1
|
Kellaway SG, Coleman DJL, Cockerill PN, Raghavan M, Bonifer C. Molecular Basis of Hematological Disease Caused by Inherited or Acquired RUNX1 Mutations. Exp Hematol 2022; 111:1-12. [PMID: 35341804 DOI: 10.1016/j.exphem.2022.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin landscape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differentiation. However, once blood stem cells are formed, the mutation of the RUNX1 gene is not lethal but can lead to various hematopoietic defects and a predisposition to cancer. Here we summarize the current literature on inherited and acquired RUNX1 mutations, with a particular emphasis on mutations that alter the structure of the RUNX1 protein itself, and place these changes in the context of what is known about RUNX1 function. We also summarize which mutant RUNX1 proteins are actually expressed in cells and discuss the molecular mechanism underlying how such variants reprogram the epigenome setting stem cells on the path to malignancy.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK; Centre of Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Jakobczyk H, Debaize L, Soubise B, Avner S, Rouger-Gaudichon J, Commet S, Jiang Y, Sérandour AA, Rio AG, Carroll JS, Wichmann C, Lie-A-Ling M, Lacaud G, Corcos L, Salbert G, Galibert MD, Gandemer V, Troadec MB. Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia. J Hematol Oncol 2021; 14:47. [PMID: 33743795 PMCID: PMC7981807 DOI: 10.1186/s13045-021-01051-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
Background B Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) is the most common pediatric cancer. Identifying key players involved in proliferation of BCP-ALL cells is crucial to propose new therapeutic targets. Runt Related Transcription Factor 1 (RUNX1) and Core-Binding Factor Runt Domain Alpha Subunit 2 Translocated To 3 (CBFA2T3, ETO2, MTG16) are master regulators of hematopoiesis and are implicated in leukemia. Methods We worked with BCP-ALL mononuclear bone marrow patients’ cells and BCP-ALL cell lines, and performed Chromatin Immunoprecipitations followed by Sequencing (ChIP-Seq), co-immunoprecipitations (co-IP), proximity ligation assays (PLA), luciferase reporter assays and mouse xenograft models. Results We demonstrated that CBFA2T3 transcript levels correlate with RUNX1 expression in the pediatric t(12;21) ETV6-RUNX1 BCP-ALL. By ChIP-Seq in BCP-ALL patients’ cells and cell lines, we found that RUNX1 is recruited on its promoter and on an enhancer of CBFA2T3 located − 2 kb upstream CBFA2T3 promoter and that, subsequently, the transcription factor RUNX1 drives both RUNX1 and CBFA2T3 expression. We demonstrated that, mechanistically, RUNX1 and CBFA2T3 can be part of the same complex allowing CBFA2T3 to strongly potentiate the activity of the transcription factor RUNX1. Finally, we characterized a CBFA2T3-mimicking peptide that inhibits the interaction between RUNX1 and CBFA2T3, abrogating the activity of this transcription complex and reducing BCP-ALL lymphoblast proliferation. Conclusions Altogether, our findings reveal a novel and important activation loop between the transcription regulator CBFA2T3 and the transcription factor RUNX1 that promotes BCP-ALL proliferation, supporting the development of an innovative therapeutic approach based on the NHR2 subdomain of CBFA2T3 protein. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01051-z.
Collapse
Affiliation(s)
- Hélène Jakobczyk
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Lydie Debaize
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Benoit Soubise
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France
| | - Stéphane Avner
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Jérémie Rouger-Gaudichon
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Département d'onco-hematologie pediatrique, Centre Hospitalier Universitaire de Caen Normandie, Caen, France
| | - Séverine Commet
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France.,CHRU Brest, Service de génétique, laboratoire de génétique chromosomique, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
| | - Yan Jiang
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France.,Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | | | - Anne-Gaëlle Rio
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Haemostasis, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Michael Lie-A-Ling
- Cancer Research UK Manchester Institute, University of Manchester, Aderley Park, Macclesfield, SK10 4TG, UK
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, University of Manchester, Aderley Park, Macclesfield, SK10 4TG, UK
| | - Laurent Corcos
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France
| | - Gilles Salbert
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Marie-Dominique Galibert
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Service de Génétique et Génomique Moléculaire, Centre Hospitalier Universitaire de Rennes (CHU-Rennes), 35033, Rennes, France
| | - Virginie Gandemer
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Department of Pediatric Hemato-Oncology, Centre Hospitalier Universitaire de Rennes (CHU-Rennes), 35203, Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France. .,Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France. .,CHRU Brest, Service de génétique, laboratoire de génétique chromosomique, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France.
| |
Collapse
|
3
|
Pipkin ME. Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development. Immunol Rev 2021; 300:100-124. [PMID: 33682165 DOI: 10.1111/imr.12954] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Adaptive immunity to intracellular pathogens and tumors is mediated by antigen-experienced CD8 T cells. Individual naive CD8 T cells have the potential to differentiate into a diverse array of antigen-experienced subsets that exhibit distinct effector functions, life spans, anatomic positioning, and potential for regenerating an entirely new immune response during iterative pathogenic exposures. The developmental process by which activated naive cells undergo diversification involves regulation of chromatin structure and transcription but is not entirely understood. This review examines how alterations in chromatin structure, transcription factor binding, extracellular signals, and single-cell gene expression explain the differential development of distinct effector (TEFF ) and memory (TMEM ) CD8 T cell subsets. Special emphasis is placed on how Runx proteins function with additional transcription factors to pioneer changes in chromatin accessibility and drive transcriptional programs that establish the core attributes of cytotoxic T lymphocytes, subdivide circulating and non-circulating TMEM cell subsets, and govern terminal differentiation. The discussion integrates the roles of specific cytokine signals, transcriptional circuits and how regulation of individual nucleosomes and RNA polymerase II activity can contribute to the process of differentiation. A model that integrates many of these features is discussed to conceptualize how activated CD8 T cells arrive at their fates.
Collapse
Affiliation(s)
- Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute - FL, Jupiter, FL, USA
| |
Collapse
|
4
|
Maeda R, Bando T, Sugiyama H. Application of DNA-Alkylating Pyrrole-Imidazole Polyamides for Cancer Treatment. Chembiochem 2021; 22:1538-1545. [PMID: 33453075 DOI: 10.1002/cbic.202000752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Pyrrole-imidazole (PI) polyamides, which target specific DNA sequences, have been studied as a class of DNA minor-groove-binding molecules. To investigate the potential of compounds for cancer treatment, PI polyamides were conjugated with DNA-alkylating agents, such as seco-CBI and chlorambucil. DNA-alkylating PI polyamides have attracted attention because of their sequence-specific alkylating activities, which contribute to reducing the severe side effects of current DNA-damaging drugs. Many of these types of conjugates have been developed as new candidates for anticancer drugs. Herein, we review recent progress into research on DNA-alkylating PI polyamides and their sequence-specific action on targets associated with cancer development.
Collapse
Affiliation(s)
- Rina Maeda
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto, 606-8306, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
5
|
Delgado-Tirado S, Amarnani D, Zhao G, Rossin EJ, Eliott D, Miller JB, Greene WA, Ramos L, Arevalo-Alquichire S, Leyton-Cifuentes D, Gonzalez-Buendia L, Isaacs-Bernal D, Whitmore HAB, Chmielewska N, Duffy BV, Kim E, Wang HC, Ruiz-Moreno JM, Kim LA, Arboleda-Velasquez JF. Topical delivery of a small molecule RUNX1 transcription factor inhibitor for the treatment of proliferative vitreoretinopathy. Sci Rep 2020; 10:20554. [PMID: 33257736 PMCID: PMC7705016 DOI: 10.1038/s41598-020-77254-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is the leading cause of retinal detachment surgery failure. Despite significant advances in vitreoretinal surgery, it still remains without an effective prophylactic or therapeutic medical treatment. After ocular injury or retinal detachment, misplaced retinal cells undergo epithelial to mesenchymal transition (EMT) to form contractile membranes within the eye. We identified Runt-related transcription factor 1 (RUNX1) as a gene highly expressed in surgically-removed human PVR specimens. RUNX1 upregulation was a hallmark of EMT in primary cultures derived from human PVR membranes (C-PVR). The inhibition of RUNX1 reduced proliferation of human C-PVR cells in vitro, and curbed growth of freshly isolated human PVR membranes in an explant assay. We formulated Ro5-3335, a lipophilic small molecule RUNX1 inhibitor, into a nanoemulsion that when administered topically curbed the progression of disease in a novel rabbit model of mild PVR developed using C-PVR cells. Mass spectrometry analysis detected 2.67 ng/mL of Ro5-3335 within the vitreous cavity after treatment. This work shows a critical role for RUNX1 in PVR and supports the feasibility of targeting RUNX1 within the eye for the treatment of an EMT-mediated condition using a topical ophthalmic agent.
