1
|
Selenourea for Experimental Phasing of Membrane Protein Crystals Grown in Lipid Cubic Phase. CRYSTALS 2022. [DOI: 10.3390/cryst12070976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heavy-atom soaking has been a major method for experimental phasing, but it has been difficult for membrane proteins, partly owing to the lack of available sites in the scarce soluble domain for non-invasive heavy-metal binding. The lipid cubic phase (LCP) has proven to be a successful method for membrane protein crystallization, but experimental phasing with LCP-grown crystals remains difficult, and so far, only 68 such structures were phased experimentally. Here, the selenourea was tested as a soaking reagent for the single-wavelength anomalous dispersion (SAD) phasing of crystals grown in LCP. Using a single crystal, the structure of the glycerol 3-phosphate acyltransferase (PlsY, ~21 kDa), a very hydrophobic enzyme with 80% membrane-embedded residues, was solved. Remarkably, a total of 15 Se sites were found in the two monomers of PlsY, translating to one selenourea-binding site per every six residues in the accessible extramembrane protein. Structure analysis reveals that surface-exposed selenourea sites are mostly contributed by mainchain amides and carbonyls. This low-specificity binding pattern may explain its high loading ratio. Importantly, both the crystal diffraction quality and the LCP integrity were unaffected by selenourea soaking. Taken together, selenourea presents a promising and generally useful reagent for heavy-atom soaking of membrane protein crystals grown in LCP.
Collapse
|
2
|
Naumann TA, Sollenberger KG, Hao G. Production of selenomethionine labeled polyglycine hydrolases in Pichia pastoris. Protein Expr Purif 2022; 194:106076. [PMID: 35240278 DOI: 10.1016/j.pep.2022.106076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/05/2023]
Abstract
Producing recombinant proteins with incorporated selenomethionine (SeMet) facilitates solving X-ray crystallographic structures of novel proteins. Production of SeMet labeled proteins in the yeast Pichia pastoris (syn. Komagataella phaffii) is difficult because SeMet is mildly toxic, reducing protein expression levels. To counteract this yield loss for a novel protease, Epicoccum sorghi chitinase modifying protein (Es-cmp), a novel disease promoting protease secreted by these plant pathogenic fungi, we isolated a yeast strain that secreted more protein. By comparing the expression level of 48 strains we isolated one that produced significantly more protein. This strain was found to be gene dosed, having four copies of the expression cassette. After optimization the strain produced Es-cmp in defined media with SeMet at levels nearly equal to that of the original strain in complex media. Also, we produced SeMet labeled protein for a homologous protease from the fungus Fusarium vanettenii, Fvan-cmp, by directly selecting a gene dosed strain on agar plates with increased zeocin. Linearization of plasmid with PmeI before electroporation led to high numbers of 1 mg/mL zeocin resistant clones with significantly increased expression compared to those selected on 0.1 mg/mL. The gene dosed strains expressing Es-cmp and Fvan-cmp allowed production of 8.5 and 16.8 mg of SeMet labeled protein from 500 mL shake flask cultures. The results demonstrate that selection of P. pastoris expression strains by plating after transformation on agar with 1 mg/mL zeocin rather than the standard 0.1 mg/mL directly selects gene dosed strains that can facilitate production of selenomethionine labeled proteins.
Collapse
Affiliation(s)
- Todd A Naumann
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agriculture Utilization Research, Peoria, IL, 61604, USA.
| | - Kurt G Sollenberger
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agriculture Utilization Research, Peoria, IL, 61604, USA
| | - Guixia Hao
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agriculture Utilization Research, Peoria, IL, 61604, USA
| |
Collapse
|
3
|
Fukuda K, Lu F, Qin J. Molecular basis for Ras suppressor-1 binding to PINCH-1 in focal adhesion assembly. J Biol Chem 2021; 296:100685. [PMID: 33891945 PMCID: PMC8141872 DOI: 10.1016/j.jbc.2021.100685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 10/29/2022] Open
Abstract
Ras suppressor-1 (Rsu-1) is a leucine-rich repeat (LRR)-containing protein that is crucial for regulating cell adhesion and is involved in such physiological and pathological processes as focal adhesion assembly and tumor metastasis. Rsu-1 interacts with zinc-finger type multi-LIM domain-containing adaptor protein PINCH-1, known to be involved in the integrin-mediated consensus adhesome, but not with its highly homologous family member PINCH-2. However, the structural basis for and regulatory mechanisms of this specific interaction remain unclear. Here, we determined the crystal structures of Rsu-1 and its complex with the PINCH-1 LIM4-5 domains. Rsu-1 displays an arc-shaped solenoid architecture, with eight LRRs shielded by N- and C-terminal capping modules. We showed that the conserved concave surface of the Rsu-1 LRR domain binds and stabilizes the PINCH-1 LIM5 domain via salt bridge and hydrophobic interactions, while the C-terminal non-LIM region of PINCH-2 sterically disfavors Rsu-1 binding. We also showed that Rsu-1 can be assembled, via PINCH-1-binding, into a heteropentamer complex comprising Rsu-1, PINCH-1, ILK, Parvin, and Kindlin-2, which constitute a major consensus integrin adhesome crucial for focal adhesion assembly. Our mutagenesis and cell biological data emphasize the significance of the Rsu-1/PINCH-1 interaction in focal adhesion assembly and cell spreading, providing crucial molecular insights into Rsu-1-mediated cell adhesion with implications for disease development.
Collapse
Affiliation(s)
- Koichi Fukuda
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Ohio, USA
| | - Fan Lu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Ohio, USA; Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jun Qin
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Ohio, USA; Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
4
|
Wenzel S, Imasaki T, Takagi Y. A practical method for efficient and optimal production of Seleno-methionine-labeled recombinant protein complexes in the insect cells. Protein Sci 2019; 28:808-822. [PMID: 30663186 DOI: 10.1002/pro.3575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/07/2022]
Abstract
The use of Seleno-methionine (SeMet) incorporated protein crystals for single or multi-wavelength anomalous diffraction (SAD or MAD) to facilitate phasing has become almost synonymous with modern X-ray crystallography. The anomalous signals from SeMets can be used for phasing as well as sequence markers for subsequent model building. The production of large quantities of SeMet incorporated recombinant proteins is relatively straightforward when expressed in Escherichia coli. In contrast, production of SeMet substituted recombinant proteins expressed in the insect cells is not as robust due to the toxicity of SeMet in eukaryotic systems. Previous protocols for SeMet-incorporation in the insect cells are laborious, and more suited for secreted proteins. In addition, these protocols have generally not addressed the SeMet toxicity issue, and typically result in low recovery of the labeled proteins. Here we report that SeMet toxicity can be circumvented by fully infecting insect cells with baculovirus. Quantitatively controlling infection levels using our Titer Estimation of Quality Control (TEQC) method allow for the incorporation of substantial amounts of SeMet, resulting in an efficient and optimal production of labeled recombinant protein complexes. With the method described here, we were able to consistently reach incorporation levels of about 75% and protein yield of 60-90% compared with native protein expression.
