1
|
Fremlén H, Burmann BM. Maintaining the Integral Membrane Proteome: Revisiting the Functional Repertoire of Integral Membrane Proteases. Chembiochem 2025; 26:e202500048. [PMID: 40056010 PMCID: PMC12067869 DOI: 10.1002/cbic.202500048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Cells in all kingdoms of life employ dedicated protein quality control machineries for both their cytosolic and membrane proteome ensuring cellular functionality. These crucial systems consist besides a large variety of molecular chaperones, ensuring a proper fold and consequently function of the client's proteome, of several proteases to clean out damaged, unfunctional and potentially toxic proteins. One of the key features underlying the functional cycle of these quality control systems is the inherent flexibility of their bound clients which for a long time impaired detailed structural characterization, with advanced high-resolution NMR spectroscopy in the last decade playing a key role contributing to the present understanding of their functional properties. Although these studies laid the foundation of the present knowledge of the mechanistic details of the maintenance of cytosolic proteins, the understanding of related systems employed for membrane associated as well as integral membrane proteins remains rather sparse to date. Herein, we review the crucial contributions of structural and dynamical biology approaches, possessing the power to resolve both structure and dynamics of such systems as well as enabling the elucidation of the functional repertoire of multimeric proteases involved in maintaining a functional membrane proteome.
Collapse
Affiliation(s)
- Hannah Fremlén
- Department of Chemistry and Molecular BiologyWallenberg Centre for Molecular and Translational MedicineUniversity of Gothenburg405 30GöteborgSweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular BiologyWallenberg Centre for Molecular and Translational MedicineScience for Life LaboratorySwedish NMR CentreUniversity of Gothenburg405 30GöteborgSweden
| |
Collapse
|
2
|
Akkulak H, İnce HK, Goc G, Lebrilla CB, Kabasakal BV, Ozcan S. Structural proteomics of a bacterial mega membrane protein complex: FtsH-HflK-HflC. Int J Biol Macromol 2024; 269:131923. [PMID: 38697437 DOI: 10.1016/j.ijbiomac.2024.131923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Recent advances in mass spectrometry (MS) yielding sensitive and accurate measurements along with developments in software tools have enabled the characterization of complex systems routinely. Thus, structural proteomics and cross-linking mass spectrometry (XL-MS) have become a useful method for structural modeling of protein complexes. Here, we utilized commonly used XL-MS software tools to elucidate the protein interactions within a membrane protein complex containing FtsH, HflK, and HflC, over-expressed in E. coli. The MS data were processed using MaxLynx, MeroX, MS Annika, xiSEARCH, and XlinkX software tools. The number of identified inter- and intra-protein cross-links varied among software. Each interaction was manually checked using the raw MS and MS/MS data and distance restraints to verify inter- and intra-protein cross-links. A total of 37 inter-protein and 148 intra-protein cross-links were determined in the FtsH-HflK-HflC complex. The 59 of them were new interactions on the lacking region of recently published structures. These newly identified interactions, when combined with molecular docking and structural modeling, present opportunities for further investigation. The results provide valuable information regarding the complex structure and function to decipher the intricate molecular mechanisms underlying the FtsH-HflK-HflC complex.
Collapse
Affiliation(s)
- Hatice Akkulak
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkiye
| | - H Kerim İnce
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkiye
| | - Gunce Goc
- Turkish Accelerator and Radiation Laboratory (TARLA), Ankara 06830, Turkiye
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, 95616, CA, USA
| | - Burak V Kabasakal
- Turkish Accelerator and Radiation Laboratory (TARLA), Ankara 06830, Turkiye; School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | - Sureyya Ozcan
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkiye; Cancer Systems Biology Laboratory (CanSyL), Middle East Technical University, 06800 Ankara, Turkiye
| |
Collapse
|
3
|
Mawla GD, Kamal SM, Cao LY, Purhonen P, Hebert H, Sauer RT, Baker TA, Römling U. The membrane-cytoplasmic linker defines activity of FtsH proteases in Pseudomonas aeruginosa clone C. J Biol Chem 2024; 300:105622. [PMID: 38176647 PMCID: PMC10850787 DOI: 10.1016/j.jbc.2023.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Pandemic Pseudomonas aeruginosa clone C strains encode two inner-membrane associated ATP-dependent FtsH proteases. PaftsH1 is located on the core genome and supports cell growth and intrinsic antibiotic resistance, whereas PaftsH2, a xenolog acquired through horizontal gene transfer from a distantly related species, is unable to functionally replace PaftsH1. We show that purified PaFtsH2 degrades fewer substrates than PaFtsH1. Replacing the 31-amino acid-extended linker region of PaFtsH2 spanning from the C-terminal end of the transmembrane helix-2 to the first seven highly divergent residues of the cytosolic AAA+ ATPase module with the corresponding region of PaFtsH1 improves hybrid-enzyme substrate processing in vitro and enables PaFtsH2 to substitute for PaFtsH1 in vivo. Electron microscopy indicates that the identity of this linker sequence influences FtsH flexibility. We find membrane-cytoplasmic (MC) linker regions of PaFtsH1 characteristically glycine-rich compared to those from FtsH2. Consequently, introducing three glycines into the membrane-proximal end of PaFtsH2's MC linker is sufficient to elevate its activity in vitro and in vivo. Our findings establish that the efficiency of substrate processing by the two PaFtsH isoforms depends on MC linker identity and suggest that greater linker flexibility and/or length allows FtsH to degrade a wider spectrum of substrates. As PaFtsH2 homologs occur across bacterial phyla, we hypothesize that FtsH2 is a latent enzyme but may recognize specific substrates or is activated in specific contexts or biological niches. The identity of such linkers might thus play a more determinative role in the functionality of and physiological impact by FtsH proteases than previously thought.
Collapse
Affiliation(s)
- Gina D Mawla
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shady M Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm; Sweden
| | - Lian-Ying Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm; Sweden
| | - Pasi Purhonen
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge; Sweden
| | - Hans Hebert
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge; Sweden
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm; Sweden.
| |
Collapse
|
4
|
Yue X, Ke X, Shi Y, Li Y, Zhang C, Wang Y, Hou X. Chloroplast inner envelope protein FtsH11 is involved in the adjustment of assembly of chloroplast ATP synthase under heat stress. PLANT, CELL & ENVIRONMENT 2023; 46:850-864. [PMID: 36573466 DOI: 10.1111/pce.14525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The maintenance of a proton gradient across the thylakoid membrane is an integral aspect of photosynthesis that is mainly established by the splitting of water molecules in photosystem II and plastoquinol oxidation at the cytochrome complex, and it is necessary for the generation of ATP in the last step of photophosphorylation. Although environmental stresses, such as high temperatures, are known to disrupt this fundamental process, only a few studies have explored the molecular mechanisms underlying proton gradient regulation during stress. The present study identified a heat-sensitive mutant that displays aberrant photosynthesis at high temperatures. This mutation was mapped to AtFtsH11, which encodes an ATP-dependent AAA-family metalloprotease. We showed that AtFtsH11 localizes to the chloroplast inner envelope membrane and is capable of degrading the ATP synthase assembly factor BFA3 under heat stress. We posit that this function limits the amount of ATP synthase integrated into the thylakoid membrane to regulate proton efflux from the lumen to the stroma. Our data also suggest that AtFtsH11 is critical in stabilizing photosystem II and cytochrome complexes at high temperatures, and additional studies can further elucidate the specific molecular functions of this critical regulator of photosynthetic thermotolerance.
Collapse
Affiliation(s)
- Xiaohong Yue
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangsheng Ke
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yafei Shi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenhao Zhang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yetao Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Xu W, Gao W, Bu Q, Li Y. Degradation Mechanism of AAA+ Proteases and Regulation of Streptomyces Metabolism. Biomolecules 2022; 12:biom12121848. [PMID: 36551276 PMCID: PMC9775585 DOI: 10.3390/biom12121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Hundreds of proteins work together in microorganisms to coordinate and control normal activity in cells. Their degradation is not only the last step in the cell's lifespan but also the starting point for its recycling. In recent years, protein degradation has been extensively studied in both eukaryotic and prokaryotic organisms. Understanding the degradation process is essential for revealing the complex regulatory network in microorganisms, as well as further artificial reconstructions and applications. This review will discuss several studies on protein quality-control family members Lon, FtsH, ClpP, the proteasome in Streptomyces, and a few classical model organisms, mainly focusing on their structure, recognition mechanisms, and metabolic influences.