Collapse
Affiliation(s)
- Santiago Delgado-Tirado
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Dhanesh Amarnani
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Guannan Zhao
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Elizabeth J Rossin
- Retina Service, Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Dean Eliott
- Retina Service, Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - John B Miller
- Retina Service, Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Whitney A Greene
- Sensory Trauma Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, USA
| | - Leslie Ramos
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Said Arevalo-Alquichire
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
- Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chia, Colombia
| | - David Leyton-Cifuentes
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
- Universidad EIA, Envigado, Colombia
| | - Lucia Gonzalez-Buendia
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Daniela Isaacs-Bernal
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
- Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chia, Colombia
| | - Hannah A B Whitmore
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Natalia Chmielewska
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
- Boston College, Boston, USA
| | - Brandon V Duffy
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
- Harvard College, Cambridge, USA
| | - Eric Kim
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Heuy-Ching Wang
- Sensory Trauma Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, USA
| | - Jose M Ruiz-Moreno
- Department of Ophthalmology, Castilla La Mancha University, Puerta de Hierro-Majadahonda University Hospital, Madrid, Spain
- Vissum Corporation, Alicante, Spain
| | - Leo A Kim
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA.
- Retina Service, Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA.
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA.
- Universidad EIA, Envigado, Colombia.
| |
Collapse
|
6
|
Maeda R, Ito S, Hashiya K, Bando T, Sugiyama H. DNA Alkylation of the RUNX‐Binding Sequence by CBI–PI Polyamide Conjugates**. Chemistry 2020; 26:14639-14644. [DOI: 10.1002/chem.202002166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/14/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Rina Maeda
- Graduate School of Advanced Integrated Studies in Human Survivability Kyoto University Sakyo-ku Kyoto 6068306 Japan
| | - Shinji Ito
- Medical Research Support Center Graduate School of Medicine Kyoto University Sakyo-ku Kyoto 6068501 Japan
| | - Kaori Hashiya
- Department of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 6068502 Japan
| | - Toshikazu Bando
- Department of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 6068502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 6068502 Japan
- Institute for Integrated Cell-Material Science (iCeMS) Kyoto University Yoshida-ushinomiyacho Sakyo-ku Kyoto 6068501 Japan
| |
Collapse
|
7
|
Choi J, Diao H, Faliti CE, Truong J, Rossi M, Bélanger S, Yu B, Goldrath AW, Pipkin ME, Crotty S. Bcl-6 is the nexus transcription factor of T follicular helper cells via repressor-of-repressor circuits. Nat Immunol 2020; 21:777-789. [PMID: 32572238 PMCID: PMC7449381 DOI: 10.1038/s41590-020-0706-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
T follicular helper (TFH) cells are a distinct type of CD4+ T cells that are essential for most antibody and B lymphocyte responses. TFH cell regulation and dysregulation is involved in a range of diseases. Bcl-6 is the lineage defining transcription factor of TFH cells and its activity is essential for TFH cell differentiation and function. However, how Bcl-6 controls TFH biology has largely remained unclear, at least in part due to intrinsic challenges of connecting repressors to gene upregulation in complex cell types with multiple possible differentiation fates. Multiple competing models were tested here by a series of experimental approaches to determine that Bcl-6 exhibited negative autoregulation and controlled pleiotropic attributes of TFH differentiation and function, including migration, costimulation, inhibitory receptors, and cytokines, via multiple repressor-of-repressor gene circuits.
Collapse
Affiliation(s)
- Jinyong Choi
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Caterina E Faliti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jacquelyn Truong
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Meghan Rossi
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Simon Bélanger
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Bingfei Yu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA. .,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Wang D, Diao H, Getzler AJ, Rogal W, Frederick MA, Milner J, Yu B, Crotty S, Goldrath AW, Pipkin ME. The Transcription Factor Runx3 Establishes Chromatin Accessibility of cis-Regulatory Landscapes that Drive Memory Cytotoxic T Lymphocyte Formation. Immunity 2019; 48:659-674.e6. [PMID: 29669249 PMCID: PMC6750808 DOI: 10.1016/j.immuni.2018.03.028] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
T cell receptor (TCR) stimulation of naive CD8+ T cells initiates reprogramming of cis-regulatory landscapes that specify effector and memory cytotoxic T lymphocyte (CTL) differentiation. We mapped regions of hyper-accessible chromatin in naive cells during TCR stimulation and discovered that the transcription factor (TF) Runx3 promoted accessibility to memory CTL-specific cis-regulatory regions before the first cell division and was essential for memory CTL differentiation. Runx3 was specifically required for accessibility to regions highly enriched with IRF, bZIP and Prdm1-like TF motifs, upregulation of TFs Irf4 and Blimp1, and activation of fundamental CTL attributes in early effector and memory precursor cells. Runx3 ensured that nascent CTLs differentiated into memory CTLs by preventing high expression of the TF T-bet, slowing effector cell proliferation, and repressing terminal CTL differentiation. Runx3 overexpression enhanced memory CTL differentiation during iterative infections. Thus, Runx3 governs chromatin accessibility during TCR stimulation and enforces the memory CTL developmental program.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Adam J Getzler
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Walter Rogal
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Megan A Frederick
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Justin Milner
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Bingfei Yu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Shane Crotty
- Division of Vaccine Discovery, The La Jolla Institute of Allergy and Immunology, La Jolla, CA, USA; Division of Infectious Diseases, Department of Medicine, UCSD School of Medicine, La Jolla, CA, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
9
|
Maeda R, Sato S, Obata S, Ohno T, Hashiya K, Bando T, Sugiyama H. Molecular Characteristics of DNA-Alkylating PI Polyamides Targeting RUNX Transcription Factors. J Am Chem Soc 2019; 141:4257-4263. [DOI: 10.1021/jacs.8b08813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rina Maeda
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo, Kyoto 606-8306, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shunsuke Obata
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomo Ohno
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Roh SH, Kasembeli MM, Galaz-Montoya JG, Chiu W, Tweardy DJ. Chaperonin TRiC/CCT Recognizes Fusion Oncoprotein AML1-ETO through Subunit-Specific Interactions. Biophys J 2017; 110:2377-2385. [PMID: 27276256 DOI: 10.1016/j.bpj.2016.04.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/31/2022] Open
Abstract
AML1-ETO is the translational product of a chimeric gene created by the stable chromosome translocation t (8;21)(q22;q22). It causes acute myeloid leukemia (AML) by dysregulating the expression of genes critical for myeloid cell development and differentiation and recently has been reported to bind multiple subunits of the mammalian cytosolic chaperonin TRiC (or CCT), primarily through its DNA binding domain (AML1-175). Through these interactions, TRiC plays an important role in the synthesis, folding, and activity of AML1-ETO. Using single-particle cryo-electron microscopy, we demonstrate here that a folding intermediate of AML1-ETO's DNA-binding domain (AML1-175) forms a stable complex with apo-TRiC. Our structure reveals that AML1-175 associates directly with a specific subset of TRiC subunits in the open conformation.