Collapse
Affiliation(s)
- Sabine Wenzel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana, 46202
| | - Tsuyoshi Imasaki
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana, 46202
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana, 46202
| |
Collapse
|
5
|
Roed NK, Viola CM, Kristensen O, Schluckebier G, Norrman M, Sajid W, Wade JD, Andersen AS, Kristensen C, Ganderton TR, Turkenburg JP, De Meyts P, Brzozowski AM. Structures of insect Imp-L2 suggest an alternative strategy for regulating the bioavailability of insulin-like hormones. Nat Commun 2018; 9:3860. [PMID: 30242155 PMCID: PMC6155051 DOI: 10.1038/s41467-018-06192-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022] Open
Abstract
The insulin/insulin-like growth factor signalling axis is an evolutionary ancient and highly conserved hormonal system involved in the regulation of metabolism, growth and lifespan in animals. Human insulin is stored in the pancreas, while insulin-like growth factor-1 (IGF-1) is maintained in blood in complexes with IGF-binding proteins (IGFBP1-6). Insect insulin-like polypeptide binding proteins (IBPs) have been considered as IGFBP-like structural and functional homologues. Here, we report structures of the Drosophila IBP Imp-L2 in its free form and bound to Drosophila insulin-like peptide 5 and human IGF-1. Imp-L2 contains two immunoglobulin-like fold domains and its architecture is unrelated to human IGFBPs, suggesting a distinct strategy for bioavailability regulation of insulin-like hormones. Similar hormone binding modes may exist in other insect vectors, as the IBP sequences are highly conserved. Therefore, these findings may open research routes towards a rational interference of transmission of diseases such as malaria, dengue and yellow fevers.
Collapse
Affiliation(s)
| | - Cristina M Viola
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | - Ole Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Gerd Schluckebier
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - Mathias Norrman
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - Waseem Sajid
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
| | - John D Wade
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Claus Kristensen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2100, Copenhagen N, Denmark
| | - Timothy R Ganderton
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | - Johan P Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | - Pierre De Meyts
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Maaloev, Denmark
- Department of Cell Signalling, de Duve Institute, B-1200, Brussels, Belgium
| | - Andrzej M Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
6
|
Zhang Y, Wei H, Xie D, Calambur D, Douglas A, Gao M, Marsilio F, Metzler WJ, Szapiel N, Zhang P, Witmer MR, Mueller L, Hedin D. An improved protocol for amino acid type-selective isotope labeling in insect cells. JOURNAL OF BIOMOLECULAR NMR 2017; 68:237-247. [PMID: 28711957 DOI: 10.1007/s10858-017-0117-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
An improved expression protocol is proposed for amino acid type-specific [13C], [15N]-isotope labeling of proteins in baculovirus-infected (BV) insect cell cultures. This new protocol modifies the methods published by Gossert et al. (J Biomol NMR 51(4):449-456, 2011) and provides efficient incorporation of isotopically labeled amino acids, with similar yields per L versus unlabeled expression in rich media. Gossert et al. identified the presence of unlabeled amino acids in the yeastolate of the growth medium as a major limitation in isotope labeling using BV-infected insect cells. By reducing the amount of yeastolate in the growth medium ten-fold, a significant improvement in labeling efficiency was demonstrated, while maintaining good protein expression yield. We report an alternate approach to improve isotope labeling efficiency using BV-infected insect cells namely by replacing the yeast extracts in the medium with dialyzed yeast extracts to reduce the amount of low molecular weight peptides and amino acids. We report the residual levels of amino acids in various media formulations and the amino acid consumption during fermentation, as determined by NMR. While direct replacement of yeastolate with dialyzed yeastolate delivered moderately lower isotope labeling efficiencies compared to the use of ten-fold diluted undialized yeastolate, we show that the use of dialyzed yeastolate combined with a ten-fold dilution delivered enhanced isotope labeling efficiency and at least a comparable level of protein expression yield, all at a scale which economizes use of these costly reagents.
Collapse
Affiliation(s)
- Yaqun Zhang
- Department of Protein Science, Bristol-Myers Squibb, Route 206 and Province Line Road, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Hui Wei
- Mass Spectrometry COEI, Bristol-Myers Squibb, Route 206 and Province Line Road, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Dianlin Xie
- Department of Protein Science, Bristol-Myers Squibb, Route 206 and Province Line Road, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Deepa Calambur
- Department of Protein Science, Bristol-Myers Squibb, Route 206 and Province Line Road, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Andrew Douglas
- Department of Protein Science, Bristol-Myers Squibb, Route 206 and Province Line Road, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Mian Gao
- Department of Protein Science, Bristol-Myers Squibb, Route 206 and Province Line Road, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Frank Marsilio
- Department of Protein Science, Bristol-Myers Squibb, Route 206 and Province Line Road, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - William J Metzler
- Lead Discovery and Optimization, Bristol-Myers Squibb, Route 206 and Province Line Road, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Nicolas Szapiel
- Department of Protein Science, Bristol-Myers Squibb, Route 206 and Province Line Road, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Ping Zhang
- Department of Protein Science, Bristol-Myers Squibb, Route 206 and Province Line Road, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Mark R Witmer
- Department of Protein Science, Bristol-Myers Squibb, Route 206 and Province Line Road, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Luciano Mueller
- PCO DAS NMR, Bristol-Myers Squibb, Route 206 and Province Line Road, P.O. Box 4000, Princeton, NJ, 08543-4000, USA.
| | - David Hedin
- Expression Systems, LLC, 2537 Second Street, Davis, CA, 95618, USA
| |
Collapse
|
7
|
Chirgadze DY, Ascher DB, Blundell TL, Sibanda BL. DNA-PKcs, Allostery, and DNA Double-Strand Break Repair: Defining the Structure and Setting the Stage. Methods Enzymol 2017; 592:145-157. [PMID: 28668119 DOI: 10.1016/bs.mie.2017.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is central to the regulation of the DNA damage response and repair through nonhomologous end joining. The structure has proved challenging due to its large size and multiple HEAT repeats. We have recently reported crystals of selenomethionine-labeled DNA-PKcs complexed with native KU80ct194 (KU80 residues 539-732) diffracting to 4.3Å resolution. The novel use of crystals of selenomethionine-labeled protein expressed in HeLa cells has facilitated the use of single anomalous X-ray scattering of this 4128 amino acid, multiple HEAT-repeat structure. The monitoring of the selenomethionines in the anomalous-difference density map has allowed the checking of the amino acid residue registration in the electron density, and the labeling of the Ku-C-terminal moiety with selenomethionine has further allowed its identification in the structure of the complex with DNA-PKcs. The crystal structure defines a stage on which many of the components assemble and regulate the kinase activity through modulating the conformation and allosteric regulation of kinase activity.
