1
|
Çapan İ, Al M, Gümüş M, Açik L, Aydin B, Çelik AB, Gülüm L, Sert Y, Yenilmez EN, Koca İ, Tutar Y. Design, Synthesis, and Evaluation of Benzimidazole-Carbazole Hybrids Targeting Heat Shock Proteins-Mediated Apoptosis in Breast and Colon Cancer Cells. Drug Dev Res 2025; 86:e70092. [PMID: 40344426 DOI: 10.1002/ddr.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/18/2025] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
Heat shock proteins (HSPs), particularly HSP70 and HSP90, are pivotal molecular chaperones implicated in cancer progression and resistance mechanisms. Dual inhibition of these chaperones represents a promising therapeutic approach. Here, we report the design and synthesis of a novel series of benzimidazole-carbazole hybrids aimed at targeting HSP70/90. Leveraging the kinase inhibitory properties of benzimidazole and the DNA interfering and apoptotic potential of carbazole, these hybrids were evaluated for their anticancer activity against breast (MCF-7) and colon (HCT-116) cancer cell lines. The most active compounds demonstrated submicromolar IC50 values and induced apoptosis through mitochondrial dysfunction and cytoskeletal disruption, confirmed via flow cytometry and fluorescence microscopy. Molecular docking revealed high binding affinities to HSP70 (PDB: 1S3X) and HSP90 (PDB: 1YC4), correlating with experimental outcomes. Furthermore, DNA interaction studies confirmed the compounds' ability to induce structural destabilization and fragmentation, providing insight into their mechanism of action. These findings highlight the potential of benzimidazole-carbazole hybrids as promising HSP inhibitors for overcoming cancer resistance.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, Ankara, Turkey
- Sente Kimya Research and Development Inc, Ankara, Turkey
| | - Mervenur Al
- Department of Basic Medical Sciences, Division of Medicinal Biochemistry, University of Health Sciences, Istanbul, Turkey
| | - Mehmet Gümüş
- Akdağmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Leyla Açik
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Betül Aydin
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Ayşe Büşranur Çelik
- Division of Molecular Biology and Genetics, Faculty of Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul, Turkey
| | - Levent Gülüm
- Department of Crop and Animal Production, Mudurnu Süreyya Astarcı Vocational School, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Yusuf Sert
- Sorgun Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - Ezgi Nurdan Yenilmez
- Vocational School of Health Services, Division of Medical Techniques and Services, Demiroglu Science University, Istanbul, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Yusuf Tutar
- Department of Basic Medical Sciences, Division of Biochemistry, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
2
|
Ochoa Mendoza V, de Oliveira AA, Nunes KP. Blockade of HSP70 Improves Vascular Function in a Mouse Model of Type 2 Diabetes. Cells 2025; 14:424. [PMID: 40136673 PMCID: PMC11941590 DOI: 10.3390/cells14060424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Type 2 diabetes (T2D) is a chronic disease that damages blood vessels and increases the risk of cardiovascular disease (CVD). Heat-shock protein 70 (HSP70), a family of chaperone proteins, has been recently reported as a key player in vascular reactivity that affects large blood vessels like the aorta. Hyperglycemia, a hallmark of diabetes, correlates with the severity of vascular damage and circulating HSP70 levels. In diabetes, blood vessels often show impaired contractility, contributing to vascular dysfunction. However, HSP70's specific role in T2D-related vascular contraction remains unclear. We hypothesized that blocking HSP70 would improve vascular function in a widely used diabetic mouse model (db/db). To test this, we measured both vascular intracellular and serum circulating HSP70 levels in control and diabetic male mice using immunofluorescence and Western blotting. We also examined the aorta's contractile response using a wire myograph system, which measured the force produced in response to phenylephrine (PE), both with and without VER155008, a pharmacological inhibitor that targets the ATPase domain of HSP70, and after removing extracellular calcium. Our findings show that intracellular HSP70 (iHSP70) levels were similar in control and diabetic groups, while circulating HSP70 (eHSP70) levels were higher in the serum of diabetic mice, altering the iHSP70/eHSP70 ratio. Even though VER155008 attenuated both phases of the contractile curve in the diabetic and control groups, enhanced vasoconstriction to PE was only observed in the tonic phase of the curve in the db/db group, which was prevented by iHSP70 inhibition. This effect involved calcium mobilization, as both the maximal and total contraction forces to PE were restored in groups treated with VER155008. Additionally, internal calcium levels in aortic rings treated with VER155008 decreased, as observed in force generation upon calcium reintroduction, which was further corroborated using a biochemical calcium assay. In conclusion, our study demonstrates that blocking HSP70 improves vascular reactivity in the hyperglycemic state of T2D by restoring proper vascular contraction.
Collapse
Affiliation(s)
| | | | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA; (V.O.M.)
| |
Collapse
|
3
|
Sreelekshmi PK, Pooja SK, Vidya N, Sinosh S, Thejaswini V. Integrative Investigation of Flavonoids Targeting YBX1 Protein-Protein Interaction Network in Breast Cancer: From Computational Analysis to Experimental Validation. Mol Biotechnol 2024:10.1007/s12033-024-01311-6. [PMID: 39565541 DOI: 10.1007/s12033-024-01311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024]
Abstract
Y-box-binding protein 1 (YBX1) is a multifunctional oncoprotein with its nuclear localization contributing to chemo-resistance in breast cancer. Through its interactions with various proteins and lncRNAs, YBX1 promotes cancer cell migration, invasion, and metastasis. Despite its significant role in cancer progression, studies on YBX1's protein-protein interactions (PPIs) remain limited. Flavonoids are natural compounds with anticancer properties that inhibit metastasis, modulate immunity, and induce apoptosis, with minimal systemic toxicity, making them strong candidates for cancer therapy. Targeting PPIs offers a promising approach for cancer therapy and flavonoids, with their anticancer properties, may modulate these interactions. Our study focused on the YBX1 PPI network, specifically targeting HSPA1A, IGF2BP1, MECP2, G3BP1, EWSR1, PURA, and SYNCRIP. We selected four flavonoids Quercetin, Fisetin, Rutin, and Myricitrin based on literature and conducted 26 docking sessions. Further ADMET analysis indicated Quercetin and Fisetin as more favorable for drug-likeness parameters than Rutin and Myricitrin, which was underscored by MD simulation data. In vitro studies showed that Quercetin and Fisetin downregulated YBX1 expression in a dose-dependent manner (50 μM to 150 μM) in MCF-7 cells. Our study provides a preliminary understanding of YBX1 PPI and the potential of flavonoids to disrupt these interactions. This study investigates the potential of flavonoids to target YBX1 PPIs, providing insights into novel therapeutic strategies for YBX1-driven cancers.
Collapse
Affiliation(s)
- Presanna Kumar Sreelekshmi
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasargod, Kerala, 671320, India
| | - Suresh Kumar Pooja
- Department of Biotechnology, RV College of Engineering 560059, Affiliated to Visvesvaraya Technological University, Belagavi, 590018, Karnataka, India
| | - Niranjan Vidya
- Department of Biotechnology, RV College of Engineering 560059, Affiliated to Visvesvaraya Technological University, Belagavi, 590018, Karnataka, India
| | - Skariyachan Sinosh
- Department of Microbiology, St. Pius X College, Rajapuram, Kasargod, Kerala, India
| | - Venkatesh Thejaswini
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasargod, Kerala, 671320, India.
| |
Collapse
|
4
|
Guo W, Wang M, Yang Z, Liu D, Ma B, Zhao Y, Chen Y, Hu Y. Recent advances in small molecule and peptide inhibitors of glucose-regulated protein 78 for cancer therapy. Eur J Med Chem 2023; 261:115792. [PMID: 37690265 DOI: 10.1016/j.ejmech.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Glucose-regulated protein 78 (GRP78) is one of key endoplasmic reticulum (ER) chaperone proteins that regulates the unfolded protein response (UPR) to maintain ER homeostasis. As a core factor in the regulation of the UPR, GRP78 takes a critical part in the cellular processes required for tumorigenesis, such as proliferation, metastasis, anti-apoptosis, immune escape and chemoresistance. Overexpression of GRP78 is closely correlated with tumorigenesis and poor prognosis in various malignant tumors. Targeting GRP78 is regarded as a potentially promising therapeutic strategy for cancer therapy. Although none of the GRP78 inhibitors have been approved to date, there have been several studies of GRP78 inhibitors. Herein, we comprehensively review the structure, physiological functions of GRP78 and the recent progress of GRP78 inhibitors, and discuss the structures, in vitro and in vivo efficacies, and merits and demerits of these inhibitors to inspire further research. Additionally, the feasibility of GRP78-targeting proteolysis-targeting chimeras (PROTACs), disrupting GRP78 cochaperone interactions, or covalent inhibition are also discussed as novel strategies for drugs discovery targeting GRP78, with the hope that these strategies can provide new opportunities for targeted GRP78 antitumor therapy.
Collapse
Affiliation(s)
- Weikai Guo
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Manjie Wang
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Zhengfan Yang
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Danyang Liu
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Borui Ma
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Yanqun Zhao
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yanzhong Hu
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
5
|
Ray MN, Kiyofuji M, Ozono M, Kogure K. Vitamin E succinate mediated apoptosis by juxtaposing endoplasmic reticulum and mitochondria. Biochim Biophys Acta Gen Subj 2023; 1867:130485. [PMID: 37838355 DOI: 10.1016/j.bbagen.2023.130485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Vitamin E succinate (VES) is an esterified form of natural α-tocopherol, has turned out to be novel anticancer agent. However, its anticancer mechanisms have not been illustrated. Previously, we reported VES mediated Ca2+ release from the endoplasmic reticulum (ER) causes mitochondrial Ca2+ overload, leading to mitochondrial depolarization and apoptosis. Here, we elucidated the mechanism of VES-induced Ca2+ transfer from ER to mitochondria by investigating the role of VES in ER-mitochondria contact formation. Transmission electron microscopic observation confirms VES mediated ER-mitochondria contact while fluorescence microscopic analysis revealed that VES increased mitochondria-associated ER membrane (MAM) formation. Pre-treatment with the inositol 1,4,5-triphosphate receptor (IP3R) antagonist 2-aminoethyl diphenylborinate (2-APB) decreased VES-induced MAM formation, suggesting the involvement of VES-induced Ca2+ efflux from ER in MAM formation. The ER IP3R receptor is known to interact with voltage-dependent anion channels (VDAC) via the chaperone glucose-regulated protein 75 kDa (GRP75) to bring ER and mitochondria nearby. Although we revealed that VES treatment does not affect GRP75 protein level, it increases GRP75 localization in the MAM. In addition, the inhibition of Ca2+ release from ER by 2-APB decreases GRP75 localization in the MAM, suggesting the possibility of Ca2+-induced conformational change of GRP75 that promotes formation of the IP3R-GRP75-VDAC complex and thereby encourages MAM formation. This study identifies the mechanism of VES-induced enhanced Ca2+ transfer from ER to mitochondria, which causes mitochondrial Ca2+ overload leading to apoptosis.