Collapse
Affiliation(s)
- Soung-Hun Roh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Moses M Kasembeli
- Division of Internal Medicine, Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jesús G Galaz-Montoya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.
| | - David J Tweardy
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas; Division of Internal Medicine, Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
11
|
Xu W, Chen Q, Liu C, Chen J, Xiong F, Wu B. A novel, complex RUNX2 gene mutation causes cleidocranial dysplasia. BMC MEDICAL GENETICS 2017; 18:13. [PMID: 28173761 PMCID: PMC5297198 DOI: 10.1186/s12881-017-0375-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022]
Abstract
Background Haploinsufficiency of the runt-related transcription factor 2 (RUNX2) gene is known to cause cleidocranial dysplasia (CCD). Here, we investigated a complex, heterozygous RUNX2 gene mutation in a Chinese family with CCD and the pathogenesis associated with the variations. Methods Genomic DNA extracted from peripheral venous blood was taken from the proband, her parents and 3 siblings, and 150 normal controls. Analysis of their respective RUNX2 gene sequences was performed by PCR amplification and Sanger sequencing. Pathogenesis associated with RUNX2 mutations was investigated by performing bioinformatics, real-time PCR, western blot analysis, and subcellular localization studies. Results We identified 2 complex heterozygous mutations involving a c.398–399 insACAGCAGCAGCAGCA insertion and a c.411–412 insG frameshift mutation in exon 3 of the RUNX2 gene. The frameshift mutation changed the structure of the RUNX2 protein while did not affect its expression at the mRNA level. Transfection of HEK293T cells with a plasmid expressing the RUNX2 variant decreased the molecular weight of the variant RUNX2 protein, compared with that of the wild-type protein. Subcellular localization assays showed both nuclear and cytoplasmic localization for the mutant protein, while the wild-type protein localized to the nucleus. Conclusions Our findings demonstrated that the novel c.398–399insACAGCAGCAGCAGCA mutation occurred alongside the c.411–412insG frameshift mutation, which resulted in RUNX2 truncation. RUNX2 haploinsufficiency was associated with CCD pathogenesis. These results extend the known mutational spectrum of the RUNX2 gene and suggest a functional role of the novel mutation in CCD pathogenesis.
Collapse
Affiliation(s)
- Wen'an Xu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuyue Chen
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.,Department of Stomatology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Cuixian Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiajing Chen
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Hsueh SJ, Lee NC, Yang SH, Lin HI, Lin CH. A limb-girdle myopathy phenotype of RUNX2 mutation in a patient with cleidocranial dysplasia: a case study and literature review. BMC Neurol 2017; 17:2. [PMID: 28056872 PMCID: PMC5216594 DOI: 10.1186/s12883-016-0781-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Background Cleidocranial dysplasia (CCD) is a rare hereditary disorder that arises from heterozygous loss of function mutations in the runt-related transcription factor 2 (RUNX2) gene. As RUNX2 is mainly expressed in osteoblasts, CCD typically affects the skeletal and dental systems. Few studies have investigated RUNX2 mutation effects on non-skeletal systems. Here, we describe limb-girdle myopathy, an uncommon phenotype of CCD, in a patient with a heterozygous missense mutation (p.R225Q) in the RUNX2 gene. Case presentation A 58 year-old man presented with progressive back pain and six months of weakness in the proximal parts of all four limbs. Physical examinations showed that he was short in stature (height, 164.4 cm; weight, 79.1 kg) with a dysmorphic face, including hypertelorism, midface hypoplasia, and chin protrusion. At a young age, he had received orthodontic surgery, due to dental abnormalities. Neurological examinations revealed sloping shoulders, weakness, and atrophy in the proximal areas of the arms, shoulder girdle muscles, and legs. The deep tendon reflex and sensory system were normal. Radiological examinations revealed mild scoliosis, shortened clavicles, and a depressed skull bone, which were consistent with a clinical diagnosis of CCD. Electromyography (EMG) studies showed myogenic polyphasic waves in the deltoid, biceps brachii, and rectus femoris muscles. Instead, the EMG findings were normal in the first dorsal interosseous, tibialis anterior and facial muscles. The EMG findings were compatible with a limb-girdle pattern with facial sparing. The patient’s family history showed his father and eldest daughter with similar dysmorphic faces, skeletal disorders and proximal upper extremity weakness. We sequenced the RUNX2 gene and discovered a heterozygous missense mutation (c.G674A, p.R225Q), which altered the C-terminal end of the RUNX2 protein. This mutation was predicted to inactivate the protein and might affect its interactions with other proteins. This mutation co-segregated with the disease phenotypes in the family. Conclusions We described limb-girdle myopathy in a patient with CCD that carried a heterozygous RUNX2 missense mutation. This uncommon phenotype expanded the phenotypic spectrum of the RUNX2 p.R225Q mutation. The role of RUNX2 in myogenic development merits future studies. Our findings remind clinicians that myopathic patients with myopathies combined with facial dysmorphism and shortened clavicles should consider the diagnosis of CCD.
Collapse
Affiliation(s)
- Sung-Ju Hsueh
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Shu-Hua Yang
- Department of Orthopedics, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Han-I Lin
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
13
|
New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins. ACTA ACUST UNITED AC 2016; 11:285-304. [PMID: 28261265 DOI: 10.1007/s11515-016-1415-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nearly 15% of acute myeloid leukemia (AML) cases are caused by aberrant expression of AML1-ETO, a fusion protein generated by the t(8;21) chromosomal translocation. Since its discovery, AML1-ETO has served as a prototype to understand how leukemia fusion proteins deregulate transcription to promote leukemogenesis. Another leukemia fusion protein, E2A-Pbx1, generated by the t(1;19) translocation, is involved in acute lymphoblastic leukemias (ALLs). While AML1-ETO and E2A-Pbx1 are structurally unrelated fusion proteins, we have recently shown that a common axis, the ETO/E-protein interaction, is involved in the regulation of both fusion proteins, underscoring the importance of studying protein-protein interactions in elucidating the mechanisms of leukemia fusion proteins. OBJECTIVE In this review, we aim to summarize these new developments while also providing a historic overview of the related early studies. METHODS A total of 218 publications were reviewed in this article, a majority of which were published after 2004.We also downloaded 3D structures of AML1-ETO domains from Protein Data Bank and provided a systematic summary of their structures. RESULTS By reviewing the literature, we summarized early and recent findings on AML1-ETO, including its protein-protein interactions, transcriptional and leukemogenic mechanisms, as well as the recently reported involvement of ETO family corepressors in regulating the function of E2A-Pbx1. CONCLUSION While the recent development in genomic and structural studies has clearly demonstrated that the fusion proteins function by directly regulating transcription, a further understanding of the underlying mechanisms, including crosstalk with other transcription factors and cofactors, and the protein-protein interactions in the context of native proteins, may be necessary for the development of highly targeted drugs for leukemia therapy.
Collapse
|
14
|
Mathiasen L, Valentini E, Boivin S, Cattaneo A, Blasi F, Svergun DI, Bruckmann C. The flexibility of a homeodomain transcription factor heterodimer and its allosteric regulation by DNA binding. FEBS J 2016; 283:3134-54. [PMID: 27390177 DOI: 10.1111/febs.13801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/20/2016] [Accepted: 07/06/2016] [Indexed: 12/27/2022]
Abstract
UNLABELLED Transcription factors are known to modify the DNA that they bind. However, DNA can also serve as an allosteric ligand whose binding modifies the conformation of transcriptional regulators. Here, we describe how heterodimer PBX1:PREP1, formed by proteins playing major roles in embryonic development and tumorigenesis, undergoes an allosteric transition upon DNA binding. We demonstrate through a number of biochemical and biophysical methods that PBX1:PREP1 exhibits a structural change upon DNA binding. Small-angle X-ray scattering (SAXS), circular dichroism (CD), isothermal titration calorimetry (ITC), and limited proteolysis demonstrate a different shape, α-helical content, thermodynamic behavior, and solution environment of the holo-complex (with DNA) compared to the apo-complex (without DNA). Given that PBX1 as such does not have a defined DNA selectivity, structural changes upon DNA binding become major factors in the function of the PBX1:PREP1 complex. The observed changes are mapped at both the amino- and carboxy-terminal regions of the two proteins thereby providing important insights to determine how PBX1:PREP1 dimer functions. DATABASE Small-angle scattering data are available in SASBDB under accession numbers SASDAP7, SASDAQ7, and SASDAR7.
