1
|
Malankhanova T, Liu Z, Xu E, Bryant N, Sung KW, Li H, Strader S, West AB. LRRK2 interactions with microtubules are independent of LRRK2-mediated Rab phosphorylation. EMBO Rep 2025:10.1038/s44319-025-00486-6. [PMID: 40425780 DOI: 10.1038/s44319-025-00486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 04/25/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Deregulated microtubules are common defects associated with neurodegenerative diseases. Recent cryo-electron microscopy studies in cell lines overexpressing Parkinson's disease-associated LRRK2 suggest microtubule surfaces may regulate kinase activity by stabilizing different LRRK2 conformations. In macrophages with high endogenous LRRK2 expression, we find that nocodazole treatment destabilizes microtubules and impairs LRRK2-mediated Rab phosphorylation. GTP supplementation restores nocodazole-reduced Rab phosphorylation, linking LRRK2 kinase action to cellular GTP levels. Chemical microtubule stabilization, and kinetically trapping LRRK2 to microtubule surfaces, has negligible effects on Rab phosphorylation. In contrast, trapping LRRK2 to LAMP1-positive membranes upregulates LRRK2-mediated Rab phosphorylation. Proximity-labeling proteomics and colocalization studies show that LRRK2 robustly interacts with both polymerized and free tubulin transiently and independently of LRRK2 kinase activity. Endogenous LRRK2 complexed with type I inhibitors in neurons and macrophages fails to stably interact with microtubules, whereas bulky N-terminal tags fused to LRRK2 promotes stable microtubule binding in cell lines. Collectively, these results show that tubulin isoforms and microtubules are transient LRRK2-interacting proteins non-essential for LRRK2-mediated Rab phosphorylation.
Collapse
Affiliation(s)
- Tuyana Malankhanova
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Zhiyong Liu
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Enquan Xu
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Nicole Bryant
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Ki Woon Sung
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Huizhong Li
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Samuel Strader
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Parray ZA. A review on evolution, structural characteristics, interactions, and regulation of the membrane transport protein: The family of Rab proteins. Int J Biol Macromol 2025; 296:139828. [PMID: 39809406 DOI: 10.1016/j.ijbiomac.2025.139828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Rab proteins are a key family of small GTPases that play crucial roles in vesicular trafficking, membrane dynamics, and maintaining cellular homeostasis. Studying this family of proteins is interesting as having many structural isoforms with variable evolutionary trends and wide distribution in cells. The proteins are renowned for their unique structural characteristics, which support their functional adaptability and specificity. Based on these features these proteins show different regulatory pathways and show involvement in dynamic protein-protein interactions, which is essential for intracellular signaling processes and in maintaining cellular functionality and balance. Notably, it is the first review to compile such extensive information about Rabs. Such information related to these proteins explores the molecular mechanisms in medicine based on their phylogenetic development, structural conformation changes, interaction networks, distribution, and regulation-dysregulations discussed in this review. Moreover, this review offers a consolidated resource for researchers and clinicians to understand the Rabs in different magnitudes.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas Campus, New Delhi 110016, India; Department of Bio-Science and Technology, MM Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133203, India.
| |
Collapse
|
3
|
Ito G, Tomita T, Utsunomiya-Tate N. Effects of bound nucleotides on the secondary structure, thermal stability, and phosphorylation of Rab3A. Biochem Biophys Res Commun 2024; 723:150199. [PMID: 38824807 DOI: 10.1016/j.bbrc.2024.150199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Rab3A is a member of the Rab GTPase family involved in synaptic vesicle trafficking. Recent evidence has demonstrated that Rab3A is phosphorylated by leucine-rich repeat kinase 2 (LRRK2) that is implicated in both familial and sporadic forms of Parkinson's disease (PD), and an abnormal increase in Rab3A phosphorylation has been proposed as a cause of PD. Despite the potential importance of Rab3A in PD pathogenesis, its structural information is limited and the effects of bound nucleotides on its biophysical and biochemical properties remain unclear. Here, we show that GDP-bound Rab3A is preferentially phosphorylated by LRRK2 compared with GTP-bound Rab3A. The secondary structure of Rab3A, measured by circular dichroism (CD) spectroscopy, revealed that Rab3A is resistant to heat-induced denaturation at pH 7.4 or 9.0 regardless of the nucleotides bound. In contrast, Rab3A underwent heat-induced denaturation at pH 5.0 at a lower temperature in its GDP-bound form than in its GTP-bound form. The unfolding temperature of Rab3A was studied by differential scanning fluorimetry, which showed a significantly higher unfolding temperature in GTP-bound Rab3A than in GDP-bound Rab3A, with the highest at pH 7.4. These results suggest that Rab3A has unusual thermal stability under physiologically relevant conditions and that bound nucleotides influence both thermal stability and phosphorylation by LRRK2.
Collapse
Affiliation(s)
- Genta Ito
- Department of Biomolecular Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Japan.
| | - Taisuke Tomita
- Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan; Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Naoko Utsunomiya-Tate
- Department of Biomolecular Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Japan
| |
Collapse
|
4
|
Zhao X, Quintremil S, Rodriguez Castro ED, Cui H, Moraga D, Wang T, Vallee RB, Solmaz SR. Molecular mechanism for recognition of the cargo adapter Rab6 GTP by the dynein adapter BicD2. Life Sci Alliance 2024; 7:e202302430. [PMID: 38719748 PMCID: PMC11077774 DOI: 10.26508/lsa.202302430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Rab6 is a key modulator of protein secretion. The dynein adapter Bicaudal D2 (BicD2) recruits the motors cytoplasmic dynein and kinesin-1 to Rab6GTP-positive vesicles for transport; however, it is unknown how BicD2 recognizes Rab6. Here, we establish a structural model for recognition of Rab6GTP by BicD2, using structure prediction and mutagenesis. The binding site of BicD2 spans two regions of Rab6 that undergo structural changes upon the transition from the GDP- to GTP-bound state, and several hydrophobic interface residues are rearranged, explaining the increased affinity of the active GTP-bound state. Mutations of Rab6GTP that abolish binding to BicD2 also result in reduced co-migration of Rab6GTP/BicD2 in cells, validating our model. These mutations also severely diminished the motility of Rab6-positive vesicles in cells, highlighting the importance of the Rab6GTP/BicD2 interaction for overall motility of the multi-motor complex that contains both kinesin-1 and dynein. Our results provide insights into trafficking of secretory and Golgi-derived vesicles and will help devise therapies for diseases caused by BicD2 mutations, which selectively affect the affinity to Rab6 and other cargoes.
Collapse
Affiliation(s)
- Xiaoxin Zhao
- Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - Sebastian Quintremil
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Heying Cui
- Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - David Moraga
- Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - Tingyao Wang
- Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Sozanne R Solmaz
- Department of Chemistry, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
5
|
Wang Z, Niu M, Zheng N, Meng J, Jiang Y, Yang D, Yao P, Yao T, Luo H, Xu H, Ge Y, Zhang YW, Zhang X. Increased level of RAB39B leads to neuronal dysfunction and behavioural changes in mice. J Cell Mol Med 2023; 27:1214-1226. [PMID: 36977207 PMCID: PMC10148058 DOI: 10.1111/jcmm.17704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Duplications of the Xq28 region are a common cause of X-linked intellectual disability (XLID). The RAB39B gene locates in Xq28 and has been implicated in disease pathogenesis. However, whether increased dosage of RAB39B leads to cognitive impairment and synaptic dysfunction remains elusive. Herein, we overexpressed RAB39B in mouse brain by injecting AAVs into bilateral ventricles of neonatal animals. We found that at 2 months of age, neuronal overexpression of RAB39B impaired the recognition memory and the short-term working memory in mice and resulted in certain autism-like behaviours, including social novelty defect and repetitive grooming behaviour in female mice. Moreover, overexpression of RAB39B decreased dendritic arborization of primary neurons in vitro and reduced synaptic transmission in female mice. Neuronal overexpression of RAB39B also altered autophagy without affecting levels and PSD distribution of synaptic proteins. Our results demonstrate that overexpression of RAB39B compromises normal neuronal development, thereby resulting in dysfunctional synaptic transmission and certain intellectual disability and behavioural abnormalities in mice. These findings identify a molecular mechanism underlying XLID with increased copy numbers of Xq28 and provide potential strategies for disease intervention.
Collapse
Affiliation(s)
- Zijie Wang
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Mengxi Niu
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Naizhen Zheng
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Jian Meng
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Yiru Jiang
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Dingting Yang
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Peijie Yao
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Tingting Yao
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Hong Luo
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Yunlong Ge
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Xian Zhang
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Zhang C, Wu F, Yan Q, Duan Z, Wang S, Ao B, Han Y, Zhang J. Genome-Wide Analysis of the Rab Gene Family in Melilotus albus Reveals Their Role in Salt Tolerance. Int J Mol Sci 2022; 24:ijms24010126. [PMID: 36613571 PMCID: PMC9820615 DOI: 10.3390/ijms24010126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Melilotus albus is a high-quality forage, due to its high protein content, and aboveground biomass and salt tolerance. Rab (Ras-related protein in the brain) proteins are the largest GTPase family which play a key role in intracellular membrane transport, and many Rab genes have been identified in eukaryotes. The growth and distribution of M. albus are severely hampered by soil salinization. However, little is known about candidate genes for salt tolerance in M. albus. In this study, 27 Rab family genes were identified for the first time from M. albus, and divided into eight groups (Groups A-H). The number of introns in MaRabs ranged from one to seven, with most genes containing one intron. In addition, most MaRab proteins showed similarities in motif composition. Phylogenetic analysis and structural-domain comparison indicated that Rab family genes were highly conserved in M. albus. Members of the MaRab gene family were distributed across all eight chromosomes, with the largest distribution on chromosome 1. Prediction of the protein interaction network showed that 24 Rab proteins exhibited protein-protein interactions. Analysis of the promoter cis-acting elements showed that MaRab-gene family members are extensively involved in abiotic stress responses. RNA-seq data analysis of the MaRab-gene-expression patterns suggested that the Rab gene family possesses differentially expressed members in five organs and under salt stress, drought stress, and ABA (Abscisic Acid) treatment. Differentially expressed genes under drought stress, salt stress and ABA stress were validated by quantitative real-time PCR. Furthermore, heterologous expression in yeast was used to characterize the functions of MaRab1 and MaRab17, which were upregulated in reaction to salt stress. In summary, this study provided valuable information for further research into the molecular mechanism of the response of M. albus to saline stress, as well as the possibility of developing cultivars with high salt-resistance characteristics.