Collapse
Affiliation(s)
- Manobendro Nath Ray
- Department of Pharmaceutical Health Chemistry, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Michiko Kiyofuji
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Mizune Ozono
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| |
Collapse
|
6
|
Karema-Jokinen V, Koskela A, Hytti M, Hongisto H, Viheriälä T, Liukkonen M, Torsti T, Skottman H, Kauppinen A, Nymark S, Kaarniranta K. Crosstalk of protein clearance, inflammasome, and Ca 2+ channels in retinal pigment epithelium derived from age-related macular degeneration patients. J Biol Chem 2023:104770. [PMID: 37137441 DOI: 10.1016/j.jbc.2023.104770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023] Open
Abstract
Degeneration and/or dysfunction of retinal pigment epithelium (RPE) is generally detected as the formation of intra- and extracellular protein aggregates, called lipofuscin and drusen, respectively, in patients with age-related macular degeneration (AMD), the leading cause of blindness in the elderly population. These clinical hallmarks are linked to dysfunctional protein homeostasis and inflammation, and furthermore, are both regulated by changes in intracellular Ca2+ concentration. While many other cellular mechanisms have been considered in the investigations of AMD-RPE, there has been relatively little work on understanding the interactions of protein clearance, inflammation, and Ca2+ dynamics in disease pathogenesis. Here we established induced pluripotent stem cell-derived RPE from two patients with advanced AMD and from an age- and gender-matched control subject. We studied autophagy and inflammasome activation under disturbed proteostasis in these cell lines and investigated changes in their intracellular Ca2+ concentration and L-type voltage-gated Ca2+ channels. Our work demonstrated dysregulated autophagy and inflammasome activation in AMD-RPE accompanied by reduced intracellular free Ca2+ levels. Interestingly, we found currents through L-type voltage-gated Ca2+ channels to be diminished and showed these channels to be significantly localized to intracellular compartments in AMD-RPE. Taken together, the alterations in Ca2+ dynamics in AMD-RPE together with dysregulated autophagy and inflammasome activation indicate an important role for Ca2+ signaling in AMD pathogenesis, providing new avenues for the development of therapeutic approaches.
Collapse
Affiliation(s)
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heidi Hongisto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Taina Viheriälä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Liukkonen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Tommi Torsti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Soile Nymark
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Finland, Immuno-Ophthalmology, School of Pharmacy, University of Eastern Finland, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland.
| |
Collapse
|
7
|
Berková V, Berka M, Griga M, Kopecká R, Prokopová M, Luklová M, Horáček J, Smýkalová I, Čičmanec P, Novák J, Brzobohatý B, Černý M. Molecular Mechanisms Underlying Flax ( Linum usitatissimum L.) Tolerance to Cadmium: A Case Study of Proteome and Metabolome of Four Different Flax Genotypes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2931. [PMID: 36365383 PMCID: PMC9655427 DOI: 10.3390/plants11212931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Cadmium is one of the most toxic heavy metal pollutants, and its accumulation in the soil is harmful to agriculture. Plants have a higher cadmium tolerance than animals, and some species can be used for phytoremediation. Flax (Linum usitatissimum L.) can accumulate high amounts of cadmium, but the molecular mechanism behind its tolerance is unknown. Here, we employed four genotypes representing two fiber cultivars, an oilseed breeding line, and a transgenic line overexpressing the metallothionein domain for improved cadmium tolerance. We analyzed the proteome of suspensions and the proteome and metabolome of seedling roots in response to cadmium. We identified more than 1400 differentially abundant proteins representing putative mechanisms in cadmium tolerance, including metal-binding proteins and transporters, enzymes of flavonoid, jasmonate, polyamine, glutathione metabolism, and HSP70 proteins. Our data indicated the role of the phytohormone cytokinin in the observed responses. The metabolome profiling found that pipecolinic acid could be a part of the cadmium accumulation mechanism, and the observed accumulation of putrescine, coumaric acid, cinnamic acid, and coutaric acid confirmed the role of polyamines and flavonoids in tolerance to cadmium. In conclusion, our data provide new insight into cadmium tolerance and prospective targets for improving cadmium tolerance in other plants.
Collapse
Affiliation(s)
- Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Miroslav Griga
- Plant Biotechnology Department, Agritec Plant Research, Ltd., 78701 Šumperk, Czech Republic
| | - Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Miroslava Prokopová
- Plant Biotechnology Department, Agritec Plant Research, Ltd., 78701 Šumperk, Czech Republic
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jiří Horáček
- Plant Biotechnology Department, Agritec Plant Research, Ltd., 78701 Šumperk, Czech Republic
| | - Iva Smýkalová
- Plant Biotechnology Department, Agritec Plant Research, Ltd., 78701 Šumperk, Czech Republic
| | - Petr Čičmanec
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
8
|
Hoang TX, Kim JY. Cell Surface Hsp90- and αMβ2 Integrin-Mediated Uptake of Bacterial Flagellins to Activate Inflammasomes by Human Macrophages. Cells 2022; 11:cells11182878. [PMID: 36139453 PMCID: PMC9496951 DOI: 10.3390/cells11182878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
All-trans retinoic acid (ATRA) is an active metabolite of vitamin A, which plays an important role in the immune function. Here, we demonstrated that ATRA induces the heat shock protein (Hsp) 90 complex on the surface of THP-1 macrophages, which facilitates the internalization of exogenous bacterial flagellins to activate the inflammasome response. Mass spectrometric protein identification and co-immunoprecipitation revealed that the Hsp90 homodimer interacts with both Hsp70 and αMβ2 integrin. ATRA-induced complex formation was dependent on the retinoic acid receptor (RAR)/retinoid X receptor (RXR) pathway and intracellular calcium level and was essential for triggering the internalization of bacterial flagellin, which was clathrin dependent. Notably, in this process, αMβ2 integrin was found to act as a carrier to deliver flagellin to the cytosol to activate the inflammasome, leading to caspase-1 activity and secretion of interleukin (IL)-1β. Our study provides new insights into the underlying molecular mechanism by which exogenous bacterial flagellins are delivered into host cells without a bacterial transport system, as well as the mechanism by which vitamin A contributes to enhancing the human macrophage function to detect and respond to bacterial infection.
Collapse
|
9
|
Koca İ, Kamaci V, Özsoy C, Sert Y, Kani İ, Tutar L, Tutar Y. Pyrazolyl‐Benzoxazinone Derivatives as Dual Hsp Inhibitors in Human Breast Cancer. ChemistrySelect 2022; 7. [DOI: 10.1002/slct.202200359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
Abstract
AbstractHeat Shock Proteins (Hsps) play major role on the onset of several cancers. Metabolic rates of cancer cells are higher compared to that of untransformed cells. This accelerated rate force functional substrate proteins to fold faster than normal folding rate. Although, the process leads cell cycle halting and eventually induces apoptosis, Hsps help cell survival and inhibit apoptosis and fold substrate proteins especially signaling proteins. When cancer cells accelerate the metabolism for invasion and metastasis, substrate proteins must fold to their native state rapidly. Since, functional forms of the proteins must be folded properly, cancer cells overexpress Hsps to fold substrate proteins and avoid apoptosis. Hsp90 and Hsp70 play key role in these processes. Inhibition of either Hsp90 or Hsp70 display complementary function. Therefore, dual inhibition of Hsp70 and Hsp90 potentially provides anticancer affect. In silico studies showed that pyrazolyl‐benzoxazine derivatives display binding activity for both Hsps. For this purpose, pyrazole‐3‐carbonyl chloride were converted to pyrazolyl‐benzoxazine derivatives via reactions of anthranilic acids in good yields (68–83 %). The structures of the newly synthesized compounds were elucidated by IR‐NMR spectroscopy, elemental analysis, and single‐crystal X‐ray diffraction. Binding of the compounds inhibit function of Hsps and cause cytotoxic effect over MCF‐7 cells. The compounds display potential anticancer effects.
Collapse
Affiliation(s)
- İrfan Koca
- Faculty of Art and Science Department of Chemistry Yozgat Bozok University Yozgat Turkey
| | - Volkan Kamaci
- Faculty of Art and Science Department of Chemistry Yozgat Bozok University Yozgat Turkey
| | - Ceylan Özsoy
- Faculty of Pharmacy Department of Basic Pharmaceutical Sciences Division of Biochemistry Cumhuriyet University Sivas Turkey
| | - Yusuf Sert
- Sorgun Vocational School Yozgat Bozok University Yozgat Turkey
| | - İbrahim Kani
- Department of Chemistry Faculty of Science Eskisehir Technical University Eskisehir Turkey
- Medicinal Plants and Medicine Research Center of Anadolu University Eskisehir Turkey
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics Faculty of Sciences Ahi Evran University Kırşehir Turkey
| | - Yusuf Tutar
- Faculty of Pharmacy Department of Basic Pharmaceutical Sciences D[ivision of Biochemistry University of Health Sciences-Turkey Istanbul Turkey
- Health Sciences Institutes Division of Oncology University of Health Sciences-Turkey Istanbul Turkey
- Fuat Sezgin Validebağ Research Center University of Health Sciences-Turkey Istanbul Turkey
| |
Collapse
|
10
|
Li H, Musayev FN, Yang J, Su J, Liu Q, Wang W, Fang X, Zhou L, Liu Q. A novel and unique ATP hydrolysis to AMP by a human Hsp70 Binding immunoglobin protein (BiP). Protein Sci 2021; 31:797-810. [PMID: 34941000 DOI: 10.1002/pro.4267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/07/2022]
Abstract
Hsp70s are ubiquitous and highly conserved molecular chaperones. They play crucial roles in maintaining cellular protein homeostasis. It is well established that Hsp70s use the energy of ATP hydrolysis to ADP to power the chaperone activity regardless of the cellular locations and isoforms. Binding immunoglobin protein (BiP), the major member of Hsp70s in the endoplasmic reticulum, is essential for protein folding and quality control. Unexpectedly, our structural analysis of BiP demonstrated a novel ATP hydrolysis to AMP during crystallization under the acidic conditions. Our biochemical studies confirmed this newly discovered ATP to AMP hydrolysis in solutions. Unlike the canonical ATP to ADP hydrolysis observed for Hsp70s, this ATP hydrolysis to AMP depends on the substrate-binding domain of BiP and is inhibited by the binding of a peptide substrate. Intriguingly, this ATP to AMP hydrolysis is unique to BiP, not shared by two representative Hsp70 proteins from the cytosol. Taken together, this novel and unique ATP to AMP hydrolysis may provide a potentially new direction for understanding the activity and cellular function of BiP.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Faik N Musayev
- Department of Medicinal Chemistry, The Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jiao Yang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jiayue Su
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qingdai Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xianjun Fang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
11
|
Calvaresi V, Truelsen LT, Larsen SB, Petersen NHT, Kirkegaard T, Rand KD. Conformational dynamics of free and membrane-bound human Hsp70 in model cytosolic and endo-lysosomal environments. Commun Biol 2021; 4:1369. [PMID: 34876699 PMCID: PMC8651726 DOI: 10.1038/s42003-021-02892-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 11/10/2021] [Indexed: 11/21/2022] Open
Abstract
The binding of the major stress-inducible human 70-kDa heat shock protein (Hsp70) to the anionic phospholipid bis-(monoacylglycero)-phosphate (BMP) in the lysosomal membrane is crucial for its impact on cellular pathology in lysosomal storage disorders. However, the conformational features of this protein-lipid complex remain unclear. Here, we apply hydrogen-deuterium exchange mass spectrometry (HDX-MS) to describe the dynamics of the full-length Hsp70 in the cytosol and its conformational changes upon translocation into lysosomes. Using wild-type and W90F mutant proteins, we also map and discriminate the interaction of Hsp70 with BMP and other lipid components of the lysosomal membrane. We identify the N-terminal of the nucleotide binding domain (residues 87-118) as the primary orchestrator of BMP interaction. We show that the conformation of this domain is significantly reorganized in the W90F mutant, explaining its inability to stabilize lysosomal membranes. Overall, our results reveal important new molecular details of the protective effect of Hsp70 in lysosomal storage diseases, which, in turn, could guide future drug development.