Collapse
Affiliation(s)
- Lisa Mathiasen
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | | | | | - Angela Cattaneo
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Francesco Blasi
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | | | - Chiara Bruckmann
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
15
|
Roh SH, Kasembeli M, Galaz-Montoya JG, Trnka M, Lau WCY, Burlingame A, Chiu W, Tweardy DJ. Chaperonin TRiC/CCT Modulates the Folding and Activity of Leukemogenic Fusion Oncoprotein AML1-ETO. J Biol Chem 2015; 291:4732-41. [PMID: 26706127 DOI: 10.1074/jbc.m115.684878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 11/06/2022] Open
Abstract
AML1-ETO is the most common fusion oncoprotein causing acute myeloid leukemia (AML), a disease with a 5-year survival rate of only 24%. AML1-ETO functions as a rogue transcription factor, altering the expression of genes critical for myeloid cell development and differentiation. Currently, there are no specific therapies for AML1-ETO-positive AML. While known for decades to be the translational product of a chimeric gene created by the stable chromosome translocation t(8;21)(q22;q22), it is not known how AML1-ETO achieves its native and functional conformation or whether this process can be targeted for therapeutic benefit. Here, we show that the biosynthesis and folding of the AML1-ETO protein is facilitated by interaction with the essential eukaryotic chaperonin TRiC (or CCT). We demonstrate that a folding intermediate of AML1-ETO binds to TRiC directly, mainly through its β-strand rich, DNA-binding domain (AML-(1-175)), with the assistance of HSP70. Our results suggest that TRiC contributes to AML1-ETO proteostasis through specific interactions between the oncoprotein's DNA-binding domain, which may be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Soung-Hun Roh
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - Moses Kasembeli
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, and
| | - Jesús G Galaz-Montoya
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - Mike Trnka
- National Bio-Organic Biomedical Mass Spectrometry Resource Center, University of California, San Francisco, California 94158
| | - Wilson Chun-Yu Lau
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, and
| | - Alma Burlingame
- National Bio-Organic Biomedical Mass Spectrometry Resource Center, University of California, San Francisco, California 94158
| | - Wah Chiu
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - David J Tweardy
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, and
| |
Collapse
|
16
|
Yamasaki S, Hamada A, Akagi E, Nakatao H, Ohtaka M, Nishimura K, Nakanishi M, Toratani S, Okamoto T. Generation of cleidocranial dysplasia-specific human induced pluripotent stem cells in completely serum-, feeder-, and integration-free culture. In Vitro Cell Dev Biol Anim 2015; 52:252-64. [PMID: 26559068 PMCID: PMC4746228 DOI: 10.1007/s11626-015-9968-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022]
Abstract
Human pluripotent stem cells hold great promise for their practical and scientific potentials. To improve understanding of self-renewal and differentiation, we previously reported a defined serum-free medium hESF9 could generate and maintain human induced pluripotent stem cells (iPSCs) in serum- and feeder-free culture conditions using retroviral vectors. To avoid the unpredictable side effects associated with retrovirus integration, we report here the successful generation of hiPSCs from dental pulp cells with a non-integrating replication-defective and persistent Sendai virus (SeVdp) vector expressing four key reprogramming genes. We found that hESF9 medium in combination with fibronectin are effective for generating and maintaining hiPSCs with SeVdp (KOSM). Using this system, pluripotent and self-renewing hiPSCs could be easily and stably generated and propagated. With this system, we successfully generated hiPSCs from cleidocranial dysplasia (CCD) caused by a heterozygous germ-line mutation of runt-related protein2 (RUNX2), which has an important role in the differentiation of osteoblasts and maturation of chondrocytes. This is the first report of the establishment of CCD-specific iPSCs. The cartilage in the teratomas of CCD-iPSCs showed abnormalities. These CCD-iPSCs would be beneficial to clarify the molecular mechanism and for development of medical applications. Moreover, it brings new pathophysiological role of RUNX2 in the differentiation of the human chondrocytes and osteocytes.
Collapse
Affiliation(s)
- Sachiko Yamasaki
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Atsuko Hamada
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Eri Akagi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hirotaka Nakatao
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Manami Ohtaka
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Central 4, Tsukuba, Ibaraki, 305-8562, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki, 305-8575, Japan
| | - Mahito Nakanishi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Central 4, Tsukuba, Ibaraki, 305-8562, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
17
|
Pahl MC, Erdman R, Kuivaniemi H, Lillvis JH, Elmore JR, Tromp G. Transcriptional (ChIP-Chip) Analysis of ELF1, ETS2, RUNX1 and STAT5 in Human Abdominal Aortic Aneurysm. Int J Mol Sci 2015; 16:11229-58. [PMID: 25993293 PMCID: PMC4463698 DOI: 10.3390/ijms160511229] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 12/31/2014] [Indexed: 01/22/2023] Open
Abstract
We investigated transcriptional control of gene expression in human abdominal aortic aneurysm (AAA). We previously identified 3274 differentially expressed genes in human AAA tissue compared to non-aneurysmal controls. Four expressed transcription factors (ELF1, ETS2, STAT5 and RUNX1) were selected for genome-wide chromatin immunoprecipitation. Transcription factor binding was enriched in 4760 distinct genes (FDR < 0.05), of which 713 were differentially expressed in AAA. Functional classification using Gene Ontology (GO), KEGG, and Network Analysis revealed enrichment in several biological processes including “leukocyte migration” (FDR = 3.09 × 10−05) and “intracellular protein kinase cascade” (FDR = 6.48 × 10−05). In the control aorta, the most significant GO categories differed from those in the AAA samples and included “cytoskeleton organization” (FDR = 1.24 × 10−06) and “small GTPase mediated signal transduction” (FDR = 1.24 × 10−06). Genes up-regulated in AAA tissue showed a highly significant enrichment for GO categories “leukocyte migration” (FDR = 1.62 × 10−11), “activation of immune response” (FDR = 8.44 × 10−11), “T cell activation” (FDR = 4.14 × 10−10) and “regulation of lymphocyte activation” (FDR = 2.45 × 10−09), whereas the down-regulated genes were enriched in GO categories “cytoskeleton organization” (FDR = 7.84 × 10−05), “muscle cell development” (FDR = 1.00 × 10−04), and “organ morphogenesis” (FDR = 3.00 × 10−04). Quantitative PCR assays confirmed a sub-set of the transcription factor binding sites including those in MTMR11, DUSP10, ITGAM, MARCH1, HDAC8, MMP14, MAGI1, THBD and SPOCK1.
Collapse
Affiliation(s)
- Matthew C Pahl
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
| | - Robert Erdman
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
| | - Helena Kuivaniemi
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | - John H Lillvis
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48202, USA.
| | - James R Elmore
- Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, PA 17822, USA.
| | - Gerard Tromp
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
| |
Collapse
|
18
|
Shrivastava T, Mino K, Babayeva ND, Baranovskaya OI, Rizzino A, Tahirov TH. Structural basis of Ets1 activation by Runx1. Leukemia 2014; 28:2040-8. [PMID: 24646888 PMCID: PMC4169772 DOI: 10.1038/leu.2014.111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 11/23/2022]
Abstract
Runx1 is required for definitive hematopoiesis and is well-known for its frequent chromosomal translocations and point mutations in leukemia. Runx1 regulates a variety of genes via Ets1 activation on an Ets1•Runx1 composite DNA sequence. The structural basis of such regulation remains unresolved. To address this problem, we determined the crystal structure of the ternary complex containing Runx11-242 and Ets1296-441 bound to T cell receptor alpha (TCRα) enhancer DNA. In the crystal, an Ets1-interacting domain of Runx1 is bound to the Ets1 DNA-binding domain and displaced an entire autoinhibitory module of Ets1, revealing a novel mechanism of Ets1 activation. The DNA binding and transcriptional studies with a variety of structure-guided Runx1 mutants confirmed a critical role of direct Ets1•Runx1 interaction in Ets1 activation. More importantly, the discovered mechanism provides a plausible explanation for how the Ets1•Runx1 interaction effectively activates not only a wild-type Ets1, but also a highly inhibited phosphorylated form of Ets1.
Collapse
Affiliation(s)
- T Shrivastava
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Mino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - N D Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - O I Baranovskaya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - T H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
19
|
Kar A, Gutierrez-Hartmann A. Molecular mechanisms of ETS transcription factor-mediated tumorigenesis. Crit Rev Biochem Mol Biol 2013; 48:522-43. [PMID: 24066765 DOI: 10.3109/10409238.2013.838202] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The E26 transformation-specific (ETS) family of transcription factors is critical for development, differentiation, proliferation and also has a role in apoptosis and tissue remodeling. Changes in expression of ETS proteins therefore have a significant impact on normal physiology of the cell. Transcriptional consequences of ETS protein deregulation by overexpression, gene fusion, and modulation by RAS/MAPK signaling are linked to alterations in normal cell functions, and lead to unlimited increased proliferation, sustained angiogenesis, invasion and metastasis. Existing data show that ETS proteins control pathways in epithelial cells as well as stromal compartments, and the crosstalk between the two is essential for normal development and cancer. In this review, we have focused on ETS factors with a known contribution in cancer development. Instead of focusing on a prototype, we address cancer associated ETS proteins and have highlighted the diverse mechanisms by which they affect carcinogenesis. Finally, we discuss strategies for ETS factor targeting as a potential means for cancer therapeutics.