Collapse
|
7
|
Rep15 interacts with several Rab GTPases and has a distinct fold for a Rab effector. Nat Commun 2022; 13:4262. [PMID: 35871249 PMCID: PMC9308819 DOI: 10.1038/s41467-022-31831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIn their GTP-bound (active) form, Rab proteins interact with effector proteins that control downstream signaling. One such Rab15 effector is Rep15, which is known to have a role in receptor recycling from the endocytic recycling compartment but otherwise remains poorly characterized. Here, we report the characterization of the Rep15:Rab15 interaction and identification of Rab3 paralogs and Rab34 as Rep15 interacting partners from a yeast two-hybrid assay. Biochemical validation of the interactions is presented and crystal structures of the Rep15:Rab3B and Rep15:Rab3C complexes provide additional mechanistic insight. We find that Rep15 adopts a globular structure that is distinct from other reported Rab15, Rab3 and Rab34 effectors. Structure-based mutagenesis experiments explain the Rep15:Rab interaction specificity. Rep15 depletion in U138MG glioblastoma cells impairs cell proliferation, cell migration and receptor recycling, underscoring the need for further clarification of the role of Rep15 in cancer.
Collapse
|
8
|
Molecular and Functional Interactions of Alpha-Synuclein with Rab3a. J Biol Chem 2022; 298:102239. [PMID: 35809645 PMCID: PMC9396396 DOI: 10.1016/j.jbc.2022.102239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Alpha-synuclein (a-Syn) is a presynaptic protein, the misfolding of which is associated with Parkinson’s disease. Rab GTPases are small guanine nucleotide binding proteins that play key roles in vesicle trafficking and have been associated with a-Syn function and dysfunction. a-Syn is enriched on synaptic vesicles, where it has been reported to interact with GTP-bound Rab3a, a master regulator of synaptic vesicle trafficking. a-Syn is known to bind weakly to Rab8a in solution via a positively charged patch, but the physiological implications of such interactions have not been explored. Here, we investigate direct interactions between a-Syn and Rab3a in solution and on lipid membranes using NMR spectroscopy. We find that the C terminus of a-Syn interacts with Rab3a in a manner similar to its previously reported interaction with Rab8a. While weak in solution, we demonstrate that this interaction becomes stronger when the proteins are bound to a membrane surface. The Rab3a binding site for a-Syn is similar to the surface that contacts the Rab3a effector rabphilin-3A, which modulates the enzymatic activity of Rab3a. Accordingly, we show that a-Syn inhibits GTP hydrolysis by Rab3a and that inhibition is more potent on the membrane surface, suggesting that their interaction may be functionally relevant. Finally, we show that phosphorylation of a-Syn residue Ser 129, a modification associated with Parkinson’s disease pathology, enhances its interactions with Rab3a and increases its ability to inhibit Rab3a GTP hydrolysis. These results represent the first observation of a functional role for synuclein-Rab interactions and for a-Syn Ser 129 phosphorylation.
Collapse
|
9
|
Iyer S, Das C. The unity of opposites: Strategic interplay between bacterial effectors to regulate cellular homeostasis. J Biol Chem 2021; 297:101340. [PMID: 34695417 PMCID: PMC8605245 DOI: 10.1016/j.jbc.2021.101340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular pathogen that uses the Dot/Icm Type IV secretion system (T4SS) to translocate many effectors into its host and establish a safe, replicative lifestyle. The bacteria, once phagocytosed, reside in a vacuolar structure known as the Legionella-containing vacuole (LCV) within the host cells and rapidly subvert organelle trafficking events, block inflammatory responses, hijack the host ubiquitination system, and abolish apoptotic signaling. This arsenal of translocated effectors can manipulate the host factors in a multitude of different ways. These proteins also contribute to bacterial virulence by positively or negatively regulating the activity of one another. Such effector-effector interactions, direct and indirect, provide the delicate balance required to maintain cellular homeostasis while establishing itself within the host. This review summarizes the recent progress in our knowledge of the structure-function relationship and biochemical mechanisms of select effector pairs from Legionella that work in opposition to one another, while highlighting the diversity of biochemical means adopted by this intracellular pathogen to establish a replicative niche within host cells.
Collapse
Affiliation(s)
- Shalini Iyer
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
10
|
Huang YP, Hou PY, Chen IH, Hsu YH, Tsai CH, Cheng CP. Dissecting the role of a plant-specific Rab5 small GTPase NbRabF1 in Bamboo mosaic virus infection. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6932-6944. [PMID: 32926136 DOI: 10.1093/jxb/eraa422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
NbRabF1, a small GTPase from Nicotiana benthamiana and a homolog of Arabidopsis thaliana Ara6, plays a key role in regulating Bamboo mosaic virus (BaMV) movement by vesicle transport between endosomal membranes. Reducing the expression of NbRabF1 in N. benthamiana by virus-induced gene silencing decreased the accumulation of BaMV, and with smaller infection foci on inoculated leaves, but had no effect in protoplasts. Furthermore, transient expression of NbRabF1 increased the accumulation of BaMV in inoculated leaves. Thus, NbRabF1 may be involved in the cell-to-cell movement of BaMV. The potential acyl modification sites at the second and third amino acid positions of NbRabF1 were crucial for membrane targeting and BaMV accumulation. The localization of mutant forms of NbRabF1 with the GDP-bound (donor site) and GTP-bound (acceptor site) suggested that NbRabF1 might regulate vesicle trafficking between the Golgi apparatus and plasma membrane. Furthermore, GTPase activity could also be involved in BaMV cell-to-cell movement. Overall, in this study, we identified a small GTPase, NbRabF1, from N. benthamiana that interacts with its activation protein NbRabGAP1 and regulates vesicle transport from the Golgi apparatus to the plasma membrane. We suggest that the BaMV movement complex might move from cell to cell through this vesicle trafficking route.
Collapse
Affiliation(s)
- Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Pei-Yu Hou
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yau-Huei Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Ping Cheng
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
11
|
Murata T, Unno Y, Fukuda M, Utsunomiya-Tate N. The dynamic structure of Rab35 is stabilized in the presence of GTP under physiological conditions. Biochem Biophys Rep 2020; 23:100776. [PMID: 32613087 PMCID: PMC7322127 DOI: 10.1016/j.bbrep.2020.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Rab proteins, a family of small guanosine triphosphatases, play key roles in intracellular membrane trafficking and the regulation of various cellular processes. As a Rab isoform, Rab35 is crucial for recycling endosome trafficking, cytokinesis and neurite outgrowth. In this report, we analyzed dynamic structural changes and physicochemical features of Rab35 in response to different external conditions, including temperature, pH, salt concentration and guanosine triphosphate (GTP), by circular dichroism (CD) spectroscopy. CD spectra revealed that the α-helix content of Rab35 varies under different conditions considerably. The addition of GTP increases the α-helix content of Rab35 when the temperature, pH and salt concentration match physiological conditions. The results suggest that the external environment affects the secondary structure of Rab35. In particular, the presence of GTP stabilized the α-helices of Rab35 under physiological conditions. These structural changes may translate to changes in Rab35 function and relate to its role in membrane trafficking.
Collapse
Affiliation(s)
- Takuya Murata
- Faculty of Pharma-Science, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yuka Unno
- Faculty of Pharma-Science, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Naoko Utsunomiya-Tate
- Faculty of Pharma-Science, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
12
|
Rawat A, Singh P, Jyoti A, Kaushik S, Srivastava VK. Averting transmission: A pivotal target to manage amoebiasis. Chem Biol Drug Des 2020; 96:731-744. [PMID: 32356312 DOI: 10.1111/cbdd.13699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/18/2022]
Abstract
Amoebiasis is a parasitic infectious disease caused by the enteric protozoan Entamoeba histolytica, a leading basis of deaths accounted to parasites, succeeding malaria and schistosomiasis. Conventional treatment methodologies used to deal with amoebiasis mainly rely on the administration of anti-amoebic compounds and vaccines but are often linked with substantial side-effects on the patient. Besides, cases of development of drug resistance in protozoans have been recorded, contributing further to the reduction in the efficiency of the treatment. Loopholes in the efficacious management of the disease call for the development of novel methodologies to manage amoebiasis. A way to achieve this is by targeting the essential metabolic processes of 'encystation' and 'excystation', and the associated biomolecules, thus interrupting the biphasic life cycle of the parasite. Technologies like the CRISPR-Cas9 system can efficiently be exploited to discover novel and essential molecules that regulate the protozoan's metabolism, while efficiently manipulating and managing the known drug targets, leading to an effective halt and forestall to the enteric infection. This review presents a perspective on these essential metabolic processes and the associated molecules that can be targeted efficaciously to prevent the transmission of amoebiasis, thus managing the disease and proving to be a fruitful endeavour.