Collapse
|
8
|
Sibanda BL, Chirgadze DY, Ascher DB, Blundell TL. DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair. Science 2017; 355:520-524. [DOI: 10.1126/science.aak9654] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022]
|
9
|
Pike ACW, Garman EF, Krojer T, von Delft F, Carpenter EP. An overview of heavy-atom derivatization of protein crystals. Acta Crystallogr D Struct Biol 2016; 72:303-18. [PMID: 26960118 PMCID: PMC4784662 DOI: 10.1107/s2059798316000401] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/08/2016] [Indexed: 11/11/2022] Open
Abstract
Heavy-atom derivatization is one of the oldest techniques for obtaining phase information for protein crystals and, although it is no longer the first choice, it remains a useful technique for obtaining phases for unknown structures and for low-resolution data sets. It is also valuable for confirming the chain trace in low-resolution electron-density maps. This overview provides a summary of the technique and is aimed at first-time users of the method. It includes guidelines on when to use it, which heavy atoms are most likely to work, how to prepare heavy-atom solutions, how to derivatize crystals and how to determine whether a crystal is in fact a derivative.
Collapse
Affiliation(s)
- Ashley C. W. Pike
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX11 9HP, England
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | - Tobias Krojer
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX11 9HP, England
| | - Frank von Delft
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX11 9HP, England
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, England
- Department of Biochemistry, University of Johannesburg, Aukland Park 2006, South Africa
| | - Elisabeth P. Carpenter
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX11 9HP, England
| |
Collapse
|
10
|
Bashiri G, Baker EN. Production of recombinant proteins in Mycobacterium smegmatis for structural and functional studies. Protein Sci 2014; 24:1-10. [PMID: 25303009 DOI: 10.1002/pro.2584] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 11/11/2022]
Abstract
Protein production using recombinant DNA technology has a fundamental impact on our understanding of biology through providing proteins for structural and functional studies. Escherichia coli (E. coli) has been traditionally used as the default expression host to over-express and purify proteins from many different organisms. E. coli does, however, have known shortcomings for obtaining soluble, properly folded proteins suitable for downstream studies. These shortcomings are even more pronounced for the mycobacterial pathogen Mycobacterium tuberculosis, the bacterium that causes tuberculosis, with typically only one third of proteins expressed in E. coli produced as soluble proteins. Mycobacterium smegmatis (M. smegmatis) is a closely related and non-pathogenic species that has been successfully used as an expression host for production of proteins from various mycobacterial species. In this review, we describe the early attempts to produce mycobacterial proteins in alternative expression hosts and then focus on available expression systems in M. smegmatis. The advantages of using M. smegmatis as an expression host, its application in structural biology and some practical aspects of protein production are also discussed. M. smegmatis provides an effective expression platform for enhanced understanding of mycobacterial biology and pathogenesis and for developing novel and better therapeutics and diagnostics.
Collapse
Affiliation(s)
- Ghader Bashiri
- Structural Biology Laboratory, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1010, New Zealand
| | | |
Collapse
|
11
|
Abstract
Recent years have seen remarkable progress in applying nuclear magnetic resonance (NMR) spectroscopy to proteins that have traditionally been difficult to study due to issues with folding, posttranslational modification, and expression levels or combinations thereof. In particular, insect cells have proved useful in allowing large quantities of isotope-labeled, functional proteins to be obtained and purified to homogeneity, allowing study of their structures and dynamics by using NMR. Here, we provide protocols that have proven successful in such endeavors.
Collapse
Affiliation(s)
- Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Arpana Dutta
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Klein-Seetharaman
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Frankfurt am Main, Germany,
| |
Collapse
|
12
|
Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 2011; 472:448-53. [PMID: 21525927 DOI: 10.1038/nature09947] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 02/17/2011] [Indexed: 12/24/2022]
Abstract
Site-specific recognition of DNA in eukaryotic organisms depends on the arrangement of nucleosomes in chromatin. In the yeast Saccharomyces cerevisiae, ISW1a and related chromatin remodelling factors are implicated in establishing the nucleosome repeat during replication and altering nucleosome position to affect gene activity. Here we have solved the crystal structures of S. cerevisiae ISW1a lacking its ATPase domain both alone and with DNA bound at resolutions of 3.25 Å and 3.60 Å, respectively, and we have visualized two different nucleosome-containing remodelling complexes using cryo-electron microscopy. The composite X-ray and electron microscopy structures combined with site-directed photocrosslinking analyses of these complexes suggest that ISW1a uses a dinucleosome substrate for chromatin remodelling. Results from a remodelling assay corroborate the dinucleosome model. We show how a chromatin remodelling factor could set the spacing between two adjacent nucleosomes acting as a 'protein ruler'.
Collapse
|
13
|
Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor. Proc Natl Acad Sci U S A 2011; 108:10696-701. [PMID: 21670291 DOI: 10.1073/pnas.1104306108] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same β-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the β-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.
Collapse
|
14
|
Nettleship JE, Assenberg R, Diprose JM, Rahman-Huq N, Owens RJ. Recent advances in the production of proteins in insect and mammalian cells for structural biology. J Struct Biol 2010; 172:55-65. [PMID: 20153433 DOI: 10.1016/j.jsb.2010.02.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/04/2010] [Accepted: 02/07/2010] [Indexed: 11/22/2022]
Abstract
The production of proteins in sufficient quantity and of appropriate quality is an essential pre-requisite for structural studies. Escherichia coli remains the dominant expression system in structural biology with nearly 90% of the structures in the Protein Data Bank (PDB) derived from proteins produced in this bacterial host. However, many mammalian and eukaryotic viral proteins require post-translation modification for proper folding and/or are part of large multimeric complexes. Therefore expression in higher eukaryotic cell lines from both invertebrate and vertebrate is required to produce these proteins. Although these systems are generally more time-consuming and expensive to use than bacteria, there have been improvements in technology that have streamlined the processes involved. For example, the use of multi-host vectors, i.e., containing promoters for not only E. coli but also mammalian and baculovirus expression in insect cells, enables target genes to be evaluated in both bacterial and higher eukaryotic hosts from a single vector. Culturing cells in micro-plate format allows screening of large numbers of vectors in parallel and is amenable to automation. The development of large-scale transient expression in mammalian cells offers a way of rapidly producing proteins with relatively high throughput. Strategies for selenomethionine-labelling (important for obtaining phase information in crystallography) and controlling glycosylation (important for reducing the chemical heterogeneity of glycoproteins) have also been reported for higher eukaryotic cell expression systems.
Collapse
Affiliation(s)
- Joanne E Nettleship
- The Oxford Protein Production Facility and Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
15
|
Walden H. Selenium incorporation using recombinant techniques. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:352-7. [PMID: 20382987 PMCID: PMC2852298 DOI: 10.1107/s0907444909038207] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 09/21/2009] [Indexed: 11/29/2022]
Abstract
An overview of techniques for recombinant incorporation of selenium and subsequent purification and crystallization of the resulting labelled protein. Using selenomethionine to phase macromolecular structures is common practice in structure determination, along with the use of selenocysteine. Selenium is consequently the most commonly used heavy atom for MAD. In addition to the well established recombinant techniques for the incorporation of selenium in prokaryal expression systems, there have been recent advances in selenium labelling in eukaryal expression, which will be discussed. Tips and things to consider for the purification and crystallization of seleno-labelled proteins are also included.