Collapse
Affiliation(s)
- Weifeng Xu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Wenli Gao
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qingting Bu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yongquan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
6
|
Qiao Z, Yokoyama T, Yan XF, Beh IT, Shi J, Basak S, Akiyama Y, Gao YG. Cryo-EM structure of the entire FtsH-HflKC AAA protease complex. Cell Rep 2022; 39:110890. [PMID: 35649372 DOI: 10.1016/j.celrep.2022.110890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
The membrane-bound AAA protease FtsH is the key player controlling protein quality in bacteria. Two single-pass membrane proteins, HflK and HflC, interact with FtsH to modulate its proteolytic activity. Here, we present structure of the entire FtsH-HflKC complex, comprising 12 copies of both HflK and HflC, all of which interact reciprocally to form a cage, as well as four FtsH hexamers with periplasmic domains and transmembrane helices enclosed inside the cage and cytoplasmic domains situated at the base of the cage. FtsH K61/D62/S63 in the β2-β3 loop in the periplasmic domain directly interact with HflK, contributing to complex formation. Pull-down and in vivo enzymatic activity assays validate the importance of the interacting interface for FtsH-HflKC complex formation. Structural comparison with the substrate-bound human m-AAA protease AFG3L2 offers implications for the HflKC cage in modulating substrate access to FtsH. Together, our findings provide a better understanding of FtsH-type AAA protease holoenzyme assembly and regulation.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
| | - Tatsuhiko Yokoyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Xin-Fu Yan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
| | - Ing Tsyr Beh
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jian Shi
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Sandip Basak
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
7
|
Yi L, Liu B, Nixon PJ, Yu J, Chen F. Recent Advances in Understanding the Structural and Functional Evolution of FtsH Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:837528. [PMID: 35463435 PMCID: PMC9020784 DOI: 10.3389/fpls.2022.837528] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/24/2022] [Indexed: 05/18/2023]
Abstract
The FtsH family of proteases are membrane-anchored, ATP-dependent, zinc metalloproteases. They are universally present in prokaryotes and the mitochondria and chloroplasts of eukaryotic cells. Most bacteria bear a single ftsH gene that produces hexameric homocomplexes with diverse house-keeping roles. However, in mitochondria, chloroplasts and cyanobacteria, multiple FtsH homologs form homo- and heterocomplexes with specialized functions in maintaining photosynthesis and respiration. The diversification of FtsH homologs combined with selective pairing of FtsH isomers is a versatile strategy to enable functional adaptation. In this article we summarize recent progress in understanding the evolution, structure and function of FtsH proteases with a focus on the role of FtsH in photosynthesis and respiration.
Collapse
Affiliation(s)
- Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Peter J. Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- *Correspondence: Peter J. Nixon, ; orcid.org/0000-0003-1952-6937
| | - Jianfeng Yu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- Jianfeng Yu, ; orcid.org/0000-0001-7174-3803
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Feng Chen, ; orcid.org/0000-0002-9054-943X
| |
Collapse
|
8
|
Abstract
The Borrelia spp. are tick-borne pathogenic spirochetes that include the agents of Lyme disease and relapsing fever. As part of their life cycle, the spirochetes traffic between the tick vector and the vertebrate host, which requires significant physiological changes and remodeling of their outer membranes and proteome. This crucial proteome resculpting is carried out by a diverse set of proteases, adaptor proteins, and related chaperones. Despite its small genome, Borrelia burgdorferi has dedicated a large percentage of its genome to proteolysis, including a full complement of ATP-dependent proteases. Energy-driven proteolysis appears to be an important physiological feature of this dual-life-cycle bacterium. The proteolytic arsenal of Borrelia is strategically deployed for disposal of proteins no longer required as they move from one stage to another or are transferred from one host to another. Likewise, the Borrelia spp. are systemic organisms that need to break down and move through host tissues and barriers, and so their unique proteolytic resources, both endogenous and borrowed, make movement more feasible. Both the Lyme disease and relapsing fever Borrelia spp. bind plasminogen as well as numerous components of the mammalian plasminogen-activating system. This recruitment capacity endows the spirochetes with a borrowed proteolytic competency that can lead to increased invasiveness.
Collapse
|
9
|
Wang Y, Cao W, Merritt J, Xie Z, Liu H. Characterization of FtsH Essentiality in Streptococcus mutans via Genetic Suppression. Front Genet 2021; 12:659220. [PMID: 33986772 PMCID: PMC8112672 DOI: 10.3389/fgene.2021.659220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
FtsH belongs to the AAA+ ATP-dependent family of proteases, which participate in diverse cellular processes and are ubiquitous among bacteria, chloroplasts, and mitochondria. FtsH is poorly characterized in most organisms, especially compared to other major housekeeping proteases. In the current study, we examined the source of FtsH essentiality in the human oral microbiome species Streptococcus mutans, one of the primary etiological agents of dental caries. By creating a conditionally lethal ftsH mutant, we were able to identify a secondary suppressor missense mutation in the vicR gene, encoding the response regulator of the essential VicRK two-component system (TCS). Transcriptomic analysis of the vicR (G195R) mutant revealed significantly reduced expression of 46 genes, many of which were located within the genomic island Tnsmu2, which harbors the mutanobactin biosynthetic gene cluster. In agreement with the transcriptomic data, deletion of the mutanobactin biosynthetic gene cluster suppressed ftsH essentiality in S. mutans. We also explored the role of FtsH in S. mutans physiology and demonstrated its critical role in stress tolerance, especially acid stress. The presented results reveal the first insights within S. mutans for the pleiotropic regulatory function of this poorly understood global regulator.
Collapse
Affiliation(s)
- Yaqi Wang
- MOE Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
10
|
Regulation of the First Committed Step in Lipopolysaccharide Biosynthesis Catalyzed by LpxC Requires the Essential Protein LapC (YejM) and HslVU Protease. Int J Mol Sci 2020; 21:ijms21239088. [PMID: 33260377 PMCID: PMC7730581 DOI: 10.3390/ijms21239088] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022] Open
Abstract
We previously showed that lipopolysaccharide (LPS) assembly requires the essential LapB protein to regulate FtsH-mediated proteolysis of LpxC protein that catalyzes the first committed step in the LPS synthesis. To further understand the essential function of LapB and its role in LpxC turnover, multicopy suppressors of ΔlapB revealed that overproduction of HslV protease subunit prevents its lethality by proteolytic degradation of LpxC, providing the first alternative pathway of LpxC degradation. Isolation and characterization of an extragenic suppressor mutation that prevents lethality of ΔlapB by restoration of normal LPS synthesis identified a frame-shift mutation after 377 aa in the essential gene designated lapC, suggesting LapB and LapC act antagonistically. The same lapC gene was identified during selection for mutations that induce transcription from LPS defects-responsive rpoEP3 promoter, confer sensitivity to LpxC inhibitor CHIR090 and a temperature-sensitive phenotype. Suppressors of lapC mutants that restored growth at elevated temperatures mapped to lapA/lapB, lpxC and ftsH genes. Such suppressor mutations restored normal levels of LPS and prevented proteolysis of LpxC in lapC mutants. Interestingly, a lapC deletion could be constructed in strains either overproducing LpxC or in the absence of LapB, revealing that FtsH, LapB and LapC together regulate LPS synthesis by controlling LpxC amounts.
Collapse
|
11
|
YejM Controls LpxC Levels by Regulating Protease Activity of the FtsH/YciM Complex of Escherichia coli. J Bacteriol 2020; 202:JB.00303-20. [PMID: 32540932 DOI: 10.1128/jb.00303-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
LpxC is a deacetylase that catalyzes the first committed step of lipid A biosynthesis in Escherichia coli LpxC competes for a common precursor, R-3-hydroxymyristoyl-UDP-GlcNAc, with FabZ, whose dehydratase activity catalyzes the first committed step of phospholipid biosynthesis. To maintain the optimum flow of the common precursor to these two competing pathways, the LpxC level is controlled by FtsH/YciM-mediated proteolysis. It is not known whether this complex or another protein senses the status of lipid A synthesis to control LpxC proteolysis. The work carried out in this study began with a novel mutation, yejM1163, which causes hypersensitivity to large antibiotics such as vancomycin and erythromycin. Isolates resistant to these antibiotics carried suppressor mutations in the ftsH and yciM genes. Western blot analysis showed a dramatically reduced LpxC level in the yejM1163 background, while the presence of ftsH or yciM suppressor mutations restored LpxC levels to different degrees. Based on these observations, it is proposed that YejM is a sensor of lipid A synthesis and controls LpxC levels by modulating the activity of the FtsH/YciM complex. The truncation of the periplasmic domain in the YejM1163 protein causes unregulated proteolysis of LpxC, thus diverting a greater pool of R-3-hydroxymyristoyl-UDP-GlcNAc toward phospholipid synthesis. This imbalance in lipid synthesis perturbs the outer membrane permeability barrier, causing hypersensitivity toward vancomycin and erythromycin. yejM1163 suppressor mutations in ftsH and yciM lower the proteolytic activity toward LpxC, thus restoring lipid homeostasis and the outer membrane permeability barrier.IMPORTANCE Lipid homeostasis is critical for proper envelope functions. The level of LpxC, which catalyzes the first committed step of lipopolysaccharide (LPS) synthesis, is controlled by an essential protease complex comprised of FtsH and YciM. Work carried out here suggests YejM, an essential envelope protein, plays a central role in sensing the state of LPS synthesis and controls LpxC levels by regulating the activity of FtsH/YciM. All four essential proteins are attractive targets of therapeutic development.
