1
|
Daly AE, Chang AB, Purbey PK, Williams KJ, Li S, Redelings BD, Yeh G, Wu Y, Pope SD, Venkatesh B, Li S, Nguyen K, Rodrigues J, Jorgensen K, Dasgupta A, Siggers T, Chen L, Smale ST. Stepwise neofunctionalization of the NF-κB family member Rel during vertebrate evolution. Nat Immunol 2025; 26:760-774. [PMID: 40307452 PMCID: PMC12043515 DOI: 10.1038/s41590-025-02138-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025]
Abstract
Adaptive immunity and the five vertebrate NF-κB family members first emerged in cartilaginous fish, suggesting that NF-κB family divergence helped to facilitate adaptive immunity. One specialized function of the NF-κB Rel protein in macrophages is activation of Il12b, which encodes a key regulator of T cell development. We found that Il12b exhibits much greater Rel dependence than inducible innate immunity genes in macrophages, with the unique function of Rel dimers depending on a heightened intrinsic DNA-binding affinity. Chromatin immunoprecipitation followed by sequencing experiments defined differential DNA-binding preferences of NF-κB family members genome-wide, and X-ray crystallography revealed a key residue that supports the heightened DNA-binding affinity of Rel dimers. Unexpectedly, this residue, the heightened affinity of Rel dimers, and the portion of the Il12b promoter bound by Rel dimers were largely restricted to mammals. Our findings reveal major structural transitions in an NF-κB family member and one of its key target promoters at a late stage of vertebrate evolution that apparently contributed to immunoregulatory rewiring in mammalian species.
Collapse
Affiliation(s)
- Allison E Daly
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Abraham B Chang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Prabhat K Purbey
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Kevin J Williams
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Shuxing Li
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Benjamin D Redelings
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - George Yeh
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Yongqing Wu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Scott D Pope
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Byrappa Venkatesh
- Comparative Genomics Lab, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Sibon Li
- Department of Human Genetics, UCLA, Los Angeles, CA, USA
| | - Kaylin Nguyen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Joseph Rodrigues
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Kelsey Jorgensen
- Department of Anthropology, University of Kansas, Lawrence, KS, USA
| | - Ananya Dasgupta
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA, USA
| | - Lin Chen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Department of Medicine, UCLA, Los Angeles, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Li T, Shahabi S, Biswas T, Tsodikov OV, Pan W, Huang DB, Wang VYF, Wang Y, Ghosh G. Transient interactions modulate the affinity of NF-κB transcription factors for DNA. Proc Natl Acad Sci U S A 2024; 121:e2405555121. [PMID: 38805268 PMCID: PMC11161749 DOI: 10.1073/pnas.2405555121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
The dimeric nuclear factor kappa B (NF-κB) transcription factors (TFs) regulate gene expression by binding to a variety of κB DNA elements with conserved G:C-rich flanking sequences enclosing a degenerate central region. Toward defining mechanistic principles of affinity regulated by degeneracy, we observed an unusual dependence of the affinity of RelA on the identity of the central base pair, which appears to be noncontacted in the complex crystal structures. The affinity of κB sites with A or T at the central position is ~10-fold higher than with G or C. The crystal structures of neither the complexes nor the free κB DNAs could explain the differences in affinity. Interestingly, differential dynamics of several residues were revealed in molecular dynamics simulation studies, where simulation replicates totaling 148 μs were performed on NF-κB:DNA complexes and free κB DNAs. Notably, Arg187 and Arg124 exhibited selectivity in transient interactions that orchestrated a complex interplay among several DNA-interacting residues in the central region. Binding and simulation studies with mutants supported these observations of transient interactions dictating specificity. In combination with published reports, this work provides insights into the nuanced mechanisms governing the discriminatory binding of NF-κB family TFs to κB DNA elements and sheds light on cancer pathogenesis of cRel, a close homolog of RelA.
Collapse
Affiliation(s)
- Tianjie Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region999077, China
| | - Shandy Shahabi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY40536
| | - Wenfei Pan
- Faculty of Health Sciences, University of Macau, Taipa, Macau Special Administrative Region999078, China
| | - De-Bin Huang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau Special Administrative Region999078, China
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region999077, China
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
3
|
Roy K, Chakraborty M, Kumar A, Manna AK, Roy NS. The NFκB signaling system in the generation of B-cell subsets: from germinal center B cells to memory B cells and plasma cells. Front Immunol 2023; 14:1185597. [PMID: 38169968 PMCID: PMC10758606 DOI: 10.3389/fimmu.2023.1185597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Memory B cells and antibody-secreting cells are the two prime effector B cell populations that drive infection- and vaccine-induced long-term antibody-mediated immunity. The antibody-mediated immunity mostly relies on the formation of specialized structures within secondary lymphoid organs, called germinal centers (GCs), that facilitate the interactions between B cells, T cells, and antigen-presenting cells. Antigen-activated B cells may proliferate and differentiate into GC-independent plasmablasts and memory B cells or differentiate into GC B cells. The GC B cells undergo proliferation coupled to somatic hypermutation of their immunoglobulin genes for antibody affinity maturation. Subsequently, affinity mature GC B cells differentiate into GC-dependent plasma cells and memory B cells. Here, we review how the NFκB signaling system controls B cell proliferation and the generation of GC B cells, plasmablasts/plasma cells, and memory B cells. We also identify and discuss some important unanswered questions in this connection.
Collapse
Affiliation(s)
- Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mainak Chakraborty
- Division of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ashok Kumar
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Asit Kumar Manna
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Neeladri Sekhar Roy
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Pan W, Meshcheryakov VA, Li T, Wang Y, Ghosh G, Wang VYF. Structures of NF-κB p52 homodimer-DNA complexes rationalize binding mechanisms and transcription activation. eLife 2023; 12:e86258. [PMID: 36779700 PMCID: PMC9991059 DOI: 10.7554/elife.86258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023] Open
Abstract
The mammalian NF-κB p52:p52 homodimer together with its cofactor Bcl3 activates transcription of κB sites with a central G/C base pair (bp), while it is inactive toward κB sites with a central A/T bp. To understand the molecular basis for this unique property of p52, we have determined the crystal structures of recombinant human p52 protein in complex with a P-selectin(PSel)-κB DNA (5'-GGGGTGACCCC-3') (central bp is underlined) and variants changing the central bp to A/T or swapping the flanking bp. The structures reveal a nearly two-fold widened minor groove in the central region of the DNA as compared to all other currently available NF-κB-DNA complex structures, which have a central A/T bp. Microsecond molecular dynamics (MD) simulations of free DNAs and p52 bound complexes reveal that free DNAs exhibit distinct preferred conformations, and p52:p52 homodimer induces the least amount of DNA conformational changes when bound to the more transcriptionally active natural G/C-centric PSel-κB, but adopts closed conformation when bound to the mutant A/T and swap DNAs due to their narrowed minor grooves. Our binding assays further demonstrate that the fast kinetics favored by entropy is correlated with higher transcriptional activity. Overall, our studies have revealed a novel conformation for κB DNA in complex with NF-κB and pinpoint the importance of binding kinetics, dictated by DNA conformational and dynamic states, in controlling transcriptional activation for NF-κB.
Collapse
Affiliation(s)
- Wenfei Pan
- Faculty of Health Sciences, University of MacauTaipaChina
| | | | - Tianjie Li
- Department of Physics, Chinese University of Hong KongShatinHong Kong
| | - Yi Wang
- Department of Physics, Chinese University of Hong KongShatinHong Kong
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of MacauTaipaChina
- MoE Frontiers Science Center for Precision Oncology, University of MacauTaipaMacao
- Cancer Centre, Faculty of Health Sciences, University of MacauTaipaChina
| |
Collapse
|
5
|
Li D, Chen S, Liu C, Wei B, Li X. Liver transcriptome analysis reveals biological pathways and transcription factors in response to high ammonia exposure. Inhal Toxicol 2022; 34:219-229. [PMID: 35648801 DOI: 10.1080/08958378.2022.2083275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aim: Ammonia is a toxic gas that not only causes environmental pollution, but also is harmful to human health after inhalation. Liver is an important detoxification organ that can convert external or metabolized toxic substances into nontoxic substances. However, the toxic effects of ammonia exposure on livers have not been well studied.Method: In this study, pigs were used as an animal model and were exposed to 80 ppm ammonia (8 h during 12 days), and then, RNA-seq were conducted to explore the key genes in response to high ammonia exposure in livers.Result: Gene set enrichment analysis (GSEA) showed that the genes associated with hypoxia, inflammatory response, and apoptosis were up-regulated in the ammonia group, but the genes associated with DNA replication, linoleic acid metabolism, and glycolysis were down-regulated. Totally, 556 differentially expressed genes (DEGs) including 54 genes that encode the transcription factors (TFs) were identified between the exposure and control groups. GO and KEGG pathway analysis suggested that these DEGs were involved in inflammatory response, oxidative stress, apoptosis, immune, and cell cycle. Furthermore, the TF-target interaction analysis showed that FOS, HIF-1α, JUNB, ATF3, REL, and KLF4 were important TFs in regulating the hepatic gene expression in response to high ammonia exposure.Conclusion: Altogether, our findings not only presented a comprehensive mRNA transcriptome profile of liver after high ammonia exposure, but also found some key genes and TFs that could be used to investigate the toxicity mechanism of high ammonia on livers.