Collapse
Affiliation(s)
- Aadish Rawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Parikshit Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | |
Collapse
|
13
|
The Emerging Role of Rab5 in Membrane Receptor Trafficking and Signaling Pathways. Biochem Res Int 2020; 2020:4186308. [PMID: 32104603 PMCID: PMC7036122 DOI: 10.1155/2020/4186308] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/16/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
Ras analog in brain (Rab) proteins are small guanosine triphosphatases (GTPases) that belong to the Ras-like GTPase superfamily, and they can regulate vesicle trafficking. Rab proteins alternate between an activated (GTP-bound) state and an inactivated (GDP-bound) state. Early endosome marker Rab5 GTPase, a key member of the Rab family, plays a crucial role in endocytosis and membrane transport. The activated-state Rab5 recruits its effectors and regulates the internalization and trafficking of membrane receptors by regulating vesicle fusion and receptor sorting in the early endosomes. In this review, we summarize the role of small Rab GTPases Rab5 in membrane receptor trafficking and the activation of signaling pathways, such as Ras/MAPK and PI3K/Akt, which ultimately affect cell growth, apoptosis, tumorigenesis, and tumor development. This review may provide some insights for our future research and novel therapeutic targets for diseases.
Collapse
|
14
|
Kumar AP, Verma CS, Lukman S. Structural dynamics and allostery of Rab proteins: strategies for drug discovery and design. Brief Bioinform 2020; 22:270-287. [PMID: 31950981 DOI: 10.1093/bib/bbz161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/29/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023] Open
Abstract
Rab proteins represent the largest family of the Rab superfamily guanosine triphosphatase (GTPase). Aberrant human Rab proteins are associated with multiple diseases, including cancers and neurological disorders. Rab subfamily members display subtle conformational variations that render specificity in their physiological functions and can be targeted for subfamily-specific drug design. However, drug discovery efforts have not focused much on targeting Rab allosteric non-nucleotide binding sites which are subjected to less evolutionary pressures to be conserved, hence are likely to offer subfamily specificity and may be less prone to undesirable off-target interactions and side effects. To discover druggable allosteric binding sites, Rab structural dynamics need to be first incorporated using multiple experimentally and computationally obtained structures. The high-dimensional structural data may necessitate feature extraction methods to identify manageable representative structures for subsequent analyses. We have detailed state-of-the-art computational methods to (i) identify binding sites using data on sequence, shape, energy, etc., (ii) determine the allosteric nature of these binding sites based on structural ensembles, residue networks and correlated motions and (iii) identify small molecule binders through structure- and ligand-based virtual screening. To benefit future studies for targeting Rab allosteric sites, we herein detail a refined workflow comprising multiple available computational methods, which have been successfully used alone or in combinations. This workflow is also applicable for drug discovery efforts targeting other medically important proteins. Depending on the structural dynamics of proteins of interest, researchers can select suitable strategies for allosteric drug discovery and design, from the resources of computational methods and tools enlisted in the workflow.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Research Unit in Bioinformatics, Department of Biochemistry and Microbiology, Rhodes University, South Africa
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Srivastava VK, Kaushik S, Jyoti A. A comparative in silico analysis of Rab5 proteins from pathogenic species to find its role in the pathogenesis. J Mol Recognit 2019; 32:e2808. [PMID: 31432591 DOI: 10.1002/jmr.2808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022]
Abstract
The enteric protozoan parasite, Entamoeba histolytica (Eh), is the causative agent of amoebic dysentery and liver abscess in humans. It infects around 50 million people worldwide, which is a third general cause of death from parasitic diseases after malaria and schistosomiasis. The other prevalent form of the disease is Visceral leishmaniasis caused by Leishmania donovani which is a human blood parasite. On the other hand, the Toxoplasma gondii is an obligate intracellular protozoan parasite; it causes serious opportunistic infections in HIV-positive persons. The biological processes in all living organisms are mostly mediated by the proteins, and recognizing new target proteins and finding their function in pathogenesis will help in choosing better diagnostic markers. In eukaryotes, Rab protein plays a major role in pathogenesis. Rabs represent the largest branch in the Ras superfamily of GTPases. Among them, the Rab5 is important in the endocytosis and thus involved in pathogenesis. In this paper, we discussed the physiochemical profiling, modelling, and docking of the Rab5 protein from pathogenic species that is Entamoeba histolytica, Leishmania donovani, and Toxoplasma gondii. The modeled structures from this study and the key residues identified would give a better understanding of the three-dimensional structure and functional insights into these proteins and help in developing new drug targets.
Collapse
Affiliation(s)
- Vijay Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, Jaipur, India
| | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, Jaipur, India
| |
Collapse
|
16
|
Haredi Abdelmonsef A. Computer-aided identification of lung cancer inhibitors through homology modeling and virtual screening. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0008-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
17
|
Miteva KT, Pedicini L, Wilson LA, Jayasinghe I, Slip RG, Marszalek K, Gaunt HJ, Bartoli F, Deivasigamani S, Sobradillo D, Beech DJ, McKeown L. Rab46 integrates Ca 2+ and histamine signaling to regulate selective cargo release from Weibel-Palade bodies. J Cell Biol 2019; 218:2232-2246. [PMID: 31092558 PMCID: PMC6605797 DOI: 10.1083/jcb.201810118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/24/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022] Open
Abstract
It is unclear how a plethora of stimuli evoke differential cargo secretion from endothelial cells to produce stimulus-appropriate responses. Miteva et al. show that Rab46 integrates histamine signaling and Ca2+ signals to regulate selective cargo release from Weibel-Palade bodies. Endothelial cells selectively release cargo stored in Weibel-Palade bodies (WPBs) to regulate vascular function, but the underlying mechanisms are poorly understood. Here we show that histamine evokes the release of the proinflammatory ligand, P-selectin, while diverting WPBs carrying non-inflammatory cargo away from the plasma membrane to the microtubule organizing center. This differential trafficking is dependent on Rab46 (CRACR2A), a newly identified Ca2+-sensing GTPase, which localizes to a subset of P-selectin–negative WPBs. After acute stimulation of the H1 receptor, GTP-bound Rab46 evokes dynein-dependent retrograde transport of a subset of WPBs along microtubules. Upon continued histamine stimulation, Rab46 senses localized elevations of intracellular calcium and evokes dispersal of microtubule organizing center–clustered WPBs. These data demonstrate for the first time that a Rab GTPase, Rab46, integrates G protein and Ca2+ signals to couple on-demand histamine signals to selective WPB trafficking.
Collapse
Affiliation(s)
- Katarina T Miteva
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lucia Pedicini
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lesley A Wilson
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Izzy Jayasinghe
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Raphael G Slip
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Katarzyna Marszalek
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Hannah J Gaunt
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Fiona Bartoli
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Shruthi Deivasigamani
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Diego Sobradillo
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lynn McKeown
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
18
|
Quevedo MF, Bustos MA, Masone D, Roggero CM, Bustos DM, Tomes CN. Grab recruitment by Rab27A-Rabphilin3a triggers Rab3A activation in human sperm exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:612-622. [PMID: 30599141 DOI: 10.1016/j.bbamcr.2018.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/30/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022]
Abstract
Sperm must undergo the regulated exocytosis of its dense core granule (the acrosome reaction, AR) to fertilize the egg. We have previously described that Rabs3 and 27 are organized in a RabGEF cascade within the signaling pathway elicited by exocytosis stimuli in human sperm. Here, we report the identity and the role of two molecules that link these secretory Rabs in the RabGEF cascade: Rabphilin3a and GRAB. Like Rab3 and Rab27, GRAB and Rabphilin3a are present, localize to the acrosomal region and are required for calcium-triggered exocytosis in human sperm. Sequestration of either protein with specific antibodies introduced into streptolysin O-permeabilized sperm impairs the activation of Rab3 in the acrosomal region elicited by calcium, but not that of Rab27. Biochemical and functional assays indicate that Rabphilin3a behaves as a Rab27 effector during the AR and that GRAB exhibits GEF activity toward Rab3A. Recombinant, active Rab27A pulls down Rabphilin3a and GRAB from human sperm extracts. Conversely, immobilized Rabphilin3a recruits Rab27 and GRAB; the latter promotes Rab3A activation. The enzymatic activity of GRAB toward Rab3A was also suggested by in silico and in vitro assays with purified proteins. In summary, we describe here a signaling module where Rab27A-GTP interacts with Rabphilin3a, which in turn recruits a guanine nucleotide-exchange activity toward Rab3A. This is the first description of the interaction of Rabphilin3a with a GEF. Because the machinery that drives exocytosis is highly conserved, it is tempting to hypothesize that the RabGEF cascade unveiled here might be part of the molecular mechanisms that drive exocytosis in other secretory systems.