Collapse
Affiliation(s)
- Helen Walden
- Protein Structure and Function Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, England.
| |
Collapse
|
16
|
Abstract
MAPK cascade components have been the subject of structural analysis, advancing our understanding of how these enzymes are activated and how they interact. A surprising finding has been that unique inactive conformers are adopted by many of these kinases. These inactive conformers are interesting and often require experimental phases to determine their crystal structures because molecular replacement techniques are not successful. Here, we describe the preparation of MAP2K MEK6 and MAP3K TAO2 substituted with selenomethionine (SeMet) for de novo phasing. TAO2 and SeMet TAO2 were expressed in insect cells.
Collapse
Affiliation(s)
- Elizabeth J Goldsmith
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| | | | | | | |
Collapse
|
17
|
The atomic structure of baculovirus polyhedra reveals the independent emergence of infectious crystals in DNA and RNA viruses. Proc Natl Acad Sci U S A 2009; 106:22205-10. [PMID: 20007786 DOI: 10.1073/pnas.0910686106] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Baculoviruses are ubiquitous insect viruses well known for their use as bioinsecticides, gene therapy vectors, and protein expression systems. Overexpression of recombinant proteins in insect cell culture utilizes the strong promoter of the polyhedrin gene. In infected larvae, the polyhedrin protein forms robust intracellular crystals called polyhedra, which protect encased virions for prolonged periods in the environment. Polyhedra are produced by two unrelated families of insect viruses, baculoviruses and cypoviruses. The atomic structure of cypovirus polyhedra revealed an intricate packing of trimers, which are interconnected by a projecting N-terminal helical arm of the polyhedrin molecule. Baculovirus and cypovirus polyhedra share nearly identical lattices, and the N-terminal region of the otherwise unrelated baculovirus polyhedrin protein sequence is also predicted to be alpha-helical. These results suggest homology between the proteins and a common structural basis for viral polyhedra. Here, we present the 2.2-A structure of baculovirus polyhedra determined by x-ray crystallography from microcrystals produced in vivo. We show that the underlying molecular organization is, in fact, very different. Although both polyhedra have nearly identical unit cell dimensions and share I23 symmetry, the polyhedrin molecules are structurally unrelated and pack differently in the crystals. In particular, disulfide bonds and domain-swapped N-terminal domains stabilize the building blocks of baculovirus polyhedra and interlocking C-terminal arms join unit cells together. We show that the N-terminal projecting helical arms have different structural roles in baculovirus and cypovirus polyhedra and conclude that there is no structural evidence for a common evolutionary origin for both classes of polyhedra.
Collapse
|
18
|
Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell 2009; 139:312-24. [PMID: 19837034 PMCID: PMC3018533 DOI: 10.1016/j.cell.2009.07.050] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 05/18/2009] [Accepted: 07/21/2009] [Indexed: 01/07/2023]
Abstract
Human mitochondrial DNA polymerase (Pol gamma) is the sole replicase in mitochondria. Pol gamma is vulnerable to nonselective antiretroviral drugs and is increasingly associated with mutations found in patients with mitochondriopathies. We determined crystal structures of the human heterotrimeric Pol gamma holoenzyme and, separately, a variant of its processivity factor, Pol gammaB. The holoenzyme structure reveals an unexpected assembly of the mitochondrial DNA replicase where the catalytic subunit Pol gammaA interacts with its processivity factor primarily via a domain that is absent in all other DNA polymerases. This domain provides a structural module for supporting both the intrinsic processivity of the catalytic subunit alone and the enhanced processivity of holoenzyme. The Pol gamma structure also provides a context for interpreting the phenotypes of disease-related mutations in the polymerase and establishes a foundation for understanding the molecular basis of toxicity of anti-retroviral drugs targeting HIV reverse transcriptase.
Collapse
|
19
|
Stiegler AL, Burden SJ, Hubbard SR. Crystal structure of the frizzled-like cysteine-rich domain of the receptor tyrosine kinase MuSK. J Mol Biol 2009; 393:1-9. [PMID: 19664639 PMCID: PMC2754272 DOI: 10.1016/j.jmb.2009.07.091] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/26/2009] [Accepted: 07/30/2009] [Indexed: 12/18/2022]
Abstract
Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 A resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ.
Collapse
Affiliation(s)
- Amy L. Stiegler
- Department of Pharmacology and Structural Biology, Programs, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
- Molecular Neurobiology Programs, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Steven J. Burden
- Molecular Neurobiology Programs, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Stevan R. Hubbard
- Department of Pharmacology and Structural Biology, Programs, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
20
|
Berntsson RPA, Alia Oktaviani N, Fusetti F, Thunnissen AMWH, Poolman B, Slotboom DJ. Selenomethionine incorporation in proteins expressed in Lactococcus lactis. Protein Sci 2009; 18:1121-7. [PMID: 19388077 DOI: 10.1002/pro.97] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lactococcus lactis is a promising host for (membrane) protein overproduction. Here, we describe a protocol for incorporation of selenomethionine (SeMet) into proteins expressed in L. lactis. Incorporation efficiencies of SeMet in the membrane protein complex OpuA (an ABC transporter) and the soluble protein OppA, both from L. lactis, were monitored by mass spectrometry. Both proteins incorporated SeMet with high efficiencies (>90%), which greatly extends the usefulness of the expression host L. lactis for X-ray crystallography purposes. The crystal structure of ligand-free OppA was determined at 2.4 A resolution by a semiautomatic approach using selenium single-wavelength anomalous diffraction phasing.
Collapse
Affiliation(s)
- Ronnie P-A Berntsson
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Parkash V, Lindholm P, Peränen J, Kalkkinen N, Oksanen E, Saarma M, Leppänen VM, Goldman A. The structure of the conserved neurotrophic factors MANF and CDNF explains why they are bifunctional. Protein Eng Des Sel 2009; 22:233-41. [PMID: 19258449 DOI: 10.1093/protein/gzn080] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have solved the structures of mammalian mesencephalic astrocyte-derived neurotrophic factor (MANF) and conserved dopamine neurotrophic factor (CDNF). CDNF protects and repairs midbrain dopaminergic neurons in vivo; MANF supports their survival in culture and is also cytoprotective against endoplasmic reticulum (ER) stress. Neither protein structure resembles any known growth factor but the N-terminal domain is a saposin-like lipid-binding domain. MANF and CDNF may thus bind lipids or membranes. Consistent with this, there are two patches of conserved lysines and arginines. The natively unfolded MANF C-terminus contains a CKGC disulphide bridge, such as reductases and disulphide isomerases, consistent with a role in ER stress response. The structure thus explains why MANF and CDNF are bifunctional; neurotrophic activity may reside in the N-terminal domain and ER stress response in the C-terminal domain. Finally, we identified three changes, (MANF)I10-->K(CDNF), (MANF)E79-->M(CDNF) and (MANF)K88-->L(CDNF), that may account for the biological differences between the proteins.