Collapse
Affiliation(s)
- Valeria Calvaresi
- grid.5254.60000 0001 0674 042XProtein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Line T. Truelsen
- grid.5254.60000 0001 0674 042XProtein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Sidsel B. Larsen
- grid.5254.60000 0001 0674 042XProtein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen O, Denmark
| | | | | | - Kasper D. Rand
- grid.5254.60000 0001 0674 042XProtein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen O, Denmark
| |
Collapse
|
12
|
Li H, Hu L, Cuffee CW, Mohamed M, Li Q, Liu Q, Zhou L, Liu Q. Interdomain interactions dictate the function of the Candida albicans Hsp110 protein Msi3. J Biol Chem 2021; 297:101082. [PMID: 34403698 PMCID: PMC8424595 DOI: 10.1016/j.jbc.2021.101082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/29/2021] [Accepted: 08/13/2021] [Indexed: 01/27/2023] Open
Abstract
Heat shock proteins of 110 kDa (Hsp110s), a unique class of molecular chaperones, are essential for maintaining protein homeostasis. Hsp110s exhibit a strong chaperone activity preventing protein aggregation (the "holdase" activity) and also function as the major nucleotide-exchange factor (NEF) for Hsp70 chaperones. Hsp110s contain two functional domains: a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). ATP binding is essential for Hsp110 function and results in close contacts between the NBD and SBD. However, the molecular mechanism of this ATP-induced allosteric coupling remains poorly defined. In this study, we carried out biochemical analysis on Msi3, the sole Hsp110 in Candida albicans, to dissect the unique allosteric coupling of Hsp110s using three mutations affecting the domain-domain interface. All the mutations abolished both the in vivo and in vitro functions of Msi3. While the ATP-bound state was disrupted in all mutants, only mutation of the NBD-SBDβ interfaces showed significant ATPase activity, suggesting that the full-length Hsp110s have an ATPase that is mainly suppressed by NBD-SBDβ contacts. Moreover, the high-affinity ATP-binding unexpectedly appears to require these NBD-SBD contacts. Remarkably, the "holdase" activity was largely intact for all mutants tested while NEF activity was mostly compromised, although both activities strictly depended on the ATP-bound state, indicating different requirements for these two activities. Stable peptide substrate binding to Msi3 led to dissociation of the NBD-SBD contacts and compromised interactions with Hsp70. Taken together, our data demonstrate that the exceptionally strong NBD-SBD contacts in Hsp110s dictate the unique allosteric coupling and biochemical activities.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Liqing Hu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Crist William Cuffee
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mahetab Mohamed
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qingdai Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
13
|
Chatzigoulas A, Cournia Z. Rational design of allosteric modulators: Challenges and successes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1529] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexios Chatzigoulas
- Biomedical Research Foundation Academy of Athens Athens Greece
- Department of Informatics and Telecommunications National and Kapodistrian University of Athens Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens Athens Greece
| |
Collapse
|
14
|
Aljoundi A, El Rashedy A, Soliman MES. Distinguishing the optimal binding mechanism through reversible and irreversible inhibition analysis of HSP72 protein in cancer therapy. Comput Biol Med 2021; 132:104301. [PMID: 33751994 DOI: 10.1016/j.compbiomed.2021.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/18/2022]
Abstract
Over the past two decades, covalent inhibitors have gained much interest and are living up to their reputation as a powerful tool in drug discovery. Covalent inhibitors possess several significant advantages, including increased biochemical efficiency, prolonged duration and the ability to target shallow, solvent-exposed substrate-binding domains. One of the enzymes that have been both covalently and non-covalently targeted is the heat shock protein 72 (HSP72). This elevated enzyme expression in cancer cells may be responsible for tumorigenesis and tumor progression by providing chemotherapy resistance. A critical gap remains in the molecular understanding of the structural mechanism's covalent and non-covalent binding to HSP72. In this study, we explore the most optimal binding mechanism in the inhibition of the HSP72. Based on the molecular dynamic analyses, it was evident that the non-covalent complex showed more stability than the covalent complex. The covalent ligand, however, was more able to induce and stabilize the sealed conformation of the HSP72-NBD ATP binding domain throughout the. Also, the non-covalent ligand does not induce any significant conformational change as it remained close to the shape of the unbound complex; and the affinity is only dependent on the multiple hydrogen bonds in contrast to the covalent ligand. This is supported by the secondary structure elements and principal component analysis that was more dominant in the covalently inhibited complex. Covalent bond induced the α-helices sealed conformation of the HSP72-NBD; based on our findings, this will prevent other small molecules from interacting at the ATP binding site domain. Moreover, inhibition of the ATP binding domain can directly affect the ATPs protein folding mechanism of the HSP72 enzyme. The essential dynamic analysis presented in this report compliments the binding mechanism of HSP72, establishing covalent inhibition as the preferred method of inhibiting the HSP72 protein. The findings from this study may assist in the design of more target-specific HSP72 covalent inhibitors exploring the surface-exposed lysine residues.
Collapse
Affiliation(s)
- Aimen Aljoundi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Ahmed El Rashedy
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
15
|
de Oliveira AA, Priviero F, Tostes RC, Webb RC, Nunes KP. Dissecting the interaction between HSP70 and vascular contraction: role of [Formula: see text] handling mechanisms. Sci Rep 2021; 11:1420. [PMID: 33446873 PMCID: PMC7809064 DOI: 10.1038/s41598-021-80966-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
Heat-shock protein 70 (HSP70) is a ubiquitously expressed molecular chaperone with various biological functions. Recently, we demonstrated that HSP70 is key for adequate vascular reactivity. However, the specific mechanisms targeted by HSP70 to assist in this process remain elusive. Since there is a wealth of evidence connecting HSP70 to calcium ([Formula: see text]), a master regulator of contraction, we designed this study to investigate whether blockade of HSP70 disrupts vascular contraction via impairment of [Formula: see text] handling mechanisms. We performed functional studies in aortas isolated from male Sprague Dawley rats in the presence or absence of exogenous [Formula: see text], and we determined the effects of VER155008, an inhibitor of HSP70, on [Formula: see text] handling as well as key mechanisms that regulate vascular contraction. Changes in the intracellular concentration of [Formula: see text] were measured with a biochemical assay kit. We report that blockade of HSP70 leads to [Formula: see text] mishandling in aorta stimulated with phenylephrine, decreasing both phasic and tonic contractions. Importantly, in [Formula: see text] free Krebs' solution, inhibition of HSP70 only reduced the [Formula: see text] of the phasic contraction if the protein was blocked before IP3r-mediated [Formula: see text] release, suggesting that HSP70 has a positive effect towards this receptor. Corroborating this statement, VER155008 did not potentiate an IP3r inhibitor's outcomes, even with partial blockade. In another set of experiments, the inhibition of HSP70 attenuated the amplitude of the tonic contraction independently of the moment VER155008 was added to the chamber (i.e., whether it was before or after IP3r-mediated phasic contraction). More compelling, following re-addition of [Formula: see text], VER155008 amplified the inhibitory effects of a voltage-dependent [Formula: see text] channel blocker, but not of a voltage-independent [Formula: see text] channel inhibitor, indicating that HSP70 has a positive impact on the latter. Lastly, the mechanism by which HSP70 modulates vascular contraction does not involve the [Formula: see text] sensitizer protein, Rho-kinase, nor the SERCA pump, as blockade of these proteins in the presence of VER155008 almost abolished contraction. In summary, our findings shed light on the processes targeted by HSP70 during vascular contraction and open research avenues for potential new mechanisms in vascular diseases.
Collapse
Affiliation(s)
- Amanda A. de Oliveira
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| | - Fernanda Priviero
- Department of Physiology, Augusta University, Augusta, USA
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, USA
| | - Kenia P. Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| |
Collapse
|
16
|
Aljoundi A, El Rashedy A, Appiah-Kubi P, Soliman MES. Coupling of HSP72 α-Helix Subdomains by the Unexpected Irreversible Targeting of Lysine-56 over Cysteine-17; Coevolution of Covalent Bonding. Molecules 2020; 25:molecules25184239. [PMID: 32947765 PMCID: PMC7570744 DOI: 10.3390/molecules25184239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022] Open
Abstract
Covalent inhibition has recently gained a resurgence of interest in several drug discovery areas. The expansion of this approach is based on evidence elucidating the selectivity and potency of covalent inhibitors when bound to particular amino acids of a biological target. The unexpected covalent inhibition of heat shock protein 72 (HSP72) by covalently targeting Lys-56 instead of Cys-17 was an interesting observation. However, the structural basis and conformational changes associated with this preferential coupling to Lys-56 over Cys-17 remain unclear. To resolve this mystery, we employed structural and dynamic analyses to investigate the structural basis and conformational dynamics associated with the unexpected covalent inhibition. Our analyses reveal that the coupling of the irreversible inhibitor to Lys-56 is intrinsically less dynamic than Cys-17. Conformational dynamics analyses further reveal that the coupling of the inhibitor to Lys-56 induced a closed conformation of the nucleotide-binding subdomain (NBD) α-helices, in contrast, an open conformation was observed in the case of Cys-17. The closed conformation maintained the crucial salt-bridge between Glu-268 and Lys-56 residues, which strengthens the interaction affinity of the inhibitor nearly identical to adenosine triphosphate (ADP/Pi) bound to the HSP72-NBD. The outcome of this report provides a substantial shift in the conventional direction for the design of more potent covalent inhibitors.