Collapse
|
20
|
|
21
|
Slattery M, Riley T, Liu P, Abe N, Gomez-Alcala P, Dror I, Zhou T, Rohs R, Honig B, Bussemaker HJ, Mann RS. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 2012; 147:1270-82. [PMID: 22153072 DOI: 10.1016/j.cell.2011.10.053] [Citation(s) in RCA: 385] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/19/2011] [Accepted: 10/06/2011] [Indexed: 11/30/2022]
Abstract
Members of transcription factor families typically have similar DNA binding specificities yet execute unique functions in vivo. Transcription factors often bind DNA as multiprotein complexes, raising the possibility that complex formation might modify their DNA binding specificities. To test this hypothesis, we developed an experimental and computational platform, SELEX-seq, that can be used to determine the relative affinities to any DNA sequence for any transcription factor complex. Applying this method to all eight Drosophila Hox proteins, we show that they obtain novel recognition properties when they bind DNA with the dimeric cofactor Extradenticle-Homothorax (Exd). Exd-Hox specificities group into three main classes that obey Hox gene collinearity rules and DNA structure predictions suggest that anterior and posterior Hox proteins prefer DNA sequences with distinct minor groove topographies. Together, these data suggest that emergent DNA recognition properties revealed by interactions with cofactors contribute to transcription factor specificities in vivo.
Collapse
Affiliation(s)
- Matthew Slattery
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168(th) Street, HHSC 1104, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lam K, Zhang DE. RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Front Biosci (Landmark Ed) 2012; 17:1120-39. [PMID: 22201794 DOI: 10.2741/3977] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RUNX1 is a transcription factor that regulates critical processes in many aspects of hematopoiesis. RUNX1 is also integral in defining the definitive hematopoietic stem cell. In addition, many hematological diseases like myelodysplastic syndrome and myeloproliferative neoplasms have been associated with mutations in RUNX1. Located on chromosomal 21, the RUNX1 gene is involved in many forms of chromosomal translocations in leukemia. t(8;21) is one of the most common chromosomal translocations found in acute myeloid leukemia (AML), where it results in a fusion protein between RUNX1 and ETO. The RUNX1-ETO fusion protein is found in approximately 12% of all AML patients. In this review, we detail the structural features, functions, and models used to study both RUNX1 and RUNX1-ETO in hematopoiesis over the past two decades.
Collapse
Affiliation(s)
- Kentson Lam
- Moores Cancer Center, Department of Pathology and Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
23
|
Paul C, Sardet C, Fabbrizio E. The histone- and PRMT5-associated protein COPR5 is required for myogenic differentiation. Cell Death Differ 2011; 19:900-8. [PMID: 22193545 DOI: 10.1038/cdd.2011.193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myogenic differentiation requires the coordination between permanent cell cycle withdrawal, mediated by members of the cyclin-dependent kinase inhibitor (CKI) family, and activation of a cascade of myogenic transcription factors, particularly MYOGENIN (MYOG). Recently, it has been reported that the Protein aRginine Methyl Transferase PRMT5 modulates the early phase of induction of MYOG expression. Here, we show that the histone- and PRMT5-associated protein COPR5 (cooperator of PRMT5) is required for myogenic differentiation. C2C12 cells, in which COPR5 had been silenced, could not irreversibly exit the cell cycle and differentiate into muscle cells. This phenotype might be explained by the finding that, in cells in which COPR5 was downregulated, p21 and MYOG induction was strongly reduced and PRMT5 recruitment to the promoters of these genes was also altered. Moreover, we suggest that COPR5 interaction with the Runt-related transcription factor 1 (RUNX1)-core binding factor-β (CBFβ) complex contributes to targeting the COPR5-PRMT5 complex to these promoters. Finally, we present evidence that COPR5 depletion delayed the in vivo regeneration of cardiotoxin-injured mouse skeletal muscles. Altogether, these data extend the role of COPR5 from an adaptor protein required for nuclear functions of PRMT5 to an essential coordinator of myogenic differentiation.
Collapse
Affiliation(s)
- C Paul
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535/IFR122, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | | | | |
Collapse
|
24
|
Markova EN, Kantidze OL, Razin SV. Transcriptional regulation and spatial organisation of the human AML1/RUNX1 gene. J Cell Biochem 2011; 112:1997-2005. [PMID: 21445863 DOI: 10.1002/jcb.23117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The transcription factor RUNX1 is a key regulator of haematopoiesis in vertebrates. In humans, the 260-kb long gene coding for this transcription factor is located on chromosome 21. This gene is transcribed from two alternative promoters that are commonly referred to as the distal and the proximal promoters. In model experiments, these two promoters were found to be active in cells of different lineages, although RUNX1 is preferentially expressed in haematopoietic cells. In the present study, we attempted to identify the regulatory elements that could guide tissue-specific expression of the RUNX1 gene. Two such regulatory elements were found within the RUNX1 gene. One of these elements, located within intron 1, is a haematopoietic-specific enhancer. The second regulatory element, located within intron 5.2, contributes to the formation of an active chromatin hub, which integrates the above-mentioned enhancer and the P1 and P2 promoters.
Collapse
Affiliation(s)
- Elena N Markova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology RAS, Moscow, Russia
| | | | | |
Collapse
|
25
|
Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Origins of specificity in protein-DNA recognition. Annu Rev Biochem 2010; 79:233-69. [PMID: 20334529 DOI: 10.1146/annurev-biochem-060408-091030] [Citation(s) in RCA: 698] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Specific interactions between proteins and DNA are fundamental to many biological processes. In this review, we provide a revised view of protein-DNA interactions that emphasizes the importance of the three-dimensional structures of both macromolecules. We divide protein-DNA interactions into two categories: those when the protein recognizes the unique chemical signatures of the DNA bases (base readout) and those when the protein recognizes a sequence-dependent DNA shape (shape readout). We further divide base readout into those interactions that occur in the major groove from those that occur in the minor groove. Analogously, the readout of the DNA shape is subdivided into global shape recognition (for example, when the DNA helix exhibits an overall bend) and local shape recognition (for example, when a base pair step is kinked or a region of the minor groove is narrow). Based on the >1500 structures of protein-DNA complexes now available in the Protein Data Bank, we argue that individual DNA-binding proteins combine multiple readout mechanisms to achieve DNA-binding specificity. Specificity that distinguishes between families frequently involves base readout in the major groove, whereas shape readout is often exploited for higher resolution specificity, to distinguish between members within the same DNA-binding protein family.
Collapse
Affiliation(s)
- Remo Rohs
- Howard Hughes Medical Institute, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
26
|
Shrivastava T, Tahirov TH. Three-dimensional structures of DNA-bound transcriptional regulators. Methods Mol Biol 2010; 674:43-55. [PMID: 20827585 DOI: 10.1007/978-1-60761-854-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Our understanding of the detailed mechanisms of specific promoter/enhancer DNA-binding site recognition by transcriptional regulatory factors is primarily based on three-dimensional structural studies using the methods of X-ray crystallography and NMR. Vast amount of accumulated experimental data have revealed the basic principles of protein-DNA complex formation paving the way for better modeling and prediction of DNA-binding properties of transcription factors. In this review, our intent is to provide a general overview of the three-dimensional structures of DNA-bound transcriptional regulators starting from the basic principles of specific DNA recognition and ending with high-order multiprotein-DNA complexes.
Collapse
Affiliation(s)
- Tripti Shrivastava
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | | |
Collapse
|
27
|
Marathe A, Karandur D, Bansal M. Small local variations in B-form DNA lead to a large variety of global geometries which can accommodate most DNA-binding protein motifs. BMC STRUCTURAL BIOLOGY 2009; 9:24. [PMID: 19393049 PMCID: PMC2687451 DOI: 10.1186/1472-6807-9-24] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 04/24/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND An important question of biological relevance is the polymorphism of the double-helical DNA structure in its free form, and the changes that it undergoes upon protein-binding. We have analysed a database of free DNA crystal structures to assess the inherent variability of the free DNA structure and have compared it with a database of protein-bound DNA crystal structures to ascertain the protein-induced variations. RESULTS Most of the dinucleotide steps in free DNA display high flexibility, assuming different conformations in a sequence-dependent fashion. With the exception of the AA/TT and GA/TC steps, which are 'A-phobic', and the GG/CC step, which is 'A-philic', the dinucleotide steps show no preference for A or B forms of DNA. Protein-bound DNA adopts the B-conformation most often. However, in certain cases, protein-binding causes the DNA backbone to take up energetically unfavourable conformations. At the gross structural level, several protein-bound DNA duplexes are observed to assume a curved conformation in the absence of any large distortions, indicating that a series of normal structural parameters at the dinucleotide and trinucleotide level, similar to the ones in free B-DNA, can give rise to curvature at the overall level. CONCLUSION The results illustrate that the free DNA molecule, even in the crystalline state, samples a large amount of conformational space, encompassing both the A and the B-forms, in the absence of any large ligands. A-form as well as some non-A, non-B, distorted geometries are observed for a small number of dinucleotide steps in DNA structures bound to the proteins belonging to a few specific families. However, for most of the bound DNA structures, across a wide variety of protein families, the average step parameters for various dinucleotide sequences as well as backbone torsion angles are observed to be quite close to the free 'B-like' DNA oligomer values, highlighting the flexibility and biological significance of this structural form.