Collapse
Affiliation(s)
- Vimal Parkash
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature 2009; 458:597-602. [DOI: 10.1038/nature07869] [Citation(s) in RCA: 559] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 02/09/2009] [Indexed: 11/09/2022]
|
23
|
Lu X, McDonald SM, Tortorici MA, Tao YJ, Carpio RVD, Nibert ML, Patton JT, Harrison SC. Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1. Structure 2008; 16:1678-88. [PMID: 19000820 PMCID: PMC2602806 DOI: 10.1016/j.str.2008.09.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/06/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
Abstract
Rotavirus RNA-dependent RNA polymerase VP1 catalyzes RNA synthesis within a subviral particle. This activity depends on core shell protein VP2. A conserved sequence at the 3' end of plus-strand RNA templates is important for polymerase association and genome replication. We have determined the structure of VP1 at 2.9 A resolution, as apoenzyme and in complex with RNA. The cage-like enzyme is similar to reovirus lambda3, with four tunnels leading to or from a central, catalytic cavity. A distinguishing characteristic of VP1 is specific recognition, by conserved features of the template-entry channel, of four bases, UGUG, in the conserved 3' sequence. Well-defined interactions with these bases position the RNA so that its 3' end overshoots the initiating register, producing a stable but catalytically inactive complex. We propose that specific 3' end recognition selects rotavirus RNA for packaging and that VP2 activates the autoinhibited VP1/RNA complex to coordinate packaging and genome replication.
Collapse
Affiliation(s)
- Xiaohui Lu
- Laboratory of Molecular Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Sarah M. McDonald
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - M. Alejandra Tortorici
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yizhi Jane Tao
- Laboratory of Molecular Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Rodrigo Vasquez-Del Carpio
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | - John T. Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Stephen C. Harrison
- Laboratory of Molecular Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115
| |
Collapse
|
24
|
Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 2007; 449:316-23. [PMID: 17882215 DOI: 10.1038/nature06163] [Citation(s) in RCA: 822] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 08/10/2007] [Indexed: 12/19/2022]
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent, proton-activated receptors that belong to the epithelial sodium channel/degenerin family of ion channels and are implicated in perception of pain, ischaemic stroke, mechanosensation, learning and memory. Here we report the low-pH crystal structure of a chicken ASIC1 deletion mutant at 1.9 A resolution. Each subunit of the chalice-shaped homotrimer is composed of short amino and carboxy termini, two transmembrane helices, a bound chloride ion and a disulphide-rich, multidomain extracellular region enriched in acidic residues and carboxyl-carboxylate pairs within 3 A, suggesting that at least one carboxyl group bears a proton. Electrophysiological studies on aspartate-to-asparagine mutants confirm that these carboxyl-carboxylate pairs participate in proton sensing. Between the acidic residues and the transmembrane pore lies a disulphide-rich 'thumb' domain poised to couple the binding of protons to the opening of the ion channel, thus demonstrating that proton activation involves long-range conformational changes.
Collapse
Affiliation(s)
- Jayasankar Jasti
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
25
|
Cronin CN, Lim KB, Rogers J. Production of selenomethionyl-derivatized proteins in baculovirus-infected insect cells. Protein Sci 2007; 16:2023-9. [PMID: 17660253 PMCID: PMC2206972 DOI: 10.1110/ps.072931407] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A protocol is described for the production of both intracellularly expressed and secreted selenomethionyl-derivatized recombinant proteins in baculovirus-infected insect cells. The method results in the production of recombinant soluble proteins with an SeMet occupancy of approximately 75% and with a recovery of approximately 20% that of native protein expression. The method is independent of the percentage methionine content of the protein and is reliable and consistent. Similar results are obtained using either Spodoptera frugiperda Sf9 or Trichoplusia ni High Five insect cells as the expression host, and when cultures are grown in either shake flasks or in Wave BioReactors.
Collapse
Affiliation(s)
- Ciarán N Cronin
- Pfizer, Inc., 10777 Science Center Drive, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
26
|
Doublié S. Production of selenomethionyl proteins in prokaryotic and eukaryotic expression systems. Methods Mol Biol 2007; 363:91-108. [PMID: 17272838 DOI: 10.1007/978-1-59745-209-0_5] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The use of selenomethionine as a phasing tool was first reported in 1990. Engineering of selenomethionyl proteins for structure determination is now routine. In fact, selenium is by far the most commonly used anomalous scatterer for multiwavelength anomalous diffraction studies. The past few years have seen new developments, which demonstrated the feasibility of expressing selenomethionyl protein in eukaryotic systems. In this chapter, the different methods available for producing selenomethionine-labeled proteins in bacteria, as well as in yeast and mammalian cells will be presented, along with tips for purifying and crystallizing selenomethionyl proteins.
Collapse
Affiliation(s)
- Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
27
|
Suzuki M, Roy R, Zheng H, Woychik N, Inouye M. Bacterial bioreactors for high yield production of recombinant protein. J Biol Chem 2006; 281:37559-65. [PMID: 17020876 DOI: 10.1074/jbc.m608806200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We developed a new bacterial expression system that utilizes a combination of attributes (low temperature, induction of an mRNA-specific endoribonuclease causing host cell growth arrest, and culture condensation) to facilitate stable, high level protein expression, almost 30% of total cellular protein, without background protein synthesis. With the use of an optimized vector, exponentially growing cultures could be condensed 40-fold without affecting protein yields, which lowered sample labeling costs to a few percent of the cost of a typical labeling experiment. Because the host cells were completely growth-arrested, toxic amino acids such as selenomethionine and fluorophenylalanine were efficiently incorporated into recombinant proteins in the absence of cytotoxicity. Therefore, this expression system using Escherichia coli as a bioreactor is especially well suited to structural genomics, large-scale protein expressions, and the production of cytotoxic proteins.
Collapse
Affiliation(s)
- Motoo Suzuki
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
28
|
Laible PD, Hata AN, Crawford AE, Hanson DK. Incorporation of selenomethionine into induced intracytoplasmic membrane proteins of Rhodobacter species. ACTA ACUST UNITED AC 2006; 6:95-102. [PMID: 16211505 DOI: 10.1007/s10969-005-1936-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 01/16/2005] [Indexed: 10/25/2022]
Abstract
Efficient multiple- or single-wavelength anomalous dispersion (MAD/SAD) techniques that use tunable X-ray sources at third-generation synchrotrons exploit the anomalous scattering of certain heavy atoms for determination of experimental phases. Development of methods for the in vivo substitution of methionine by selenomethionine (SeMet) has revolutionized the process for determination of structures of soluble proteins in recent years. Herein, we report methods for biosynthetic incorporation of SeMet into induced intracytoplasmic membrane proteins of two species of the Rhodobacter genus of purple non-sulfur photosynthetic bacteria. Amino acid analysis of a membrane protein complex that was purified to homogeneity determined that the extent of SeMet incorporation was extensive and approached quantitative replacement. Diffraction-quality crystals were obtained from SeMet-labeled membrane proteins purified from 2 l of culture. These methods augment the potential utility of photosynthetic bacteria and their inducible membrane systems for the production of foreign membrane proteins for structure determination.