Collapse
|
17
|
Wang Y, Hao F, Lu W, Suo X, Bellenger E, Fu N, Jeantet R, Chen XD. Enhanced thermal stability of lactic acid bacteria during spray drying by intracellular accumulation of calcium. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109975] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
An additional physiological role for HSP70: Assistance of vascular reactivity. Life Sci 2020; 256:117986. [PMID: 32585245 DOI: 10.1016/j.lfs.2020.117986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
AIMS HSP70, a molecular chaperone, helps to maintain proteostasis. In muscle biology, however, evidence suggests HSP70 to have a more versatile range of functions, as genetic deletion of its inducible genes impairs Ca2+ handling, and consequently, cardiac and skeletal muscle contractility. Still, it is unknown whether HSP70 is involved in vascular reactivity, an intrinsic physiological mechanism of blood vessels. Therefore, we designed this study to test the hypothesis that proper vascular reactivity requires the assistance of HSP70. MAIN METHODS We performed functional studies in a wire-myograph using thoracic aorta isolated from male Sprague Dawley rats. Experiments were conducted with and without an HSP70 inhibitor as well as in heat-stressed vessels. The expression levels of HSP70 were evaluated with Western blotting. NO and ROS levels were assessed with fluorescence microscopy. KEY FINDINGS We report that blockade of HSP70 weakens contraction in response to phenylephrine (dose-response) in the aorta. Additionally, we demonstrated that inhibition of HSP70 affects the amplitude of the fast and of the slow components of the time-force curve. Corroborating these findings, we found that inhibition of HSP70, in vessels over-expressing this protein, partly rescues the contractile phenotype of aortic rings. Furthermore, we show that blockade of HSP70 facilitates relaxation in response to acetylcholine and clonidine without affecting the basal levels of NO and ROS. SIGNIFICANCE Our work introduces an additional physiological role for HSP70, the assistance of vascular reactivity, which highlights this protein as a new player in vascular physiology, and therefore, uncovers a promising research avenue for vascular diseases.
Collapse
|
19
|
Serlidaki D, van Waarde MAWH, Rohland L, Wentink AS, Dekker SL, Kamphuis MJ, Boertien JM, Brunsting JF, Nillegoda NB, Bukau B, Mayer MP, Kampinga HH, Bergink S. Functional diversity between HSP70 paralogs caused by variable interactions with specific co-chaperones. J Biol Chem 2020; 295:7301-7316. [PMID: 32284329 PMCID: PMC7247296 DOI: 10.1074/jbc.ra119.012449] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein 70 (HSP70) chaperones play a central role in protein quality control and are crucial for many cellular processes, including protein folding, degradation, and disaggregation. Human HSP70s compose a family of 13 members that carry out their functions with the aid of even larger families of co-chaperones. A delicate interplay between HSP70s and co-chaperone recruitment is thought to determine substrate fate, yet it has been generally assumed that all Hsp70 paralogs have similar activities and are largely functionally redundant. However, here we found that when expressed in human cells, two highly homologous HSP70s, HSPA1A and HSPA1L, have opposing effects on cellular handling of various substrates. For example, HSPA1A reduced aggregation of the amyotrophic lateral sclerosis-associated protein variant superoxide dismutase 1 (SOD1)-A4V, whereas HSPA1L enhanced its aggregation. Intriguingly, variations in the substrate-binding domain of these HSP70s did not play a role in this difference. Instead, we observed that substrate fate is determined by differential interactions of the HSP70s with co-chaperones. Whereas most co-chaperones bound equally well to these two HSP70s, Hsp70/Hsp90-organizing protein (HOP) preferentially bound to HSPA1L, and the Hsp110 nucleotide-exchange factor HSPH2 preferred HSPA1A. The role of HSPH2 was especially crucial for the HSPA1A-mediated reduction in SOD1-A4V aggregation. These findings reveal a remarkable functional diversity at the level of the cellular HSP70s and indicate that this diversity is defined by their affinities for specific co-chaperones such as HSPH2.
Collapse
Affiliation(s)
- Despina Serlidaki
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Maria A W H van Waarde
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Lukas Rohland
- Center for Molecular Biology of the University of Heidelberg and the German Cancer Research Center, 69120 Heidelberg, Germany
| | - Anne S Wentink
- Center for Molecular Biology of the University of Heidelberg and the German Cancer Research Center, 69120 Heidelberg, Germany
| | - Suzanne L Dekker
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Maarten J Kamphuis
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jeffrey M Boertien
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jeanette F Brunsting
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Nadinath B Nillegoda
- Center for Molecular Biology of the University of Heidelberg and the German Cancer Research Center, 69120 Heidelberg, Germany; Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg and the German Cancer Research Center, 69120 Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of the University of Heidelberg and the German Cancer Research Center, 69120 Heidelberg, Germany
| | - Harm H Kampinga
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
20
|
Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM. HSP70 Multi-Functionality in Cancer. Cells 2020; 9:cells9030587. [PMID: 32121660 PMCID: PMC7140411 DOI: 10.3390/cells9030587] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
The 70-kDa heat shock proteins (HSP70s) are abundantly present in cancer, providing malignant cells selective advantage by suppressing multiple apoptotic pathways, regulating necrosis, bypassing cellular senescence program, interfering with tumor immunity, promoting angiogenesis and supporting metastasis. This direct involvement of HSP70 in most of the cancer hallmarks explains the phenomenon of cancer "addiction" to HSP70, tightly linking tumor survival and growth to the HSP70 expression. HSP70 operates in different states through its catalytic cycle, suggesting that it can multi-function in malignant cells in any of these states. Clinically, tumor cells intensively release HSP70 in extracellular microenvironment, resulting in diverse outcomes for patient survival. Given its clinical significance, small molecule inhibitors were developed to target different sites of the HSP70 machinery. Furthermore, several HSP70-based immunotherapy approaches were assessed in clinical trials. This review will explore different roles of HSP70 on cancer progression and emphasize the importance of understanding the flexibility of HSP70 nature for future development of anti-cancer therapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
- Correspondence:
| | - Grigoriy A. Armeev
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
| | - Leonid M. Kanevskiy
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| | - Elena I. Kovalenko
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| | - Alexander M. Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| |
Collapse
|
21
|
Kögler M, Itkonen J, Viitala T, Casteleijn MG. Assessment of recombinant protein production in E. coli with Time-Gated Surface Enhanced Raman Spectroscopy (TG-SERS). Sci Rep 2020; 10:2472. [PMID: 32051493 PMCID: PMC7015922 DOI: 10.1038/s41598-020-59091-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 01/18/2023] Open
Abstract
Time-Gated Surface-Enhanced Raman spectroscopy (TG-SERS) was utilized to assess recombinant protein production in Escherichia coli. TG-SERS suppressed the fluorescence signal from the biomolecules in the bacteria and the culture media. Characteristic protein signatures at different time points of the cell cultivation were observed and compared to conventional continuous wave (CW)-Raman with SERS. TG-SERS can distinguish discrete features of proteins such as the secondary structures and is therefore indicative of folding or unfolding of the protein. A novel method utilizing nanofibrillar cellulose as a stabilizing agent for nanoparticles and bacterial cells was used for the first time in order to boost the Raman signal, while simultaneously suppressing background signals. We evaluated the expression of hCNTF, hHspA1, and hHsp27 in complex media using the batch fermentation mode. HCNTF was also cultivated using EnBase in a fed-batch like mode. HspA1 expressed poorly due to aggregation problems within the cell, while hCNTF expressed in batch mode was correctly folded and protein instabilities were identified in the EnBase cultivation. Time-gated Raman spectroscopy showed to be a powerful tool to evaluate protein production and correct folding within living E. coli cells during the cultivation.
Collapse
Affiliation(s)
- Martin Kögler
- VTT Technical Research Centre of Finland, Oulu, Finland
| | - Jaakko Itkonen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marco G Casteleijn
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. .,VTT Technical Research Centre of Finland, Espoo, Finland.
| |
Collapse
|
22
|
Zhang IX, Raghavan M, Satin LS. The Endoplasmic Reticulum and Calcium Homeostasis in Pancreatic Beta Cells. Endocrinology 2020; 161:bqz028. [PMID: 31796960 PMCID: PMC7028010 DOI: 10.1210/endocr/bqz028] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) mediates the first steps of protein assembly within the secretory pathway and is the site where protein folding and quality control are initiated. The storage and release of Ca2+ are critical physiological functions of the ER. Disrupted ER homeostasis activates the unfolded protein response (UPR), a pathway which attempts to restore cellular equilibrium in the face of ER stress. Unremitting ER stress, and insufficient compensation for it results in beta-cell apoptosis, a process that has been linked to both type 1 diabetes (T1D) and type 2 diabetes (T2D). Both types are characterized by progressive beta-cell failure and a loss of beta-cell mass, although the underlying causes are different. The reduction of mass occurs secondary to apoptosis in the case of T2D, while beta cells undergo autoimmune destruction in T1D. In this review, we examine recent findings that link the UPR pathway and ER Ca2+ to beta cell dysfunction. We also discuss how UPR activation in beta cells favors cell survival versus apoptosis and death, and how ER protein chaperones are involved in regulating ER Ca2+ levels. Abbreviations: BiP, Binding immunoglobulin Protein ER; endoplasmic reticulum; ERAD, ER-associated protein degradation; IFN, interferon; IL, interleukin; JNK, c-Jun N-terminal kinase; KHE, proton-K+ exchanger; MODY, maturity-onset diabetes of young; PERK, PRKR-like ER kinase; SERCA, Sarco/Endoplasmic Reticulum Ca2+-ATPases; T1D, type 1 diabetes; T2D, type 2 diabetes; TNF, tumor necrosis factor; UPR, unfolded protein response; WRS, Wolcott-Rallison syndrome.