Collapse
Affiliation(s)
- Daojie Li
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuangzhao Chen
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chun Liu
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baoxing Wei
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoping Li
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Mockenhaupt K, Gonsiewski A, Kordula T. RelB and Neuroinflammation. Cells 2021; 10:1609. [PMID: 34198987 PMCID: PMC8307460 DOI: 10.3390/cells10071609] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation within the central nervous system involves multiple cell types that coordinate their responses by secreting and responding to a plethora of inflammatory mediators. These factors activate multiple signaling cascades to orchestrate initial inflammatory response and subsequent resolution. Activation of NF-κB pathways in several cell types is critical during neuroinflammation. In contrast to the well-studied role of p65 NF-κB during neuroinflammation, the mechanisms of RelB activation in specific cell types and its roles during neuroinflammatory response are less understood. In this review, we summarize the mechanisms of RelB activation in specific cell types of the CNS and the specialized effects this transcription factor exerts during neuroinflammation.
Collapse
Affiliation(s)
| | | | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA; (K.M.); (A.G.)
| |
Collapse
|
7
|
Si Y, Li Y, Yang T, Li X, Ayala GJ, Mayo KH, Tai G, Su J, Zhou Y. Structure-function studies of galectin-14, an important effector molecule in embryology. FEBS J 2020; 288:1041-1055. [PMID: 32525264 DOI: 10.1111/febs.15441] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/06/2019] [Accepted: 06/03/2020] [Indexed: 01/16/2023]
Abstract
The expression of prototype galectin-14 (Gal-14) in human placenta is higher than any other galectin, suggesting that it may play a role in fetal development and regulation of immune tolerance during pregnancy. Here, we solved the crystal structure of dimeric Gal-14 and found that its global fold is significantly different from that of other galectins with two β-strands (S5 and S6) extending from one monomer and contributing to the carbohydrate-binding domain of the other. The hemagglutination assay showed that this lectin could induce agglutination of chicken erythrocytes, even though lactose could not inhibit Gal-14-induced agglutination activity. Calorimetry indicates that lactose does not interact with this lectin. Compared to galectin-1, galectin-3, and galectin-8, Gal-14 has two key amino acids (a histidine and an arginine) in the normally conserved, canonical sugar-binding site, which are substituted by glutamine (Gln53) and histidine (His57), thus likely explaining why lactose binding to this lectin is very weak. Lactose was observed in the ligand-binding site of one Gal-14 structure, most likely because ligand binding is weak and crystals were allowed to grow over a long period of time in the presence of lactose. We also found that EGFP-tagged Gal-14 is primarily localized within the nucleus of different cell types. In addition, Gal-14 colocalized with c-Rel (a member of NF-κB family) in HeLa cells. These findings indicate that Gal-14 might regulate signal transduction pathways through NF-κB hubs. Overall, the present study provides impetus for further research into the function of Gal-14 in embryology.
Collapse
Affiliation(s)
- Yunlong Si
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yuying Li
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Tong Yang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xumin Li
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Gabriela Jaramillo Ayala
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
8
|
de Jesús TJ, Ramakrishnan P. NF-κB c-Rel Dictates the Inflammatory Threshold by Acting as a Transcriptional Repressor. iScience 2020; 23:100876. [PMID: 32062419 PMCID: PMC7031323 DOI: 10.1016/j.isci.2020.100876] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/11/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
NF-κB/Rel family of transcription factors plays a central role in initiation and resolution of inflammatory responses. Here, we identified a function of the NF-κB subunit c-Rel as a transcriptional repressor of inflammatory genes. Genetic deletion of c-Rel substantially potentiates the expression of several TNF-α-induced RelA-dependent mediators of inflammation. v-Rel, the viral homologue of c-Rel, but not RelB, also possesses this repressive function. Mechanistically, we found that c-Rel selectively binds to the co-repressor HDAC1 and competitively binds to the DNA mediating HDAC1 recruitment to the promoters of inflammatory genes. A specific point mutation at tyrosine25 in c-Rel's DNA-binding domain, for which a missense single nucleotide variation (Y25H) exists in humans, completely abrogated its ability to bind DNA and repress TNF-α-induced, RelA-mediated transcription. Our findings reveal that the transactivator NF-κB subunit c-Rel also plays a role as a transcriptional repressor in the maintenance of inflammatory homeostasis.
Collapse
Affiliation(s)
- Tristan James de Jesús
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA; Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
9
|
Regulation of B-cell function by NF-kappaB c-Rel in health and disease. Cell Mol Life Sci 2020; 77:3325-3340. [PMID: 32130429 DOI: 10.1007/s00018-020-03488-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
B cells mediate humoral immune response and contribute to the regulation of cellular immune response. Members of the Nuclear Factor kappaB (NF-κB) family of transcription factors play a major role in regulating B-cell functions. NF-κB subunit c-Rel is predominantly expressed in lymphocytes, and in B cells, it is required for survival, proliferation, and antibody production. Dysregulation of c-Rel expression and activation alters B-cell homeostasis and is associated with B-cell lymphomas and autoimmune pathologies. Based on its essential roles, c-Rel may serve as a potential prognostic and therapeutic target. This review summarizes the current understanding of the multifaceted role of c-Rel in B cells and B-cell diseases.
Collapse
|
10
|
Mulero MC, Wang VYF, Huxford T, Ghosh G. Genome reading by the NF-κB transcription factors. Nucleic Acids Res 2019; 47:9967-9989. [PMID: 31501881 PMCID: PMC6821244 DOI: 10.1093/nar/gkz739] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
The NF-κB family of dimeric transcription factors regulates transcription by selectively binding to DNA response elements present within promoters or enhancers of target genes. The DNA response elements, collectively known as κB sites or κB DNA, share the consensus 5'-GGGRNNNYCC-3' (where R, Y and N are purine, pyrimidine and any nucleotide base, respectively). In addition, several DNA sequences that deviate significantly from the consensus have been shown to accommodate binding by NF-κB dimers. X-ray crystal structures of NF-κB in complex with diverse κB DNA have helped elucidate the chemical principles that underlie target selection in vitro. However, NF-κB dimers encounter additional impediments to selective DNA binding in vivo. Work carried out during the past decades has identified some of the barriers to sequence selective DNA target binding within the context of chromatin and suggests possible mechanisms by which NF-κB might overcome these obstacles. In this review, we first highlight structural features of NF-κB:DNA complexes and how distinctive features of NF-κB proteins and DNA sequences contribute to specific complex formation. We then discuss how native NF-κB dimers identify DNA binding targets in the nucleus with support from additional factors and how post-translational modifications enable NF-κB to selectively bind κB sites in vivo.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Kapur N, Mir H, Sonpavde GP, Jain S, Bae S, Lillard JW, Singh S. Prostate cancer cells hyper-activate CXCR6 signaling by cleaving CXCL16 to overcome effect of docetaxel. Cancer Lett 2019; 454:1-13. [PMID: 30974114 PMCID: PMC7748218 DOI: 10.1016/j.canlet.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
Abstract
Molecular reprogramming in response to chemotherapeutics leads to poor therapeutic outcomes for prostate cancer (PCa). In this study, we demonstrated that CXCR6-CXCL16 axis promotes DTX resistance and acts as a counter-defense mechanism. After CXCR6 activation, cell death in response to DTX was inhibited, and blocking of CXCR6 potentiated DTX cytotoxicity. Moreover, in response to DTX, PCa cells expressed higher CXCR6, CXCL16, and ADAM-10. Furthermore, ADAM-10-mediated release of CXCL16 hyper-activated CXCR6 signaling in response to DTX. Activation of CXCR6 resulted in increased GSK-3β, NF-κB, ERK1/2 phosphorylation, and survivin expression, which reduce DTX response. Finally, treatment of PCa cells with anti-CXCR6 monoclonal antibody synergistically or additively induced cell death with ∼1.5-4.5 fold reduction in the effective concentration of DTX. In sum, our data imply that co-targeting of CXCR6 would lead to therapeutic enhancement of DTX, leading to better clinical outcomes for PCa patients.