Collapse
|
12
|
Ma R, Huang J, Zhang Y, Wang Q. Identification and characterization of FtsH mediating in vivo colonization and stress adaptation in the fish pathogen Edwardsiella piscicida. FEMS Microbiol Lett 2019; 366:5570582. [PMID: 31529028 DOI: 10.1093/femsle/fnz198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/12/2019] [Indexed: 01/10/2023] Open
Abstract
Edwardsiella piscicida is an important pathogenic enteric bacterium of fish. FtsH is a unique membrane-anchored AAA + protease that regulates protein homeostasis in bacteria. In cooperation with modulators HflK and HflC, FtsH is essential in enteric bacteria and controls the response to environmental stresses. Here, we used in vivo pattern analysis of conditional essentiality (PACE) and identified that ftsH and hflK/C were associated with impaired in vivo colonization in Edw. piscicida and attenuated internalization ability of ZF4 cells. The ftsH mutant displayed increased survival during prolonged treatment of starvation and high osmotic stresses in Edw. piscicida. Further analysis showed that the disruption of ftsH resulted in the overproduction of the established substrate LpxC, which is responsible for the synthesis of LPS (lipopolysaccharide), as well as the substrate YfgM, which is involved in high osmolality tolerance during stationary phase. However, the inconsistency in the abilities of the ftsH and hflK/C mutants to achieve YfgM-based osmotic resistance indicated that there might be multiple, while distinctive, pathways controlled by FtsH and the associated modulator proteins HflK/C. This investigation revealed the unique functions of FtsH and its modulator HflK/C in Edw. piscicida.
Collapse
Affiliation(s)
- Ruiqing Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianchang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| |
Collapse
|
13
|
Kamal SM, Rybtke ML, Nimtz M, Sperlein S, Giske C, Trček J, Deschamps J, Briandet R, Dini L, Jänsch L, Tolker-Nielsen T, Lee C, Römling U. Two FtsH Proteases Contribute to Fitness and Adaptation of Pseudomonas aeruginosa Clone C Strains. Front Microbiol 2019; 10:1372. [PMID: 31338071 PMCID: PMC6629908 DOI: 10.3389/fmicb.2019.01372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/31/2019] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa is an environmental bacterium and a nosocomial pathogen with clone C one of the most prevalent clonal groups. The P. aeruginosa clone C specific genomic island PACGI-1 harbors a xenolog of ftsH encoding a functionally diverse membrane-spanning ATP-dependent metalloprotease on the core genome. In the aquatic isolate P. aeruginosa SG17M, the core genome copy ftsH1 significantly affects growth and dominantly mediates a broad range of phenotypes, such as secretion of secondary metabolites, swimming and twitching motility and resistance to aminoglycosides, while the PACGI-1 xenolog ftsH2 backs up the phenotypes in the ftsH1 mutant background. The two proteins, with conserved motifs for disaggregase and protease activity present in FtsH1 and FtsH2, have the ability to form homo- and hetero-oligomers with ftsH2 distinctively expressed in the late stationary phase of growth. However, mainly FtsH1 degrades a major substrate, the heat shock transcription factor RpoH. Pull-down experiments with substrate trap-variants inactive in proteolytic activity indicate both FtsH1 and FtsH2 to interact with the inhibitory protein HflC, while the phenazine biosynthesis protein PhzC was identified as a substrate of FtsH1. In summary, as an exception in P. aeruginosa, clone C harbors two copies of the ftsH metallo-protease, which cumulatively are required for the expression of a diversity of phenotypes.
Collapse
Affiliation(s)
- Shady Mansour Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, New Cairo, Egypt
| | - Morten Levin Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manfred Nimtz
- Department of Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefanie Sperlein
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Julien Deschamps
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Lothar Jänsch
- Department of Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Changhan Lee
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Adam Z, Aviv-Sharon E, Keren-Paz A, Naveh L, Rozenberg M, Savidor A, Chen J. The Chloroplast Envelope Protease FTSH11 - Interaction With CPN60 and Identification of Potential Substrates. FRONTIERS IN PLANT SCIENCE 2019; 10:428. [PMID: 31024594 PMCID: PMC6459962 DOI: 10.3389/fpls.2019.00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
FTSH proteases are membrane-bound, ATP-dependent metalloproteases found in bacteria, mitochondria and chloroplasts. The product of one of the 12 genes encoding FTSH proteases in Arabidopsis, FTSH11, has been previously shown to be essential for acquired thermotolerance. However, the substrates of this protease, as well as the mechanism linking it to thermotolerance are largely unknown. To get insight into these, the FTSH11 knockout mutant was complemented with proteolytically active or inactive variants of this protease, tagged with HA-tag, under the control of the native promoter. Using these plants in thermotolerance assay demonstrated that the proteolytic activity, and not only the ATPase one, is essential for conferring thermotolerance. Immunoblot analyses of leaf extracts, isolated organelles and sub-fractionated chloroplast membranes localized FTSH11 mostly to chloroplast envelopes. Affinity purification followed by mass spectrometry analysis revealed interaction between FTSH11 and different components of the CPN60 chaperonin. In affinity enrichment assays, CPN60s as well as a number of envelope, stroma and thylakoid proteins were found associated with proteolytically inactive FTSH11. Comparative proteomic analysis of WT and knockout plants, grown at 20°C or exposed to 30°C for 6 h, revealed a plethora of upregulated chloroplast proteins in the knockout, some of them might be candidate substrates. Among these stood out TIC40, which was stabilized in the knockout line after recovery from heat stress, and three proteins that were found trapped in the affinity enrichment assay: the nucleotide antiporter PAPST2, the fatty acid binding protein FAP1 and the chaperone HSP70. The consistent behavior of these four proteins in different assays suggest that they are potential FTSH11 substrates.
Collapse
Affiliation(s)
- Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- *Correspondence: Zach Adam,
| | - Elinor Aviv-Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alona Keren-Paz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Leah Naveh
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mor Rozenberg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, United States
| |
Collapse
|
15
|
Proteolytic systems of archaea: slicing, dicing, and mincing in the extreme. Emerg Top Life Sci 2018; 2:561-580. [PMID: 32953999 DOI: 10.1042/etls20180025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Archaea are phylogenetically distinct from bacteria, and some of their proteolytic systems reflect this distinction. Here, the current knowledge of archaeal proteolysis is reviewed as it relates to protein metabolism, protein homeostasis, and cellular regulation including targeted proteolysis by proteasomes associated with AAA-ATPase networks and ubiquitin-like modification. Proteases and peptidases that facilitate the recycling of peptides to amino acids as well as membrane-associated and integral membrane proteases are also reviewed.
Collapse
|
16
|
Patel S. Pathogenicity-associated protein domains: The fiercely-conserved evolutionary signatures. GENE REPORTS 2017; 7:127-141. [PMID: 32363241 PMCID: PMC7185390 DOI: 10.1016/j.genrep.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022]
Abstract
Proteins have highly conserved domains that determine their functionality. Out of the thousands of domains discovered so far across all living forms, some of the predominant clinically-relevant domains include IENR1, HNHc, HELICc, Pro-kuma_activ, Tryp_SPc, Lactamase_B, PbH1, ChtBD3, CBM49, acidPPc, G3P_acyltransf, RPOL8c, KbaA, HAMP, HisKA, Hr1, Dak2, APC2, Citrate_ly_lig, DALR, VKc, YARHG, WR1, PWI, ZnF_BED, TUDOR, MHC_II_beta, Integrin_B_tail, Excalibur, DISIN, Cadherin, ACTIN, PROF, Robl_LC7, MIT, Kelch, GAS2, B41, Cyclin_C, Connexin_CCC, OmpH, Bac_rhodopsin, AAA, Knot1, NH, Galanin, IB, Elicitin, ACTH, Cache_2, CHASE, AgrB, PRP, IGR, and Antimicrobial21. These domains are distributed in nucleases/helicases, proteases, esterases, lipases, glycosylase, GTPases, phosphatases, methyltransferases, acyltransferase, acetyltransferase, polymerase, kinase, ligase, synthetase, oxidoreductase, protease inhibitors, nucleic acid binding proteins, adhesion and immunity-related proteins, cytoskeletal component-manipulating proteins, lipid biosynthesis and metabolism proteins, membrane-associated proteins, hormone-like and signaling proteins, etc. These domains are ubiquitous stretches or folds of the proteins in pathogens and allergens. Pathogenesis alleviation efforts can benefit enormously if the characteristics of these domains are known. Hence, this review catalogs and discusses the role of such pivotal domains, suggesting hypotheses for better understanding of pathogenesis at molecular level. Proteins have highly conserved regions or domains across pathogens and allergens. Knowledge on these critical domains can facilitate our understanding of pathogenesis mechanisms. Such immune manipulation-related domains include IENR1, HNHc, HELICc, ACTIN, PROF, Robl_LC7, OmpH etc. These domains are presnt in enzyme, transcription regulators, adhesion proteins, and hormones. This review discusses and hypothesizes on these domains.
