhibition of epithelial differentiation and, in turn, accounts for the AEC phenotype.
Collapse
Affiliation(s)
- Alexey Fomenkov
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pardee TS, Ghazy MA, Ponticelli AS. Yeast and Human RNA polymerase II elongation complexes: evidence for functional differences and postinitiation recruitment of factors. EUKARYOTIC CELL 2003; 2:318-27. [PMID: 12684381 PMCID: PMC154848 DOI: 10.1128/ec.2.2.318-327.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immobilized DNA templates, glycerol gradient centrifugation, and native gel analysis were utilized to isolate and compare functional RNA polymerase II (RNAPII) elongation complexes from Saccharomyces cerevisiae and human cell nuclear extracts. Yeast elongation complexes blocked by incorporation of 3'-O-methyl-GTP into the nascent transcript exhibited a sedimentation coefficient of 35S, were less tightly associated to the template than their human counterparts, and displayed no detectable 3'-5' exonuclease activity on the associated transcript. In contrast, blocked human elongation complexes were more tightly bound to the template, and multiple forms were identified, with the largest exhibiting a sedimentation coefficient of 60S. Analysis of the associated transcripts revealed that a subset of the human elongation complexes exhibited strong 3'-5' exonuclease activity. Although isolated human preinitiation complexes were competent for efficient transcription, their ability to generate 60S elongation complexes was strikingly impaired. These findings demonstrate functional and size differences between S. cerevisiae and human RNAPII elongation complexes and support the view that the formation of mature elongation complexes involves recruitment of nuclear factors after the initiation of transcription.
Collapse
Affiliation(s)
- Timothy S Pardee
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214-3000, USA
| | | | | |
Collapse
|
42
|
Li B, Howe L, Anderson S, Yates JR, Workman JL. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 2003; 278:8897-903. [PMID: 12511561 DOI: 10.1074/jbc.m212134200] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The histone methyltransferase Set2, which specifically methylates lysine 36 of histone H3, has been shown to repress transcription upon tethering to a heterologous promoter. However, the mechanism of targeting and the consequence of Set2-dependent methylation have yet to be demonstrated. We sought to identify the protein components associated with Set2 to gain some insights into the in vivo function of this protein. Mass spectrometry analysis of the Set2 complex, purified using a tandem affinity method, revealed that RNA polymerase II (pol II) is associated with Set2. Immunoblotting and immunoprecipitation using antibodies against subunits of pol II confirmed that the phosphorylated form of pol II is indeed an integral part of the Set2 complex. Gst-Set2 preferentially binds to CTD synthetic peptides phosphorylated at serine 2, and to a lesser extent, serine 5 phosphorylated peptides, but has no affinity for unphosphorylated CTD, suggesting that Set2 associates with the elongating form of the pol II. Furthermore, we show that set2Delta ppr2Delta double mutants (PPR2 encodes TFIIS, a transcription elongation factor) are synthetically hypersensitive to 6-azauracil, and that deletions in the CTD reduce in vivo levels of H3 lysine 36 methylation. Collectively, these results suggest that Set2 is involved in regulating transcription elongation through its direct contact with pol II.
Collapse
Affiliation(s)
- Bing Li
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-4500, USA
| | | | | | | | | |
Collapse
|
43
|
Araya N, Hirota K, Shimamoto Y, Miyagishi M, Yoshida E, Ishida J, Kaneko S, Kaneko M, Nakajima T, Fukamizu A. Cooperative interaction of EWS with CREB-binding protein selectively activates hepatocyte nuclear factor 4-mediated transcription. J Biol Chem 2003; 278:5427-32. [PMID: 12459554 DOI: 10.1074/jbc.m210234200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The EWS gene when fused to transcription factors such as the ETS family ATF-1, Wilms' tumor-1, and nuclear orphan receptors upon chromosomal translocation is thought to contribute the development of Ewing sarcoma and several malignant tumors. Although EWS is predicted to be an RNA-binding protein, an inherent EWS nuclear function has not yet been elucidated. In this study, we found that EWS associates with a transcriptional co-activator CREB-binding protein (CBP) and the hypophosphorylated RNA polymerase II, which are included preferentially in the transcription preinitiation complex. These interactions suggest the potential involvement of EWS in gene transcription, leading to the hypothesis that EWS may function as a co-activator of CBP-dependent transcription factors. Based on this hypothesis, we investigated the effect of EWS on the activation of nuclear receptors that are activated by CBP. Of nuclear receptors examined, hepatocyte nuclear factor 4-dependent transcription was selectively enhanced by EWS but not by an EWS mutant defective for CBP binding. These results suggest that EWS as a co-activator requires CBP for hepatocyte nuclear factor 4-mediated transcriptional activation.