Collapse
Affiliation(s)
- Philip D Laible
- Biosciences Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | | | | | | |
Collapse
|
29
|
Sprague ER, Wang C, Baker D, Bjorkman PJ. Crystal structure of the HSV-1 Fc receptor bound to Fc reveals a mechanism for antibody bipolar bridging. PLoS Biol 2006; 4:e148. [PMID: 16646632 PMCID: PMC1450327 DOI: 10.1371/journal.pbio.0040148] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/07/2006] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus type-1 expresses a heterodimeric Fc receptor, gE-gI, on the surfaces of virions and infected cells that binds the Fc region of host immunoglobulin G and is implicated in the cell-to-cell spread of virus. gE-gI binds immunoglobulin G at the basic pH of the cell surface and releases it at the acidic pH of lysosomes, consistent with a role in facilitating the degradation of antiviral antibodies. Here we identify the C-terminal domain of the gE ectodomain (CgE) as the minimal Fc-binding domain and present a 1.78-angstroms CgE structure. A 5-angstroms gE-gI/Fc crystal structure, which was independently verified by a theoretical prediction method, reveals that CgE binds Fc at the C(H)2-C(H)3 interface, the binding site for several mammalian and bacterial Fc-binding proteins. The structure identifies interface histidines that may confer pH-dependent binding and regions of CgE implicated in cell-to-cell spread of virus. The ternary organization of the gE-gI/Fc complex is compatible with antibody bipolar bridging, which can interfere with the antiviral immune response.
Collapse
Affiliation(s)
- Elizabeth R Sprague
- 1Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Chu Wang
- 2Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David Baker
- 2Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- 3Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Pamela J Bjorkman
- 1Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- 4Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California United States of America
| |
Collapse
|
30
|
Appleton BA, Wu P, Wiesmann C. The crystal structure of murine coronin-1: a regulator of actin cytoskeletal dynamics in lymphocytes. Structure 2006; 14:87-96. [PMID: 16407068 DOI: 10.1016/j.str.2005.09.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/19/2005] [Accepted: 09/18/2005] [Indexed: 12/16/2022]
Abstract
Mammalian coronin-1 is preferentially expressed in hematopoietic cells and plays a poorly understood role in the dynamic reorganization of the actin cytoskeleton. Sequence analysis of coronin-1 revealed five WD40 repeats that were predicted to form a beta propeller. They are followed by a 130 residue extension and a 30 residue leucine zipper domain that is responsible for multimerization of the protein. Here, we present the crystal structure of murine coronin-1 without the leucine zipper at 1.75 A resolution. Coronin-1 forms a seven-bladed beta propeller composed of the five predicted WD40 repeats and two additional blades that lack any homology to the canonical WD40 motif. The C-terminal extension adopts an extended conformation, packs tightly against the bottom surface of the propeller, and is likely to be required for the structural stability of the propeller. Analysis of charged and conserved surface residues delineate possible binding sites for F-actin on the beta propeller.
Collapse
Affiliation(s)
- Brent A Appleton
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | |
Collapse
|
31
|
Abstract
The vast majority of mammalian glycosyltransferases are endoplasmic reticulum (ER) and Golgi resident type II membrane proteins. As such, producing large quantities of properly folded and active enzymes for X-ray crystallographic analysis is a challenge. Described here are the methods that we have developed to facilitate the structural characterization of these enzymes. The approach involves the production of a soluble Protein A-tagged form of the catalytic domain in a mammalian cell expression system. Production is scaled up in a perfusion-fed bioreactor with media flow rates of 3-5 liters/day. Expression levels are typically in the 1- to 4-mg/liter range and a simple and efficient purification method based on immunoglobulin G (IgG)-Sepharose affinity chromatography has been developed. Our approach to delimiting the catalytic domain and deglycosylating it when necessary is also discussed. Finally, we describe the selenomethionine labeling protocol used in our X-ray crystal structure determination of leukocyte-type Core 2 beta1,6-N-acetylglucosaminyltransferase.
Collapse
Affiliation(s)
- John E Pak
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Carlson CB, Bernstein DA, Annis DS, Misenheimer TM, Hannah BLA, Mosher DF, Keck JL. Structure of the calcium-rich signature domain of human thrombospondin-2. Nat Struct Mol Biol 2005; 12:910-4. [PMID: 16186819 PMCID: PMC2219892 DOI: 10.1038/nsmb997] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 08/31/2005] [Indexed: 11/08/2022]
Abstract
Thrombospondins (THBSs) are secreted glycoproteins that have key roles in interactions between cells and the extracellular matrix. Here, we describe the 2.6-A-resolution crystal structure of the glycosylated signature domain of human THBS2, which includes three epidermal growth factor-like modules, 13 aspartate-rich repeats and a lectin-like module. These elements interact extensively to form three structural regions termed the stalk, wire and globe. The THBS2 signature domain is stabilized by these interactions and by a network of 30 bound Ca(2+) ions and 18 disulfide bonds. The structure suggests how genetic alterations of THBSs result in disease.
Collapse
Affiliation(s)
- C. Britt Carlson
- Department of Medicine, University of Wisconsin-Madison, 4285B Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 550 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
| | - Douglas A. Bernstein
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 550 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
| | - Douglas S. Annis
- Department of Medicine, University of Wisconsin-Madison, 4285B Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
| | - Tina M. Misenheimer
- Department of Medicine, University of Wisconsin-Madison, 4285B Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
| | - Blue-leaf A. Hannah
- Department of Medicine, University of Wisconsin-Madison, 4285B Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
| | - Deane F. Mosher
- Department of Medicine, University of Wisconsin-Madison, 4285B Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 550 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
- Correspondence and requests for materials should be addressed to D.F.M. () or J.L.K. ()
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 550 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
| |
Collapse
|
33
|
Zhou T, Raman M, Gao Y, Earnest S, Chen Z, Machius M, Cobb MH, Goldsmith EJ. Crystal structure of the TAO2 kinase domain: activation and specificity of a Ste20p MAP3K. Structure 2005; 12:1891-900. [PMID: 15458637 DOI: 10.1016/j.str.2004.07.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 07/29/2004] [Accepted: 07/29/2004] [Indexed: 10/26/2022]
Abstract
TAO2 is a mitogen-activated protein kinase kinase kinase (MAP3K) that doubly phosphorylates and activates the MAP kinase kinases (MAP2Ks) MEK3 and MEK6. The structure of the kinase domain of TAO2 (1-320) has been solved in its phosphorylated active conformation. The structure, together with structure-based mutagenic analysis, reveals that positively charged residues in the substrate binding groove mediate the first step in the dual phosphorylation of MEK6, on the threonine residue in the motif DS*VAKT*I (*denotes phosphorylation site) of MEK6. TAO2 is a Ste20p homolog, and the structure of active TAO2, in comparison with that of low-activity p21-activated protein kinase (PAK1), a Ste20p-related MAP4K, reveals how this group of kinases is activated by phosphorylation. Finally, active TAO2 displays unusual interactions with ATP, involving, in part, a subgroup-specific C-terminal extension of TAO2. The observed interactions may be useful in making specific inhibitors of TAO kinases.