Collapse
Affiliation(s)
- Irina X Zhang
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| | - Malini Raghavan
- Department of Microbiology and Immunology Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
23
|
Kecel-Gunduz S, Budama-Kilinc Y, Cakir-Koc R, Zorlu T, Bicak B, Kokcu Y, E Ozel A, Akyuz S. In Silico design of AVP (4-5) peptide and synthesis, characterization and in vitro activity of chitosan nanoparticles. ACTA ACUST UNITED AC 2020; 28:139-157. [PMID: 31942695 DOI: 10.1007/s40199-019-00325-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 12/23/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Arginine-vasopressin (AVP) is a neuropeptide and provides learning and memory modulation. The AVP (4-5) dipeptide corresponds to the N-terminal fragment of the major vasopressin metabolite AVP (4-9), has a neuroprotective effect and used in the treatment of Alzheimer's and Parkinson's disease. METHODS The main objective of the present study is to evaluate the molecular mechanism of AVP (4-5) dipeptide and to develop and synthesize chitosan nanoparticle formulation using modified version of ionic gelation method, to increase drug effectiveness. For peptide loaded chitosan nanoparticles, the synthesized experiment medium was simulated for the first time by molecular dynamics method and used to determine the stability of the peptide, and the binding mechanism to protein (HSP70) was also investigated by molecular docking calculations. A potential pharmacologically features of the peptide was also characterized by ADME (Absorption, Distribution, Metabolism and Excretion) analysis. The characterization, in vitro release study, encapsulation efficiency and loading capacity of the peptide loaded chitosan nanoparticles (CS NPs) were performed by Dynamic Light Scattering (DLS), UV-vis absorption (UV), Scanning Electron Microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy techniques. Additionally, in vitro cytotoxicity of the peptide on human neuroblastoma cells (SH-SY5Y) was examined with XTT assay and the statistical analysis was evaluated. RESULTS The results showed that; hydrodynamic size, zeta potential and polydispersity index (PdI) of the peptide-loaded CS NPs were 167.6 nm, +13.2 mV, and 0.211, respectively. In vitro release study of the peptide-loaded CS NPs showed that 17.23% of the AVP (4-5)-NH2 peptide was released in the first day, while 61.13% of AVP (4-5)-NH2 peptide was released in the end of the 10th day. The encapsulation efficiency and loading capacity were 99% and 10%, respectively. According to the obtained results from XTT assay, toxicity on SHSY-5Y cells in the concentration from 0.01 μg/μL to 30 μg/μL were evaluated and no toxicity was observed. Also, neuroprotective effect was showed against H2O2 treatment. CONCLUSION The experimental medium of peptide-loaded chitosan nanoparticles was created for the first time with in silico system and the stability of the peptide in this medium was carried out by molecular dynamics studies. The binding sites of the peptide with the HSP70 protein were determined by molecular docking analysis. The size and morphology of the prepared NPs capable of crossing the blood-brain barrier (BBB) were monitored using DLS and SEM analyses, and the encapsulation efficiency and loading capacity were successfully performed with UV Analysis. In vitro release studies and in vitro cytotoxicity analysis on SHSY-5Y cell lines of the peptide were conducted for the first time. Grapical abstract.
Collapse
Affiliation(s)
- Serda Kecel-Gunduz
- Physics Department, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| | - Yasemin Budama-Kilinc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Rabia Cakir-Koc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Tolga Zorlu
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220, Istanbul, Turkey.,Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Bilge Bicak
- Physics Department, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.,Institute of Graduate Studies in Sciences, Istanbul University, 34452, Istanbul, Turkey
| | - Yagmur Kokcu
- Institute of Graduate Studies in Sciences, Istanbul University, 34452, Istanbul, Turkey
| | - Aysen E Ozel
- Physics Department, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Sevim Akyuz
- Physics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, Bakirkoy, 34156, Istanbul, Turkey
| |
Collapse
|
24
|
Astl L, Verkhivker GM. Dynamic View of Allosteric Regulation in the Hsp70 Chaperones by J-Domain Cochaperone and Post-Translational Modifications: Computational Analysis of Hsp70 Mechanisms by Exploring Conformational Landscapes and Residue Interaction Networks. J Chem Inf Model 2020; 60:1614-1631. [DOI: 10.1021/acs.jcim.9b01045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
25
|
Abstract
Heat-shock proteins of 70 kDa (Hsp70s) are ubiquitous molecular chaperones that function in protein folding as well as other vital cellular processes. They bind and hydrolyze ATP in a nucleotide-binding domain (NBD) to control the binding and release of client polypeptides in a substrate-binding domain (SBD). However, the molecular mechanism for this allosteric action has remained unclear. Here, we develop and experimentally quantify a theoretical model for Hsp70 allostery based on equilibria among Hsp70 conformational states. We postulate that, when bound to ATP, Hsp70 is in equilibrium between a restraining state (R) that restricts ATP hydrolysis and binds peptides poorly, if at all, and a stimulating state (S) that hydrolyzes ATP relatively rapidly and has high intrinsic substrate affinity but rapid binding kinetics; after the hydrolysis to ADP, NBD and SBD disengage into an uncoupled state (U) that binds peptide substrates tightly, but now with slow kinetics of exchange.
Collapse
|
26
|
Maccarrone M. Missing Pieces to the Endocannabinoid Puzzle. Trends Mol Med 2019; 26:263-272. [PMID: 31822395 DOI: 10.1016/j.molmed.2019.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
The most bioactive ingredient of cannabis (Cannabis sativa or indica) extracts, Δ9-tetrahydrocannabinol (THC), was identified in the 1960s as one of more than 110 phytocannabinoids. It activates receptors of chemically different endogenous ligands (endocannabinoids) that, unlike THC, are metabolized by several enzymes of the endocannabinoid system. Here, the complexity of the plant-derived and endogenous cannabinoids (eCBs) is discussed, to better appreciate the challenge of: (i) dissecting their mutual interactions; (ii) understanding their impact on human pathophysiology; and (iii) exploiting them for human disease. To this aim, missing pieces to the eCB puzzle must be urgently found, by solving the 3D structures of key components, and interrogating noncanonical modes of regulation and trafficking of these lipid signals.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; European Center for Brain Research, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| |
Collapse
|
27
|
Liu Q, Liang C, Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci 2019; 29:378-390. [PMID: 31509306 DOI: 10.1002/pro.3725] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
As one of the most abundant and highly conserved molecular chaperones, the 70-kDa heat shock proteins (Hsp70s) play a key role in maintaining cellular protein homeostasis (proteostasis), one of the most fundamental tasks for every living organism. In this role, Hsp70s are inextricably linked to many human diseases, most notably cancers and neurodegenerative diseases, and are increasingly recognized as important drug targets for developing novel therapeutics for these diseases. Hsp40s are a class of essential and universal partners for Hsp70s in almost all aspects of proteostasis. Thus, Hsp70s and Hsp40s together constitute one of the most important chaperone systems across all kingdoms of life. In recent years, we have witnessed significant progress in understanding the molecular mechanism of this chaperone system through structural and functional analysis. This review will focus on this recent progress, mainly from a structural perspective.
Collapse
Affiliation(s)
- Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Ce Liang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
28
|
Biological and proteomic studies of Schistosoma mansoni with decreased sensitivity to praziquantel. Comp Immunol Microbiol Infect Dis 2019; 66:101341. [DOI: 10.1016/j.cimid.2019.101341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
|
29
|
Chen X, Jiang Y, Gao F, Zheng W, Krock TJ, Stover NA, Lu C, Katz LA, Song W. Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stressors. Mol Ecol Resour 2019; 19:1292-1308. [PMID: 30985983 PMCID: PMC6764898 DOI: 10.1111/1755-0998.13023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
As a model organism for studies of cell and environmental biology, the free-living and cosmopolitan ciliate Euplotes vannus shows intriguing features like dual genome architecture (i.e., separate germline and somatic nuclei in each cell/organism), "gene-sized" chromosomes, stop codon reassignment, programmed ribosomal frameshifting (PRF) and strong resistance to environmental stressors. However, the molecular mechanisms that account for these remarkable traits remain largely unknown. Here we report a combined analysis of de novo assembled high-quality macronuclear (MAC; i.e., somatic) and partial micronuclear (MIC; i.e., germline) genome sequences for E. vannus, and transcriptome profiling data under varying conditions. The results demonstrate that: (a) the MAC genome contains more than 25,000 complete "gene-sized" nanochromosomes (~85 Mb haploid genome size) with the N50 ~2.7 kb; (b) although there is a high frequency of frameshifting at stop codons UAA and UAG, we did not observe impaired transcript abundance as a result of PRF in this species as has been reported for other euplotids; (c) the sequence motif 5'-TA-3' is conserved at nearly all internally-eliminated sequence (IES) boundaries in the MIC genome, and chromosome breakage sites (CBSs) are duplicated and retained in the MAC genome; (d) by profiling the weighted correlation network of genes in the MAC under different environmental stressors, including nutrient scarcity, extreme temperature, salinity and the presence of ammonia, we identified gene clusters that respond to these external physical or chemical stimulations, and (e) we observed a dramatic increase in HSP70 gene transcription under salinity and chemical stresses but surprisingly, not under temperature changes; we link this temperature-resistance to the evolved loss of temperature stress-sensitive elements in regulatory regions. Together with the genome resources generated in this study, which are available online at Euplotes vannus Genome Database (http://evan.ciliate.org), these data provide molecular evidence for understanding the unique biology of highly adaptable microorganisms.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Yaohan Jiang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Weibo Zheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Timothy J. Krock
- Department of Computer Science and Information Systems, Bradley University, Peoria, IL 61625, USA
| | - Naomi A. Stover
- Department of Biology, Bradley University, Peoria, IL 61625, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
30
|
Nam O, Park JM, Lee H, Jin E. De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis. PLoS One 2019; 14:e0221938. [PMID: 31465514 PMCID: PMC6715215 DOI: 10.1371/journal.pone.0221938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
The haptophyte alga Emiliania huxleyi is the most abundant coccolithophore in the modern ocean and produces elaborate calcite crystals, called coccolith, in a separate intracellular compartment known as the coccolith vesicle. Despite the importance of biomineralization in coccolithophores, the molecular mechanism underlying it remains unclear. Understanding this precise machinery at the molecular level will provide the knowledge needed to enable further manipulation of biomineralization. In our previous study, altering the calcium concentration modified the calcifying ability of E. huxleyi CCMP371. Therefore in this study, we tested E. huxleyi cells acclimated to three different calcium concentrations (0, 0.1, and 10 mM). To understand the whole transcript profile at different calcium concentrations, RNA-sequencing was performed and used for de novo assembly and annotation. The differentially expressed genes (DEGs) among the three different calcium concentrations were analyzed. The functional classification by gene ontology (GO) revealed that 'intrinsic component of membrane' was the most enriched of the GO terms at the ambient calcium concentration (10 mM) compared with the limited calcium concentrations (0 and 0.1 mM). Moreover, the DEGs in those comparisons were enriched mainly in 'secondary metabolites biosynthesis, transport and catabolism' and 'signal transduction mechanisms' in the KOG clusters and 'processing in endoplasmic reticulum', and 'ABC transporters' in the KEGG pathways. Furthermore, metabolic pathways involved in protein synthesis were enriched among the differentially expressed proteins. The results of this study provide a molecular profile for understanding the expression of transcripts and proteins in E. huxleyi at different calcium concentrations, which will help to identify the detailed mechanism of its calcification.