Collapse
Affiliation(s)
- Arvind Marathe
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| | | | | |
Collapse
|
28
|
Roudaia L, Cheney MD, Manuylova E, Chen W, Morrow M, Park S, Lee CT, Kaur P, Williams O, Bushweller JH, Speck NA. CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Blood 2009; 113:3070-9. [PMID: 19179469 PMCID: PMC2662647 DOI: 10.1182/blood-2008-03-147207] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 01/11/2009] [Indexed: 01/29/2023] Open
Abstract
AML1-ETO and TEL-AML1 are chimeric proteins resulting from the t(8;21)(q22;q22) in acute myeloid leukemia, and the t(12;21)(p13;q22) in pre-B-cell leukemia, respectively. The Runt domain of AML1 in both proteins mediates DNA binding and heterodimerization with the core binding factor beta (CBFbeta) subunit. To determine whether CBFbeta is required for AML1-ETO and TEL-AML1 activity, we introduced amino acid substitutions into the Runt domain that disrupt heterodimerization with CBFbeta but not DNA binding. We show that CBFbeta contributes to AML1-ETO's inhibition of granulocyte differentiation, is essential for its ability to enhance the clonogenic potential of primary mouse bone marrow cells, and is indispensable for its cooperativity with the activated receptor tyrosine kinase TEL-PDGFbetaR in generating acute myeloid leukemia in mice. Similarly, CBFbeta is essential for TEL-AML1's ability to promote self-renewal of B cell precursors in vitro. These studies validate the Runt domain/CBFbeta interaction as a therapeutic target in core binding factor leukemias.
Collapse
Affiliation(s)
- Liya Roudaia
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
One obstacle to achieving complete understanding of the principles underlying sequence-dependent recognition of DNA is the paucity of structural data for DNA recognition sequences in their free (unbound) state. Here, we carried out crystallization screening of 50 DNA duplexes containing cognate protein binding sites and obtained new crystal structures of free DNA binding sites for three distinct modes of DNA recognition: anti-parallel beta strands (MetR), helix-turn-helix motif + hinge helices (PurR), and zinc fingers (Zif268). Structural changes between free and protein-bound DNA are manifested differently in each case. The new DNA structures reveal that distinctive sequence-dependent DNA geometry dominates recognition by MetR, protein-induced bending of DNA dictates recognition by PurR, and deformability of DNA along the A-B continuum is important in recognition by Zif268. Together, our findings show that crystal structures of free DNA binding sites provide new information about the nature of protein-DNA interactions and thus lend insights towards a structural code for DNA recognition.
Collapse
|
30
|
Zhou Z, Song X, Li B, Greene MI. FOXP3 and its partners: structural and biochemical insights into the regulation of FOXP3 activity. Immunol Res 2008; 42:19-28. [DOI: 10.1007/s12026-008-8029-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
t(8;21)(q22;q22) Fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially regulate gene expression. Blood 2008; 112:1392-401. [PMID: 18511808 DOI: 10.1182/blood-2007-11-124735] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chromosome abnormalities are frequently associated with cancer development. The 8;21(q22;q22) chromosomal translocation is one of the most common chromosome abnormalities identified in leukemia. It generates fusion proteins between AML1 and ETO. Since AML1 is a well-defined DNA-binding protein, AML1-ETO fusion proteins have been recognized as DNA-binding proteins interacting with the same consensus DNA-binding site as AML1. The alteration of AML1 target gene expression due to the presence of AML1-ETO is related to the development of leukemia. Here, using a 25-bp random double-stranded oligonucleotide library and a polymerase chain reaction (PCR)-based DNA-binding site screen, we show that compared with native AML1, AML1-ETO fusion proteins preferentially bind to DNA sequences with duplicated AML1 consensus sites. This finding is further confirmed by both in vitro and in vivo DNA-protein interaction assays. These results suggest that AML1-ETO fusion proteins have a selective preference for certain AML1 target genes that contain multimerized AML1 consensus sites in their regulatory elements. Such selected regulation provides an important molecular mechanism for the dysregulation of gene expression during cancer development.
Collapse
|
32
|
Suad O, Eyal E, Blumenzweig I, Kessler N, Levanon D, Groner Y, Shakked Z. RUN-CBFβ Interaction inC. elegans: Computational Prediction and Experimental Verification. J Biomol Struct Dyn 2007; 24:343-58. [PMID: 17206850 DOI: 10.1080/07391102.2007.10507124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The Runt domain proteins are eukaryotic transcription factors that regulate major developmental pathways. All members of this family contain a highly-conserved sequence-specific DNA binding domain: the Runt domain (RD). Structural and biochemical studies have shown that the Runt domain undergoes a conformational transition upon binding to DNA and that this process is regulated by an unrelated partner protein CBFbeta that enhances the DNA binding affinity of RD. Most of the reported studies on the Runt domain transcription factors were performed on proteins from mammals and Drosophila whereas very little has been known about the C. elegans RD protein, RUN, which provides the simplest model system for understanding the function of this class of transcription factors. We performed computational studies on RD domains from various species including C. elegans, Drosophila, and human, using the atom-atom contact surface area scoring method. The scoring analysis indicates that the DNA binding regulation of the C. elegans RD protein (CeRD) occurs via its interaction with a CBFbeta-like partner, as found for the human proteins, whereas a different mode of regulation may occur in the Drosophila system. Sequence, secondary structure and fold analyses of a putative CBFbeta protein identified in the C. elegans genome, CeCBFbeta, sharing a 22% identity with the human protein, predict a similar structure of this protein to that of the human CBFbeta protein. We produced the C. elegans proteins CeRD and CeCBFbeta in bacteria and confirmed their physical interaction as well as cross interactions with the corresponding human proteins. We also confirmed the structural similarity of CBFbeta and CeCBFbeta by circular dichroism analysis. The combined results suggest that a similar mechanism of regulation operates for the human and the C. elegans RD proteins despite the low sequence identity between their CBFbeta proteins and the evolutionary distance between the two systems.
Collapse
Affiliation(s)
- Oded Suad
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
33
|
Li Z, Lukasik SM, Liu Y, Grembecka J, Bielnicka I, Bushweller JH, Speck NA. A mutation in the S-switch region of the Runt domain alters the dynamics of an allosteric network responsible for CBFbeta regulation. J Mol Biol 2006; 364:1073-83. [PMID: 17059830 PMCID: PMC1783549 DOI: 10.1016/j.jmb.2006.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/26/2006] [Accepted: 10/02/2006] [Indexed: 02/03/2023]
Abstract
The Runt domain is the DNA binding domain of the core binding factor (CBF) Runx subunits. The CBFs are transcription factors that play critical roles in hematopoiesis, bone, and neuron development in mammals. A common non-DNA binding CBFbeta subunit heterodimerizes with the Runt domain of the Runx proteins and allosterically regulates its affinity for DNA. Previous NMR dynamics studies suggested a model whereby CBFbeta allosterically regulates DNA binding by quenching conformational exchange in the Runt domain, particularly in the S-switch region and the betaE'-F loop. We sought to test this model, and to this end introduced all possible single amino acid substitutions into the S-switch region and the betaE'-F loop, and screened for mutations that enhanced DNA-binding. We demonstrate that one Runt domain mutant, R164N, binds both DNA and CBFbeta with higher affinity, but it is less sensitive to allosteric regulation by CBFbeta. Analysis of NMR relaxation data shows that the chemical exchange exhibited by the wild-type Runt domain is largely quenched by the R164N substitution. These data support a model in which the dynamic behavior of a network of residues connecting the CBFbeta and DNA binding sites on the Runt domain plays a critical role in the mechanism of allosteric regulation. This study provides an important functional link between dynamic behavior and protein allosteric function, consistent with results on other allosterically regulated proteins.