Collapse
Affiliation(s)
- Neeraj Kapur
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA; Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Hina Mir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA; Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Guru P Sonpavde
- Department of Medical Oncology, Lank Center for Genitourinary Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Sanjay Jain
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Sejong Bae
- Department of Medicine, Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA; Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA; Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| |
Collapse
|
12
|
Komegae EN, Fonseca MT, da Silveira Cruz-Machado S, Turato WM, Filgueiras LR, Markus RP, Steiner AA. Site-Specific Reprogramming of Macrophage Responsiveness to Bacterial Lipopolysaccharide in Obesity. Front Immunol 2019; 10:1496. [PMID: 31316525 PMCID: PMC6611339 DOI: 10.3389/fimmu.2019.01496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
The mechanisms by which obesity may alter immune responses to pathogens are poorly understood. The present study assessed whether the intrinsic responsiveness of resident macrophages to bacterial lipopolysaccharide (LPS) is reprogrammed in high-fat diet (HFD)-induced obesity. Macrophages from adipose tissue, lung alveoli, and the peritoneal cavity were extracted from obese rats on a HFD or from their lean counterparts, and subsequently studied in culture under identical conditions. CD45+/CD68+ cells (macrophages) were abundant in all cultures, and became the main producers of TNF-α upon LPS stimulation. But although all macrophage subpopulations responded to LPS with an M1-like profile of cytokine secretion, the TNF-α/IL-10 ratio was the lowest in adipose tissue macrophages, the highest in alveolar macrophages, and intermediary in peritoneal macrophages. What is more, diet exerted qualitatively distinct effects on the cytokine responses to LPS, with obesity switching adipose tissue macrophages to a more pro-inflammatory program and peritoneal macrophages to a less pro-inflammatory program, while not affecting alveolar macrophages. Such reprogramming was not associated with changes in the inflammasome-dependent secretion of IL-1β. The study further shows that the effects of diet on TNF-α/IL-10 ratios were linked to distinct patterns of NF-κB accumulation in the nucleus: while RelA was the NF-κB subunit most impacted by obesity in adipose tissue macrophages, cRel was the subunit affected in peritoneal macrophages. It is concluded that obesity causes dissimilar, site-specific changes in the responsiveness of resident macrophages to bacterial LPS. Such plasticity opens new avenues of investigation into the mechanisms linking obesity to pathogen-induced immune responses.
Collapse
Affiliation(s)
- Evilin N Komegae
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Monique T Fonseca
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Walter M Turato
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciano R Filgueiras
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Regina P Markus
- Laboratory of Chronopharmacology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre A Steiner
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Brignall R, Moody AT, Mathew S, Gaudet S. Considering Abundance, Affinity, and Binding Site Availability in the NF-κB Target Selection Puzzle. Front Immunol 2019; 10:609. [PMID: 30984185 PMCID: PMC6450194 DOI: 10.3389/fimmu.2019.00609] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription regulation system governs a diverse set of responses to various cytokine stimuli. With tools from in vitro biochemical characterizations, to omics-based whole genome investigations, great strides have been made in understanding how NF-κB transcription factors control the expression of specific sets of genes. Nonetheless, these efforts have also revealed a very large number of potential binding sites for NF-κB in the human genome, and a puzzle emerges when trying to explain how NF-κB selects from these many binding sites to direct cell-type- and stimulus-specific gene expression patterns. In this review, we surmise that target gene transcription can broadly be thought of as a function of the nuclear abundance of the various NF-κB dimers, the affinity of NF-κB dimers for the regulatory sequence and the availability of this regulatory site. We use this framework to place quantitative information that has been gathered about the NF-κB transcription regulation system into context and thus consider questions it answers, and questions it raises. We end with a brief discussion of some of the future prospects that new approaches could bring to our understanding of how NF-κB transcription factors orchestrate diverse responses in different biological contexts.
Collapse
Affiliation(s)
- Ruth Brignall
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Amy T Moody
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Laboratory for Systems Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Department of Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Shibin Mathew
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Suzanne Gaudet
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| |
Collapse
|
14
|
Mulero MC, Huxford T, Ghosh G. NF-κB, IκB, and IKK: Integral Components of Immune System Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:207-226. [PMID: 31628658 DOI: 10.1007/978-981-13-9367-9_10] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The NF-κB (Nuclear Factor kappa B) transcription factor plays crucial roles in the regulation of numerous biological processes including development of the immune system, inflammation, and innate and adaptive immune responses. Control over the immune cell functions of NF-κB results from signaling through one of two different routes: the canonical and noncanonical NF-κB signaling pathways. Present at the end of both pathways are the proteins NF-κB, IκB, and the IκB kinase (IKK). These proteins work together to deliver the myriad outcomes that influence context-dependent transcriptional control in immune cells. In the present chapter, we review the structural information available on NF-κB, IκB, and IKK, the critical terminal components of the NF-κB signaling, in relation to their physiological function.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Unger A, Finkernagel F, Hoffmann N, Neuhaus F, Joos B, Nist A, Stiewe T, Visekruna A, Wagner U, Reinartz S, Müller-Brüsselbach S, Müller R, Adhikary T. Chromatin Binding of c-REL and p65 Is Not Limiting for Macrophage IL12B Transcription During Immediate Suppression by Ovarian Carcinoma Ascites. Front Immunol 2018; 9:1425. [PMID: 29997615 PMCID: PMC6030372 DOI: 10.3389/fimmu.2018.01425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/08/2018] [Indexed: 12/14/2022] Open
Abstract
Tumors frequently exploit homeostatic mechanisms that suppress expression of IL-12, a central mediator of inflammatory and anti-tumor responses. The p40 subunit of the IL-12 heterodimer, encoded by IL12B, is limiting for these functions. Ovarian carcinoma patients frequently produce ascites which exerts immunosuppression by means of soluble factors. The NFκB pathway is necessary for transcription of IL12B, which is not expressed in macrophages freshly isolated from ascites. This raises the possibility that ascites prevents IL12B expression by perturbing NFκB binding to chromatin. Here, we show that ascites-mediated suppression of IL12B induction by LPS plus IFNγ in primary human macrophages is rapid, and that suppression can be reversible after ascites withdrawal. Nuclear translocation of the NFκB transcription factors c-REL and p65 was strongly reduced by ascites. Surprisingly, however, their binding to the IL12B locus and to CXCL10, a second NFκB target gene, was unaltered, and the induction of CXCL10 transcription was not suppressed by ascites. These findings indicate that, despite its reduced nuclear translocation, NFκB function is not generally impaired by ascites, suggesting that ascites-borne signals target additional pathways to suppress IL12B induction. Consistent with these data, IL-10, a clinically relevant constituent of ascites and negative regulator of NFκB translocation, only partially recapitulated IL12B suppression by ascites. Finally, restoration of a defective IL-12 response by appropriate culture conditions was observed only in macrophages from a subset of donors, which may have important implications for the understanding of patient-specific immune responses.
Collapse
Affiliation(s)
- Annika Unger
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Florian Finkernagel
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Nathalie Hoffmann
- Experimental Tumor Research Group, Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Felix Neuhaus
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Barbara Joos
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, ZTI, Philipps University of Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, ZTI, Philipps University of Marburg, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Biomedical Research Center (BMFZ), Philipps University of Marburg, Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Philipps University of Marburg, Marburg, Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, ZTI, Philipps University of Marburg, Marburg, Germany
| | - Sabine Müller-Brüsselbach
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Rolf Müller
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| | - Till Adhikary
- Institute for Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunobiology (ZTI), Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
16
|
Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J Surg Oncol 2018; 16:108. [PMID: 29898731 PMCID: PMC6001031 DOI: 10.1186/s12957-018-1400-z] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
Background Despite recent advances in diagnosis and treatment, prostate cancer (PCa) remains the leading cause of cancer-related deaths in men. Current treatments offered in the clinics are often toxic and have severe side effects. Hence, to treat and manage PCa, new agents with fewer side effects or having potential to reduce side effects of conventional therapy are needed. In this study, we show anti-cancer effects of quercetin, an abundant bioflavonoid commonly used to treat prostatitis, and defined quercetin-induced cellular and molecular changes leading to PCa cell death. Methods Cell viability was assessed using MTT. Cell death mode, mitochondrial outer membrane potential, and oxidative stress levels were determined by flow cytometry using Annexin V-7 AAD dual staining kit, JC-1 dye, and ROS detection kit, respectively. Antibody microarray and western blot were used to delineate the molecular changes induced by quercetin. Results PCa cells treated with various concentrations of quercetin showed time- and dose-dependent decrease in cell viability compared to controls, without affecting normal prostate epithelial cells. Quercetin led to apoptotic and necrotic cell death in PCa cells by affecting the mitochondrial integrity and disturbing the ROS homeostasis depending upon the genetic makeup and oxidative status of the cells. LNCaP and PC-3 cells that have an oxidative cellular environment showed ROS quenching after quercetin treatment while DU-145 showed rise in ROS levels despite having a highly reductive environment. Opposing effects of quercetin were also observed on the pro-survival pathways of PCa cells. PCa cells with mutated p53 (DU-145) and increased ROS showed significant reduction in the activation of pro-survival Akt pathway while Raf/MEK were activated in response to quercetin. PC-3 cells lacking p53 and PTEN with reduced ROS levels showed significant activation of Akt and NF-κB pathway. Although some of these changes are commonly associated with oncogenic response, the cumulative effect of these alterations is PCa cell death. Conclusions Our results demonstrated quercetin exerts its anti-cancer effects by modulating ROS, Akt, and NF-κB pathways. Quercetin could be used as a chemopreventive option as well as in combination with chemotherapeutic drugs to improve clinical outcomes of PCa patients.