Collapse
Affiliation(s)
- Natsumi Araya
- Center for Tsukuba Advanced Research Alliance, Aspect of Functional Genomic Biology, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 2003; 24:78-90. [PMID: 12588810 DOI: 10.1210/er.2002-0012] [Citation(s) in RCA: 1600] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Investigations of biological programs that are controlled by gene transcription have mainly studied the regulation of transcription factors. However, there are examples in which the primary focus of biological regulation is at the level of a transcriptional coactivator. We have reviewed here the molecular mechanisms and biological programs controlled by the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha). Key cellular signals that control energy and nutrient homeostasis, such as cAMP and cytokine pathways, strongly activate PGC-1 alpha. Once PGC-1 alpha is activated, it powerfully induces and coordinates gene expression that stimulates mitochondrial oxidative metabolism in brown fat, fiber-type switching in skeletal muscle, and multiple aspects of the fasted response in liver. The regulation of these metabolic and cell fate decisions by PGC-1 alpha is achieved through specific interaction with a variety of transcription factors such as nuclear hormone receptors, nuclear respiratory factors, and muscle-specific transcription factors. PGC-1 alpha therefore constitutes one of the first and clearest examples in which biological programs are chiefly regulated by a transcriptional coactivator in response to environmental stimuli. Finally, PGC-1 alpha's control of energy homeostasis suggests that it could be a target for anti-obesity or diabetes drugs.
Collapse
Affiliation(s)
- Pere Puigserver
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
45
|
Gründer A, Qian F, Ebel TT, Mincheva A, Lichter P, Kruse U, Sippel AE. Genomic organization, splice products and mouse chromosomal localization of genes for transcription factor Nuclear Factor One. Gene 2003; 304:171-81. [PMID: 12568726 DOI: 10.1016/s0378-1119(02)01204-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transcription factor Nuclear Factor One (NFI) proteins are derived from a small family of four vertebrate genes (NFIA, B, C and X), all of which produce a fair number of protein variants by alternative splicing. In order to ultimately locate RNA signal sequences around exon/intron borders for the production of regulated splice variants, we have determined the exon structure of the chicken NFIB gene as the last of the four vertebrate genes for which the gene structure was not yet elucidated. This made it possible to compile nine newly isolated and sequenced mouse NFI cDNA sequences together with all previously available ones and to deduce corresponding splicing patterns for the orthologous vertebrate genes of all four paralogous gene types. Results from the analysis of alternative splicing and of NFI gene mapping in the genome of human and mouse argue for a phylogenetic route in which the four vertebrate NFI genes result from a single duplication of a genomic segment containing two NFI intermediate genes rather than from two independent duplications of two separated single ancestor genes.
Collapse
Affiliation(s)
- Albert Gründer
- Institut für Biologie III/Genetik, Albert-Ludwigs-Universität, Schaenzlestrasse 1, D-79104, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Are Microsporidia really related to Fungi?: a reappraisal based on additional gene sequences from basal fungi. ACTA ACUST UNITED AC 2002. [DOI: 10.1017/s095375620200686x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Borggrefe T, Davis R, Erdjument-Bromage H, Tempst P, Kornberg RD. A complex of the Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast. J Biol Chem 2002; 277:44202-7. [PMID: 12200444 DOI: 10.1074/jbc.m207195200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Srb8, -9, -10, and -11 proteins of yeast have been isolated as a discrete, stoichiometric complex. The isolated complex phosphorylates the C-terminal domain (CTD) of the largest subunit of RNA polymerase II at serines 2 and 5. In addition to the previously reported human homologs of Srb10 and 11, we have identified TRAP230/ARC240 and TRAP240/ARC250 as the human homologs of Srb8 and Srb9, showing the entire Srb8/9/10/11 complex is conserved from yeast to humans.