Collapse
Key Words
- CARDs, caspase activation and recruitment domains
- CBM, carbohydrate binding module
- CTD, C-terminal domain
- ChtBD, chitin-binding domain
- Diversification
- HNHc, homing endonucleases
- HTH, helix-turn-helix
- IENR1, intron-encoded endonuclease repeat
- Immune manipulation
- PAMPs, pathogen associated molecular patterns
- Pathogenesis
- Phylogenetic conservation
- Protein domains
- SMART, Simple Modular Architecture Research Tool
- Shuffling
- UDG, uracil DNA glycosylase
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA
| |
Collapse
|
17
|
Wang F, Qi Y, Malnoë A, Choquet Y, Wollman FA, de Vitry C. The High Light Response and Redox Control of Thylakoid FtsH Protease in Chlamydomonas reinhardtii. MOLECULAR PLANT 2017; 10:99-114. [PMID: 27702692 DOI: 10.1016/j.molp.2016.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 05/23/2023]
Abstract
In Chlamydomonas reinhardtii, the major protease involved in the maintenance of photosynthetic machinery in thylakoid membranes, the FtsH protease, mostly forms large hetero-oligomers (∼1 MDa) comprising FtsH1 and FtsH2 subunits, whatever the light intensity for growth. Upon high light exposure, the FtsH subunits display a shorter half-life, which is counterbalanced by an increase in FTSH1/2 mRNA levels, resulting in the modest upregulation of FtsH1/2 proteins. Furthermore, we found that high light increases the protease activity through a hitherto unnoticed redox-controlled reduction of intermolecular disulfide bridges. We isolated a Chlamydomonas FTSH1 promoter-deficient mutant, ftsh1-3, resulting from the insertion of a TOC1 transposon, in which the high light-induced upregulation of FTSH1 gene expression is largely lost. In ftsh1-3, the abundance of FtsH1 and FtsH2 proteins are loosely coupled (decreased by 70% and 30%, respectively) with no formation of large and stable homo-oligomers. Using strains exhibiting different accumulation levels of the FtsH1 subunit after complementation of ftsh1-3, we demonstrate that high light tolerance is tightly correlated with the abundance of the FtsH protease. Thus, the response of Chlamydomonas to light stress involves higher levels of FtsH1/2 subunits associated into large complexes with increased proteolytic activity.
Collapse
Affiliation(s)
- Fei Wang
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Yafei Qi
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Alizée Malnoë
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Yves Choquet
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France.
| |
Collapse
|
18
|
Patel S. In silico analysis of Hepatitis C virus (HCV) polyprotein domains and their comparison with other pathogens and allergens to gain insight on pathogenicity mechanisms. Comput Biol Chem 2016; 65:91-102. [DOI: 10.1016/j.compbiolchem.2016.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/12/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
|
19
|
Smith DS, Siggins MK, Gierula M, Pichon B, Turner CE, Lynskey NN, Mosavie M, Kearns AM, Edwards RJ, Sriskandan S. Identification of commonly expressed exoproteins and proteolytic cleavage events by proteomic mining of clinically relevant UK isolates of Staphylococcus aureus. Microb Genom 2016; 2:e000049. [PMID: 28348843 PMCID: PMC5320583 DOI: 10.1099/mgen.0.000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022] Open
Abstract
The range of exoproteins and core exoproteome of 14 Staphylococcus aureus isolates representing major lineages associated with asymptomatic carriage and clinical disease in the UK was identified by MS proteomics using a combined database incorporating sequences derived from 39 S. aureus genomes. In all, 632 different proteins were identified and, of these, only 52 (8 %) were found in all 14 isolates whereas 144 (23 %) were found in just a single isolate. Comparison of the observed mass of each protein (based on migration by SDS-PAGE) with its predicted mass (based on amino acid sequence) suggested that 95 % of the proteins identified were not subject to any major post-translational modification. Migration of 5 % of the proteins was not as expected: 1 % of the proteins migrated at a mass greater than predicted, while 4 % appeared to have undergone proteolytic cleavage; these included SsaA2, Aur, SspP, Ebh as well as BlaR1, MecR1, FsH, OatA and LtaS. Intriguingly, a truncated SasG was produced by a single CC8 USA300-like strain. The analysis provided evidence of the marked heterogeneity in protein expression by S. aureus in broth, while yielding a core but narrow common exoproteome.
Collapse
Affiliation(s)
- Debra S Smith
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Matthew K Siggins
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Magdalena Gierula
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Bruno Pichon
- 2Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Claire E Turner
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Nicola N Lynskey
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Mia Mosavie
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Angela M Kearns
- 2Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Robert J Edwards
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Shiranee Sriskandan
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
20
|
Lu Y. Identification and Roles of Photosystem II Assembly, Stability, and Repair Factors in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:168. [PMID: 26909098 PMCID: PMC4754418 DOI: 10.3389/fpls.2016.00168] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/31/2016] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) is a multi-component pigment-protein complex that is responsible for water splitting, oxygen evolution, and plastoquinone reduction. Components of PSII can be classified into core proteins, low-molecular-mass proteins, extrinsic oxygen-evolving complex (OEC) proteins, and light-harvesting complex II proteins. In addition to these PSII subunits, more than 60 auxiliary proteins, enzymes, or components of thylakoid protein trafficking/targeting systems have been discovered to be directly or indirectly involved in de novo assembly and/or the repair and reassembly cycle of PSII. For example, components of thylakoid-protein-targeting complexes and the chloroplast-vesicle-transport system were found to deliver PSII subunits to thylakoid membranes. Various auxiliary proteins, such as PsbP-like (Psb stands for PSII) and light-harvesting complex-like proteins, atypical short-chain dehydrogenase/reductase family proteins, and tetratricopeptide repeat proteins, were discovered to assist the de novo assembly and stability of PSII and the repair and reassembly cycle of PSII. Furthermore, a series of enzymes were discovered to catalyze important enzymatic steps, such as C-terminal processing of the D1 protein, thiol/disulfide-modulation, peptidylprolyl isomerization, phosphorylation and dephosphorylation of PSII core and antenna proteins, and degradation of photodamaged PSII proteins. This review focuses on the current knowledge of the identities and molecular functions of different types of proteins that influence the assembly, stability, and repair of PSII in the higher plant Arabidopsis thaliana.
Collapse
|
21
|
Hazra S, Henderson JN, Liles K, Hilton MT, Wachter RM. Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase: product inhibition, cooperativity, and magnesium activation. J Biol Chem 2015; 290:24222-36. [PMID: 26283786 PMCID: PMC4591810 DOI: 10.1074/jbc.m115.651745] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/04/2015] [Indexed: 12/24/2022] Open
Abstract
In many photosynthetic organisms, tight-binding Rubisco inhibitors are released by the motor protein Rubisco activase (Rca). In higher plants, Rca plays a pivotal role in regulating CO2 fixation. Here, the ATPase activity of 0.005 mm tobacco Rca was monitored under steady-state conditions, and global curve fitting was utilized to extract kinetic constants. The kcat was best fit by 22.3 ± 4.9 min(-1), the Km for ATP by 0.104 ± 0.024 mm, and the Ki for ADP by 0.037 ± 0.007 mm. Without ADP, the Hill coefficient for ATP hydrolysis was extracted to be 1.0 ± 0.1, indicating noncooperative behavior of homo-oligomeric Rca assemblies. However, the addition of ADP was shown to introduce positive cooperativity between two or more subunits (Hill coefficient 1.9 ± 0.2), allowing for regulation via the prevailing ATP/ADP ratio. ADP-mediated activation was not observed, although larger amounts led to competitive product inhibition of hydrolytic activity. The catalytic efficiency increased 8.4-fold upon cooperative binding of a second magnesium ion (Hill coefficient 2.5 ± 0.5), suggesting at least three conformational states (ATP-bound, ADP-bound, and empty) within assemblies containing an average of about six subunits. The addition of excess Rubisco (24:1, L8S8/Rca6) and crowding agents did not modify catalytic rates. However, high magnesium provided for thermal Rca stabilization. We propose that magnesium mediates the formation of closed hexameric toroids capable of high turnover rates and amenable to allosteric regulation. We suggest that in vivo, the Rca hydrolytic activity is tuned by fluctuating [Mg(2+)] in response to changes in available light.