Collapse
Affiliation(s)
- Tianjun Zhou
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Folschweiller N, Pacaud K, Celia H, Potier N, Cobessi D, Van Dorsselaer A, Pattus F. In vivo incorporation of selenomethionine in proteins using Pseudomonas aeruginosa as expression host: case study—the outer membrane receptor FpvA. Protein Expr Purif 2004; 38:79-83. [PMID: 15477085 DOI: 10.1016/j.pep.2004.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 07/24/2004] [Indexed: 11/23/2022]
Abstract
The number of protein structures solved using multiwavelength anomalous diffraction methods coupled with selenomethionine substitution has grown dramatically over the last years. We show using the outer membrane pyoverdin receptor FpvA that Pseudomonas aeruginosa can be used for producing proteins with a high level of selenomethionine incorporation. To circumvent problems encountered with mass spectroscopy analysis of purified membrane proteins, in-gel trypsin digestion of FpvA coupled with MALDI mass spectrometry analysis of the resulting peptides was used to determine the extent of selenomethionine incorporation. Selenomethionine incorporation greater than 95% was achieved using P. aeruginosa as an overexpression system.
Collapse
Affiliation(s)
- Nicolas Folschweiller
- Récepteurs et Protéines Membranaires, UPR CNRS 9050, BP10413, F-67412 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Strub MP, Hoh F, Sanchez JF, Strub JM, Böck A, Aumelas A, Dumas C. Selenomethionine and selenocysteine double labeling strategy for crystallographic phasing. Structure 2004; 11:1359-67. [PMID: 14604526 DOI: 10.1016/j.str.2003.09.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A protocol for the quantitative incorporation of both selenomethionine and selenocysteine into recombinant proteins overexpressed in Escherichia coli is described. This methodology is based on the use of a suitable cysteine auxotrophic strain and a minimal medium supplemented with selenium-labeled methionine and cysteine. The proteins chosen for these studies are the cathelin-like motif of protegrin-3 and a nucleoside-diphosphate kinase. Analysis of the purified proteins by electrospray mass spectrometry and X-ray crystallography revealed that both cysteine and methionine residues were isomorphously replaced by selenocysteine and selenomethionine. Moreover, selenocysteines allowed the formation of unstrained and stable diselenide bridges in place of the canonical disulfide bonds. In addition, we showed that NDP kinase contains a selenocysteine adduct on Cys122. This novel selenium double-labeling method is proposed as a general approach to increase the efficiency of the MAD technique used for phase determination in protein crystallography.
Collapse
Affiliation(s)
- Marie Paule Strub
- Centre de Biochimie Structurale, UMR CNRS 5048, UMR 554 INSERM, Université Montpellier I, 34090 Cedex, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Leppänen VM, Bespalov MM, Runeberg-Roos P, Puurand Ü, Merits A, Saarma M, Goldman A. The structure of GFRalpha1 domain 3 reveals new insights into GDNF binding and RET activation. EMBO J 2004; 23:1452-62. [PMID: 15044950 PMCID: PMC391078 DOI: 10.1038/sj.emboj.7600174] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 02/25/2004] [Indexed: 11/09/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) binds to the GDNF family co-receptor alpha1 (GFRalpha1) and activates RET receptor tyrosine kinase. GFRalpha1 has a putative domain structure of three homologous cysteine-rich domains, where domains 2 and 3 make up a central domain responsible for GDNF binding. We report here the 1.8 A crystal structure of GFRalpha1 domain 3 showing a new protein fold. It is an all-alpha five-helix bundle with five disulfide bridges. The structure was used to model the homologous domain 2, the other half of the GDNF-binding fragment, and to construct the first structural model of the GDNF-GFRalpha1 interaction. Using site-directed mutagenesis, we identified closely spaced residues, Phe213, Arg224, Arg225 and Ile229, comprising a putative GDNF-binding surface. Mutating each one of them had slightly different effects on GDNF binding and RET phosphorylation. In addition, the R217E mutant bound GDNF equally well in the presence and absence of RET. Arg217 may thus be involved in the allosteric properties of GFRalpha1 or in binding RET.
Collapse
Affiliation(s)
| | - Maxim M Bespalov
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pia Runeberg-Roos
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ülo Puurand
- Institute of General and Molecular Pathology, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- University of Tartu, Riia, Tartu, Estonia
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Adrian Goldman
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Nonato MC, Widom J, Clardy J. Crystal structure of the N-terminal segment of human eukaryotic translation initiation factor 2alpha. J Biol Chem 2002; 277:17057-61. [PMID: 11859078 DOI: 10.1074/jbc.m111804200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation initiation factor 2alpha (eIF2alpha) is a member of the eIF2 heterotrimeric complex that binds and delivers Met-tRNA(i)(Met) to the 40 S ribosomal subunit in a GTP-dependent manner. Phosphorylation/dephosphorylation of eIF2alpha at Ser-51 is the major regulator of protein synthesis in eukaryotic cells. Here, we report the first structural analysis on eIF2, the three-dimensional structure of a 22-kDa N-terminal portion of human eIF2alpha by x-ray diffraction at 1.9 A resolution. This structure contains two major domains. The N terminus is a beta-barrel with five antiparallel beta-strands in an oligonucleotide binding domain (OB domain) fold. The phosphorylation site (Ser-51) is on the loop connecting beta3 and beta4 in the OB domain. A helical domain follows the OB domain, and the first helix has extensive interactions, including a disulfide bridge, to fix its orientation with respect to the OB domain. The two domains meet along a negatively charged groove with highly conserved residues, indicating a likely site for protein-protein interaction.
Collapse
Affiliation(s)
- M Cristina Nonato
- Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | |
Collapse
|
38
|
Abstract
High-throughput biology has been pioneered by genomics through the application of robotics to expedite DNA-sequencing projects. Advances in high-throughput protein methods are needed to drive the protein production line for high-throughput structural and functional analysis of newly discovered genes. This will require the development and application of a variety of recombinant-protein expression systems to produce the diversity of proteins from both humans and model organisms.
Collapse
Affiliation(s)
- Michele Gilbert
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | |
Collapse
|
39
|
Liemann S, Chandran K, Baker TS, Nibert ML, Harrison SC. Structure of the reovirus membrane-penetration protein, Mu1, in a complex with is protector protein, Sigma3. Cell 2002; 108:283-95. [PMID: 11832217 PMCID: PMC4152834 DOI: 10.1016/s0092-8674(02)00612-8] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell entry by nonenveloped animal viruses requires membrane penetration without membrane fusion. The reovirus penetration agent is the outer-capsid protein, Mu1. The structure of Mu1, complexed with its "protector" protein, Sigma3, and the fit of this Mu1(3)Sigma3(3) heterohexameric complex into the cryoEM image of an intact virion, reveal molecular events essential for viral penetration. Autolytic cleavage divides Mu1 into myristoylated Mu1N and Mu1C. A long hydrophobic pocket can receive the myristoyl group. Dissociation of Mu1N, linked to a major conformational change of the entire Mu1 trimer, must precede myristoyl-group insertion into the cellular membrane. A myristoyl switch, coupling exposure of the fatty acid chain, autolytic cleavage of Mu1N, and long-range molecular rearrangement of Mu1C, thus appears to be part of the penetration mechanism.