Collapse
Affiliation(s)
- María Florencia Quevedo
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Matías Alberto Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Diego Masone
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ingeniería, Universidad Nacional de Cuyo, Argentina
| | | | - Diego Martín Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina
| | - Claudia Nora Tomes
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina.
| |
Collapse
|
19
|
Jamshidiha M, Pérez-Dorado I, Murray JW, Tate EW, Cota E, Read RJ. Coping with strong translational noncrystallographic symmetry and extreme anisotropy in molecular replacement with Phaser: human Rab27a. Acta Crystallogr D Struct Biol 2019; 75:342-353. [PMID: 30950405 PMCID: PMC6450061 DOI: 10.1107/s2059798318017825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
Data pathologies caused by effects such as diffraction anisotropy and translational noncrystallographic symmetry (tNCS) can dramatically complicate the solution of the crystal structures of macromolecules. Such problems were encountered in determining the structure of a mutant form of Rab27a, a member of the Rab GTPases. Mutant Rab27a constructs that crystallize in the free form were designed for use in the discovery of drugs to reduce primary tumour invasiveness and metastasis. One construct, hRab27aMut, crystallized within 24 h and diffracted to 2.82 Å resolution, with a unit cell possessing room for a large number of protein copies. Initial efforts to solve the structure using molecular replacement by Phaser were not successful. Analysis of the data set revealed that the crystals suffered from both extreme anisotropy and strong tNCS. As a result, large numbers of reflections had estimated standard deviations that were much larger than their measured intensities and their expected intensities, revealing problems with the use of such data at the time in Phaser. By eliminating extremely weak reflections with the largest combined effects of anisotropy and tNCS, these problems could be avoided, allowing a molecular-replacement solution to be found. The lessons that were learned in solving this structure have guided improvements in the numerical analysis used in Phaser, particularly in identifying diffraction measurements that convey very little information content. The calculation of information content could also be applied as an alternative to ellipsoidal truncation. The post-mortem analysis also revealed an oversight in accounting for measurement errors in the fast rotation function. While the crystal of mutant Rab27a is not amenable to drug screening, the structure can guide new modifications to obtain more suitable crystal forms.
Collapse
Affiliation(s)
- Mostafa Jamshidiha
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, England
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London W12 0BZ, England
| | - Inmaculada Pérez-Dorado
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, England
| | - James W. Murray
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, England
| | - Edward W. Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London W12 0BZ, England
| | - Ernesto Cota
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, England
| | - Randy J. Read
- Cambridge Institute for Medical Research and Department of Haematology, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, England
| |
Collapse
|
20
|
Chemical biology probes of mammalian GLUT structure and function. Biochem J 2018; 475:3511-3534. [PMID: 30459202 PMCID: PMC6243331 DOI: 10.1042/bcj20170677] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022]
Abstract
The structure and function of glucose transporters of the mammalian GLUT family of proteins has been studied over many decades, and the proteins have fascinated numerous research groups over this time. This interest is related to the importance of the GLUTs as archetypical membrane transport facilitators, as key limiters of the supply of glucose to cell metabolism, as targets of cell insulin and exercise signalling and of regulated membrane traffic, and as potential drug targets to combat cancer and metabolic diseases such as type 2 diabetes and obesity. This review focusses on the use of chemical biology approaches and sugar analogue probes to study these important proteins.
Collapse
|
21
|
Verma K, Srivastava VK, Datta S. Rab GTPases take centre stage in understanding Entamoeba histolytica biology. Small GTPases 2018; 11:320-333. [PMID: 30273093 DOI: 10.1080/21541248.2018.1528840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rab GTPases constitute the largest subgroup in the Ras superfamily of GTPases. It is well established that different Rab GTPases are localized in discrete subcellular localization and regulate the membrane trafficking in nearly all eukaryotic cells. Rab GTPase diversity is often regarded as an expression of vesicular trafficking complexity. The pathogenic amoeba Entamoeba histolytica harbours 91 Rab GTPases which is the highest among the currently available genome sequences from the eukaryotic kingdom. Here, we review the current status of amoebic Rab GTPases diversity, unique biochemical and structural features and summarise their predicted regulators. We discuss how amoebic Rab GTPases are involved in cellular processes such as endocytosis, phagocytosis, and invasion of host cellular components, which are essential for parasite survival and virulence.
Collapse
Affiliation(s)
- Kuldeep Verma
- Institute of Science, Nirma University , Ahmedabad, Gujarat, India.,Regional Centre for Biotechnology, NCR Biotech Science Cluster , Faridabad, India
| | | | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal , Bhauri, India
| |
Collapse
|
22
|
Maheshwari D, Yadav R, Rastogi R, Jain A, Tripathi S, Mukhopadhyay A, Arora A. Structural and Biophysical Characterization of Rab5a from Leishmania Donovani. Biophys J 2018; 115:1217-1230. [PMID: 30241678 PMCID: PMC6170798 DOI: 10.1016/j.bpj.2018.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Leishmania donovani possess two isoforms of Rab5 (Rab5a and Rab5b), which are involved in fluid phase and receptor-mediated endocytosis, respectively. We have characterized the solution structure and dynamics of a stabilized truncated LdRab5a mutant. For the purpose of NMR structure determination, protein stability was enhanced by systematically introducing various deletions and mutations. Deletion of hypervariable C-terminal and the 20 residues LdRab5a specific insert slightly enhanced the stability, which was further improved by C107S mutation. The final construct, truncated LdRab5a with C107S mutation, was found to be stable for longer durations at higher concentration, with an increase in melting temperature by 10°C. Solution structure of truncated LdRab5a shows the characteristic GTPase fold having nucleotide and effector binding sites. Orientation of switch I and switch II regions match well with that of guanosine 5'-(β, γ-imido)triphosphate (GppNHp)-bound human Rab5a, indicating that the truncated LdRab5a attains the canonical GTP bound state. However, the backbone dynamics of the P-loop, switch I, and switch II regions were slower than that observed for guanosine 5'-(β, γ-imido)triphosphate (GMPPNP)-bound H-Ras. This dynamic profile may further complement the residue-specific complementarity in determining the specificity of interaction with the effectors. In parallel, biophysical investigations revealed the urea induced unfolding of truncated LdRab5a to be a four-state process that involved two intermediates, I1 and I2. The maximal 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (Bis-ANS) binding was observed for I2 state, which was inferred to have molten globule like characteristics. Overall, the strategy presented would have significant impact for studying other Rab and small GTPase proteins by NMR spectroscopy.
Collapse
Affiliation(s)
- Diva Maheshwari
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rahul Yadav
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ruchir Rastogi
- Cell Biology Lab, National Institute of Immunology, New Delhi, India
| | - Anupam Jain
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sarita Tripathi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Ashish Arora
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
23
|
Identification of Insulin-Activated Rab Proteins in Adipose Cells Using Bio-ATB-GTP Photolabeling Technique. Methods Mol Biol 2018; 1713:137-150. [PMID: 29218523 DOI: 10.1007/978-1-4939-7507-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have recently developed a photolabeling method to identify GTP-loaded Rab proteins. The new biotinylated GTP analogue (Bio-ATB-GTP) binds to GTP-binding proteins and after a UV irradiation a covalent bond is formed between the protein and the photoreactive diazirine group on the photolabel. The tagged protein can then be isolated and detected using the classic biotin-streptavidin interaction. In this chapter, we describe the Bio-ATB-GTP photolabel and discuss the advantages of using this photolabeling approach to detect GTP-loaded Rab proteins compared to other existing methodologies. We also describe a step-by-step procedure for detecting the activated state of a Rab protein in primary rat adipocytes.
Collapse
|
24
|
Pylypenko O, Hammich H, Yu IM, Houdusse A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 2018. [PMID: 28632484 DOI: 10.1080/215412481336191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab molecular switches are key players in defining membrane identity and regulating intracellular trafficking events in eukaryotic cells. In spite of their global structural similarity, Rab-family members acquired particular features that allow them to perform specific cellular functions. The overall fold and local sequence conservations enable them to utilize a common machinery for prenylation and recycling; while individual Rab structural differences determine interactions with specific partners such as GEFs, GAPs and effector proteins. These interactions orchestrate the spatiotemporal regulation of Rab localization and their turning ON and OFF, leading to tightly controlled Rab-specific functionalities such as membrane composition modifications, recruitment of molecular motors for intracellular trafficking, or recruitment of scaffold proteins that mediate interactions with downstream partners, as well as actin cytoskeleton regulation. In this review we summarize structural information on Rab GTPases and their complexes with protein partners in the context of partner binding specificity and functional outcomes of their interactions in the cell.