Collapse
Affiliation(s)
- Zhe Li
- Department of Biochemistry, Dartmouth Medical School, Hanover,
New Hampshire 03755
| | - Steven M. Lukasik
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
| | - Yizhou Liu
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
| | - Jolanta Grembecka
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
| | - Izabela Bielnicka
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
| | - John H. Bushweller
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
- Corresponding authors: Nancy A. Speck, Phone:
603-650-1159, Fax: 603-650-1128, , John
H. Bushweller, Phone: 434-243-6409, Fax: 434-982-1616,
| | - Nancy A. Speck
- Department of Biochemistry, Dartmouth Medical School, Hanover,
New Hampshire 03755
- Corresponding authors: Nancy A. Speck, Phone:
603-650-1159, Fax: 603-650-1128, , John
H. Bushweller, Phone: 434-243-6409, Fax: 434-982-1616,
| |
Collapse
|
34
|
Aliahmad P, Kaye J. Commitment issues: linking positive selection signals and lineage diversification in the thymus. Immunol Rev 2006; 209:253-73. [PMID: 16448547 DOI: 10.1111/j.0105-2896.2006.00345.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The thymus is responsible for the production of CD4+ helper and CD8+ cytotoxic T cells, which constitute the cellular arm of the immune system. These cell types derive from common precursors that interact with thymic stroma in a T-cell receptor (TCR)-specific fashion, generating intracellular signals that are translated into function-specific changes in gene expression. This overall process is termed positive selection, but it encompasses a number of temporally distinct and possibly mechanistically distinct cellular changes, including rescue from apoptosis, initiation of cell differentiation, and commitment to the CD4+ or CD8+ T-cell lineage. One of the puzzling features of positive selection is how specificity of the TCR controls lineage commitment, as both helper and cytolytic T cells utilize the same antigen-receptor components, with the exception of the CD4 or CD8 coreceptors themselves. In this review, we focus on the signals required for positive selection, particularly as they relate to lineage commitment. Identification of genes encoding transcriptional regulators that play a role in T-cell development has led to significant recent advances in the field. We also provide an overview of nuclear factors in this context and, where known, how their regulation is linked to the same TCR signals that have been implicated in initiating and regulating positive selection.
Collapse
Affiliation(s)
- Parinaz Aliahmad
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
35
|
Pinto JP, Conceição NM, Viegas CSB, Leite RB, Hurst LD, Kelsh RN, Cancela ML. Identification of a new pebp2alphaA2 isoform from zebrafish runx2 capable of inducing osteocalcin gene expression in vitro. J Bone Miner Res 2005; 20:1440-53. [PMID: 16007341 DOI: 10.1359/jbmr.050318] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 01/19/2005] [Accepted: 03/16/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED The zebrafish runx2b transcription factor is an ortholog of RUNX2 and is highly conserved at the structural level. The runx2b pebp2alphaA2 isoform induces osteocalcin gene expression by binding to a specific region of the promoter and seems to have been selectively conserved in the teleost lineage. INTRODUCTION RUNX2 (also known as CBFA1/Osf2/AML3/PEBP2alphaA) is a transcription factor essential for bone formation in mammals, as well as for osteoblast and chondrocyte differentiation, through regulation of expression of several bone- and cartilage-related genes. Since its discovery, Runx2 has been the subject of intense studies, mainly focused in unveiling regulatory targets of this transcription factor in high vertebrates. However, no single study has been published addressing the role of Runx2 in bone metabolism of low vertebrates. While analyzing the zebrafish (Danio rerio) runx2 gene, we identified the presence of two orthologs of RUNX2, which we named runx2a and runx2b and cloned a pebp2alphaA-like transcript of the runx2b gene, which we named pebp2alphaA2. MATERIALS AND METHODS Zebrafish runx2b gene and cDNA were isolated by RT-PCR and sequence data mining. The 3D structure of runx2b runt domain was modeled using mouse Runx1 runt as template. The regulatory effect of pebp2alphaA2 on osteocalcin expression was analyzed by transient co-transfection experiments using a luciferase reporter gene. Phylogenetic analysis of available Runx sequences was performed with TREE_PUZZLE 5.2. and MrBayes. RESULTS AND CONCLUSIONS We showed that the runx2b gene structure is highly conserved between mammals and fish. Zebrafish runx2b has two promoter regions separated by a large intron. Sequence analysis suggested that the runx2b gene encodes three distinct isoforms, by a combination of alternative splicing and differential promoter activation, as described for the human gene. We have cloned a pebp2alphaA-like transcript of the runx2b gene, which we named pebp2alphaA2, and showed its high degree of sequence similarity with the mammalian pebp2alphaA. The cloned zebrafish osteocalcin promoter was found to contain three putative runx2-binding elements, and one of them, located at -221 from the ATG, was capable of mediating pebp2alphaA2 transactivation. In addition, cross-species transactivation was also confirmed because the mouse Cbfa1 was able to induce the zebrafish osteocalcin promoter, whereas the zebrafish pebp2alphaA2 activated the murine osteocalcin promoter. These results are consistent with the high degree of evolutionary conservation of these proteins. The 3D structure of the runx2b runt domain was modeled based on the runt domain of mouse Runx1. Results show a high degree of similarity in the 3D configuration of the DNA binding regions from both domains, with significant differences only observed in non-DNA binding regions or in DNA-binding regions known to accommodate considerable structure flexibility. Phylogenetic analysis was used to clarify the relationship between the isoforms of each of the two zebrafish Runx2 orthologs and other Runx proteins. Both zebrafish runx2 genes clustered with other Runx2 sequences. The duplication event seemed, however, to be so old that, whereas Runx2b clearly clusters with the other fish sequences, it is unclear whether Runx2a clusters with Runx2 from higher vertebrates or from other fish.
Collapse
Affiliation(s)
- Jorge P Pinto
- CCMAR, University of Algarve, Campus de Gambelas, Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|
36
|
Habtemariam B, Anisimov VM, MacKerell AD. Cooperative binding of DNA and CBFbeta to the Runt domain of the CBFalpha studied via MD simulations. Nucleic Acids Res 2005; 33:4212-22. [PMID: 16049027 PMCID: PMC1180745 DOI: 10.1093/nar/gki724] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Runt domain (RD) is the DNA-binding region of the Runx genes. A related protein, known as core binding factor beta (CBFbeta) also binds to the RD to enhance RD-DNA interaction by 6- to 10-fold. Here, we report results from molecular dynamics (MD) simulations of RD alone, as a dimer in complexes with DNA and CBFbeta and in a ternary complex with DNA and CBFbeta. Consistent with the experimental findings, in the presence of CBFbeta the estimated free energy of binding of RD to the DNA is more favorable, which is shown to be due to more favorable intermolecular interactions and desolvation contributions. Also contributing to the enhanced binding are favorable intramolecular interactions between the 'wing' residues (RD residues 139-145) and the 'wing1' residues (RD residues 104-116). The simulation studies also indicate that the RD-CBFbeta binding is more favorable in the presence of DNA due to a more favorable RD-CBFbeta interaction energy. In addition, it is predicted that long-range interactions involving ionic residues contribute to binding cooperativity. Results from the MD calculations are used to interpret a variety of experimental mutagenesis data. A novel role for RD Glu116 to the RD-CBFbeta interaction is predicted.
Collapse
Affiliation(s)
| | | | - Alexander D. MacKerell
- To whom correspondence should be addressed at 20 Penn Street, Baltimore, MD 21201, USA. Tel: +1 706 410 7442; Fax: +1 410 706 5017;
| |
Collapse
|
37
|
Yan J, Liu Y, Lukasik SM, Speck NA, Bushweller JH. CBFbeta allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium. Nat Struct Mol Biol 2004; 11:901-6. [PMID: 15322525 DOI: 10.1038/nsmb819] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 06/18/2004] [Indexed: 11/09/2022]
Abstract
Core binding factors (CBFs) are heterodimeric transcription factors consisting of a DNA-binding CBFalpha subunit and non-DNA-binding CBFbeta subunit. The CBFbeta subunit increases the affinity of the DNA-binding Runt domain of CBFalpha for DNA while making no direct contacts to the DNA. We present evidence for conformational exchange in the S-switch region in a Runt domain-DNA complex that is quenched upon CBFbeta binding. Analysis of (15)N backbone relaxation parameters shows that binding of CBFbeta reduces the backbone dynamics in the microsecond-to-millisecond time frame for several regions of the Runt domain that make energetically important contacts with the DNA. The DNA also undergoes conformational exchange in the Runt domain-DNA complex that is quenched in the presence of CBFbeta. Our results indicate that allosteric regulation by the CBFbeta subunit is mediated by a shift in an existing dynamic conformational equilibrium of both the Runt domain and DNA.