Collapse
|
17
|
Schmitz M, Ziv T, Admon A, Baekelandt S, Mandiki SN, L'Hoir M, Kestemont P. Salinity stress, enhancing basal and induced immune responses in striped catfish Pangasianodon hypophthalmus (Sauvage). J Proteomics 2017; 167:12-24. [DOI: 10.1016/j.jprot.2017.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
|
18
|
Ramakrishnan P, Yui MA, Tomalka JA, Majumdar D, Parameswaran R, Baltimore D. Deficiency of Nuclear Factor-κB c-Rel Accelerates the Development of Autoimmune Diabetes in NOD Mice. Diabetes 2016; 65:2367-79. [PMID: 27217485 PMCID: PMC4955991 DOI: 10.2337/db15-1607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/15/2016] [Indexed: 12/18/2022]
Abstract
The nuclear factor-κB protein c-Rel plays a critical role in controlling autoimmunity. c-Rel-deficient mice are resistant to streptozotocin-induced diabetes, a drug-induced model of autoimmune diabetes. We generated c-Rel-deficient NOD mice to examine the role of c-Rel in the development of spontaneous autoimmune diabetes. We found that both CD4(+) and CD8(+) T cells from c-Rel-deficient NOD mice showed significantly decreased T-cell receptor-induced IL-2, IFN-γ, and GM-CSF expression. Despite compromised T-cell function, c-Rel deficiency dramatically accelerated insulitis and hyperglycemia in NOD mice along with a substantial reduction in T-regulatory (Treg) cell numbers. Supplementation of isogenic c-Rel-competent Treg cells from prediabetic NOD mice reversed the accelerated diabetes development in c-Rel-deficient NOD mice. The results suggest that c-Rel-dependent Treg cell function is critical in suppressing early-onset autoimmune diabetogenesis in NOD mice. This study provides a novel natural system to study autoimmune diabetes pathogenesis and reveals a previously unknown c-Rel-dependent mechanistic difference between chemically induced and spontaneous diabetogenesis. The study also reveals a unique protective role of c-Rel in autoimmune diabetes, which is distinct from other T-cell-dependent autoimmune diseases such as arthritis and experimental autoimmune encephalomyelitis, where c-Rel promotes autoimmunity.
Collapse
Affiliation(s)
- Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University, and University Hospitals Case Medical Center, Cleveland, OH
| | - Mary A Yui
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Jeffrey A Tomalka
- Department of Pathology, School of Medicine, Case Western Reserve University, and University Hospitals Case Medical Center, Cleveland, OH
| | - Devdoot Majumdar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Reshmi Parameswaran
- Department of Pathology, School of Medicine, Case Western Reserve University, and University Hospitals Case Medical Center, Cleveland, OH
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
19
|
Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. CD28 Costimulation: From Mechanism to Therapy. Immunity 2016; 44:973-88. [PMID: 27192564 PMCID: PMC4932896 DOI: 10.1016/j.immuni.2016.04.020] [Citation(s) in RCA: 632] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 02/07/2023]
Abstract
Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members.
Collapse
Affiliation(s)
- Jonathan H Esensten
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | - Ynes A Helou
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Arthur Weiss
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center and Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Asymmetric arginine dimethylation of RelA provides a repressive mark to modulate TNFα/NF-κB response. Proc Natl Acad Sci U S A 2016; 113:4326-31. [PMID: 27051065 DOI: 10.1073/pnas.1522372113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) is an inducible transcription factor that plays critical roles in immune and stress responses and is often implicated in pathologies, including chronic inflammation and cancer. Although much has been learned about NF-κB-activating pathways, the specific repression of NF-κB is far less well understood. Here we identified the type I protein arginine methyltransferase 1 (PRMT1) as a restrictive factor controlling TNFα-induced activation of NF-κB. PRMT1 forms a cellular complex with NF-κB through direct interaction with the Rel homology domain of RelA. We demonstrate that PRMT1 methylates RelA at evolutionary conserved R30, located in the DNA-binding L1 loop, which is a critical residue required for DNA binding. Asymmetric R30 dimethylation inhibits the binding of RelA to DNA and represses NF-κB target genes in response to TNFα. Molecular dynamics simulations of the DNA-bound RelA:p50 predicted structural changes in RelA caused by R30 methylation or a mutation that interferes with the stability of the DNA-NF-κB complex. Our findings provide evidence for the asymmetric arginine dimethylation of RelA and unveil a unique mechanism controlling TNFα/NF-κB signaling.
Collapse
|
21
|
Neo WH, Lim JF, Grumont R, Gerondakis S, Su IH. c-Rel regulates Ezh2 expression in activated lymphocytes and malignant lymphoid cells. J Biol Chem 2014; 289:31693-31707. [PMID: 25266721 DOI: 10.1074/jbc.m114.574517] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The polycomb group protein Ezh2 is a histone methyltransferase that modifies chromatin structure to alter gene expression during embryonic development, lymphocyte activation, and tumorigenesis. The mechanism by which Ezh2 expression is regulated is not well defined. In the current study, we report that c-Rel is a critical activator of Ezh2 transcription in lymphoid cells. In activated primary murine B and T cells, plus human leukemia and multiple myeloma cell lines, recruitment of c-Rel to the first intron of the Ezh2 locus promoted Ezh2 mRNA expression. This up-regulation was abolished in activated c-Rel-deficient lymphocytes and by c-Rel knockdown in Jurkat T cells. Treatment of malignant cells with the c-Rel inhibitor pentoxifylline not only reduced c-Rel nuclear translocation and Ezh2 expression, but also enhanced their sensitivity to the Ezh2-specific drug, GSK126 through increased growth inhibition and cell death. In summary, our demonstration that c-Rel regulates Ezh2 expression in lymphocytes and malignant lymphoid cells reveals a novel transcriptional network in transformed lymphoid cells expressing high levels of Ezh2 that provides a molecular justification for combinatorial drug therapy.
Collapse
Affiliation(s)
- Wen Hao Neo
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Republic of Singapore and
| | - Jun Feng Lim
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Republic of Singapore and
| | - Raelene Grumont
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Steve Gerondakis
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - I-Hsin Su
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Republic of Singapore and.
| |
Collapse
|
22
|
Muhammad K, Alrefai H, Marienfeld R, Pham DAT, Murti K, Patra AK, Avots A, Bukur V, Sahin U, Kondo E, Klein-Hessling S, Serfling E. NF-κB factors control the induction of NFATc1 in B lymphocytes. Eur J Immunol 2014; 44:3392-402. [PMID: 25179582 DOI: 10.1002/eji.201444756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/16/2014] [Accepted: 08/29/2014] [Indexed: 01/06/2023]
Abstract
In peripheral lymphocytes, the transcription factors (TFs) NF-κB, NFAT, and AP-1 are the prime targets of signals that emerge from immune receptors. Upon activation, these TFs induce gene networks that orchestrate the growth, expansion, and effector function of peripheral lymphocytes. NFAT and NF-κB factors share several properties, such as a similar mode of induction and architecture in their DNA-binding domain, and there is a subgroup of κB-like DNA promoter motifs that are bound by both types of TFs. However, unlike NFAT and AP-1 factors that interact and collaborate in binding to DNA, NFAT, and NF-κB seem neither to interact nor to collaborate. We show here that NF-κB1/p50 and c-Rel, the most prominent NF-κB proteins in BCR-induced splenic B cells, control the induction of NFATc1/αA, a prominent short NFATc1 isoform. In part, this is mediated through two composite κB/NFAT-binding sites in the inducible Nfatc1 P1 promoter that directs the induction of NFATc1/αA by BCR signals. In concert with coreceptor signals that induce NF-κB factors, BCR signaling induces a persistent generation of NFATc1/αA. These data suggest a tight connection between NFATc1 and NF-κB induction in B lymphocytes contributing to the effector function of peripheral B cells.
Collapse
Affiliation(s)
- Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology and Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kieffer-Kwon KR, Tang Z, Mathe E, Qian J, Sung MH, Li G, Resch W, Baek S, Pruett N, Grøntved L, Vian L, Nelson S, Zare H, Hakim O, Reyon D, Yamane A, Nakahashi H, Kovalchuk AL, Zou J, Joung JK, Sartorelli V, Wei CL, Ruan X, Hager GL, Ruan Y, Casellas R. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell 2014; 155:1507-20. [PMID: 24360274 DOI: 10.1016/j.cell.2013.11.039] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/01/2013] [Accepted: 11/25/2013] [Indexed: 12/31/2022]
Abstract
A key finding of the ENCODE project is that the enhancer landscape of mammalian cells undergoes marked alterations during ontogeny. However, the nature and extent of these changes are unclear. As part of the NIH Mouse Regulome Project, we here combined DNaseI hypersensitivity, ChIP-seq, and ChIA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly transcribed genes, including Myc and Pim1 cell-cycle regulators, which associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting, we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during development correlates with promoter activity. We propose that organisms rely on a dynamic enhancer landscape to control basic cellular functions in a tissue-specific manner.