Collapse
Affiliation(s)
- Olena Pylypenko
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Hussein Hammich
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
- b Sorbonne Universités , UPMC Univ Paris 06, Sorbonne Universités, IFD , Paris , France
| | - I-Mei Yu
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Anne Houdusse
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| |
Collapse
|
25
|
Gao Y, Wilson GR, Stephenson SEM, Bozaoglu K, Farrer MJ, Lockhart PJ. The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease. Mov Disord 2018; 33:196-207. [DOI: 10.1002/mds.27270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Yujing Gao
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Gabrielle R. Wilson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Sarah E. M. Stephenson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Kiymet Bozaoglu
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Matthew J. Farrer
- Djavad Mowafaghian Centre for Brain Health, Centre of Applied Neurogenetics, Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| | - Paul J. Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
26
|
Lamers IJC, Reijnders MRF, Venselaar H, Kraus A, Jansen S, de Vries BBA, Houge G, Gradek GA, Seo J, Choi M, Chae JH, van der Burgt I, Pfundt R, Letteboer SJF, van Beersum SEC, Dusseljee S, Brunner HG, Doherty D, Kleefstra T, Roepman R. Recurrent De Novo Mutations Disturbing the GTP/GDP Binding Pocket of RAB11B Cause Intellectual Disability and a Distinctive Brain Phenotype. Am J Hum Genet 2017; 101:824-832. [PMID: 29106825 DOI: 10.1016/j.ajhg.2017.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022] Open
Abstract
The Rab GTPase family comprises ∼70 GTP-binding proteins, functioning in vesicle formation, transport and fusion. They are activated by a conformational change induced by GTP-binding, allowing interactions with downstream effectors. Here, we report five individuals with two recurrent de novo missense mutations in RAB11B; c.64G>A; p.Val22Met in three individuals and c.202G>A; p.Ala68Thr in two individuals. An overlapping neurodevelopmental phenotype, including severe intellectual disability with absent speech, epilepsy, and hypotonia was observed in all affected individuals. Additionally, visual problems, musculoskeletal abnormalities, and microcephaly were present in the majority of cases. Re-evaluation of brain MRI images of four individuals showed a shared distinct brain phenotype, consisting of abnormal white matter (severely decreased volume and abnormal signal), thin corpus callosum, cerebellar vermis hypoplasia, optic nerve hypoplasia and mild ventriculomegaly. To compare the effects of both variants with known inactive GDP- and active GTP-bound RAB11B mutants, we modeled the variants on the three-dimensional protein structure and performed subcellular localization studies. We predicted that both variants alter the GTP/GDP binding pocket and show that they both have localization patterns similar to inactive RAB11B. Evaluation of their influence on the affinity of RAB11B to a series of binary interactors, both effectors and guanine nucleotide exchange factors (GEFs), showed induction of RAB11B binding to the GEF SH3BP5, again similar to inactive RAB11B. In conclusion, we report two recurrent dominant mutations in RAB11B leading to a neurodevelopmental syndrome, likely caused by altered GDP/GTP binding that inactivate the protein and induce GEF binding and protein mislocalization.
Collapse
Affiliation(s)
- Ideke J C Lamers
- Department of Human Genetics, and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Margot R F Reijnders
- Department of Human Genetics, and Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands.
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Alison Kraus
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, LS7 4SA, UK
| | - Sandra Jansen
- Department of Human Genetics, and Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, and Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Gunnar Houge
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Gyri Aasland Gradek
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Jieun Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Murim Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ineke van der Burgt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Stef J F Letteboer
- Department of Human Genetics, and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Sylvia E C van Beersum
- Department of Human Genetics, and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Simone Dusseljee
- Department of Human Genetics, and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, and Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands; Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, 6229 ER, the Netherlands
| | - Dan Doherty
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Tjitske Kleefstra
- Department of Human Genetics, and Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Ronald Roepman
- Department of Human Genetics, and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands.
| |
Collapse
|
27
|
Kotyada C, Maulik A, Srivastava A, Singh M. Mechanistic Insights into the Differential Catalysis by RheB and Its Mutants: Y35A and Y35A-D65A. ACS OMEGA 2017; 2:6691-6702. [PMID: 29750207 PMCID: PMC5937686 DOI: 10.1021/acsomega.7b01025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/28/2017] [Indexed: 06/08/2023]
Abstract
RheB GTPase is a Ras-related molecular switch, which regulates the mTOR signaling pathway by cycling between the active [guanosine triphosphate (GTP)] state and inactive [guanine diphosphate (GDP)] state. Impairment of GTPase activity because of mutations in several small GTPases is known to be associated with several cancers. The conventional GTPase mechanism such as in H-Ras requires a conserved glutamine (Q64) in the switch-II region of RheB to align the catalytic water molecule for efficient GTP hydrolysis. The conformation of this conserved glutamine is different in RheB, resulting in an altered conformation of the entire switch-II region. Studies on the atypical switch-II conformation in RheB revealed a distinct, noncanonical mode of GTP hydrolysis. An RheB mutant Y35A was previously shown to exclusively enhance the intrinsic GTPase activity of RheB, whereas the Y35A-D65A double mutant was shown to reduce the elevated GTPase activity. Here, we have used all-atom molecular dynamics (MD) simulations for comprehensive understanding of the conformational dynamics associated with the fast (Y35A) and slow (Y35A-D65A) hydrolyzing mutants of RheB. Using a combination of starting models from PDB structures and in-silico generated mutant structures, we discuss the observed conformational deviations in wild type (WT) versus mutants. Our results show that a number of interactions of RheB with phosphates of GTP as well as Mg2+ are destabilized in Y35A mutant in the switch-I region. We report distinct water dynamics at the active site of WT and mutants. Furthermore, principal component analysis showed significant differences in the conformational space sampled by the WT and mutants. Our observations provide improved understanding of the noncanonical GTP hydrolysis mechanism adopted by RheB and its modulation by Y35A and Y35A-D65A mutants.
Collapse
Affiliation(s)
- Chaithanya Kotyada
- Molecular
Biophysics Unit and NMR Research Centre, Indian Institute of
Science, Bengaluru 560012, India
| | - Aditi Maulik
- Molecular
Biophysics Unit and NMR Research Centre, Indian Institute of
Science, Bengaluru 560012, India
| | - Anand Srivastava
- Molecular
Biophysics Unit and NMR Research Centre, Indian Institute of
Science, Bengaluru 560012, India
| | - Mahavir Singh
- Molecular
Biophysics Unit and NMR Research Centre, Indian Institute of
Science, Bengaluru 560012, India
| |
Collapse
|
28
|
Mulvaney EP, O'Meara F, Khan AR, O'Connell DJ, Kinsella BT. Identification of α-helix 4 (α4) of Rab11a as a novel Rab11-binding domain (RBD): Interaction of Rab11a with the Prostacyclin Receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1819-1832. [PMID: 28739266 DOI: 10.1016/j.bbamcr.2017.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022]
Abstract
The cellular trafficking of numerous G protein-coupled receptors (GPCRs) is known to be regulated by Rab proteins that involves a direct protein:protein interaction between the receptor and the GTPase. In the case of the human prostacyclin receptor (hIP), it undergoes agonist-induced internalization and subsequent Rab11a-dependent recyclization involving an interaction between a Rab11-binding domain (RBD) localized within its carboxyl-tail domain with Rab11a. However, the GPCR-interacting domain on Rab11a itself is unknown. Hence, we sought to identify the region within Rab11a that mediates its interaction with the RBD of the hIP. The α4 helix region of Rab11 was identified as a novel binding domain for the hIP, a site entirely distinct from the Switch I/Switch II -regions that act as specific binding domain for most other Rab and Ras-like GTPase interactants. Specifically, Glu138 within α4 helix of Rab11a appears to contact with key residues (e.g. Lys304) within the RBD of the hIP, where such contacts differ depending on the agonist-activated versus -inactive status of the hIP. Through mutational studies, supported by in silico homology modelling of the inactive and active hIP:Rab11a complexes, a mechanism is proposed to explain both the constitutive and agonist-induced binding of Rab11a to regulate intracellular trafficking of the hIP. Collectively, these studies are not only the first to identify α4 helix of Rab11a as a protein binding domain on the GTPase but also reveal novel mechanistic insights into the intracellular trafficking of the hIP, and potentially of other members of the GPCR superfamily, involving Rab11-dependent mechanisms.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fergal O'Meara
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - David J O'Connell
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
29
|
Pylypenko O, Hammich H, Yu IM, Houdusse A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 2017. [PMID: 28632484 PMCID: PMC5902227 DOI: 10.1080/21541248.2017.1336191] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rab molecular switches are key players in defining membrane identity and regulating intracellular trafficking events in eukaryotic cells. In spite of their global structural similarity, Rab-family members acquired particular features that allow them to perform specific cellular functions. The overall fold and local sequence conservations enable them to utilize a common machinery for prenylation and recycling; while individual Rab structural differences determine interactions with specific partners such as GEFs, GAPs and effector proteins. These interactions orchestrate the spatiotemporal regulation of Rab localization and their turning ON and OFF, leading to tightly controlled Rab-specific functionalities such as membrane composition modifications, recruitment of molecular motors for intracellular trafficking, or recruitment of scaffold proteins that mediate interactions with downstream partners, as well as actin cytoskeleton regulation. In this review we summarize structural information on Rab GTPases and their complexes with protein partners in the context of partner binding specificity and functional outcomes of their interactions in the cell.
Collapse
Affiliation(s)
- Olena Pylypenko
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Hussein Hammich
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France.,b Sorbonne Universités , UPMC Univ Paris 06, Sorbonne Universités, IFD , Paris , France
| | - I-Mei Yu
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Anne Houdusse
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| |
Collapse
|
30
|
Abstract
More than 60 Rab GTPases exist in the human genome to regulate vesicle trafficking between organelles. Rab GTPases are members of the Ras GTPase superfamily that broadly control budding, uncoating, motility and fusion of vesicles in most cell types. Rab proteins interconvert between active, GTP-bound form and inactive, GDP-bound form. In their active conformation, they interact with various effector molecules to carry out diverse functions. Rab GTPases are usually small containing only a GTPase domain with a C-terminal prenylation site for membrane anchoring. Recently, we identified a large G protein, CRACR2A (CRAC channel regulator 2A), which uncovers novel functions of Rab GTPases. First, CRACR2A encodes a large Rab GTPase containing multiple functional domains contrary to small Rab GTPases. Second, CRACR2A plays an unexpected role in regulating intracellular signaling pathways important for T cell activation, unlike the canonical role of small Rab GTPases. Vesicles containing CRACR2A bud out from the proximal Golgi area and translocate into the immunological synapse to activate these signaling pathways. Third, instead of recycling, CRACR2A is consumed by a unidirectional pathway. These events are sequentially regulated by prenylation, GTP binding, protein interaction with a signaling adaptor Vav1, and degradation. Together, our findings reveal a novel function of a large Rab GTPase in intracellular signaling pathways, which may be shared by other large Rab GTPases, Rab44 and Rab45.