Collapse
Affiliation(s)
- Onyou Nam
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Jong-Moon Park
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Feng Q, Zhao N, Xia W, Liang C, Dai G, Yang J, Sun J, Liu L, Luo L, Yang J. Integrative proteomics and immunochemistry analysis of the factors in the necrosis and repair in acetaminophen-induced acute liver injury in mice. J Cell Physiol 2018; 234:6561-6581. [PMID: 30417486 DOI: 10.1002/jcp.27397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022]
Abstract
Acetaminophen (APAP) overdose-induced acute liver injury (AILI) is a significant clinical problem worldwide, the hepatotoxicity mechanisms are well elucidated, but the factors involved in the necrosis and repair still remain to be investigated. APAP was injected intraperitoneally in male Institute of Cancer Research (ICR) mice. Quantitative proteome analysis of liver tissues was performed by 2-nitrobenzenesulfenyl tagging, two-dimensional-nano high-performance liquid chromatography separation, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis. Diffrenetial proteins were verified by the immunochemistry method. 36 and 44 differentially expressed proteins were identified, respectively, at 24 hr after APAP (200 or 300 mg·kg -1 ) administration. The decrease in the mitochondrial protective proteins Prdx6, Prdx3, and Aldh2 accounted for the accumulation of excessive reactive oxygen species (ROS) and aldehydes, impairing mitochondria structure and function. The Gzmf combined with Bax and Apaf-1 jointly contributed to the necrosis. The blockage of Stat3 activation led to the overexpression of unphosphorylated Stat3 and the overproduction of Bax. The overexpression of unphosphorylated Stat3 represented necrosis; the alternation from Stat3 to p-Stat3 in necrotic regions represented hepatocytes from death to renewal. The high expressions of P4hα1, Ncam, α-SMA, and Cygb were involved in the liver repair, they were not only the markers of activated HSC but also represented an intermediate stage of hepatocytes from damage or necrosis to renewal. Our data provided a comprehensive report on the profile and dynamic changes of the liver proteins in AILI; the involvement of Gzmf and the role of Stat3 in necrosis were revealed; and the role of hepatocyte in liver self-repair was well clarified.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Shimadzu Biomedical Research Laboratory, Shanghai, China
| | - Wenkai Xia
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - ChengJie Liang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Guoxin Dai
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jian Yang
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingxia Sun
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Lanying Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
32
|
Nuclear actin: ancient clue to evolution in eukaryotes? Histochem Cell Biol 2018; 150:235-244. [DOI: 10.1007/s00418-018-1693-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 12/31/2022]
|
33
|
Elnatan D, Agard DA. Calcium binding to a remote site can replace magnesium as cofactor for mitochondrial Hsp90 (TRAP1) ATPase activity. J Biol Chem 2018; 293:13717-13724. [PMID: 29991590 PMCID: PMC6120219 DOI: 10.1074/jbc.ra118.003562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/08/2018] [Indexed: 01/22/2023] Open
Abstract
The Hsp90 molecular chaperones are ATP-dependent enzymes that maintain protein homeostasis and regulate many essential cellular processes. Higher eukaryotes have organelle-specific Hsp90 paralogs that are adapted to each subcellular environment. The mitochondrial Hsp90, TNF receptor–associated protein 1 (TRAP1), supports the folding and activity of electron transport components and is increasingly appreciated as a critical player in mitochondrial signaling. Calcium plays a well-known and important regulatory role in mitochondria where it can accumulate to much higher concentrations than in the cytoplasm. Surprisingly, we found here that calcium can replace magnesium, the essential enzymatic cofactor, to support TRAP1 ATPase activity. Anomalous X-ray diffraction experiments revealed a calcium-binding site within the TRAP1 nucleotide-binding pocket located near the ATP α-phosphate and completely distinct from the magnesium-binding site adjacent to the β- and γ-phosphates. In the presence of magnesium, ATP hydrolysis by TRAP1, as with other Hsp90s, was noncooperative, whereas calcium binding resulted in cooperative hydrolysis by the two protomers within the Hsp90 dimer. The structural data suggested a mechanism for this cooperative behavior. Because of the cooperativity, at high ATP concentrations, ATPase activity was higher with calcium, whereas the converse was observed at low ATP concentrations. Integrating these observations, we propose a model in which the divalent cation choice can control switching between noncooperative and cooperative TRAP1 ATPase mechanisms in response to varying ATP concentrations. This switching may facilitate coordination between cellular energetics, mitochondrial signaling, and protein homeostasis via alterations in the TRAP1 ATP-driven cycle and its consequent effects on different mitochondrial clients.
Collapse
Affiliation(s)
- Daniel Elnatan
- From the Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158-2517
| | - David A Agard
- From the Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158-2517
| |
Collapse
|
34
|
Mac Sweeney A, Chambovey A, Wicki M, Müller M, Artico N, Lange R, Bijelic A, Breibeck J, Rompel A. The crystallization additive hexatungstotellurate promotes the crystallization of the HSP70 nucleotide binding domain into two different crystal forms. PLoS One 2018; 13:e0199639. [PMID: 29949628 PMCID: PMC6021075 DOI: 10.1371/journal.pone.0199639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/11/2018] [Indexed: 11/18/2022] Open
Abstract
The use of the tellurium-centered Anderson-Evans polyoxotungstate [TeW6O24]6- (TEW) as a crystallization additive has been described. Here, we present the use of TEW as an additive in the crystallization screening of the nucleotide binding domain (NBD) of HSP70. Crystallization screening of the HSP70 NBD in the absence of TEW using a standard commercial screen resulted in a single crystal form. An identical crystallization screen of the HSP70 NBD in the presence of TEW resulted in both the "TEW free" crystal form and an additional crystal form with a different crystal packing. TEW binding was observed in both crystal forms, either as a well-defined molecule or in overlapping alternate positions suggesting translational disorder. The structures were solved by both molecular replacement and single wavelength anomalous diffraction (SAD) using the anomalous signal of a single bound molecule of TEW. This study adds one more example of TEW binding to a protein and influencing its crystallization behavior.
Collapse
Affiliation(s)
- Aengus Mac Sweeney
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Alain Chambovey
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Micha Wicki
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Manon Müller
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Nadia Artico
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Roland Lange
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Aleksandar Bijelic
- University of Vienna, Faculty of Chemistry, Department of Biophysical Chemistry, Vienna, Austria
| | - Joscha Breibeck
- University of Vienna, Faculty of Chemistry, Department of Biophysical Chemistry, Vienna, Austria
| | - Annette Rompel
- University of Vienna, Faculty of Chemistry, Department of Biophysical Chemistry, Vienna, Austria
| |
Collapse
|
35
|
Conformation transitions of the polypeptide-binding pocket support an active substrate release from Hsp70s. Nat Commun 2017; 8:1201. [PMID: 29084938 PMCID: PMC5662698 DOI: 10.1038/s41467-017-01310-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
Cellular protein homeostasis depends on heat shock proteins 70 kDa (Hsp70s), a class of ubiquitous and highly conserved molecular chaperone. Key to the chaperone activity is an ATP-induced allosteric regulation of polypeptide substrate binding and release. To illuminate the molecular mechanism of this allosteric coupling, here we present a novel crystal structure of an intact human BiP, an essential Hsp70 in ER, in an ATP-bound state. Strikingly, the polypeptide-binding pocket is completely closed, seemingly excluding any substrate binding. Our FRET, biochemical and EPR analysis suggests that this fully closed conformation is the major conformation for the ATP-bound state in solution, providing evidence for an active release of bound polypeptide substrates following ATP binding. The Hsp40 co-chaperone converts this fully closed conformation to an open conformation to initiate productive substrate binding. Taken together, this study provided a mechanistic understanding of the dynamic nature of the polypeptide-binding pocket in the Hsp70 chaperone cycle. Hsp70s are highly conserved molecular chaperones that play multiple essential roles in maintaining cellular protein homeostasis. Here, the authors provide structural evidence for active substrate release by Hsp70s upon ATP binding and provide insight into the molecular mechanism of ATP-driven Hsp70 chaperone activity.
Collapse
|
36
|
Yokoyama T, Ostermann A, Schrader TE, Mizuguchi M. Large-scale crystallization and neutron crystallographic analysis of HSP70 in complex with ADP. Acta Crystallogr F Struct Biol Commun 2017; 73:555-559. [PMID: 28994403 PMCID: PMC5633922 DOI: 10.1107/s2053230x1701264x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/03/2017] [Indexed: 11/10/2022] Open
Abstract
HSP70 belongs to the heat-shock protein family and binds to unfolded proteins, driven by ATP hydrolysis, in order to prevent aggregation. Previous X-ray crystallographic analyses of HSP70 have shown that HSP70 binds to ADP with internal water molecules. In order to elucidate the role of the water molecules, including their H/D atoms, a neutron diffraction study of the human HSP70 ATPase domain was initiated. Deuterated large crystals of the HSP-ADP complex (1.2-1.8 mm3) were successfully grown by large-scale crystallization, and a neutron diffraction experiment at BIODIFF resulted in diffraction to a maximum resolution of 2.2 Å. After data reduction, the overall completeness, Rmeas and average I/σ(I) were 90.4%, 11.7% and 8.1, respectively, indicating that the data set was sufficient to visualize H and D atoms.
Collapse
Affiliation(s)
- Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugutani, Toyama 930-0914, Japan
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universtät München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Tobias E. Schrader
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugutani, Toyama 930-0914, Japan
| |
Collapse
|
37
|
HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene 2017; 618:14-23. [PMID: 28286085 DOI: 10.1016/j.gene.2017.03.005] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
The HSPA5 gene encodes the binding immunoglobulin protein (BiP), an Hsp70 family chaperone localized in the ER lumen. As a highly conserved molecular chaperone, BiP assists in a wide range of folding processes via its two structural domains, a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). BiP is also an essential component of the translocation machinery for protein import into the ER, a regulator for Ca2+ homeostasis in the ER, as well as a facilitator of ER-associated protein degradation (ERAD) via retrograde transportation of aberrant proteins across the ER membrane. When unfolded/misfolded proteins in the ER overwhelm the capacity of protein folding machinery, BiP can initiate the unfolded protein response (UPR), decrease unfolded/misfolded protein load, induce autophagy, and crosstalk with apoptosis machinery to assist in the cell survival decision. Post-translational modifications (PTMs) of BiP have been shown to regulate BiP's activity, turnover, and availability upon different extrinsic or intrinsic stimuli. As a master regulator of ER function, BiP is associated with cancer, cardiovascular disease, neurodegenerative disease, and immunological diseases. BiP has been targeted in cancer therapies and shows promise for application in other relevant diseases.