Collapse
Affiliation(s)
| | - Zhonghui Tang
- The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, CT 06030, USA
| | - Ewy Mathe
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Qian
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myong-Hee Sung
- Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guoliang Li
- The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, CT 06030, USA
| | - Wolfgang Resch
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathanael Pruett
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lars Grøntved
- Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Vian
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steevenson Nelson
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hossein Zare
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ofir Hakim
- Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Deepak Reyon
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Arito Yamane
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirotaka Nakahashi
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander L Kovalchuk
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jizhong Zou
- Laboratory of Stem Cell Biology, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Keith Joung
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chia-Lin Wei
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Xiaoan Ruan
- The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, CT 06030, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, CT 06030, USA
| | - Rafael Casellas
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA; Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Ramakrishnan P, Clark PM, Mason DE, Peters EC, Hsieh-Wilson LC, Baltimore D. Activation of the transcriptional function of the NF-κB protein c-Rel by O-GlcNAc glycosylation. Sci Signal 2013; 6:ra75. [PMID: 23982206 DOI: 10.1126/scisignal.2004097] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor nuclear factor κB (NF-κB) rapidly reprograms gene expression in response to various stimuli, and its activity is regulated by several posttranslational modifications, including phosphorylation, methylation, and acetylation. The addition of O-linked β-N-acetylglucosamine (a process known as O-GlcNAcylation) is an abundant posttranslational modification that is enhanced in conditions such as hyperglycemia and cellular stress. We report that the NF-κB subunit c-Rel is modified and activated by O-GlcNAcylation. We identified serine 350 as the site of O-GlcNAcylation, which was required for the DNA binding and transactivation functions of c-Rel. Blocking the O-GlcNAcylation of this residue abrogated c-Rel-mediated expression of the cytokine-encoding genes IL2, IFNG, and CSF2 in response to T cell receptor (TCR) activation, whereas increasing the extent of O-GlcNAcylation of cellular proteins enhanced the expression of these genes. TCR- or tumor necrosis factor (TNF)-induced expression of other NF-κB target genes, such as NFKBIA (which encodes IκBα) and TNFAIP3 (which encodes A20), occurred independently of the O-GlcNAcylation of c-Rel. Our findings suggest a stimulus-specific role for hyperglycemia-induced O-GlcNAcylation of c-Rel in promoting T cell-mediated autoimmunity in conditions such as type 1 diabetes by enhancing the production of T helper cell cytokines.
Collapse
|
25
|
WINGENDER EDGAR. CRITERIA FOR AN UPDATED CLASSIFICATION OF HUMAN TRANSCRIPTION FACTOR DNA-BINDING DOMAINS. J Bioinform Comput Biol 2013; 11:1340007. [DOI: 10.1142/s0219720013400076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
By binding to cis-regulatory elements in a sequence-specific manner, transcription factors regulate the activity of nearby genes. Here, we discuss the criteria for a comprehensive classification of human TFs based on their DNA-binding domains. In particular, classification of basic leucine zipper (bZIP) and zinc finger factors is exemplarily discussed. The resulting classification can be used as a template for TFs of other biological species.
Collapse
Affiliation(s)
- EDGAR WINGENDER
- Department of Bioinformatics, University Medical Center Göttingen, Goldschmidtstr. 1, Göttingen, D-37077, Germany
- geneXplain GmbH, Am Exer 10B, Wolfenbüttel, D-38302, Germany
| |
Collapse
|
26
|
Muxel SM, Pires-Lapa MA, Monteiro AWA, Cecon E, Tamura EK, Floeter-Winter LM, Markus RP. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS One 2012; 7:e52010. [PMID: 23284853 PMCID: PMC3528721 DOI: 10.1371/journal.pone.0052010] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/07/2012] [Indexed: 12/17/2022] Open
Abstract
We demonstrate that during inflammatory responses the nuclear factor kappa B (NF-κB) induces the synthesis of melatonin by macrophages and that macrophage-synthesized melatonin modulates the function of these professional phagocytes in an autocrine manner. Expression of a DsRed2 fluorescent reporter driven by regions of the aa-nat promoter, that encodes the key enzyme involved in melatonin synthesis (arylalkylamine-N-acetyltransferase), containing one or two upstream κB binding sites in RAW 264.7 macrophage cell lines was repressed when NF-κB activity was inhibited by blocking its nuclear translocation or its DNA binding activity or by silencing the transcription of the RelA or c-Rel NF-κB subunits. Therefore, transcription of aa-nat driven by NF-κB dimers containing RelA or c-Rel subunits mediates pathogen-associated molecular patterns (PAMPs) or pro-inflammatory cytokine-induced melatonin synthesis in macrophages. Furthermore, melatonin acts in an autocrine manner to potentiate macrophage phagocytic activity, whereas luzindole, a competitive antagonist of melatonin receptors, decreases macrophage phagocytic activity. The opposing functions of NF-κB in the modulation of AA-NAT expression in pinealocytes and macrophages may represent the key mechanism for the switch in the source of melatonin from the pineal gland to immune-competent cells during the development of an inflammatory response.
Collapse
Affiliation(s)
- Sandra Marcia Muxel
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Gilmore TD, Gerondakis S. The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2012; 2:695-711. [PMID: 22207895 DOI: 10.1177/1947601911421925] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022] Open
Abstract
c-Rel is a member of the nuclear factor κB (NF-κB) transcription factor family. Unlike other NF-κB proteins that are expressed in a variety of cell types, high levels of c-Rel expression are found primarily in B and T cells, with many c-Rel target genes involved in lymphoid cell growth and survival. In addition to c-Rel playing a major role in mammalian B and T cell function, the human c-rel gene (REL) is a susceptibility locus for certain autoimmune diseases such as arthritis, psoriasis, and celiac disease. The REL locus is also frequently altered (amplified, mutated, rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate REL activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases.
Collapse
|
28
|
Smale ST. Dimer-specific regulatory mechanisms within the NF-κB family of transcription factors. Immunol Rev 2012; 246:193-204. [PMID: 22435556 DOI: 10.1111/j.1600-065x.2011.01091.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A fundamental feature of the transcriptional response to an nuclear factor-κB (NF-κB)-inducing stimulus is that the response is highly selective and limited to the activation of only a subset of potential NF-κB target genes. One major contributor to selectivity of the response is likely to be the capacity of different NF-κB dimers to regulate different sets of target genes. The NF-κB family of transcription factors consists of five proteins, RelA, c-Rel, RelB, p50, and p52, which assemble into several homodimeric and heterodimeric species. Studies of mutant mouse strains have revealed that each family member, and perhaps each dimer, carries out unique functions in regulating transcription in cells of the immune system and in many other cell types. Dimer-specific functions can be conferred by selective protein-protein interactions with other transcription factors, coregulatory proteins, and chromatin proteins. Unique DNA-binding specificities and affinities make additional contributions to selectivity of the response, with growing evidence that some NF-κB dimers can adopt different conformations and thereby function differently when bound to different DNA sequences. Despite significant advances, our knowledge remains limited and many years of additional work will be needed to fully understand how the dimer-specific functions of NF-κB contribute to transcriptional selectivity.
Collapse
Affiliation(s)
- Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Polydnavirus Ank proteins bind NF-κB homodimers and inhibit processing of Relish. PLoS Pathog 2012; 8:e1002722. [PMID: 22654665 PMCID: PMC3359993 DOI: 10.1371/journal.ppat.1002722] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/12/2012] [Indexed: 12/25/2022] Open
Abstract
Recent studies have greatly increased understanding of how the immune system of insects responds to infection, whereas much less is known about how pathogens subvert immune defenses. Key regulators of the insect immune system are Rel proteins that form Nuclear Factor-κB (NF-κB) transcription factors, and inhibitor κB (IκB) proteins that complex with and regulate NF-κBs. Major mortality agents of insects are parasitoid wasps that carry immunosuppressive polydnaviruses (PDVs). Most PDVs encode ank genes that share features with IκBs, while our own prior studies suggested that two ank family members from Microplitis demolitor bracovirus (MdBV) (Ank-H4 and Ank-N5) behave as IκB mimics. However, the binding affinities of these viral mimics for Rel proteins relative to endogenous IκBs remained unclear. Surface plasmon resonance (SPR) and co-immunoprecipitation assays showed that the IκB Cactus from Drosophila bound Dif and Dorsal homodimers more strongly than Relish homodimers. Ank-H4 and –N5 bound Dif, Dorsal and Relish homodimers with higher affinity than the IκB domain of Relish (Rel-49), and also bound Relish homodimers more strongly than Cactus. Ank-H4 and –N5 inhibited processing of compound Relish and reduced the expression of several antimicrobial peptide genes regulated by the Imd signaling pathway in Drosophila mbn2 cells. Studies conducted in the natural host Pseudoplusia includens suggested that parasitism by M. demolitor also activates NF-κB signaling and that MdBV inhibits this response. Overall, our data provide the first quantitative measures of insect and viral IκB binding affinities, while also showing that viral mimics disable Relish processing. Central to the study of host-pathogen interactions is understanding how the immune system of hosts responds to infection, and reciprocally how pathogens subvert host defenses. In the case of insects, understanding of how the immune system responds to infection greatly exceeds understanding of pathogen counterstrategies. Parasitoid wasps are key mortality agents of insects. Thousands of wasp species have also evolved a symbiotic relationship with large DNA viruses in the family Polydnaviridae whose primary function is to deliver immunosuppressive virulence genes to the insect hosts that wasps parasitize. The function of most PDV-encoded virulence genes, however, remains unknown. In this article, we investigated the function of two ank gene family members from Microplitis demolitor bracovirus (MdBV). Our results indicate that Ank-H4 and Ank-N5 function as mimics of IκB proteins, which regulate a family of transcription factors called NF-κBs that control many genes of the insect immune system. IκBs and NF-κBs also function as key regulators of the mammalian immune system. Our results thus suggest that viral Ank proteins subvert the immune system of host insects by targeting conserved signaling pathways used by a diversity of organisms.