Collapse
Affiliation(s)
- Sonal Srikanth
- a Department of Physiology , David Geffen School of Medicine, UCLA , Los Angeles , CA , USA
| | - Jin Seok Woo
- a Department of Physiology , David Geffen School of Medicine, UCLA , Los Angeles , CA , USA
| | - Yousang Gwack
- a Department of Physiology , David Geffen School of Medicine, UCLA , Los Angeles , CA , USA
| |
Collapse
|
31
|
Abstract
A complex endomembrane system is one of the hallmarks of Eukaryotes. Vesicle trafficking between compartments is controlled by a diverse protein repertoire, including Rab GTPases. These small GTP-binding proteins contribute identity and specificity to the system, and by working as molecular switches, trigger multiple events in vesicle budding, transport, and fusion. A diverse collection of Rab GTPases already existed in the ancestral Eukaryote, yet, it is unclear how such elaborate repertoire emerged. A novel archaeal phylum, the Lokiarchaeota, revealed that several eukaryotic-like protein systems, including small GTPases, are present in Archaea. Here, we test the hypothesis that the Rab family of small GTPases predates the origin of Eukaryotes. Our bioinformatic pipeline detected multiple putative Rab-like proteins in several archaeal species. Our analyses revealed the presence and strict conservation of sequence features that distinguish eukaryotic Rabs from other small GTPases (Rab family motifs), mapping to the same regions in the structure as in eukaryotic Rabs. These mediate Rab-specific interactions with regulators of the REP/GDI (Rab Escort Protein/GDP dissociation Inhibitor) family. Sensitive structure-based methods further revealed the existence of REP/GDI-like genes in Archaea, involved in isoprenyl metabolism. Our analysis supports a scenario where Rabs differentiated into an independent family in Archaea, interacting with proteins involved in membrane biogenesis. These results further support the archaeal nature of the eukaryotic ancestor and provide a new insight into the intermediate stages and the evolutionary path toward the complex membrane-associated signaling circuits that characterize the Ras superfamily of small GTPases, and specifically Rab proteins.
Collapse
|
32
|
Abstract
More than 60 Rab GTPases exist in the human genome to regulate vesicle trafficking between organelles. Rab GTPases are members of the Ras GTPase superfamily that broadly control budding, uncoating, motility and fusion of vesicles in most cell types. Rab proteins interconvert between active, GTP-bound form and inactive, GDP-bound form. In their active conformation, they interact with various effector molecules to carry out diverse functions. Rab GTPases are usually small containing only a GTPase domain with a C-terminal prenylation site for membrane anchoring. Recently, we identified a large G protein, CRACR2A (CRAC channel regulator 2A), which uncovers novel functions of Rab GTPases. First, CRACR2A encodes a large Rab GTPase containing multiple functional domains contrary to small Rab GTPases. Second, CRACR2A plays an unexpected role in regulating intracellular signaling pathways important for T cell activation, unlike the canonical role of small Rab GTPases. Vesicles containing CRACR2A bud out from the proximal Golgi area and translocate into the immunological synapse to activate these signaling pathways. Third, instead of recycling, CRACR2A is consumed by a unidirectional pathway. These events are sequentially regulated by prenylation, GTP binding, protein interaction with a signaling adaptor Vav1, and degradation. Together, our findings reveal a novel function of a large Rab GTPase in intracellular signaling pathways, which may be shared by other large Rab GTPases, Rab44 and Rab45.
Collapse
Affiliation(s)
- Sonal Srikanth
- a Department of Physiology , David Geffen School of Medicine, UCLA , Los Angeles , CA , USA
| | - Jin Seok Woo
- a Department of Physiology , David Geffen School of Medicine, UCLA , Los Angeles , CA , USA
| | - Yousang Gwack
- a Department of Physiology , David Geffen School of Medicine, UCLA , Los Angeles , CA , USA
| |
Collapse
|
33
|
Srikanth S, Kim KD, Gao Y, Woo JS, Ghosh S, Calmettes G, Paz A, Abramson J, Jiang M, Gwack Y. A large Rab GTPase encoded by CRACR2A is a component of subsynaptic vesicles that transmit T cell activation signals. Sci Signal 2016; 9:ra31. [PMID: 27016526 DOI: 10.1126/scisignal.aac9171] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More than 60 members of the Rab family of guanosine triphosphatases (GTPases) exist in the human genome. Rab GTPases are small proteins that are primarily involved in the formation, trafficking, and fusion of vesicles. We showed thatCRACR2A(Ca(2+) release-activated Ca(2+) channel regulator 2A) encodes a lymphocyte-specific large Rab GTPase that contains multiple functional domains, including EF-hand motifs, a proline-rich domain (PRD), and a Rab GTPase domain with an unconventional prenylation site. Through experiments involving gene silencing in cells and knockout mice, we demonstrated a role for CRACR2A in the activation of the Ca(2+) and c-Jun N-terminal kinase signaling pathways in response to T cell receptor (TCR) stimulation. Vesicles containing this Rab GTPase translocated from near the Golgi to the immunological synapse formed between a T cell and a cognate antigen-presenting cell to activate these signaling pathways. The interaction between the PRD of CRACR2A and the guanidine nucleotide exchange factor Vav1 was required for the accumulation of these vesicles at the immunological synapse. Furthermore, we demonstrated that GTP binding and prenylation of CRACR2A were associated with its localization near the Golgi and its stability. Our findings reveal a previously uncharacterized function of a large Rab GTPase and vesicles near the Golgi in TCR signaling. Other GTPases with similar domain architectures may have similar functions in T cells.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Kyun-Do Kim
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yuanyuan Gao
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Shubhamoy Ghosh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Guillaume Calmettes
- Department of Medicine (Cardiology), David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Aviv Paz
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Zade A, Sengupta M, Kondabagil K. Extensive in silico analysis of Mimivirus coded Rab GTPase homolog suggests a possible role in virion membrane biogenesis. Front Microbiol 2015; 6:929. [PMID: 26441866 PMCID: PMC4569851 DOI: 10.3389/fmicb.2015.00929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/24/2015] [Indexed: 11/29/2022] Open
Abstract
Rab GTPases are the key regulators of intracellular membrane trafficking in eukaryotes. Many viruses and intracellular bacterial pathogens have evolved to hijack the host Rab GTPase functions, mainly through activators and effector proteins, for their benefit. Acanthamoeba polyphaga mimivirus (APMV) is one of the largest viruses and belongs to the monophyletic clade of nucleo-cytoplasmic large DNA viruses (NCLDV). The inner membrane lining is integral to the APMV virion structure. APMV assembly involves extensive host membrane modifications, like vesicle budding and fusion, leading to the formation of a membrane sheet that is incorporated into the virion. Intriguingly, APMV and all group I members of the Mimiviridae family code for a putative Rab GTPase protein. APMV is the first reported virus to code for a Rab GTPase (encoded by R214 gene). Our thorough in silico analysis of the subfamily specific (SF) region of Mimiviridae Rab GTPase sequences suggests that they are related to Rab5, a member of the group II Rab GTPases, of lower eukaryotes. Because of their high divergence from the existing three isoforms, A, B, and C of the Rab5-family, we suggest that Mimiviridae Rabs constitute a new isoform, Rab5D. Phylogenetic analysis indicated probable horizontal acquisition from a lower eukaryotic ancestor followed by selection and divergence. Furthermore, interaction network analysis suggests that vps34 (a Class III PI3K homolog, coded by APMV L615), Atg-8 and dynamin (host proteins) are recruited by APMV Rab GTPase during capsid assembly. Based on these observations, we hypothesize that APMV Rab plays a role in the acquisition of inner membrane during virion assembly.
Collapse
Affiliation(s)
- Amrutraj Zade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay Mumbai, India
| | - Malavi Sengupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay Mumbai, India
| |
Collapse
|
35
|
Mutational Analysis of Rab3 Function for Controlling Active Zone Protein Composition at the Drosophila Neuromuscular Junction. PLoS One 2015; 10:e0136938. [PMID: 26317909 PMCID: PMC4552854 DOI: 10.1371/journal.pone.0136938] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/11/2015] [Indexed: 11/26/2022] Open
Abstract
At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction. Rab3 has been extensively studied for its role in the synaptic vesicle cycle; however, the mechanism by which Rab3 controls active zone development remains unknown. To explore this mechanism, we conducted a mutational analysis to determine the molecular and structural requirements of Rab3 function at Drosophila synapses. We find that GTP-binding is required for Rab3 to traffick to synapses and distribute active zone components across release sites. Conversely, the hydrolytic activity of Rab3 is unnecessary for this function. Through a structure-function analysis we identify specific residues within the effector-binding switch regions that are required for Rab3 function and determine that membrane attachment is essential. Our findings suggest that Rab3 controls the distribution of active zone components via a vesicle docking mechanism that is consistent with standard Rab protein function.