Collapse
Affiliation(s)
- Suratna Hazra
- From the Department of Chemistry and Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287
| | - J Nathan Henderson
- From the Department of Chemistry and Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287
| | - Kevin Liles
- From the Department of Chemistry and Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287
| | - Matthew T Hilton
- From the Department of Chemistry and Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287
| | - Rebekka M Wachter
- From the Department of Chemistry and Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
22
|
Toledo A, Pérez A, Coleman JL, Benach JL. The lipid raft proteome of Borrelia burgdorferi. Proteomics 2015; 15:3662-75. [PMID: 26256460 DOI: 10.1002/pmic.201500093] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/09/2015] [Accepted: 08/03/2015] [Indexed: 12/15/2022]
Abstract
Eukaryotic lipid rafts are membrane microdomains that have significant amounts of cholesterol and a selective set of proteins that have been associated with multiple biological functions. The Lyme disease agent, Borrelia burgdorferi, is one of an increasing number of bacterial pathogens that incorporates cholesterol onto its membrane, and form cholesterol glycolipid domains that possess all the hallmarks of eukaryotic lipid rafts. In this study, we isolated lipid rafts from cultured B. burgdorferi as a detergent resistant membrane (DRM) fraction on density gradients, and characterized those molecules that partitioned exclusively or are highly enriched in these domains. Cholesterol glycolipids, the previously known raft-associated lipoproteins OspA and OpsB, and cholera toxin partitioned into the lipid rafts fraction indicating compatibility with components of the DRM. The proteome of lipid rafts was analyzed by a combination of LC-MS/MS or MudPIT. Identified proteins were analyzed in silico for parameters that included localization, isoelectric point, molecular mass and biological function. The proteome provided a consistent pattern of lipoproteins, proteases and their substrates, sensing molecules and prokaryotic homologs of eukaryotic lipid rafts. This study provides the first analysis of a prokaryotic lipid raft and has relevance for the biology of Borrelia, other pathogenic bacteria, as well as for the evolution of these structures. All MS data have been deposited in the ProteomeXchange with identifier PXD002365 (http://proteomecentral.proteomexchange.org/dataset/PXD002365).
Collapse
Affiliation(s)
- Alvaro Toledo
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Alberto Pérez
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - James L Coleman
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.,New York State Department of Health, Stony Brook University, Stony Brook, NY, USA
| | - Jorge L Benach
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
23
|
Hettich J, Ryan SD, de Souza ON, Saraiva Macedo Timmers LF, Tsai S, Atai NA, da Hora CC, Zhang X, Kothary R, Snapp E, Ericsson M, Grundmann K, Breakefield XO, Nery FC. Biochemical and cellular analysis of human variants of the DYT1 dystonia protein, TorsinA/TOR1A. Hum Mutat 2014; 35:1101-13. [PMID: 24930953 DOI: 10.1002/humu.22602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022]
Abstract
Early-onset dystonia is associated with the deletion of one of a pair of glutamic acid residues (c.904_906delGAG/c.907_909delGAG; p.Glu302del/Glu303del; ΔE 302/303) near the carboxyl-terminus of torsinA, a member of the AAA(+) protein family that localizes to the endoplasmic reticulum lumen and nuclear envelope. This deletion commonly underlies early-onset DYT1 dystonia. While the role of the disease-causing mutation, torsinAΔE, has been established through genetic association studies, it is much less clear whether other rare human variants of torsinA are pathogenic. Two missense variations have been described in single patients: R288Q (c.863G>A; p.Arg288Gln; R288Q) identified in a patient with onset of severe generalized dystonia and myoclonus since infancy and F205I (c.613T>A, p.Phe205Ile; F205I) in a psychiatric patient with late-onset focal dystonia. In this study, we have undertaken a series of analyses comparing the biochemical and cellular effects of these rare variants to torsinAΔE and wild-type (wt) torsinA to reveal whether there are common dysfunctional features. The results revealed that the variants, R288Q and F205I, are more similar in their properties to torsinAΔE protein than to torsinAwt. These findings provide functional evidence for the potential pathogenic nature of these rare sequence variants in the TOR1A gene, thus implicating these pathologies in the development of dystonia.
Collapse
Affiliation(s)
- Jasmin Hettich
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts; Department of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wong WC, Maurer-Stroh S, Eisenhaber B, Eisenhaber F. On the necessity of dissecting sequence similarity scores into segment-specific contributions for inferring protein homology, function prediction and annotation. BMC Bioinformatics 2014; 15:166. [PMID: 24890864 PMCID: PMC4061105 DOI: 10.1186/1471-2105-15-166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 05/27/2014] [Indexed: 02/01/2023] Open
Abstract
Background Protein sequence similarities to any types of non-globular segments (coiled coils, low complexity regions, transmembrane regions, long loops, etc. where either positional sequence conservation is the result of a very simple, physically induced pattern or rather integral sequence properties are critical) are pertinent sources for mistaken homologies. Regretfully, these considerations regularly escape attention in large-scale annotation studies since, often, there is no substitute to manual handling of these cases. Quantitative criteria are required to suppress events of function annotation transfer as a result of false homology assignments. Results The sequence homology concept is based on the similarity comparison between the structural elements, the basic building blocks for conferring the overall fold of a protein. We propose to dissect the total similarity score into fold-critical and other, remaining contributions and suggest that, for a valid homology statement, the fold-relevant score contribution should at least be significant on its own. As part of the article, we provide the DissectHMMER software program for dissecting HMMER2/3 scores into segment-specific contributions. We show that DissectHMMER reproduces HMMER2/3 scores with sufficient accuracy and that it is useful in automated decisions about homology for instructive sequence examples. To generalize the dissection concept for cases without 3D structural information, we find that a dissection based on alignment quality is an appropriate surrogate. The approach was applied to a large-scale study of SMART and PFAM domains in the space of seed sequences and in the space of UniProt/SwissProt. Conclusions Sequence similarity core dissection with regard to fold-critical and other contributions systematically suppresses false hits and, additionally, recovers previously obscured homology relationships such as the one between aquaporins and formate/nitrite transporters that, so far, was only supported by structure comparison.
Collapse
Affiliation(s)
- Wing-Cheong Wong
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore.
| | | | | | | |
Collapse
|
25
|
Kim YC, Tarr AW, Penfold CN. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1717-31. [PMID: 24746518 DOI: 10.1016/j.bbamcr.2014.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/03/2023]
Abstract
Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein-protein interactions (PPI), protein-lipid interactions and the role of order-disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Young Chan Kim
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Alexander W Tarr
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Christopher N Penfold
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
26
|
Malnoë A, Wang F, Girard-Bascou J, Wollman FA, de Vitry C. Thylakoid FtsH protease contributes to photosystem II and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions. THE PLANT CELL 2014; 26:373-90. [PMID: 24449688 PMCID: PMC3963582 DOI: 10.1105/tpc.113.120113] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/28/2013] [Accepted: 12/18/2013] [Indexed: 05/18/2023]
Abstract
FtsH is the major thylakoid membrane protease found in organisms performing oxygenic photosynthesis. Here, we show that FtsH from Chlamydomonas reinhardtii forms heterooligomers comprising two subunits, FtsH1 and FtsH2. We characterized this protease using FtsH mutants that we identified through a genetic suppressor approach that restored phototrophic growth of mutants originally defective for cytochrome b6f accumulation. We thus extended the spectrum of FtsH substrates in the thylakoid membranes beyond photosystem II, showing the susceptibility of cytochrome b6f complexes (and proteins involved in the ci heme binding pathway to cytochrome b6) to FtsH. We then show how FtsH is involved in the response of C. reinhardtii to macronutrient stress. Upon phosphorus starvation, photosynthesis inactivation results from an FtsH-sensitive photoinhibition process. In contrast, we identified an FtsH-dependent loss of photosystem II and cytochrome b6f complexes in darkness upon sulfur deprivation. The D1 fragmentation pattern observed in the latter condition was similar to that observed in photoinhibitory conditions, which points to a similar degradation pathway in these two widely different environmental conditions. Our experiments thus provide extensive evidence that FtsH plays a major role in the quality control of thylakoid membrane proteins and in the response of C. reinhardtii to light and macronutrient stress.