Collapse
|
30
|
Affiliation(s)
- Sankar Ghosh
- Department of Microbiology & Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
31
|
Abstract
The signaling module that specifies nuclear factor-κΒ (NF-κB) activation is a three-component system: NF-κB, inhibitor of NF-κΒ (IκΒ), and IκΒ kinase complex (IKK). IKK receives upstream signals from the surface or inside the cell and converts itself into a catalytically active form, leading to the destruction of IκB in the inhibited IκB:NF-κB complex, leaving active NF-κB free to regulate target genes. Hidden within this simple module are family members that all can undergo various modifications resulting in expansion of functional spectrum. Three-dimensional structures representing all three components are now available. These structures have allowed us to interpret cellular observations in molecular terms and at the same time helped us to bring forward new concepts focused towards understanding the specificity in the NF-κB activation pathway.
Collapse
Affiliation(s)
- Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92903, USA.
| | | | | | | |
Collapse
|
32
|
Mrinal N, Tomar A, Nagaraju J. Role of sequence encoded κB DNA geometry in gene regulation by Dorsal. Nucleic Acids Res 2011; 39:9574-91. [PMID: 21890896 PMCID: PMC3239199 DOI: 10.1093/nar/gkr672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Many proteins of the Rel family can act as both transcriptional activators and repressors. However, mechanism that discerns the ‘activator/repressor’ functions of Rel-proteins such as Dorsal (Drosophila homologue of mammalian NFκB) is not understood. Using genomic, biophysical and biochemical approaches, we demonstrate that the underlying principle of this functional specificity lies in the ‘sequence-encoded structure’ of the κB-DNA. We show that Dorsal-binding motifs exist in distinct activator and repressor conformations. Molecular dynamics of DNA-Dorsal complexes revealed that repressor κB-motifs typically have A-tract and flexible conformation that facilitates interaction with co-repressors. Deformable structure of repressor motifs, is due to changes in the hydrogen bonding in A:T pair in the ‘A-tract’ core. The sixth nucleotide in the nonameric κB-motif, ‘A’ (A6) in the repressor motifs and ‘T’ (T6) in the activator motifs, is critical to confer this functional specificity as A6 → T6 mutation transformed flexible repressor conformation into a rigid activator conformation. These results highlight that ‘sequence encoded κB DNA-geometry’ regulates gene expression by exerting allosteric effect on binding of Rel proteins which in turn regulates interaction with co-regulators. Further, we identified and characterized putative repressor motifs in Dl-target genes, which can potentially aid in functional annotation of Dorsal gene regulatory network.
Collapse
Affiliation(s)
- Nirotpal Mrinal
- Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India.
| | | | | |
Collapse
|
33
|
Direct Rel/NF-κB inhibitors: structural basis for mechanism of action. Future Med Chem 2011; 1:1683-707. [PMID: 21425986 DOI: 10.4155/fmc.09.96] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Rel/NF-κB transcription factors have emerged as novel therapeutic targets for a variety of human diseases and pathological conditions, including inflammation, autoimmune diseases, cancer, ischemic injury, osteoporosis, transplant rejection and neurodegeneration. Several US FDA-approved drugs may, in part, attribute their therapeutic effects to the inhibition of the Rel/NF-κB pathway. Strategies for blocking the Rel/NF-κB signaling pathway have inspired the pharmaceutical industry to develop inhibitors for I-κB kinase, however, this article focuses instead on identifying natural compounds that directly target and inhibit DNA binding and transcription activity of Rel/NF-κB. These include compounds containing a quinone core, an α,β unsaturated carbonyl and a benzene diamine. By investigating the mechanisms of action of existing natural inhibitors, novel strategies and synthetic approaches can be devised that will facilitate the development of novel and selective Rel/NF-κB inhibitors with better safety profiles.
Collapse
|
34
|
Loizou L, Andersen KG, Betz AG. Foxp3 interacts with c-Rel to mediate NF-κB repression. PLoS One 2011; 6:e18670. [PMID: 21490927 PMCID: PMC3072406 DOI: 10.1371/journal.pone.0018670] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 03/15/2011] [Indexed: 12/26/2022] Open
Abstract
Expression of the lineage-specific DNA-binding factor Foxp3 controls the development and function of naturally occurring regulatory T cells. Foxp3 has been shown to interact with a multitude of transcriptional regulators including NFAT, NF-κB (p65), Runx1 and RORγt, as well as the histone modification enzymes TIP60, HDAC7 and HDAC9. The sum of these interactions is believed to cause the change in the transcriptional program of regulatory T cells. Here we show that Foxp3 directly or as part of a multimeric complex engages with the NF-κB component c-Rel. We demonstrate that the N-terminal region of Foxp3 is required for the binding of c-Rel, but not NFAT. Conversely, deletion of the forkhead domain causes a loss of interaction with NFAT, but not c-Rel. Our findings are of particular interest, as c-Rel is crucial for the induction of Foxp3 in regulatory T cells during thymic development, but has to be repressed in mature regulatory T cells to maintain their suppressive phenotype.
Collapse
Affiliation(s)
- Louiza Loizou
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Kristian G. Andersen
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
| | | |
Collapse
|
35
|
Huxford T, Hoffmann A, Ghosh G. Understanding the logic of IκB:NF-κB regulation in structural terms. Curr Top Microbiol Immunol 2010; 349:1-24. [PMID: 20845107 DOI: 10.1007/82_2010_99] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NF-κB is an inducible transcription factor that controls expression of diverse stress response genes. The entire mammalian NF-κB family is generated from a small cadre of five gene products that assemble with one another in various combinations to form active homo- and heterodimers. The ability of NF-κB to alter target gene expression is regulated at many levels. Chief among these regulatory mechanisms is the noncovalent association in the cell cytoplasm of NF-κB dimers with IκB inhibitor proteins. Removal of IκB leads to accumulation of active NF-κB within the cell nucleus where it binds to specific DNA sequences contained within the promoter regions of target genes and initiates recruitment of general transcription factors and assembly of the basal transcription machinery. Here we provide a detailed description of these fundamental NF-κB regulatory events using as a basis macromolecular structures and experimental data derived from structure-based biochemistry.
Collapse
Affiliation(s)
- Tom Huxford
- Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | | | | |
Collapse
|
36
|
Piccagli L, Fabbri E, Borgatti M, Bianchi N, Bezzerri V, Mancini I, Nicolis E, Dechecchi C, Lampronti I, Cabrini G, Gambari R. Virtual Screening against p50 NF-κB Transcription Factor for the Identification of Inhibitors of the NF-κB-DNA Interaction and Expression of NF-κB Upregulated Genes. ChemMedChem 2009; 4:2024-33. [DOI: 10.1002/cmdc.200900362] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
NF-kappaB p52:RelB heterodimer recognizes two classes of kappaB sites with two distinct modes. EMBO Rep 2008; 10:152-9. [PMID: 19098713 DOI: 10.1038/embor.2008.227] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/19/2008] [Accepted: 11/03/2008] [Indexed: 11/08/2022] Open
Abstract
The X-ray structure of the nuclear factor-kappaB (NF-kappaB) p52:RelB:kappaB DNA complex reveals a new recognition feature not previously seen in other NF-kappaB:kappaB DNA complexes. Arg 125 of RelB is in contact with an additional DNA base pair. Surprisingly, the p52:RelB R125A mutant heterodimer shows defects both in DNA binding and in transcriptional activity only to a subclass of kappaB sites. We found that the Arg 125-sensitive kappaB sites contain more contiguous and centrally located A:T base pairs than do the insensitive sites. A protein-induced kink observed in this complex, which used an AT-rich kappaB site, might allow the DNA contact by Arg 125; such a kink might not be possible in complexes with non-AT-rich kappaB sites. Furthermore, we show that the p52:RelB heterodimer binds to a broader spectrum of kappaB sites when compared with the p50:RelA heterodimer. We suggest that the p52:RelB heterodimer is more adaptable to complement sequence and structural variations in kappaB sites when compared with other NF-kappaB dimers.
Collapse
|
38
|
Leeman JR, Weniger MA, Barth TF, Gilmore TD. Deletion analysis and alternative splicing define a transactivation inhibitory domain in human oncoprotein REL. Oncogene 2008; 27:6770-81. [PMID: 18695674 PMCID: PMC2832920 DOI: 10.1038/onc.2008.284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/03/2008] [Accepted: 07/11/2008] [Indexed: 01/03/2023]
Abstract
Misregulation of REL, a nuclear factor-kappaB family transcription factor, has been implicated in several human lymphoid malignancies. REL has a conserved N-terminal DNA-binding/dimerization domain called the Rel homology domain (RHD) and a C-terminal transactivation domain (TAD). Here, we define the sequences (amino acids (aa) 323-422) between the RHD and TAD as a REL inhibitory domain (RID) because deletion of these sequences increases both REL transactivation and DNA binding. Furthermore, we have characterized two REL mRNA splice variants that encode proteins with alterations near RID: one lacking exon 9 sequences (aa 308-330; RELDelta9) and one with an exonized Alu fragment insertion of 32 aa after aa 307 (REL+Alu). Deletion of RID or exon 9-encoded sequences increases transactivation by GAL4-REL by approximately threefold. Moreover, deletion of RID or exon 9 sequences increases transactivation by full-length REL from certain kappaB site-containing promoters and increases DNA binding by REL. Deletion of RID does not affect REL's ability to transform chicken spleen cells. Reverse transcriptase-polymerase chain reaction analysis of mRNA from both primary lymphoma samples and several transformed tissue culture cell lines indicates that the RELDelta9 splice variant is preferentially expressed in lymphoma, suggesting that the REL transcript lacking exon 9 could serve as a marker for certain types of lymphoid tumors.