Collapse
Affiliation(s)
- Tilman Borggrefe
- Department of Structural Biology, Stanford University School of Medicine, California 94305-5400, USA
| | | | | | | | | |
Collapse
|
48
|
Ischemia induces a translocation of the splicing factor tra2-beta 1 and changes alternative splicing patterns in the brain. J Neurosci 2002. [PMID: 12122051 DOI: 10.1523/jneurosci.22-14-05889.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alternative splice-site selection is regulated by the relative concentration of individual members of the serine-arginine family of proteins and heterogeneous nuclear ribonucleoproteins. Most of these proteins accumulate predominantly in the nucleus, and a subset of them shuttles continuously between nucleus and cytosol. We demonstrate that in primary neuronal cultures, a rise in intracellular calcium concentration induced by thapsigargin leads to a translocation of the splicing regulatory protein tra2-beta1 and a consequent change in splice-site selection. To investigate this phenomenon under physiological conditions, we used an ischemia model. Ischemia induced in the brain causes a cytoplasmic accumulation and hyperphosphorylation of tra2-beta1. In addition, several of the proteins binding to tra2-beta1, such as src associated in mitosis 68 and serine/arginine-rich proteins, accumulate in the cytosol. Concomitant with this subcellular relocalization, we observed a change in alternative splice-site usage of the ICH-1 gene. The increased usage of its alternative exons is in agreement with previous studies demonstrating its repression by a high concentration of proteins with serine/arginine-rich domains. Our findings suggest that a change in the calcium concentration associated with ischemia is part of a signaling event, which changes pre-mRNA splicing pathways by causing relocalization of proteins that regulate splice-site selection.
Collapse
|
49
|
Carty SM, Greenleaf AL. Hyperphosphorylated C-terminal repeat domain-associating proteins in the nuclear proteome link transcription to DNA/chromatin modification and RNA processing. Mol Cell Proteomics 2002; 1:598-610. [PMID: 12376575 DOI: 10.1074/mcp.m200029-mcp200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using an interaction blot approach to search in the human nuclear proteome, we identified eight novel proteins that bind the hyperphosphorylated C-terminal repeat domain (phosphoCTD) of RNA polymerase II. Unexpectedly, five of the new phosphoCTD-associating proteins (PCAPs) represent either enzymes that act on DNA and chromatin (topoisomerase I, DNA (cytosine-5) methyltransferase 1, poly(ADP-ribose) polymerase-1) or proteins known to bind DNA (heterogeneous nuclear ribonucleoprotein (hnRNP) U/SAF-A, hnRNP D). The other three PCAPs represent factors involved in pre-mRNA metabolism as anticipated (CA150, NSAP1/hnRNP Q, hnRNP R) (note that hnRNP U/SAF-A and hnRNP D are also implicated in pre-mRNA metabolism). Identifying as PCAPs proteins involved in diverse DNA transactions suggests that the range of phosphoCTD functions extends far beyond just transcription and RNA processing. In view of the activities possessed by the DNA-directed PCAPs, it is likely that the phosphoCTD plays important roles in genome integrity, epigenetic regulation, and potentially nuclear structure. We present a model in which the phosphoCTD association of the PCAPs poises them to act either on the nascent transcript or on the DNA/chromatin template. We propose that the phosphoCTD of elongating RNA polymerase II is a major organizer of nuclear functions.
Collapse
Affiliation(s)
- Sherry M Carty
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
50
|
Dickinson LA, Edgar AJ, Ehley J, Gottesfeld JM. Cyclin L is an RS domain protein involved in pre-mRNA splicing. J Biol Chem 2002; 277:25465-73. [PMID: 11980906 DOI: 10.1074/jbc.m202266200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cDNA cloning and functional characterization of human cyclin L, a novel cyclin related to the C-type cyclins that are involved in regulation of RNA polymerase II (pol II) transcription. Cyclin L also contains a COOH-terminal dipeptide repeat of alternating arginines and serines, a hallmark of the SR family of splicing factors. We show that recombinant cyclin L interacts with p110 PITSLRE kinase, and that cyclin L antibody co-immunoprecipitates a kinase activity from HeLa nuclear extracts that phosphorylates the carboxyl-terminal domain (CTD) of pol II and splicing factor SC35, and is inhibited by the cdk inhibitor p21. Cyclin L antibody inhibits the second step of RNA splicing in vitro, and recombinant cyclin L protein stimulates splicing under suboptimal conditions. Significantly, the IC(50) for splicing inhibition by p21 is similar to the IC(50) for inhibition of the cyclin L-associated kinase activity. Cyclin L and its associated kinase are thus new members of the pre-mRNA processing machinery.
Collapse
Affiliation(s)
- Liliane A Dickinson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|