Collapse
|
36
|
Jha Y, Sablok G, Subbarao N, Sudhakar R, Fazil MHUT, Subramanian RB, Squartini A, Kumar S. Bacterial-induced expression of RAB18 protein in Orzya sativa salinity stress and insights into molecular interaction with GTP ligand. J Mol Recognit 2015; 27:521-7. [PMID: 25042706 DOI: 10.1002/jmr.2371] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/17/2014] [Accepted: 03/04/2014] [Indexed: 11/08/2022]
Abstract
In the present research, we have studied the inoculation effects of two root-associated plant growth-promoting rhizobacteria (PGPR) in rice and provide the pieces of evidence that the inoculation of the PGPR could potentially result in inducing the expression of the salt stress-related RAB18 plant gene under varying degrees of salinity stress. The sequenced putative gene of RAB18 of Oryza sativa in this study is 740 bp long, has a content of 44.4%, and a molecular weight of 492 102.00 Da. BLAST homology patterns revealed sequence similarity with the previously sequenced RAB in model plant species. We demonstrate the mode of action of this stress-related protein by performing comparative modeling of Q10RT8 (Os03g0146000 protein, homolog of the sequenced RAB18; O. sativa subsp. japonica) using energy minimization, molecular dynamic simulations, and molecular docking of a guanosine triphosphate (GTP) ligand with the protein. The docking results indicated that Ser21, Ala22, Lys25, Asp68, Ala70, Glu73, and Arg74 are important determinant residues for functional interaction with the GTP ligand. The present research contributes to the understanding of the PGPR inoculation in salinity stress. Additionally, it provides the layout of the understanding of the molecular interactions between RAB and GTP ligand.
Collapse
Affiliation(s)
- Yachana Jha
- N. V Patel College of Pure and Applied Sciences, V.V Nagar, Anand, Gujarat, 388120, India
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lardong JA, Driller JH, Depner H, Weise C, Petzoldt A, Wahl MC, Sigrist SJ, Loll B. Structures of Drosophila melanogaster Rab2 and Rab3 bound to GMPPNP. Acta Crystallogr F Struct Biol Commun 2015; 71:34-40. [PMID: 25615965 PMCID: PMC4304744 DOI: 10.1107/s2053230x1402617x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/28/2014] [Indexed: 01/11/2023] Open
Abstract
Rab GTPases belong to the large family of Ras proteins. They act as key regulators of membrane organization and intracellular trafficking. Functionally, they act as switches. In the active GTP-bound form they can bind to effector proteins to facilitate the delivery of transport vesicles. Upon stimulation, the GTP is hydrolyzed and the Rab proteins undergo conformational changes in their switch regions. This study focuses on Rab2 and Rab3 from Drosophila melanogaster. Whereas Rab2 is involved in vesicle transport between the Golgi and the endoplasmatic reticulum, Rab3 is a key player in exocytosis, and in the synapse it is involved in the assembly of the presynaptic active zone. Here, high-resolution crystal structures of Rab2 and Rab3 in complex with GMPPNP and Mg2+ are presented. In the structure of Rab3 a modified cysteine residue is observed with an enigmatic electron density attached to its thiol function.
Collapse
Affiliation(s)
- Jennifer A. Lardong
- Institut für Chemie und Biochemie Abteilung Strukturbiochemie, Freie Universität Berlin, Takustrasse 6, 15195 Berlin, Germany
| | - Jan H. Driller
- Institut für Chemie und Biochemie Abteilung Strukturbiochemie, Freie Universität Berlin, Takustrasse 6, 15195 Berlin, Germany
| | - Harald Depner
- Biologie Abteilung Genetik, Freie Universität Berlin, Takustrasse 6, 15195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany
| | - Christoph Weise
- Institut für Chemie und Biochemie, BioSupraMol Core Facility, Freie Universität Berlin, Thielallee 63, 15195 Berlin, Germany
| | - Astrid Petzoldt
- Biologie Abteilung Genetik, Freie Universität Berlin, Takustrasse 6, 15195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany
| | - Markus C. Wahl
- Institut für Chemie und Biochemie Abteilung Strukturbiochemie, Freie Universität Berlin, Takustrasse 6, 15195 Berlin, Germany
| | - Stephan J. Sigrist
- Biologie Abteilung Genetik, Freie Universität Berlin, Takustrasse 6, 15195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany
| | - Bernhard Loll
- Institut für Chemie und Biochemie Abteilung Strukturbiochemie, Freie Universität Berlin, Takustrasse 6, 15195 Berlin, Germany
| |
Collapse
|
38
|
Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 2014; 328:1-19. [PMID: 25088255 DOI: 10.1016/j.yexcr.2014.07.027] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
Abstract
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.
Collapse
|
39
|
3D structure generation, virtual screening and docking of human Ras-associated binding (Rab3A) protein involved in tumourigenesis. Mol Biol Rep 2014; 41:3951-9. [DOI: 10.1007/s11033-014-3263-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
|
40
|
Agler C, Nielsen DM, Urkasemsin G, Singleton A, Tonomura N, Sigurdsson S, Tang R, Linder K, Arepalli S, Hernandez D, Lindblad-Toh K, van de Leemput J, Motsinger-Reif A, O'Brien DP, Bell J, Harris T, Steinberg S, Olby NJ. Canine hereditary ataxia in old english sheepdogs and gordon setters is associated with a defect in the autophagy gene encoding RAB24. PLoS Genet 2014; 10:e1003991. [PMID: 24516392 PMCID: PMC3916225 DOI: 10.1371/journal.pgen.1003991] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP) located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9 MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia. Neurodegenerative diseases are one of the most important causes of decline in an aging population. An important subset of these diseases are known as the hereditary ataxias, familial neurodegenerative diseases that affect the cerebellum causing progressive gait disturbance in both humans and dogs. We identified a mutation in RAB24, a gene associated with autophagy, in Old English Sheepdogs and Gordon Setters with hereditary ataxia. Autophagy is a process by which cell proteins and organelles are removed and recycled and its critical role in maintenance of the continued health of cells is becoming clear. We evaluated the brains of affected dogs and identified accumulations of autophagosomes within the cerebellum, suggesting a defect in the autophagy pathway. Our results suggest that a defect in the autophagy pathway results in neuronal death in a naturally occurring disease in dogs. The autophagy pathway should be investigated in human hereditary ataxia and may represent a therapeutic target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Caryline Agler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Dahlia M. Nielsen
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ganokon Urkasemsin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Noriko Tonomura
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Snaevar Sigurdsson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Ruqi Tang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Keith Linder
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Sampath Arepalli
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joyce van de Leemput
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Dennis P. O'Brien
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Jerold Bell
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Tonya Harris
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Steven Steinberg
- VCA Veterinary Referral Associates, Gaithersbrug, Maryland, United States of America
| | - Natasha J. Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
41
|
Mulukala Narasimha SK, Gunda SK, Shaik M. Comparative modeling of Rab6 proteins: identification of key residues and their interactions with guanine nucleotides. J Mol Model 2013; 19:1891-900. [PMID: 23334348 DOI: 10.1007/s00894-012-1746-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/18/2012] [Indexed: 11/25/2022]
Abstract
The cytoplasm of a eukaryotic cell consists of a wide variety of membrane bound cell organelles and continuous flow of proteins amongst these organelles is a major challenge and must be stringently maintained in order to continue the correct biochemical functioning inside a cell. The transportation of various proteins amongst these organelles is facilitated by a vast Tubulo-vesicular network mediated by carrier proteins. The Rabs belong to small G proteins super family involved in the regulation and vesicle transport in between the organelles by shuttling between the active GTP and inactive GDP bound states. In this paper we put forth the homology modeling and docking studies of Rab6A proteins (Mus musculus, Gallus gallus and Caenorhabditis elegans) with GTP, GMP-PNP and GDP molecules and a comparative study between these proteins is done to identify key residues out of which serine of the phosphate binding loop (P - loop) and aspartic acid showed prominent interactions with the GTP, GDP and GMP-PNP nucleotides and cogitate that aspartic acid might also help in the stabilization of the switch I region of the Rab proteins besides serine.
Collapse
|
42
|
Jeong JH, Lee KH, Kim YM, Kim DH, Oh BH, Kim YG. Crystal structure of the Gtr1p(GTP)-Gtr2p(GDP) protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion. J Biol Chem 2012; 287:29648-53. [PMID: 22807443 DOI: 10.1074/jbc.c112.384420] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterodimeric Rag GTPases consisting of RagA (or RagB) and RagC (or RagD) are the key regulator activating the target of rapamycin complex 1 (TORC1) in response to the level of amino acids. The heterodimer between GTP-loaded RagA/B and GDP-loaded RagC/D is the most active form that binds Raptor and leads to the activation of TORC1. Here, we present the crystal structure of Gtr1p(GTP)-Gtr2p(GDP), the active yeast Rag GTPase heterodimer. The structure reveals that GTP-to-GDP conversion on Gtr2p results in a large conformational transition of this subunit, including a large scale rearrangement of a long segment whose corresponding region in RagA is involved in binding to Raptor. In addition, the two GTPase domains of the heterodimer are brought to contact with each other, but without causing any conformational change of the Gtr1p subunit. These features explain how the nucleotide-bound statuses of the two GTPases subunits switch the Raptor binding affinity on and off.
Collapse
Affiliation(s)
- Jae-Hee Jeong
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | | | |
Collapse
|
43
|
Liu S, Storrie B. Are Rab proteins the link between Golgi organization and membrane trafficking? Cell Mol Life Sci 2012; 69:4093-106. [PMID: 22581368 DOI: 10.1007/s00018-012-1021-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 11/25/2022]
Abstract
The fundamental separation of Golgi function between subcompartments termed cisternae is conserved across all eukaryotes. Likewise, Rab proteins, small GTPases of the Ras superfamily, are putative common coordinators of Golgi organization and protein transport. However, despite sequence conservation, e.g., Rab6 and Ypt6 are conserved proteins between humans and yeast, the fundamental organization of the organelle can vary profoundly. In the yeast Saccharomyces cerevisiae, the Golgi cisternae are physically separated from one another, while in mammalian cells, the cisternae are stacked one upon the other. Moreover, in mammalian cells, many Golgi stacks are typically linked together to generate a ribbon structure. Do evolutionarily conserved Rab proteins regulate secretory membrane trafficking and diverse Golgi organization in a common manner? In mammalian cells, some Golgi-associated Rab proteins function in coordination of protein transport and maintenance of Golgi organization. These include Rab6, Rab33B, Rab1, Rab2, Rab18, and Rab43. In yeast, these include Ypt1, Ypt32, and Ypt6. Here, based on evidence from both yeast and mammalian cells, we speculate on the essential role of Rab proteins in Golgi organization and protein transport.