Collapse
|
27
|
Abstract
FtsH, a member of the AAA (ATPases associated with a variety of cellular activities) family of proteins, is an ATP-dependent protease of ∼71 kDa anchored to the inner membrane. It plays crucial roles in a variety of cellular processes. It is responsible for the degradation of both membrane and cytoplasmic substrate proteins. Substrate proteins are unfolded and translocated through the central pore of the ATPase domain into the proteolytic chamber, where the polypeptide chains are processively degraded into short peptides. FtsH is not only involved in the proteolytic elimination of unnecessary proteins, but also in the proteolytic regulation of a number of cellular functions. Its role in proteolytic regulation is achieved by one of two approaches, either the cellular levels of a regulatory protein are controlled by processive degradation of the entire protein, or the activity of a particular substrate protein is modified by processing. In the latter case, protein processing requires the presence of a stable domain within the substrate. Since FtsH does not have a robust unfolding activity, this stable domain is sufficient to abort processive degradation of the protein - resulting in release of a stable protein fragment.
Collapse
Affiliation(s)
- Takashi Okuno
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan,
| | | |
Collapse
|
28
|
Westphal K, Langklotz S, Thomanek N, Narberhaus F. A trapping approach reveals novel substrates and physiological functions of the essential protease FtsH in Escherichia coli. J Biol Chem 2012; 287:42962-71. [PMID: 23091052 DOI: 10.1074/jbc.m112.388470] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ(32)) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsH(trap)) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsH(trap) is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsH(trap) and wild-type FtsH (FtsH(WT)) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsH(trap) preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsH(trap) revealed previously unknown biological functions of the physiologically most important AAA(+) protease in E. coli.
Collapse
Affiliation(s)
- Kai Westphal
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | | | | |
Collapse
|
29
|
Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine. Nat Struct Mol Biol 2012; 19:616-22. [PMID: 22562135 PMCID: PMC3372766 DOI: 10.1038/nsmb.2288] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/02/2012] [Indexed: 11/17/2022]
Abstract
In the E. coli ClpXP protease, a hexameric ClpX ring couples ATP binding and hydrolysis to mechanical protein unfolding and translocation into the ClpP degradation chamber. Rigid-body packing between the small AAA+ domain of each ClpX subunit and the large AAA+ domain of its neighbor stabilizes the hexamer. By connecting the parts of each rigid-body unit with disulfide bonds or linkers, we created covalently closed rings that retained robust activity. A single-residue insertion in the hinge that connects the large and small AAA+ domains and forms part of the nucleotide-binding site uncoupled ATP hydrolysis from productive unfolding. We propose that ATP hydrolysis drives changes in the conformation of one hinge and its flanking domains, which are propagated around the AAA+ ring via the topologically constrained set of rigid-body units and hinges to produce coupled ring motions that power substrate unfolding.
Collapse
|
30
|
Moldavski O, Levin-Kravets O, Ziv T, Adam Z, Prag G. The hetero-hexameric nature of a chloroplast AAA+ FtsH protease contributes to its thermodynamic stability. PLoS One 2012; 7:e36008. [PMID: 22558304 PMCID: PMC3339871 DOI: 10.1371/journal.pone.0036008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/29/2012] [Indexed: 12/27/2022] Open
Abstract
FtsH is an evolutionary conserved membrane-bound metalloprotease complex. While in most prokaryotes FtsH is encoded by a single gene, multiple FtsH genes are found in eukaryotes. Genetic and biochemical data suggest that the Arabidopsis chloroplast FtsH is a hetero-hexamer. This raises the question why photosynthetic organisms require a heteromeric complex, whereas in most bacteria a homomeric one is sufficient. To gain structural information of the possible complexes, the Arabidopsis FtsH2 (type B) and FtsH5 (type A) were modeled. An in silico study with mixed models of FtsH2/5 suggests that heteromeric hexamer structure with ratio of 4:2 is more likely to exists. Specifically, calculation of the buried surface area at the interfaces between neighboring subunits revealed that a hetero-complex should be thermodynamically more stable than a homo-hexamer, due to the presence of additional hydrophobic and hydrophilic interactions. To biochemically assess this model, we generated Arabidopsis transgenic plants, expressing epitope-tagged FtsH2 and immuno-purified the protein. Mass-spectrometry analysis showed that FtsH2 is associated with FtsH1, FtsH5 and FtsH8. Interestingly, we found that 'type B' subunits (FtsH2 and FtsH8) were 2-3 fold more abundant than 'type A' (FtsH1 and FtsH5). The biochemical data corroborate the in silico model and suggest that the thylakoid FtsH hexamer is composed of two 'type A' and four 'type B' subunits.
Collapse
Affiliation(s)
- Ofer Moldavski
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Olga Levin-Kravets
- Department of Biochemistry and Molecular Biology and the Institute for Structural Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Ziv
- Department of Biology, Smoler Proteomics Center, Technion, Haifa, Israel
| | - Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Gali Prag
- Department of Biochemistry and Molecular Biology and the Institute for Structural Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Kato Y, Kouso T, Sakamoto W. Variegated tobacco leaves generated by chloroplast FtsH suppression: implication of FtsH function in the maintenance of thylakoid membranes. PLANT & CELL PHYSIOLOGY 2012; 53:391-404. [PMID: 22197884 DOI: 10.1093/pcp/pcr189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mutants lacking a thylakoid membrane-bound metalloprotease, FtsH, are known to cause leaf variegation in Arabidopsis. However, the effect of reduced FtsH levels on leaf variegation has scarcely been examined in other plants. In this study, we performed RNA interference (RNAi) by which FtsH expression was suppressed in tobacco. The resulting FtsH knock-down tobacco plants showed variegation in their leaves, and a negative correlation between the degree of variegation and the level of FtsH, which supported earlier observations in Arabidopsis. A decrease of NtFtsH2 as well as NtFtsH1 suggested that these are the two major isoforms comprising the FtsH complex in tobacco chloroplasts. The RNAi tobacco lines also showed photoinhibition-vulnerable phenotypes, as evidenced by high-light-sensitive PSII activity and retarded degradation of D1 protein. Interestingly, the formation of variegated sectors during leaf development appeared to differ between Arabidopsis and tobacco. In contrast to the formation of variegation in Arabidopsis, the yellow sectors in FtsH RNAi tobacco emerged from green leaves at a late stage of leaf development. A series of cytological observations implied that thylakoid membranes were dismantled after development had already occurred. Late formation of variegation in FtsH RNAi tobacco suggested that the heteromeric FtsH complex is important for maintaining thylakoid membranes.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | | | | |
Collapse
|
32
|
Muramatsu M, Hihara Y. Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses. JOURNAL OF PLANT RESEARCH 2012; 125:11-39. [PMID: 22006212 DOI: 10.1007/s10265-011-0454-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 05/04/2023]
Abstract
Photosynthetic organisms have evolved various acclimatory responses to high-light (HL) conditions to maintain a balance between energy supply (light harvesting and electron transport) and consumption (cellular metabolism) and to protect the photosynthetic apparatus from photodamage. The molecular mechanism of HL acclimation has been extensively studied in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Whole genome DNA microarray analyses have revealed that the change in gene expression profile under HL is closely correlated with subsequent acclimatory responses such as (1) acceleration in the rate of photosystem II turnover, (2) downregulation of light harvesting capacity, (3) development of a protection mechanism for the photosystems against excess light energy, (4) upregulation of general protection mechanism components, and (5) regulation of carbon and nitrogen assimilation. In this review article, we survey recent progress in the understanding of the molecular mechanisms of these acclimatory responses in Synechocystis sp. PCC 6803. We also briefly describe attempts to understand HL acclimation in various cyanobacterial species in their natural environments.
Collapse
Affiliation(s)
- Masayuki Muramatsu
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Ibaraki, 305-8602, Japan
| | | |
Collapse
|
33
|
Langklotz S, Baumann U, Narberhaus F. Structure and function of the bacterial AAA protease FtsH. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:40-8. [PMID: 21925212 DOI: 10.1016/j.bbamcr.2011.08.015] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
Proteolysis of regulatory proteins or key enzymes of biosynthetic pathways is a universal mechanism to rapidly adjust the cellular proteome to particular environmental needs. Among the five energy-dependent AAA(+) proteases in Escherichia coli, FtsH is the only essential protease. Moreover, FtsH is unique owing to its anchoring to the inner membrane. This review describes the structural and functional properties of FtsH. With regard to its role in cellular quality control and regulatory circuits, cytoplasmic and membrane substrates of the FtsH protease are depicted and mechanisms of FtsH-dependent proteolysis are discussed.