Collapse
Affiliation(s)
- JR Leeman
- Department of Biology, Boston University, Boston, MA, USA
| | - MA Weniger
- Department of Pathology, University of Ulm, Ulm, Germany
- Current address: Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20824-0105, USA
| | - TF Barth
- Department of Pathology, University of Ulm, Ulm, Germany
| | - TD Gilmore
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
39
|
Guo L, Urban JF, Zhu J, Paul WE. Elevating calcium in Th2 cells activates multiple pathways to induce IL-4 transcription and mRNA stabilization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3984-93. [PMID: 18768853 PMCID: PMC2744309 DOI: 10.4049/jimmunol.181.6.3984] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PMA and ionomycin cause T cell cytokine production. We report that ionomycin alone induces IL-4 and IFN-gamma, but not IL-2, from in vivo- and in vitro-generated murine Th2 and Th1 cells. Ionomycin-induced cytokine production requires NFAT, p38, and calmodulin-dependent kinase IV (CaMKIV). Ionomycin induces p38 phosphorylation through a calcium-dependent, cyclosporine A-inhibitable pathway. Knocking down ASK1 inhibits ionomycin-induced p38 phosphorylation and IL-4 production. Ionomycin also activates CaMKIV, which, together with p38, induces AP-1. Cooperation between AP-1 and NFAT leads to Il4 gene transcription. p38 also regulates IL-4 production by mRNA stabilization. TCR stimulation also phosphorylates p38, partially through the calcium-dependent pathway; activated p38 is required for optimal IL-4 and IFN-gamma.
Collapse
Affiliation(s)
- Liying Guo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
40
|
Mura C, McCammon JA. Molecular dynamics of a kappaB DNA element: base flipping via cross-strand intercalative stacking in a microsecond-scale simulation. Nucleic Acids Res 2008; 36:4941-55. [PMID: 18653524 PMCID: PMC2528173 DOI: 10.1093/nar/gkn473] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The sequence-dependent structural variability and conformational dynamics of DNA play pivotal roles in many biological milieus, such as in the site-specific binding of transcription factors to target regulatory elements. To better understand DNA structure, function, and dynamics in general, and protein···DNA recognition in the ‘κB’ family of genetic regulatory elements in particular, we performed molecular dynamics simulations of a 20-bp DNA encompassing a cognate κB site recognized by the proto-oncogenic ‘c-Rel’ subfamily of NF-κB transcription factors. Simulations of the κB DNA in explicit water were extended to microsecond duration, providing a broad, atomically detailed glimpse into the structural and dynamical behavior of double helical DNA over many timescales. Of particular note, novel (and structurally plausible) conformations of DNA developed only at the long times sampled in this simulation—including a peculiar state arising at ≈0.7 μs and characterized by cross-strand intercalative stacking of nucleotides within a longitudinally sheared base pair, followed (at ≈1 μs) by spontaneous base flipping of a neighboring thymine within the A-rich duplex. Results and predictions from the microsecond-scale simulation include implications for a dynamical NF-κB recognition motif, and are amenable to testing and further exploration via specific experimental approaches that are suggested herein.
Collapse
Affiliation(s)
- Cameron Mura
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, CA 92093-0365, USA.
| | | |
Collapse
|
41
|
Ahn HJ, Hernandez CM, Levenson JM, Lubin FD, Liou HC, Sweatt JD. c-Rel, an NF-kappaB family transcription factor, is required for hippocampal long-term synaptic plasticity and memory formation. Learn Mem 2008; 15:539-49. [PMID: 18626097 DOI: 10.1101/lm.866408] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription is a critical component for consolidation of long-term memory. However, relatively few transcriptional mechanisms have been identified for the regulation of gene expression in memory formation. In the current study, we investigated the activity of one specific member of the NF-kappaB transcription factor family, c-Rel, during memory consolidation. We found that contextual fear conditioning elicited a time-dependent increase in nuclear c-Rel levels in area CA1 and DG of hippocampus. These results suggest that c-rel is active in regulating transcription during memory consolidation. To identify the functional role of c-Rel in memory formation, we characterized c-rel(-/-) mice in several behavioral tasks. c-rel(-/-) mice displayed significant deficits in freezing behavior 24 h after training for contextual fear conditioning but showed normal freezing behavior in cued fear conditioning and in short-term contextual fear conditioning. In a novel object recognition test, wild-type littermate mice exhibited a significant preference for a novel object, but c-rel(-/-) mice did not. These results indicate that c-rel(-/-) mice have impaired hippocampus-dependent memory formation. To investigate the role of c-Rel in long-term synaptic plasticity, baseline synaptic transmission and long-term potentiation (LTP) at Schaffer collateral synapses in c-rel(-/-) mice was assessed. c-rel(-/-) slices had normal baseline synaptic transmission but exhibited significantly less LTP than did wild-type littermate slices. Together, our results demonstrate that c-Rel is necessary for long-term synaptic potentiation in vitro and hippocampus-dependent memory formation in vivo.
Collapse
Affiliation(s)
- Hyung Jin Ahn
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
42
|
Britanova LV, Makeev VJ, Kuprash DV. In vitro selection of optimal RelB/p52 DNA-binding motifs. Biochem Biophys Res Commun 2008; 365:583-8. [DOI: 10.1016/j.bbrc.2007.10.200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 10/29/2007] [Indexed: 11/15/2022]
|
43
|
Moorthy AK, Huang DB, Wang VYF, Vu D, Ghosh G. X-ray structure of a NF-kappaB p50/RelB/DNA complex reveals assembly of multiple dimers on tandem kappaB sites. J Mol Biol 2007; 373:723-34. [PMID: 17869269 PMCID: PMC4167888 DOI: 10.1016/j.jmb.2007.08.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 01/07/2023]
Abstract
We describe here the X-ray crystal structure of NF-kappaB p50/RelB heterodimer bound to a kappaB DNA. Although the global modes of subunit association and kappaB DNA recognition are similar to other NF-kappaB/DNA complexes, this complex reveals distinctive features not observed for non-RelB complexes. For example, Lys274 of RelB is removed from the protein-DNA interface whereas the corresponding residues in all other subunits make base-specific contacts. This mode of binding suggests that RelB may allow the recognition of more diverse kappaB sequences. Complementary surfaces on RelB and p50, as revealed by the crystal contacts, are highly suggestive of assembly of multiple p50/RelB heterodimers on tandem kappaB sites in solution. Consistent with this model our in vitro binding experiments reveal optimal assembly of two wild-type p50/RelB heterodimers on tandem HIV kappaB DNA with 2 bp spacing but not by a mutant heterodimer where one of the RelB packing surface is altered. We suggest that multiple NF-kappaB dimers assemble at diverse kappaB promoters through direct interactions utilizing unique protein-protein interaction surfaces.
Collapse
Affiliation(s)
| | | | - Vivien Ya-Fan Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Don Vu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
44
|
Nolz JC, Fernandez-Zapico ME, Billadeau DD. TCR/CD28-stimulated actin dynamics are required for NFAT1-mediated transcription of c-rel leading to CD28 response element activation. THE JOURNAL OF IMMUNOLOGY 2007; 179:1104-12. [PMID: 17617603 DOI: 10.4049/jimmunol.179.2.1104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TCR/CD28 engagement triggers the initiation of a variety of signal transduction pathways that lead to changes in gene transcription. Although reorganization of the actin cytoskeleton is required for T cell activation, the molecular pathways controlled by the actin cytoskeleton are ill defined. To this end, we analyzed TCR/CD28-stimulated signaling pathways in cytochalasin D-treated T cells to determine the cytoskeletal requirements for T cell activation. Cytochalasin D treatment impaired T cell activation by causing a reduction in TCR/CD28-mediated calcium flux, and blocked activation of two regulatory elements within the IL-2 promoter, NFAT/AP-1 and CD28RE/AP. Treatment had no effect on signaling leading to the activation of either AP-1 or NF-kappaB. Significantly, we found that NFAT1 is required for optimal c-rel up-regulation in response to TCR/CD28 stimulation. In fact, NFAT1 could be detected bound at the c-rel promoter in response to TCR/CD28 stimulation, and targeting of NFAT1 using RNA interference in human CD4(+) T cells abrogated c-rel transcription. Overall, these findings establish that disrupting actin cytoskeletal dynamics impairs TCR/CD28-mediated calcium flux required for NFAT1-mediated c-rel transcription and, thus, activation of the CD28RE/AP.