Collapse
|
38
|
Liu Q, Li H, Yang Y, Tian X, Su J, Zhou L, Liu Q. A disulfide-bonded DnaK dimer is maintained in an ATP-bound state. Cell Stress Chaperones 2017; 22:201-212. [PMID: 27975204 PMCID: PMC5352592 DOI: 10.1007/s12192-016-0752-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 01/16/2023] Open
Abstract
DnaK, a major Hsp70 molecular chaperones in Escherichia coli, is a widely used model for studying Hsp70s. We recently solved a crystal structure of DnaK in complex with ATP and showed that DnaK was packed as a dimer in the crystal structure. Our previous biochemical studies supported the formation of a specific DnaK dimer as observed in the crystal structure in solution in the presence of ATP and suggested an important role of this dimer in efficient interaction with Hsp40 co-chaperones. In this study, we dissected the biochemical properties of this DnaK dimer. To restrict DnaK in this dimer form, we mutated two residues on the dimer interface to cysteine, A303C, and H541C. Upon oxidation, this DnaK-A303C-H541C protein formed a specific dimer linked by disulfide bonds formed between A303C and H541C only in the presence of ATP, consistent with the crystal structure. Intriguingly, this disulfide-bond-linked dimer of DnaK-A303C-H541C has reduced ATPase activity and decreased affinity for peptide substrate. More interestingly, unlike wild-type DnaK, the peptide substrate-binding kinetics of this dimer is drastically accelerated even in the absence of ATP, suggesting this dimer is restricted in an ATP-bound conformation regardless of nucleotide bound, which was further supported by our analysis using tryptophan fluorescence and ATP-induced peptide release. Thus, formation of the dimer restricted DnaK in an ATP-bound state and blocked the progression through the chaperone cycle. Productive progression through the chaperone cycle requires the dissociation of this transient dimer. Surprisingly, a significantly compromised interaction with Hsp40 co-chaperone was observed for this disulfide-bond-linked dimer. Thus, dissociation of this DnaK dimer is equally crucial for efficient Hsp40 interaction. An initial interaction between Hsp70 and Hsp40 requires the formation of DnaK dimer; but a stable Hsp70-Hsp40 interaction may follow the dissociation of the dimer.
Collapse
Affiliation(s)
- Qingdai Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, 300457, China.
| | - Hongtao Li
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Yang
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, 300457, China
| | - Xueli Tian
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, 300457, China
| | - Jiayue Su
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, 300457, China
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Lei Zhou
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
39
|
Jones AM, Westwood IM, Osborne JD, Matthews TP, Cheeseman MD, Rowlands MG, Jeganathan F, Burke R, Lee D, Kadi N, Liu M, Richards M, McAndrew C, Yahya N, Dobson SE, Jones K, Workman P, Collins I, van Montfort RLM. A fragment-based approach applied to a highly flexible target: Insights and challenges towards the inhibition of HSP70 isoforms. Sci Rep 2016; 6:34701. [PMID: 27708405 PMCID: PMC5052559 DOI: 10.1038/srep34701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022] Open
Abstract
The heat shock protein 70s (HSP70s) are molecular chaperones implicated in many cancers and of significant interest as targets for novel cancer therapies. Several HSP70 inhibitors have been reported, but because the majority have poor physicochemical properties and for many the exact mode of action is poorly understood, more detailed mechanistic and structural insight into ligand-binding to HSP70s is urgently needed. Here we describe the first comprehensive fragment-based inhibitor exploration of an HSP70 enzyme, which yielded an amino-quinazoline fragment that was elaborated to a novel ATP binding site ligand with different physicochemical properties to known adenosine-based HSP70 inhibitors. Crystal structures of amino-quinazoline ligands bound to the different conformational states of the HSP70 nucleotide binding domain highlighted the challenges of a fragment-based approach when applied to this particular flexible enzyme class with an ATP-binding site that changes shape and size during its catalytic cycle. In these studies we showed that Ser275 is a key residue in the selective binding of ATP. Additionally, the structural data revealed a potential functional role for the ATP ribose moiety in priming the protein for the formation of the ATP-bound pre-hydrolysis complex by influencing the conformation of one of the phosphate binding loops.
Collapse
Affiliation(s)
- Alan M Jones
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Isaac M Westwood
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom.,Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - James D Osborne
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Thomas P Matthews
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Matthew D Cheeseman
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Martin G Rowlands
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Fiona Jeganathan
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Diane Lee
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Nadia Kadi
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Manjuan Liu
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Meirion Richards
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Craig McAndrew
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Norhakim Yahya
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Sarah E Dobson
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom.,Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Keith Jones
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom
| | - Rob L M van Montfort
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, United Kingdom.,Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| |
Collapse
|
40
|
Elengoe A, Hamdan S. In Silico Molecular Modeling and Docking Studies on Novel Mutants (E229V, H225P and D230C) of the Nucleotide-Binding Domain of Homo sapiens Hsp70. Interdiscip Sci 2016; 9:478-498. [PMID: 27517798 DOI: 10.1007/s12539-016-0181-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 12/25/2022]
Abstract
In this study, we explored the possibility of determining the synergistic interactions between nucleotide-binding domain (NBD) of Homo sapiens heat-shock 70 kDa protein (Hsp70) and E1A 32 kDa of adenovirus serotype 5 motif (PNLVP) in the efficiency of killing of tumor cells in cancer treatment. At present, the protein interaction between NBD and PNLVP motif is still unknown, but believed to enhance the rate of virus replication in tumor cells. Three mutant models (E229V, H225P and D230C) were built and simulated, and their interactions with PNLVP motif were studied. The PNLVP motif showed the binding energy and intermolecular energy values with the novel E229V mutant at -7.32 and -11.2 kcal/mol. The E229V mutant had the highest number of hydrogen bonds (7). Based on the root mean square deviation, root mean square fluctuation, hydrogen bonds, salt bridge, secondary structure, surface-accessible solvent area, potential energy and distance matrices analyses, it was proved that the E229V had the strongest and most stable interaction with the PNLVP motif among all the four protein-ligand complex structures. The knowledge of this protein-ligand complex model would help in designing Hsp70 structure-based drug for cancer therapy.
Collapse
Affiliation(s)
- Asita Elengoe
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Salehhuddin Hamdan
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
41
|
Wu CY, Hsu WL, Wang CH, Liang JL, Tsai MH, Yen CJ, Li HW, Chiu SJ, Chang CH, Huang YB, Lin MW, Yoshioka T. A Novel Strategy for TNF-Alpha Production by 2-APB Induced Downregulated SOCE and Upregulated HSP70 in O. tsutsugamushi-Infected Human Macrophages. PLoS One 2016; 11:e0159299. [PMID: 27472555 PMCID: PMC4966960 DOI: 10.1371/journal.pone.0159299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/30/2016] [Indexed: 12/20/2022] Open
Abstract
Orientia (O.) tsutsugamushi-induced scrub typhus is endemic across many regions of Asia and the Western Pacific, where an estimated 1 million cases occur each year; the majority of patients infected with O. tsutsugamushi end up with a cytokine storm from a severe inflammatory response. Previous reports have indicated that blocking tumor necrosis factor (TNF)-α reduced cell injury from a cytokine storm. Since TNF-α production is known to be associated with intracellular Ca2+ elevation, we examined the effect of store-operated Ca2+ entry (SOCE) inhibitors on TNF-α production in O. tsutsugamushi-infected macrophages. We found that 2-aminoethoxydiphenyl borate (2-APB), but not SKF96365, facilitates the suppression of Ca2+ mobilization via the interruption of Orai1 expression in O. tsutsugamushi-infected macrophages. Due to the decrease of Ca2+ elevation, the expression of TNF-α and its release from macrophages was repressed by 2-APB. In addition, a novel role of 2-APB was found in macrophages that causes the upregulation of heat shock protein 70 (HSP70) expression associated with ERK activation; upregulated TNF-α production in the case of knockdown HSP70 was inhibited with 2-APB treatment. Furthermore, elevated HSP70 formation unexpectedly did not help the cell survival of O. tsutsugamushi-infected macrophages. In conclusion, the parallelism between downregulated Ca2+ mobilization via SOCE and upregulated HSP70 after treatment with 2-APB against TNF-α production was found to efficiently attenuate an O. tsutsugamushi-induced severe inflammatory response.
Collapse
Affiliation(s)
- Ching-Ying Wu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Wen-Li Hsu
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | - Ming-Hsien Tsai
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Jung Yen
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiu-Wen Li
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Siou-Jin Chiu
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Chung-Hsing Chang
- Department of Dermatology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yaw-Bin Huang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Wei Lin
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (TY); (MWL)
| | - Tohru Yoshioka
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (TY); (MWL)
| |
Collapse
|
42
|
Gohara DW, Di Cera E. Molecular Mechanisms of Enzyme Activation by Monovalent Cations. J Biol Chem 2016; 291:20840-20848. [PMID: 27462078 DOI: 10.1074/jbc.r116.737833] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Regulation of enzymes through metal ion complexation is widespread in biology and underscores a physiological need for stability and high catalytic activity that likely predated proteins in the RNA world. In addition to divalent metals such as Ca2+, Mg2+, and Zn2+, monovalent cations often function as efficient and selective promoters of catalysis. Advances in structural biology unravel a rich repertoire of molecular mechanisms for enzyme activation by Na+ and K+ Strategies range from short-range effects mediated by direct participation in substrate binding, to more distributed effects that propagate long-range to catalytic residues. This review addresses general considerations and examples.
Collapse
Affiliation(s)
- David W Gohara
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
43
|
Scholl ZN, Li Q, Yang W, Marszalek PE. Single-molecule Force Spectroscopy Reveals the Calcium Dependence of the Alternative Conformations in the Native State of a βγ-Crystallin Protein. J Biol Chem 2016; 291:18263-75. [PMID: 27378818 DOI: 10.1074/jbc.m116.729525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Although multidomain proteins predominate the proteome of all organisms and are expected to display complex folding behaviors and significantly greater structural dynamics as compared with single-domain proteins, their conformational heterogeneity and its impact on their interaction with ligands are poorly understood due to a lack of experimental techniques. The multidomain calcium-binding βγ-crystallin proteins are particularly important because their deterioration and misfolding/aggregation are associated with melanoma tumors and cataracts. Here we investigate the mechanical stability and conformational dynamics of a model calcium-binding βγ-crystallin protein, Protein S, and elaborate on its interactions with calcium. We ask whether domain interactions and calcium binding affect Protein S folding and potential structural heterogeneity. Our results from single-molecule force spectroscopy show that the N-terminal (but not the C-terminal) domain is in equilibrium with an alternative conformation in the absence of Ca(2+), which is mechanically stable in contrast to other proteins that were observed to sample a molten globule under similar conditions. Mutagenesis experiments and computer simulations reveal that the alternative conformation of the N-terminal domain is caused by structural instability produced by the high charge density of a calcium binding site. We find that this alternative conformation in the N-terminal domain is diminished in the presence of calcium and can also be partially eliminated with a hitherto unrecognized compensatory mechanism that uses the interaction of the C-terminal domain to neutralize the electronegative site. We find that up to 1% of all identified multidomain calcium-binding proteins contain a similarly highly charged site and therefore may exploit a similar compensatory mechanism to prevent structural instability in the absence of ligand.