Collapse
Affiliation(s)
- Sina Langklotz
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
34
|
Joly N, Zhang N, Buck M, Zhang X. Coupling AAA protein function to regulated gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:108-16. [PMID: 21906631 DOI: 10.1016/j.bbamcr.2011.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
AAA proteins (ATPases Associated with various cellular Activities) are involved in almost all essential cellular processes ranging from DNA replication, transcription regulation to protein degradation. One class of AAA proteins has evolved to adapt to the specific task of coupling ATPase activity to activating transcription. These upstream promoter DNA bound AAA activator proteins contact their target substrate, the σ(54)-RNA polymerase holoenzyme, through DNA looping, reminiscent of the eukaryotic enhance binding proteins. These specialised macromolecular machines remodel their substrates through ATP hydrolysis that ultimately leads to transcriptional activation. We will discuss how AAA proteins are specialised for this specific task.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
35
|
The roles of chloroplast proteases in the biogenesis and maintenance of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:239-46. [PMID: 21645493 DOI: 10.1016/j.bbabio.2011.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 05/03/2011] [Accepted: 05/17/2011] [Indexed: 12/28/2022]
Abstract
Photosystem II (PSII) catalyzes one of the key reactions of photosynthesis, the light-driven conversion of water into oxygen. Although the structure and function of PSII have been well documented, our understanding of the biogenesis and maintenance of PSII protein complexes is still limited. A considerable number of auxiliary and regulatory proteins have been identified to be involved in the regulation of this process. The carboxy-terminal processing protease CtpA, the serine-type protease DegP and the ATP-dependent thylakoid-bound metalloprotease FtsH are critical for the biogenesis and maintenance of PSII. Here, we summarize and discuss the structural and functional aspects of these chloroplast proteases in these processes. This article is part of a Special Issue entitled: SI: Photosystem II.
Collapse
|
36
|
Yoshioka M, Nakayama Y, Yoshida M, Ohashi K, Morita N, Kobayashi H, Yamamoto Y. Quality control of photosystem II: FtsH hexamers are localized near photosystem II at grana for the swift repair of damage. J Biol Chem 2010; 285:41972-81. [PMID: 20921219 DOI: 10.1074/jbc.m110.117432] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The reaction center-binding D1 protein of Photosystem II is oxidatively damaged by excessive visible light or moderate heat stress. The metalloprotease FtsH has been suggested as responsible for the degradation of the D1 protein. We have analyzed the distribution and subunit structures of FtsH in spinach thylakoids and various membrane fractions derived from the thylakoids using clear native polyacrylamide gel electrophoresis and Western blot analysis. FtsH was found not only in the stroma thylakoids but also in the Photosystem II-enriched grana membranes. Monomeric, dimeric, and hexameric FtsH proteases were present as major subunit structures in thylakoids, whereas only hexameric FtsH proteases were detected in Triton X-100-solubilized Photosystem II membranes. Importantly, among the membrane fractions examined, hexameric FtsH proteases were most abundant in the Photosystem II membranes. In accordance with this finding, D1 degradation took place in the Photosystem II membranes under light stress. Sucrose density gradient centrifugation analysis of thylakoids and the Photosystem II membranes solubilized with n-dodecyl-β-d-maltoside and a chemical cross-linking study of thylakoids showed localization of FtsH near the Photosystem II light-harvesting chlorophyll-protein supercomplexes in the grana. These results suggest that part of the FtsH hexamers are juxtapositioned to PSII complexes in the grana in darkness, carrying out immediate degradation of the photodamaged D1 protein under light stress.
Collapse
Affiliation(s)
- Miho Yoshioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumpf MPH, Buck M. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 2010; 34:797-827. [PMID: 20636484 DOI: 10.1111/j.1574-6976.2010.00240.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The bacterial phage shock protein (Psp) response functions to help cells manage the impacts of agents impairing cell membrane function. The system has relevance to biotechnology and to medicine. Originally discovered in Escherichia coli, Psp proteins and homologues are found in Gram-positive and Gram-negative bacteria, in archaea and in plants. Study of the E. coli and Yersinia enterocolitica Psp systems provides insights into how membrane-associated sensory Psp proteins might perceive membrane stress, signal to the transcription apparatus and use an ATP-hydrolysing transcription activator to produce effector proteins to overcome the stress. Progress in understanding the mechanism of signal transduction by the membrane-bound Psp proteins, regulation of the psp gene-specific transcription activator and the cell biology of the system is presented and discussed. Many features of the action of the Psp system appear to be dominated by states of self-association of the master effector, PspA, and the transcription activator, PspF, alongside a signalling pathway that displays strong conditionality in its requirement.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, South Kensington, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bandyopadhyay K, Parua PK, Datta AB, Parrack P. Escherichia coli HflK and HflC can individually inhibit the HflB (FtsH)-mediated proteolysis of lambdaCII in vitro. Arch Biochem Biophys 2010; 501:239-43. [PMID: 20599668 DOI: 10.1016/j.abb.2010.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/14/2010] [Accepted: 06/25/2010] [Indexed: 11/25/2022]
Abstract
LambdaCII is the key protein that influences the lysis/lysogeny decision of lambda by activating several phage promoters. The effect of CII is modulated by a number of phage and host proteins including Escherichia coli HflK and HflC. These membrane proteins copurify as a tightly bound complex 'HflKC' that inhibits the HflB (FtsH)-mediated proteolysis of CII both in vitro and in vivo. Individual purification of HflK and HflC has not been possible so far, since each requires the presence of the other for proper folding. We report the first purification of HflK and HflC separately as active and functional proteins and show that each can interact with HflB on its own and each inhibits the proteolysis of CII. They also inhibit the proteolysis of E. coli sigma(32) by HflB. We show that at low concentrations each protein is dimeric, based on which we propose a scheme for the mutual interactions of HflB, HflK and HflC in a supramolecular HflBKC protease complex.
Collapse
Affiliation(s)
- Kaustav Bandyopadhyay
- Department of Biochemistry, Bose Institute P-1/12, C.I.T. Scheme VIIM, Kolkata 700 054, India
| | | | | | | |
Collapse
|
39
|
Kinouchi T, Fujii N. Structural Consideration of Mammalian D-Aspartyl Endopeptidase. Chem Biodivers 2010; 7:1403-7. [DOI: 10.1002/cbdv.200900346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
New Insights into the Types and Function of Proteases in Plastids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:185-218. [DOI: 10.1016/s1937-6448(10)80004-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Narberhaus F, Obrist M, Führer F, Langklotz S. Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents. Res Microbiol 2009; 160:652-9. [DOI: 10.1016/j.resmic.2009.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 12/01/2022]
|
42
|
Karnataki A, DeRocher AE, Feagin JE, Parsons M. Sequential processing of the Toxoplasma apicoplast membrane protein FtsH1 in topologically distinct domains during intracellular trafficking. Mol Biochem Parasitol 2009; 166:126-33. [PMID: 19450729 PMCID: PMC2817949 DOI: 10.1016/j.molbiopara.2009.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/05/2009] [Accepted: 03/06/2009] [Indexed: 12/24/2022]
Abstract
FtsH proteins are hexameric transmembrane proteases found in chloroplasts, mitochondria and bacteria. In the protozoan Toxoplasma gondii, FtsH1 is localized to membranes of the apicoplast, a relict chloroplast present in many apicomplexan parasites. We have shown that although T. gondii FtsH1 lacks the typical bipartite targeting presequence seen on apicoplast luminal proteins, it is targeted to the apicoplast via the endoplasmic reticulum. In this report, we show that FtsH1 undergoes processing events to remove both the N- and C-termini, which are topologically separated by the membrane in which FtsH1 is embedded. Pulse-chase analysis showed that N-terminal cleavage precedes C-terminal cleavage. Unlike the processing of the N-terminal transit peptide of luminal proteins, which occurs in the apicoplast, analysis of ER-retained mutants showed that N-terminal processing of FtsH1 occurs in the endoplasmic reticulum. Two of four FtsH1 mutants bearing internal epitope tags accumulated in structures peripheral to the apicoplast, implying that FtsH1 trafficking is highly sensitive to changes in protein structure. These mutant proteins did not undergo C-terminal processing, suggesting that this processing step occurs after localization to the plastid. Mutation of the peptidase active site demonstrated that neither processing event occurs in cis. These data support a model in which multiple proteases act at different points of the trafficking pathway to form mature FtsH1, making its processing more complex than other FtsHs and unique among apicoplast proteins described thus far.