Collapse
Affiliation(s)
- Susanne Liemann
- Howard Hughes Medical Institute Children’s Hospital Harvard Medical School 320 Longwood Avenue Boston, Massachusetts 02115
| | - Kartik Chandran
- Department of Microbiology and Molecular Genetics Harvard Medical School Boston, Massachusetts 02115
| | - Timothy S. Baker
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics Harvard Medical School Boston, Massachusetts 02115
| | - Stephen C. Harrison
- Howard Hughes Medical Institute Children’s Hospital Harvard Medical School 320 Longwood Avenue Boston, Massachusetts 02115
- Correspondence:
| |
Collapse
|
40
|
Abstract
The heterodimeric nuclear cap binding complex (CBC) binds to 5'-capped polymerase II transcripts. It enhances the efficiency of several mRNA maturation steps and is essential for U snRNA nuclear export in multicellular eukaryotes. The 2A crystal structure of human CBC shows that the large subunit, CBP80, comprises three domains, each containing consecutive helical hairpins and resembling the so-called MIF4G domain found in several other proteins involved in RNA metabolism. The small subunit, CPB20, has an RNP fold and associates with the second and third domains of CBP80. Site-directed mutagenesis revealed 4 residues of CBP20 which are critical for cap binding. A model for cap binding is proposed based on these results and the known mode of binding of RNA to RNP domains.
Collapse
Affiliation(s)
- C Mazza
- European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, BP181, F-38042 9, Grenoble Cedex, France
| | | | | | | | | |
Collapse
|
41
|
Carfí A, Willis SH, Whitbeck JC, Krummenacher C, Cohen GH, Eisenberg RJ, Wiley DC. Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol Cell 2001; 8:169-79. [PMID: 11511370 DOI: 10.1016/s1097-2765(01)00298-2] [Citation(s) in RCA: 307] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Herpes simplex virus (HSV) infection requires binding of the viral envelope glycoprotein D (gD) to cell surface receptors. We report the X-ray structures of a soluble, truncated ectodomain of gD both alone and in complex with the ectodomain of its cellular receptor HveA. Two bound anions suggest possible binding sites for another gD receptor, a 3-O-sulfonated heparan sulfate. Unexpectedly, the structures reveal a V-like immunoglobulin (Ig) fold at the core of gD that is closely related to cellular adhesion molecules and flanked by large N- and C-terminal extensions. The receptor binding segment of gD, an N-terminal hairpin, appears conformationally flexible, suggesting that a conformational change accompanying binding might be part of the viral entry mechanism.
Collapse
Affiliation(s)
- A Carfí
- Department of Medicine, Children's Hospital, Howard Hughes Medical Institute, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Fralish GB, Narayan P, Puett D. High-level expression of a functional single-chain human chorionic gonadotropin-luteinizing hormone receptor ectodomain complex in insect cells. Endocrinology 2001; 142:1517-24. [PMID: 11250932 DOI: 10.1210/endo.142.4.8074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reproductive capacity in primates is dependent on the high-affinity binding of the glycoprotein hormones LH and human (h)CG to the large ectodomain (ECD) of their common receptor (LHR). Our understanding of the precise molecular determinants of hormone binding is limited, because there are no structural data for any of the glycoprotein hormone receptors. Overexpression of the ECD of the receptor has been attempted in various expression systems. Prokaryotic expression does not yield properly folded ECD. Eukaryotic expression, on the other hand, results in mostly heterogeneous, intracellularly trapped protein, but the secreted ECD is completely folded. Accordingly, we have tethered the single-chain hormone, yoked hCG, to the N terminus of LHR-ECD (yoked hormone-extracellular domain). Yoked hCG is secreted at high levels; binds LHR with high affinity; and, when tethered to the N terminus of full-length LHR, it binds and constitutively activates the receptor. Using recombinant baculovirus, yoked hormone-extracellular domain is secreted from insect cells at levels greater than 1 microg/ml, nearly 20-fold higher than that previously reported in eukaryotic expression systems. The protein was purified and binds exogenous (125)I-hCG with high affinity but, significantly, only after protease treatment to remove the tethered hormone. Thus, the fusion protein seems to form a functional hormone-receptor complex that is expressed at levels sufficient for its biophysical characterization.
Collapse
Affiliation(s)
- G B Fralish
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | |
Collapse
|
43
|
Bushnell DA, Cramer P, Kornberg RD. Selenomethionine incorporation in Saccharomyces cerevisiae RNA polymerase II. Structure 2001; 9:R11-4. [PMID: 11342141 DOI: 10.1016/s0969-2126(00)00554-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A protocol for the incorporation of SeMet into yeast proteins is described. Incorporation at a level of about 50% suffices for the location of Se sites in an anomalous difference Fourier map of the 0.5 MDa yeast RNA polymerase II. This shows the utility of the approach as an aid in the model-building of large protein complexes.
Collapse
Affiliation(s)
- D A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
44
|
Abstract
In only a few years, multiple wavelength anomalous diffraction (MAD) phasing has advanced from an esoteric technique used in only a few favorable cases to the method of choice for solving new macromolecular structures. Before 1994, MAD phasing had been used for fewer than a dozen new structure determinations. In 1999 alone, well over 100 new structures were determined by MAD phasing. The meteoric rise in MAD applications resulted from the availability of new synchrotron beamlines, equipped with low bandpass optics, fast readout detectors, cryogenic cooling and user-friendly interfaces. The power of MAD phasing has been amplified by the availability of new computer programs for locating the positions of the anomalous scattering atoms and for calculating phases from the experimental data. Phasing by anomalous scattering techniques has been applied to structures as large as 640 kDa and 120 selenium atoms in the asymmetric unit. The practical size limitation for application of MAD phasing techniques has not yet been encountered.
Collapse
Affiliation(s)
- S E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
45
|
Bellizzi JJ, Widom J, Kemp C, Lu JY, Das AK, Hofmann SL, Clardy J. The crystal structure of palmitoyl protein thioesterase 1 and the molecular basis of infantile neuronal ceroid lipofuscinosis. Proc Natl Acad Sci U S A 2000; 97:4573-8. [PMID: 10781062 PMCID: PMC18274 DOI: 10.1073/pnas.080508097] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in palmitoyl-protein thioesterase 1 (PPT1), a lysosomal enzyme that removes fatty acyl groups from cysteine residues in modified proteins, cause the fatal inherited neurodegenerative disorder infantile neuronal ceroid lipofuscinosis. The accumulation of undigested substrates leads to the formation of neuronal storage bodies that are associated with the clinical symptoms. Less severe forms of PPT1 deficiency have been found recently that are caused by a distinct set of PPT1 mutations, some of which retain a small amount of thioesterase activity. We have determined the crystal structure of PPT1 with and without bound palmitate by using multiwavelength anomalous diffraction phasing. The structure reveals an alpha/beta-hydrolase fold with a catalytic triad composed of Ser115-His289-Asp233 and provides insights into the structural basis for the phenotypes associated with PPT1 mutations.
Collapse
Affiliation(s)
- J J Bellizzi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|