Collapse
Affiliation(s)
| | - Qing Li
- the Department of Mechanical Engineering and Materials Science, and
| | - Weitao Yang
- the Department of Chemistry, Duke University, Durham, North Carolina 27708
| | | |
Collapse
|
44
|
Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) cells. Toxicon 2016; 119:336-44. [PMID: 27390038 DOI: 10.1016/j.toxicon.2016.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/24/2016] [Accepted: 07/01/2016] [Indexed: 01/30/2023]
Abstract
Fusarium spp are common contaminants of maize and produce many mycotoxins, including the fusariotoxin fusaric acid (FA). FA is a niacin related compound, chelator of divalent cations, and mediates toxicity via oxidative stress and possible mitochondrial dysregulation. Sirtuin 3 (SIRT3) is a stress response deacetylase that maintains proper mitochondrial function. We investigated the effect of FA on SIRT3 and oxidative and mitochondrial stress pathways in the hepatocellular carcinoma (HepG2) cell line. We determined FA toxicity (24 h incubation; IC50 = 104 μg/ml) on mitochondrial output, cellular and mitochondrial stress responses, mitochondrial biogenesis and markers of cell death using spectrophotometry, luminometry, qPCR and western blots. FA caused a dose dependent decrease in metabolic activity along with significant depletion of intracellular ATP. FA induced a significant increase in lipid peroxidation, despite up-regulation of the antioxidant transcription factor, Nrf2. FA significantly decreased expression of SIRT3 mRNA with a concomitant decrease in protein expression. Lon protease was also significantly down-regulated. FA induced aberrant mitochondrial biogenesis as evidenced by significantly decreased protein expressions of: PGC-1α, p-CREB, NRF1 and HSP70. Finally, FA activated apoptosis as noted by the significantly increased activity of caspases 3/7 and also induced cellular necrosis. This study provides insight into the molecular mechanisms of FA (a neglected mycotoxin) induced hepatotoxicity.
Collapse
|
45
|
Cheeseman MD, Westwood IM, Barbeau O, Rowlands M, Dobson S, Jones AM, Jeganathan F, Burke R, Kadi N, Workman P, Collins I, van Montfort RLM, Jones K. Exploiting Protein Conformational Change to Optimize Adenosine-Derived Inhibitors of HSP70. J Med Chem 2016; 59:4625-36. [PMID: 27119979 PMCID: PMC5371393 DOI: 10.1021/acs.jmedchem.5b02001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
HSP70 is a molecular chaperone and a key component of the heat-shock response. Because of its proposed importance in oncology, this protein has become a popular target for drug discovery, efforts which have as yet brought little success. This study demonstrates that adenosine-derived HSP70 inhibitors potentially bind to the protein with a novel mechanism of action, the stabilization by desolvation of an intramolecular salt-bridge which induces a conformational change in the protein, leading to high affinity ligands. We also demonstrate that through the application of this mechanism, adenosine-derived HSP70 inhibitors can be optimized in a rational manner.
Collapse
Affiliation(s)
- Matthew D Cheeseman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , London SW7 3RP, U.K
| | - Isaac M Westwood
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , London SW7 3RP, U.K.,Division of Structural Biology, The Institute of Cancer Research , London SW7 3RP, U.K
| | - Olivier Barbeau
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , London SW7 3RP, U.K
| | - Martin Rowlands
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , London SW7 3RP, U.K
| | - Sarah Dobson
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , London SW7 3RP, U.K.,Division of Structural Biology, The Institute of Cancer Research , London SW7 3RP, U.K
| | - Alan M Jones
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , London SW7 3RP, U.K
| | - Fiona Jeganathan
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , London SW7 3RP, U.K
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , London SW7 3RP, U.K
| | - Nadia Kadi
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , London SW7 3RP, U.K
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , London SW7 3RP, U.K
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , London SW7 3RP, U.K
| | - Rob L M van Montfort
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , London SW7 3RP, U.K.,Division of Structural Biology, The Institute of Cancer Research , London SW7 3RP, U.K
| | - Keith Jones
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , London SW7 3RP, U.K
| |
Collapse
|
46
|
Gassié L, Lombard A, Moraldi T, Bibonne A, Leclerc C, Moreau M, Marlier A, Gilbert T. Hspa9 is required for pronephros specification and formation inXenopus laevis. Dev Dyn 2015; 244:1538-49. [DOI: 10.1002/dvdy.24344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/29/2015] [Accepted: 08/17/2015] [Indexed: 01/13/2023] Open
Affiliation(s)
- Lionel Gassié
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
| | | | - Tiphanie Moraldi
- Université Lyon 1 Institut Universitaire Technologique; Villeurbanne France
| | - Anne Bibonne
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
- CNRS UMR 5547; Toulouse France
| | - Catherine Leclerc
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
- CNRS UMR 5547; Toulouse France
| | - Marc Moreau
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
- CNRS UMR 5547; Toulouse France
| | - Arnaud Marlier
- Yale' School of Medicine Department of Internal Medicine; New Haven Connecticut USA
| | - Thierry Gilbert
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
- CNRS UMR 5547; Toulouse France
- Institut National de la Santé et de la Recherche Médicale; Toulouse France
| |
Collapse
|
47
|
Sulfatide-Hsp70 interaction promotes Hsp70 clustering and stabilizes binding to unfolded protein. Biomolecules 2015; 5:958-73. [PMID: 25989600 PMCID: PMC4496704 DOI: 10.3390/biom5020958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/24/2015] [Accepted: 05/07/2015] [Indexed: 01/01/2023] Open
Abstract
The 70-kDa heat shock protein (Hsp70), one of the major stress-inducible molecular chaperones, is localized not only in the cytosol, but also in extracellular milieu in mammals. Hsp70 interacts with various cell surface glycolipids including sulfatide (3'-sulfogalactosphingolipid). However, the molecular mechanism, as well as the biological relevance, underlying the glycolipid-Hsp70 interaction is unknown. Here we report that sulfatide promotes Hsp70 oligomerization through the N-terminal ATPase domain, which stabilizes the binding of Hsp70 to unfolded protein in vitro. We find that the Hsp70 oligomer has apparent molecular masses ranging from 440 kDa to greater than 669 kDa. The C-terminal peptide-binding domain is dispensable for the sulfatide-induced oligomer formation. The oligomer formation is impaired in the presence of ATP, while the Hsp70 oligomer, once formed, is unable to bind to ATP. These results suggest that sulfatide locks Hsp70 in a high-affinity state to unfolded proteins by clustering the peptide-binding domain and blocking the binding to ATP that induces the dissociation of Hsp70 from protein substrates.
Collapse
|
48
|
Sarbeng EB, Liu Q, Tian X, Yang J, Li H, Wong JL, Zhou L, Liu Q. A functional DnaK dimer is essential for the efficient interaction with Hsp40 heat shock protein. J Biol Chem 2015; 290:8849-62. [PMID: 25635056 DOI: 10.1074/jbc.m114.596288] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 12/28/2022] Open
Abstract
Highly conserved molecular chaperone Hsp70 heat shock proteins play a key role in maintaining protein homeostasis (proteostasis). DnaK, a major Hsp70 in Escherichia coli, has been widely used as a paradigm for studying Hsp70s. In the absence of ATP, purified DnaK forms low-ordered oligomer, whereas ATP binding shifts the equilibrium toward the monomer. Recently, we solved the crystal structure of DnaK in complex with ATP. There are two molecules of DnaK-ATP in the asymmetric unit. Interestingly, the interfaces between the two molecules of DnaK are large with good surface complementarity, suggesting functional importance of this crystallographic dimer. Biochemical analyses of DnaK protein supported the formation of dimer in solution. Furthermore, our cross-linking experiment based on the DnaK-ATP structure confirmed that DnaK forms specific dimer in an ATP-dependent manner. To understand the physiological function of the dimer, we mutated five residues on the dimer interface. Four mutations, R56A, T301A, N537A, and D540A, resulted in loss of chaperone activity and compromised the formation of dimer, indicating the functional importance of the dimer. Surprisingly, neither the intrinsic biochemical activities, the ATP-induced allosteric coupling, nor GrpE co-chaperone interaction is affected appreciably in all of the mutations except for R56A. Unexpectedly, the interaction with co-chaperone Hsp40 is significantly compromised. In summary, this study suggests that DnaK forms a transient dimer upon ATP binding, and this dimer is essential for the efficient interaction of DnaK with Hsp40.
Collapse
Affiliation(s)
- Evans Boateng Sarbeng
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Qingdai Liu
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Xueli Tian
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Jiao Yang
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Hongtao Li
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Jennifer Li Wong
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Lei Zhou
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Qinglian Liu
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
49
|
New crystal structures of HSC-70 ATP binding domain confirm the role of individual binding pockets and suggest a new method of inhibition. Biochimie 2014; 108:186-92. [PMID: 25433210 DOI: 10.1016/j.biochi.2014.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/15/2014] [Indexed: 11/22/2022]
Abstract
In recent years the chaperone HSC-70 has become a target for drug design with a strong focus in anticancer therapies. In our study of possible inhibitors of HSC-70 enzymatic activity we screened compounds by NMR as well as X-ray crystallography. As part of our screening efforts we crystallized the human HSC-70 ATP binding domain and obtained novel crystal forms in addition to known structures. The new crystal structures highlight the mobility of the entire domain previously described by NMR, which was linked to its chaperone activity but not yet demonstrated by X-ray crystallography. Conformational changes across the entire molecule have been elucidated in response to the binding of small molecule ligands and show a pattern of mobility consistent with postulated signal transduction modes between the nucleotide binding domain (NBD) and the substrate binding domain (SBD). In addition, two crystal structures contained glycerol bound at a new site. Binding studies performed with glycerol analogs proved inhibitory properties of the site, which were further characterized by isothermal calorimetry and in silico docking studies. The presence of two binding pockets enabled us to explore a novel method of inhibition by compounds that bridge the adjacent phosphate and glycerol binding sites. Finally, an example of such a bridged inhibitor is proposed.
Collapse
|
50
|
Ham H, Woolery AR, Tracy C, Stenesen D, Krämer H, Orth K. Unfolded protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis. J Biol Chem 2014; 289:36059-69. [PMID: 25395623 DOI: 10.1074/jbc.m114.612515] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drosophila Fic (dFic) mediates AMPylation, a covalent attachment of adenosine monophosphate (AMP) from ATP to hydroxyl side chains of protein substrates. Here, we identified the endoplasmic reticulum (ER) chaperone BiP as a substrate for dFic and mapped the modification site to Thr-366 within the ATPase domain. The level of AMPylated BiP in Drosophila S2 cells is high during homeostasis, whereas the level of AMPylated BiP decreases upon the accumulation of misfolded proteins in the ER. Both dFic and BiP are transcriptionally activated upon ER stress, supporting the role of dFic in the unfolded protein response pathway. The inactive conformation of BiP is the preferred substrate for dFic, thus endorsing a model whereby AMPylation regulates the function of BiP as a chaperone, allowing acute activation of BiP by deAMPylation during an ER stress response. These findings not only present the first substrate of eukaryotic AMPylator but also provide a target for regulating the unfolded protein response, an emerging avenue for cancer therapy.
Collapse
Affiliation(s)
- Hyeilin Ham
- From the Departments of Molecular Biology and
| | | | - Charles Tracy
- Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Drew Stenesen
- Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Helmut Krämer
- Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Kim Orth
- From the Departments of Molecular Biology and
| |
Collapse
|