Collapse
Affiliation(s)
- Jeffrey C Nolz
- Department of Immunology, Mayo Clinic College of Medicine, MN 55905, USA
| | | | | |
Collapse
|
45
|
Copley RR, Totrov M, Linnell J, Field S, Ragoussis J, Udalova IA. Functional conservation of Rel binding sites in drosophilid genomes. Genome Res 2007; 17:1327-35. [PMID: 17785540 PMCID: PMC1950901 DOI: 10.1101/gr.6490707] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 06/21/2007] [Indexed: 01/23/2023]
Abstract
Evolutionary constraints on gene regulatory elements are poorly understood: Little is known about how the strength of transcription factor binding correlates with DNA sequence conservation, and whether transcription factor binding sites can evolve rapidly while retaining their function. Here we use the model of the NFKB/Rel-dependent gene regulation in divergent Drosophila species to examine the hypothesis that the functional properties of authentic transcription factor binding sites are under stronger evolutionary constraints than the genomic background. Using molecular modeling we compare tertiary structures of the Drosophila Rel family proteins Dorsal, Dif, and Relish and demonstrate that their DNA-binding and protein dimerization domains undergo distinct rates of evolution. The accumulated amino acid changes, however, are unlikely to affect DNA sequence recognition and affinity. We employ our recently developed microarray-based experimental platform and principal coordinates statistical analysis to quantitatively and systematically profile DNA binding affinities of three Drosophila Rel proteins to 10,368 variants of the NFKB recognition sequences. We then correlate the evolutionary divergence of gene regulatory regions with differences in DNA binding affinities. Genome-wide analyses reveal a significant increase in the number of conserved Rel binding sites in promoters of developmental and immune genes. Significantly, the affinity of Rel proteins to these sites was higher than to less conserved sites and was maintained by the conservation of the DNA binding site sequence (static conservation) or in some cases despite significantly diverged sequences (dynamic conservation). We discuss how two types of conservation may contribute to the stabilization and optimization of a functional gene regulatory code in evolution.
Collapse
Affiliation(s)
- Richard R. Copley
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
| | | | - Jane Linnell
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
| | - Simon Field
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
| | - Jiannis Ragoussis
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
| | - Irina A. Udalova
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom
- Kennedy Institute of Rheumatology, Imperial College, London W6 8LH, United Kingdom
| |
Collapse
|
46
|
Bunting K, Rao S, Hardy K, Woltring D, Denyer GS, Wang J, Gerondakis S, Shannon MF. Genome-Wide Analysis of Gene Expression in T Cells to Identify Targets of the NF-κB Transcription Factor c-Rel. THE JOURNAL OF IMMUNOLOGY 2007; 178:7097-109. [PMID: 17513759 DOI: 10.4049/jimmunol.178.11.7097] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is well established that the NF-kappaB family of transcription factors serves a major role in controlling gene expression in response to T cell activation, but the genome-wide roles of individual family members remain to be determined. c-Rel, a member of the NF-kappaB family, appears to play a specific role in T cell function because T cells from c-Rel(-/-) animals are defective in their response to immune signals. We have used expression profiling to identify sets of genes that are affected by either deletion or overexpression of c-Rel in T cells. Very few of these genes exhibit a strong requirement for c-Rel; rather, c-Rel appears to modulate the expression of a large number of genes in these cells. The sets of c-Rel-affected genes are significantly enriched for genes containing consensus NF-kappaB/Rel sites in their proximal promoter regions. In addition, their promoters contain a higher average density of NF-kappaB/Rel sites compared with all genes represented on the microarrays. A transcriptional module comprised of two closely spaced c-Rel consensus sites is found with higher frequency in the c-Rel-affected gene sets and may represent an important control module for genes regulated by c-Rel or other NF-kappaB family members. We confirmed the importance of these findings on a subgroup of genes by using quantitative PCR to monitor gene expression as well as in vitro c-Rel/DNA binding assays and luciferase reporter assays. The c-Rel-regulated genes identified here support a role for c-Rel in inflammatory responses as well as in the promotion of cell growth and survival.
Collapse
Affiliation(s)
- Karen Bunting
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang J, Wang X, Hussain S, Zheng Y, Sanjabi S, Ouaaz F, Beg AA. Distinct Roles of Different NF-κB Subunits in Regulating Inflammatory and T Cell Stimulatory Gene Expression in Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:6777-88. [PMID: 17513725 DOI: 10.4049/jimmunol.178.11.6777] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TLRs play a critical role in inducing inflammatory and immune responses against microbial agents. In this study, we have investigated the role of NF-kappaB transcription factors in regulating TLR-induced gene expression in dendritic cells, a key APC type. The p50 and cRel NF-kappaB subunits were found to be crucial for regulating genes important for dendritic cell-induced T cell responses (e.g., CD40, IL-12, and IL-18) but not for genes encoding inflammatory cytokines (e.g., TNF-alpha, IL-1alpha, and IL-6). In striking contrast, the RelA subunit was crucial for expression of inflammatory cytokine genes but not T cell stimulatory genes. These novel findings reveal a fundamentally important difference in biological function of genes regulated by different NF-kappaB subunits. Focusing on RelA target gene specificity mechanisms, we investigated whether the kappaB site and/or the unique composition of RelA played the most crucial role. Surprisingly, studies of IL-6 expression showed that the kappaB site is not a primary determinant of RelA target gene specificity. Instead, a major specificity mechanism is the unique ability of RelA to interact with the transcriptional coactivator CREB-binding protein, a function not shared with the closely related cRel subunit. Together, our findings indicate novel and critically important overall roles of NF-kappaB in TLR-induced gene expression that are mediated by unique functions of distinct subunits.
Collapse
Affiliation(s)
- Junmei Wang
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Stimulus-induced nuclear factor-kappaB (NF-kappaB) activity, the central mediator of inflammatory responses and immune function, comprises a family of dimeric transcription factors that regulate diverse gene expression programs consisting of hundreds of genes. A family of inhibitor of kappaB (IkappaB) proteins controls NF-kappaB DNA-binding activity and nuclear localization. IkappaB protein metabolism is intricately regulated through stimulus-induced degradation and feedback re-synthesis, which allows for dynamic control of NF-kappaB activity. This network of interactions has been termed the NF-kappaB signaling module. Here, we summarize the current understanding of the molecular structures and biochemical mechanisms that determine NF-kappaB dimer formation and the signal-processing characteristics of the signaling module. We identify NF-kappaB-kappaB site interaction specificities and dynamic control of NF-kappaB activity as mechanisms that generate specificity in transcriptional regulation. We discuss examples of gene regulation that illustrate how these mechanisms may interface with other transcription regulators and promoter-associated events, and how these mechanisms suggest regulatory principles for NF-kappaB-mediated gene activation.
Collapse
Affiliation(s)
- A Hoffmann
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
49
|
Liang MC, Bardhan S, Porco JA, Gilmore TD. The synthetic epoxyquinoids jesterone dimer and epoxyquinone A monomer induce apoptosis and inhibit REL (human c-Rel) DNA binding in an IkappaBalpha-deficient diffuse large B-cell lymphoma cell line. Cancer Lett 2005; 241:69-78. [PMID: 16289774 DOI: 10.1016/j.canlet.2005.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/07/2005] [Indexed: 12/13/2022]
Abstract
The NF-kappaB transcription factor signaling pathway is constitutively active in many human cancers, and inhibition of this pathway can often kill cancer cells by inducing apoptosis. In this study, we show that two synthetic epoxyquinoids, jesterone dimer (JD) and epoxyquinone A monomer (EqM), are equally effective at inhibiting the growth of two human lymphoma cell lines that have constitutively nuclear REL (human c-Rel) DNA-binding complexes, but either express (SUDHL-4 cells) or do not express (RC-K8 cells) the NF-kappaB inhibitor IkappaBalpha. Furthermore, in these cells, both JD and EqM dose-dependently induced apoptosis, inhibited REL DNA-binding activity, and converted REL to a high molecular weight form. In A293 cells, JD and EqM inhibited the DNA-binding activity of overexpressed REL, but not p50. Replacement of Cys-27 with Ser in REL reduced JD- and EqM-mediated inhibition of REL DNA-binding activity. These results suggest that JD and EqM can induce apoptosis in IkappaBalpha-deficient lymphoma cells through a mechanism involving direct inhibition of transcription factor REL.
Collapse
Affiliation(s)
- Mei-Chih Liang
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
50
|
Sanjabi S, Williams KJ, Saccani S, Zhou L, Hoffmann A, Ghosh G, Gerondakis S, Natoli G, Smale ST. A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation. Genes Dev 2005; 19:2138-51. [PMID: 16166378 PMCID: PMC1221885 DOI: 10.1101/gad.1329805] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The NF-kappaB family members p65 (RelA) and c-Rel recognize similar DNA sequences, yet the phenotypes of mutant mice suggest that these proteins regulate distinct sets of genes. Here we demonstrate that 46 unique residues within an 86-residue segment of the Rel homology region (RHR) of c-Rel are responsible for the c-Rel requirement for Il12b gene induction by lipopolysaccharide in bone marrow-derived macrophages. These same residues were responsible for the c-Rel requirement for Il12a induction in dendritic cells, and in both instances, no evidence of c-Rel-specific coactivator interactions was found. Although the residues of c-Rel and p65 that contact specific bases and the DNA backbone within nuclear factor-kappaB (NF-kappaB) recognition sequences are identical, homodimers of c-Rel and of a chimeric p65 protein containing the critical c-Rel residues bound with high affinity to a broader range of NF-kappaB recognition sequences than did wild-type p65 homodimers. These results demonstrate that the unique functions of closely related transcription factor family members can be dictated by differences in the range of DNA sequences recognized at high affinity, despite having similar binding site consensus sequences and DNA contact residues.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Howard Hughes Medical Institute, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095-1662, USA
| | | | | | | | | | | | | | | | | |
Collapse
|