Collapse
Affiliation(s)
- Anuradha Karnataki
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109, USA
- Interdisciplinary Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98195
| | - Amy E. DeRocher
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109, USA
| | - Jean E. Feagin
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109, USA
- Interdisciplinary Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98195
| | - Marilyn Parsons
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109, USA
- Interdisciplinary Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
43
|
Epistatic effects of the protease/chaperone HflB on some damaged forms of the Escherichia coli ammonium channel AmtB. Genetics 2009; 183:1327-40. [PMID: 19596908 DOI: 10.1534/genetics.109.103747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli ammonium channel AmtB is a trimer in which each monomer carries a pore for substrate conduction and a cytoplasmic C-terminal extension of approximately 25 residues. Deletion of the entire extension leaves the protein with intermediate activity, but some smaller lesions in this region completely inactivate AmtB, as do some lesions in its cytoplasmic loops. We here provide genetic evidence that inactivation depends on the essential protease HflB, which appears to cause inactivation not as a protease but as a chaperone. Selection for restored function of AmtB is a positive selection for loss of the ATPase/chaperone activity of HflB and reveals that the conditional lethal phenotype for hflB is cold sensitivity. Deletion of only a few residues from the C terminus of damaged AmtB proteins seems to prevent HflB from acting on them. Either yields the intermediate activity of a complete C-terminal deletion. HflB apparently "tacks" damaged AmtB tails to the adjacent monomers. Knowing that HflB has intervened is prerequisite to determining the functional basis for AmtB inactivation.
Collapse
|
44
|
Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T, Yamamoto Y. Quality control of photosystem II: impact of light and heat stresses. PHOTOSYNTHESIS RESEARCH 2008; 98:589-608. [PMID: 18937045 DOI: 10.1007/s11120-008-9372-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 09/15/2008] [Indexed: 05/19/2023]
Abstract
Photosystem II is vulnerable to various abiotic stresses such as strong visible light and heat. Under both stresses, the damage seems to be triggered by reactive oxygen species, and the most critical damage occurs in the reaction center-binding D1 protein. Recent progress has been made in identifying the protease involved in the degradation of the photo- or heat-damaged D1 protein, the ATP-dependent metalloprotease FtsH. Another important result has been the discovery that the damaged D1 protein aggregates with nearby polypeptides such as the D2 protein and the antenna chlorophyll-binding protein CP43. The degradation and aggregation of the D1 protein occur simultaneously, but the relationship between the two is not known. We suggest that phosphorylation and dephosphorylation of the D1 protein, as well as the binding of the extrinsic PsbO protein to Photosystem II, play regulatory roles in directing the damaged D1 protein to the two alternative pathways.
Collapse
Affiliation(s)
- Yasusi Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rotanova TV, Melnikov EE. The ATP-dependent proteases and proteolytic complexes involved into intracellular protein degradation. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2008. [DOI: 10.1134/s1990750808030049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Joly N, Burrows PC, Buck M. An intramolecular route for coupling ATPase activity in AAA+ proteins for transcription activation. J Biol Chem 2008; 283:13725-35. [PMID: 18326037 DOI: 10.1074/jbc.m800801200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AAA+ proteins (ATPases associated with various cellular activities) contribute to many cellular processes and typically function as higher order oligomers permitting the coordination of nucleotide hydrolysis for functional output, which leads to substrate remodeling. The precise mechanisms that enable the relay of nucleotide hydrolysis to their specific functional outputs are largely unknown. Here we use PspF, a specialized AAA+ protein required for enhancer-dependent transcription activation in Escherichia coli, as a model system to address this question. We demonstrate that a conserved asparagine is involved in internal organization of the oligomeric ring, regulation of ATPase activity by "trans" factors, and optimizing substrate remodeling. We provide evidence that the spatial relationship between the asparagine residue and the Walker B motif is one key element in the conformational signaling pathway that leads to substrate remodeling. Such functional organization most likely applies to other AAA+ proteins, including Ltag (simian virus 40), Rep40 (Adeno-associated virus-2), and p97 (Mus musculus) in which the asparagine to Walker B motif relationship is conserved.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
47
|
Zweers JC, Barák I, Becher D, Driessen AJ, Hecker M, Kontinen VP, Saller MJ, Vavrová L, van Dijl JM. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microb Cell Fact 2008; 7:10. [PMID: 18394159 PMCID: PMC2323362 DOI: 10.1186/1475-2859-7-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Accepted: 04/04/2008] [Indexed: 01/16/2023] Open
Abstract
Background The Gram-positive bacterium Bacillus subtilis is an important producer of high quality industrial enzymes and a few eukaryotic proteins. Most of these proteins are secreted into the growth medium, but successful examples of cytoplasmic protein production are also known. Therefore, one may anticipate that the high protein production potential of B. subtilis can be exploited for protein complexes and membrane proteins to facilitate their functional and structural analysis. The high quality of proteins produced with B. subtilis results from the action of cellular quality control systems that efficiently remove misfolded or incompletely synthesized proteins. Paradoxically, cellular quality control systems also represent bottlenecks for the production of various heterologous proteins at significant concentrations. Conclusion While inactivation of quality control systems has the potential to improve protein production yields, this could be achieved at the expense of product quality. Mechanisms underlying degradation of secretory proteins are nowadays well understood and often controllable. It will therefore be a major challenge for future research to identify and modulate quality control systems of B. subtilis that limit the production of high quality protein complexes and membrane proteins, and to enhance those systems that facilitate assembly of these proteins.
Collapse
Affiliation(s)
- Jessica C Zweers
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P,O, Box 30001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Prohibitins comprise a family of highly conserved ubiquitous eukaryotic proteins that mainly localize to the mitochondria. They have been implicated in important cellular processes such as cellular signaling and transcriptional control, apoptosis, cellular senescence, and mitochondrial biogenesis. Using molecular modeling techniques, we have generated structural models of human prohibitins BAP32 and BAP37, which have previously been shown to exist as large ringlike oligomers in the membrane-bound state. The middle domain of prohibitins is evolutionary conserved in the family of SPFH (PHB) domain proteins. On the basis of the known structure of flotillin-2, another member of the SPFH-domain family, we have generated homology models for BAP32 and BAP37, and elucidated the implications for formation of high molecular weight oligomers. A model for the dimeric-building block of BAP32: BAP37 for such assemblies was generated and its stability scrutinized by molecular dynamics simulations. The model of BAP32 was also analyzed as to potential ligand-binding sites and the previously identified ligand melanogenin was docked into a membrane-proximal cavity. The results are discussed in the context of prohibitin interactions with mitochondrial AAA-proteases and we suggest two possible interaction interfaces between the BAP32:BAP37 building block and the protease.
Collapse
Affiliation(s)
- Anja Winter
- Institute of Structural and Molecular Biology, School of Biological Sciences, The University of Edinburgh, Scotland, United Kingdom
| | | | | |
Collapse
|
49
|
Tucker PA, Sallai L. The AAA+ superfamily--a myriad of motions. Curr Opin Struct Biol 2007; 17:641-52. [PMID: 18023171 DOI: 10.1016/j.sbi.2007.09.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/13/2007] [Accepted: 09/28/2007] [Indexed: 11/19/2022]
Abstract
ATPases associated with various cellular activities are aptly named. They are the engines that drive processes such as protein degradation, protein refolding, sigma(54)-dependent transcriptional activation, DNA helicase activity, DNA replication initiation, and cellular cargo transport. Recent structural information derived from biochemical studies, electron microscopy (EM), small-angle X-ray scattering (SAXS), and X-ray crystallography are beginning to show how, at an atomic level, some of these systems use the conformational changes generated during the ATP hydrolysis cycle. Structural highlights in the processes mentioned are provided by work on ClpX and p97, ClpB, PspF and NtrC, RuvBL1, DnaA and the papillomavirus E1 initiator protein and dynein. The results emphasize the versatility of the AAA+ core domain.
Collapse
Affiliation(s)
- Paul A Tucker
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D22603 Hamburg, Germany.
| | | |
Collapse
|
50
|
Karnataki A, Derocher AE, Coppens I, Feagin JE, Parsons M. A membrane protease is targeted to the relict plastid of toxoplasma via an internal signal sequence. Traffic 2007; 8:1543-53. [PMID: 17822404 DOI: 10.1111/j.1600-0854.2007.00637.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The apicoplast is a secondary plastid found in Toxoplasma gondii, Plasmodium species and many other apicomplexan parasites. Although the apicoplast is essential to parasite survival, little is known about the protein constituents of the four membranes surrounding the organelle. Luminal proteins are directed to the endoplasmic reticulum (ER) by an N-terminal signal sequence and from there to the apicoplast by a transit peptide domain. We have identified a membrane-associated AAA protease in T. gondii, FtsH1. Although the protein lacks a canonical bipartite-targeting sequence, epitope-tagged FtsH1 colocalizes with the recently identified apicoplast membrane marker APT1 and immunoelectron microscopy confirms the residence of FtsH1 on plastid membranes. Trafficking appears to occur via the ER because deletion mutants lacking the peptidase domain are retained in the ER. When extended to include the peptidase domain, the protein trafficks properly. The transmembrane domain is required for localization of the full-length protein to the apicoplast and a truncation mutant to the ER. Thus, at least two distinct regions of FtsH1 are required for proper trafficking, but they differ from those of luminal proteins and would not be detected by the algorithms currently used to identify apicoplast proteins.
Collapse
Affiliation(s)
- Anuradha Karnataki
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|