Collapse
Affiliation(s)
- Jiangli Yan
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22906, USA
| | | | | | | | | |
Collapse
|
38
|
Aliahmad P, O'Flaherty E, Han P, Goularte OD, Wilkinson B, Satake M, Molkentin JD, Kaye J. TOX provides a link between calcineurin activation and CD8 lineage commitment. ACTA ACUST UNITED AC 2004; 199:1089-99. [PMID: 15078895 PMCID: PMC2211890 DOI: 10.1084/jem.20040051] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
T cell development is dependent on the integration of multiple signaling pathways, although few links between signaling cascades and downstream nuclear factors that play a role in thymocyte differentiation have been identified. We show here that expression of the HMG box protein TOX is sufficient to induce changes in coreceptor gene expression associated with β-selection, including CD8 gene demethylation. TOX expression is also sufficient to initiate positive selection to the CD8 lineage in the absence of MHC–TCR interactions. TOX-mediated positive selection is associated with up-regulation of Runx3, implicating CD4 silencing in the process. Interestingly, a strong T cell receptor–mediated signal can modify this cell fate. We further demonstrate that up-regulation of TOX in double positive thymocytes is calcineurin dependent, linking this critical signaling pathway to nuclear changes during positive selection.
Collapse
Affiliation(s)
- Parinaz Aliahmad
- Department of Immunology IMM-8, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang L, Li Z, Yan J, Pradhan P, Corpora T, Cheney MD, Bravo J, Warren AJ, Bushweller JH, Speck NA. Mutagenesis of the Runt domain defines two energetic hot spots for heterodimerization with the core binding factor beta subunit. J Biol Chem 2003; 278:33097-104. [PMID: 12807883 DOI: 10.1074/jbc.m303972200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Core-binding factors (CBFs) are a small family of heterodimeric transcription factors that play critical roles in several developmental pathways and in human disease. Mutations in CBF genes are found in leukemias, bone disorders, and gastric cancers. CBFs consist of a DNA-binding CBF alpha subunit (Runx1, Runx2, or Runx3) and a non-DNA-binding CBF beta subunit. CBF alpha binds DNA in a sequence-specific manner, whereas CBF beta enhances DNA binding by CBF alpha. Both DNA binding and heterodimerization with CBF beta are mediated by a single domain in the CBF alpha subunits known as the "Runt domain." We analyzed the energetic contribution of amino acids in the Runx1 Runt domain to heterodimerization with CBF beta. We identified two energetic "hot spots" that were also found in a similar analysis of CBF beta (Tang, Y.-Y., Shi, J., Zhang, L., Davis, A., Bravo, J., Warren, A. J., Speck, N. A., and Bushweller, J. H. (2000) J. Biol. Chem. 275, 39579-39588). The importance of the hot spot residues for Runx1 function was demonstrated in in vivo transient transfection assays. These data refine the structural analyses and further our understanding of the Runx1-CBF beta interface.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li Z, Yan J, Matheny CJ, Corpora T, Bravo J, Warren AJ, Bushweller JH, Speck NA. Energetic contribution of residues in the Runx1 Runt domain to DNA binding. J Biol Chem 2003; 278:33088-96. [PMID: 12807882 DOI: 10.1074/jbc.m303973200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Core-binding factors (CBFs) are a small family of heterodimeric transcription factors that play critical roles in hematopoiesis and in the development of bone, stomach epithelium, and proprioceptive neurons. Mutations in CBF genes are found in leukemias, bone disorders, and gastric cancer. CBFs consist of a DNA-binding CBF alpha subunit and a non-DNA-binding CBF beta subunit. DNA binding and heterodimerization with CBF beta are mediated by the Runt domain in CBF alpha. Here we report an alanine-scanning mutagenesis study of the Runt domain that targeted amino acids identified by structural studies to reside at the DNA or CBF beta interface, as well as amino acids mutated in human disease. We determined the energy contributed by each of the DNA-contacting residues in the Runt domain to DNA binding both in the absence and presence of CBF beta. We propose mechanisms by which mutations in the Runt domain found in hematopoietic and bone disorders affect its affinity for DNA.
Collapse
Affiliation(s)
- Zhe Li
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Woolf E, Xiao C, Fainaru O, Lotem J, Rosen D, Negreanu V, Bernstein Y, Goldenberg D, Brenner O, Berke G, Levanon D, Groner Y. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc Natl Acad Sci U S A 2003; 100:7731-6. [PMID: 12796513 PMCID: PMC164656 DOI: 10.1073/pnas.1232420100] [Citation(s) in RCA: 307] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RUNX transcription factors are important regulators of lineage-specific gene expression. RUNX are bifunctional, acting both as activators and repressors of tissue-specific target genes. Recently, we have demonstrated that Runx3 is a neurogenic transcription factor, which regulates development and survival of proprioceptive neurons in dorsal root ganglia. Here we report that Runx3 and Runx1 are highly expressed in thymic medulla and cortex, respectively, and function in development of CD8 T cells during thymopoiesis. Runx3-deficient (Runx3 KO) mice display abnormalities in CD4 expression during lineage decisions and impairment of CD8 T cell maturation in the thymus. A large proportion of Runx3 KO peripheral CD8 T cells also expressed CD4, and in contrast to wild-type, their proliferation ability was largely reduced. In addition, the in vitro cytotoxic activity of alloimmunized peritoneal exudate lymphocytes was significantly lower in Runx3 KO compared with WT mice. In a compound mutant mouse, null for Runx3 and heterozygous for Runx1 (Runx3-/-;Runx1+/-), all peripheral CD8 T cells also expressed CD4, resulting in a complete lack of single-positive CD8+ T cells in the spleen. The results provide information on the role of Runx3 and Runx1 in thymopoiesis and suggest that both act as transcriptional repressors of CD4 expression during T cell lineage decisions.
Collapse
Affiliation(s)
- Eilon Woolf
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang L, Lukasik SM, Speck NA, Bushweller JH. Structural and functional characterization of Runx1, CBF beta, and CBF beta-SMMHC. Blood Cells Mol Dis 2003; 30:147-56. [PMID: 12732176 DOI: 10.1016/s1079-9796(03)00022-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Core binding factors (CBFs) are heterodimeric transcription factors consisting of a DNA-binding CBF alpha subunit and non-DNA-binding CBF beta subunit. DNA binding and heterodimerization is mediated by a single domain in the CBF alpha subunit called the Runt domain, while sequences flanking the Runt domain confer other biochemical activities such as transactivation. On the other hand, the heterodimerization domain in CBF beta is the only functional domain that has been identified in this subunit. The biophysical properties of the Runt domain and the CBF beta heterodimerization domain, and the structures of the isolated domains as well as of the Runt domain-DNA, Runt domain-CBF beta, and ternary Runt domain-CBF beta-DNA complexes, have been characterized over the past several years, and are summarized in this review.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
43
|
Ogata K, Sato K, Tahirov TH, Tahirov T. Eukaryotic transcriptional regulatory complexes: cooperativity from near and afar. Curr Opin Struct Biol 2003; 13:40-8. [PMID: 12581658 DOI: 10.1016/s0959-440x(03)00012-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is characteristic of eukaryotic transcription that a unique combination of multiple transcriptional regulatory proteins bound to promoter DNA specifically activate or repress downstream target genes; this is referred to as combinatorial gene regulation. Recently determined structures have revealed different modes of protein-protein interaction on the promoter DNA from near (e.g. the Runx1-CBFbeta-DNA, NFAT-Fos-Jun-DNA, GABPalpha-GABPbeta-DNA, Ets-1-Pax-5-DNA and PU.1-IRF-4-DNA complexes) and afar with DNA looping (e.g. the c-Myb-C/EBPbeta-DNA complex), and their regulatory mechanisms.
Collapse
Affiliation(s)
- Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | | | |
Collapse
|