Collapse
Affiliation(s)
- Shijie Liu
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
44
|
Zhang W, Shen Y, Jiao R, Liu Y, Deng L, Qi C. Crystal structure of inactive form of Rab3B. Biochem Biophys Res Commun 2012; 418:841-4. [PMID: 22321395 DOI: 10.1016/j.bbrc.2012.01.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 01/26/2012] [Indexed: 11/26/2022]
Abstract
Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9Å resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.
Collapse
Affiliation(s)
- Wei Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079, PR China
| | | | | | | | | | | |
Collapse
|
45
|
Hu YH, Deng T, Sun L. The Rab1 GTPase of Sciaenops ocellatus modulates intracellular bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1005-1012. [PMID: 21889593 DOI: 10.1016/j.fsi.2011.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/21/2011] [Accepted: 08/22/2011] [Indexed: 05/31/2023]
Abstract
The Rab family proteins belong to the Ras-like GTPase superfamily and play important roles in intracellular membrane trafficking. To date no studies on fish Rab have been documented, though rab-like sequences have been found in a number of teleosts. In this study, we identified and analyzed a Rab homologue, SoRab1, from red drum, Sciaenops ocellatus. The cDNA of SoRab1 contains a 5'- untranslated region (UTR) of 358 bp, an open reading frame (ORF) of 612 bp, and a 3'-UTR of 265 bp. The ORF encodes a putative protein of 203 residues, which shares 92-99% overall sequence identities with the Rab1 from fish, human, and mouse. SoRab1 possesses a typical Rab1 GTPase domain with the conserved G box motifs and the switch I and switch II regions. Recombinant SoRab1 purified from Escherichia coli exhibits apparent GTPase activity. Quantitative real time RT-PCR analysis showed that SoRab1 expression was detected in a number of tissues, with the lowest expression found in blood and highest expression found in muscle. Bacterial and lipopolysaccharide challenges significantly upregulated SoRab1 expression in liver, kidney, and spleen in time-dependent manners. Transient overexpression of SoRab1 in primary hepatocytes reduced intracellular bacterial infection, whereas interference with SoRab1 expression by RNAi enhanced intracellular bacterial invasion. These results provide the first indication that a fish Rab1 GTPase, SoRab1, regulates intracellular bacterial infection and thus is likely to play a role in bacteria-induced host immune defense.
Collapse
Affiliation(s)
- Yong-hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | |
Collapse
|
46
|
Walden M, Jenkins HT, Edwards TA. Structure of the Drosophila melanogaster Rab6 GTPase at 1.4 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:744-8. [PMID: 21795785 PMCID: PMC3144787 DOI: 10.1107/s1744309111017453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/09/2011] [Indexed: 11/10/2022]
Abstract
Rab6 is a small GTPase that belongs to the p21 Ras superfamily. It is involved in vesicle trafficking between the Golgi apparatus and endosomes/ER in eukaryotes. The GDP-bound inactive protein undergoes conformational changes when the nucleotide is exchanged to GTP, allowing Rab6 to interact with a variety of different effector proteins. To further understand how these changes affect downstream protein binding, the crystal structure of Rab6 from Drosophila melanogaster has been solved to 1.4 Å resolution, the highest resolution for a Rab6 structure to date. The crystals belonged to space group C2, with unit-cell parameters a=116.5, b=42.71, c=86.86 Å, α=90, β=133.12, γ=90°. The model was refined to an R factor of 14.5% and an Rfree of 17.3%.
Collapse
Affiliation(s)
- Miriam Walden
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Huw T. Jenkins
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Thomas A. Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| |
Collapse
|
47
|
Vázquez-Martínez R, Malagón MM. Rab proteins and the secretory pathway: the case of rab18 in neuroendocrine cells. Front Endocrinol (Lausanne) 2011; 2:1. [PMID: 22649356 PMCID: PMC3355916 DOI: 10.3389/fendo.2011.00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/03/2011] [Indexed: 11/21/2022] Open
Abstract
The secretory pathway is a process characteristic of cells specialized in secretion such as endocrine cells and neurons. It consists of different stages that are dependent on specific transport of proteins in vesicular-tubular carriers. Biochemical analyses have unveiled a number of protein families that confer identity to carrier vesicles and specificity to their transport. Among them is the family of Rab proteins, Ras-like small GTPases that anchor to the surface of transport vesicles and participate in vesicle formation from the donor compartment, transport along cytoskeletal tracks, and docking and fusion with the acceptor compartment. All of these functions are accomplished through the recruitment of effector proteins, such as sorting adaptors, tethering factors, kinases, phosphatases, and motors. The numerous Rab proteins have distinct subcellular distributions throughout the endomembrane system, which ensures efficient cargo transfer. Rab proteins act as molecular switches that alternate between a cytosolic GDP-bound, inactive form and a membrane-associated GTP-bound, active conformation. Cycling between inactive and active states is a highly regulated process that enables Rabs to confer spatio-temporal precision to the different stages through which a vesicle passes during its lifespan. This review focuses on our current knowledge on Rab functioning, from their structural features to the multiple regulatory proteins and effectors that control Rab activity and translate Rab function. Furthermore, we also summarize the information available on a particular Rab protein, Rab18, which has been linked to the control of secretory granule traffic in neuroendocrine cells.
Collapse
Affiliation(s)
- Rafael Vázquez-Martínez
- Department of Cell Biology, Physiology and Immunology, University of CordobaCordoba, Spain
- Instituto Maimónides de Investigación Biomédica, Biomedical Research Center in Red Physiopathology of Obesity and NutritionCordoba, Spain
| | - Maria M. Malagón
- Department of Cell Biology, Physiology and Immunology, University of CordobaCordoba, Spain
- Instituto Maimónides de Investigación Biomédica, Biomedical Research Center in Red Physiopathology of Obesity and NutritionCordoba, Spain
- *Correspondence: Maria M. Malagón, Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Campus de Rabanales, Edificio Severo-Ochoa, Planta 3, E-14014 Córdoba, Spain. e-mail:
| |
Collapse
|
48
|
Agop-Nersesian C, Egarter S, Langsley G, Foth BJ, Ferguson DJP, Meissner M. Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B. PLoS Pathog 2010; 6:e1001029. [PMID: 20686666 PMCID: PMC2912401 DOI: 10.1371/journal.ppat.1001029] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 07/02/2010] [Indexed: 01/09/2023] Open
Abstract
Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal budding. We hypothesized that an alveolate specific factor is involved in the specific transport of vesicles from the Golgi to the IMC and identified the small GTPase Rab11B as an alveolate specific Rab-GTPase that localises to the growing end of the IMC during replication of Toxoplasma gondii. Conditional interference with Rab11B function leads to a profound defect in IMC biogenesis, indicating that Rab11B is required for the transport of Golgi derived vesicles to the nascent IMC of the daughter cell. Curiously, a block in IMC biogenesis did not affect formation of sub-pellicular microtubules, indicating that IMC biogenesis and formation of sub-pellicular microtubules is not mechanistically linked. We propose a model where Rab11B specifically transports vesicles derived from the Golgi to the immature IMC of the growing daughter parasites.
Collapse
Affiliation(s)
- Carolina Agop-Nersesian
- Department of Infectiology, Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Saskia Egarter
- Division of Infection & Immunity and Wellcome Centre for Parasitology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, Inserm, U567, CNRS, UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
| | - Bernardo J. Foth
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, Oxford University, Oxford, United Kingdom
| | - Markus Meissner
- Division of Infection & Immunity and Wellcome Centre for Parasitology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
49
|
Müller MP, Peters H, Blümer J, Blankenfeldt W, Goody RS, Itzen A. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 2010; 329:946-9. [PMID: 20651120 DOI: 10.1126/science.1192276] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the course of Legionnaires' disease, the bacterium Legionella pneumophila affects the intracellular vesicular trafficking of infected eukaryotic cells by recruiting the small guanosine triphosphatase (GTPase) Rab1 to the cytosolic face of the Legionella-containing vacuole. In order to accomplish this, the Legionella protein DrrA contains a specific guanine nucleotide exchange activity for Rab1 activation that exchanges guanosine triphosphate (GTP) for guanosine diphosphate on Rab1. We found that the amino-terminal domain of DrrA possesses adenosine monophosphorylation (AMPylation) activity toward the switch II region of Rab1b, leading to posttranslational covalent modification of tyrosine 77. AMPylation of switch II by DrrA restricts the access of GTPase activating proteins, thereby rendering Rab1b constitutively active.
Collapse
Affiliation(s)
- Matthias P Müller
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, NRW, 44227, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Goodsell DS. Neuromuscular synapse. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 37:204-210. [PMID: 21567738 DOI: 10.1002/bmb.20297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of the neuromuscular synapse. The image magnifies a portion of the synapse at one million times, showing the location and the form of individual macromolecules. Results from biochemistry, electron microscopy, and X-ray crystallography were used to create the image.
Collapse
Affiliation(s)
- David S Goodsell
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|