1
|
Shin DW, Cho YA, Moon SH, Kim TH, Park JW, Lee JW, Choe JY, Kim MJ, Kim SE. High cellular prion protein expression in cholangiocarcinoma: A marker for early postoperative recurrence and unfavorable prognosis. World J Gastrointest Surg 2025; 17:101940. [PMID: 40162420 PMCID: PMC11948104 DOI: 10.4240/wjgs.v17.i3.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The cellular prion protein (PrPC), traditionally associated with neurodegenerative disorders, plays an important role in cancer progression and metastasis by inhibiting apoptosis. AIM To investigate the influence of PrPC expression in cholangiocarcinoma (CCA) on patient outcomes following surgical resection. METHODS Patients who underwent curative surgical resection for either intrahepatic or hilar CCA were enrolled in this retrospective study. Based on the immunohistochemical staining results of the surgical specimens, patients were categorized into two groups: The low PrPC group (negative or 1+) and the high PrPC group (2+ or 3+). Survival analyses, including overall survival and recurrence-free survival, were conducted using the Kaplan-Meier method and compared using the log-rank test. RESULTS In total, seventy-six patients diagnosed with CCA (39 with intrahepatic and 37 with hilar CCA) underwent curative hepatectomy from January 2011 to November 2021. Among these patients, 38 (50%) demonstrated high PrPC expression, whereas the remaining 38 (50%) showed low expression of PrPC. During a median follow-up period of 31.2 months (range: 1 to 137 months), the high PrPC group had a significantly shorter median overall survival than the low PrPC group (40.4 months vs 137.9 months, respectively; P = 0.041). Moreover, the high PrPC group had a significantly shorter median recurrence-free survival than the low PrPC group (13.3 months vs 23.8 months, respectively; P = 0.026). CONCLUSION PrPC expression is significantly associated with early recurrence and decreased survival period in CCA patients following surgical resection. Thus, PrPC may be used as a prognostic factor in treatment planning.
Collapse
Affiliation(s)
- Dong Woo Shin
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| | - Yoon Ah Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Sung-Hoon Moon
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| | - Tae Hyung Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| | - Ji-Won Park
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| | - Jung-Woo Lee
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, South Korea
| | - Ji-Young Choe
- Anatomic Pathology Reference Lab, Seegene Medical Foundation, Seoul 04805, South Korea
| | - Min-Jeong Kim
- Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, South Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Gyeonggi-do, South Korea
| |
Collapse
|
2
|
Kalmouni M, Oh Y, Alata W, Magzoub M. Designed Cell-Penetrating Peptide Constructs for Inhibition of Pathogenic Protein Self-Assembly. Pharmaceutics 2024; 16:1443. [PMID: 39598566 PMCID: PMC11597747 DOI: 10.3390/pharmaceutics16111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Peptides possess a number of pharmacologically desirable properties, including greater chemical diversity than other biomolecule classes and the ability to selectively bind to specific targets with high potency, as well as biocompatibility, biodegradability, and ease and low cost of production. Consequently, there has been considerable interest in developing peptide-based therapeutics, including amyloid inhibitors. However, a major hindrance to the successful therapeutic application of peptides is their poor delivery to target tissues, cells or subcellular organelles. To overcome these issues, recent efforts have focused on engineering cell-penetrating peptide (CPP) antagonists of amyloidogenesis, which combine the attractive intrinsic properties of peptides with potent therapeutic effects (i.e., inhibition of amyloid formation and the associated cytotoxicity) and highly efficient delivery (to target tissue, cells, and organelles). This review highlights some promising CPP constructs designed to target amyloid aggregation associated with a diverse range of disorders, including Alzheimer's disease, transmissible spongiform encephalopathies (or prion diseases), Parkinson's disease, and cancer.
Collapse
Affiliation(s)
| | | | | | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates; (Y.O.)
| |
Collapse
|
3
|
Hara H, Chida J, Batchuluun B, Takahashi E, Kido H, Sakaguchi S. Protective role of cytosolic prion protein against virus infection in prion-infected cells. J Virol 2024; 98:e0126224. [PMID: 39194237 PMCID: PMC11406989 DOI: 10.1128/jvi.01262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Production of the amyloidogenic prion protein, PrPSc, which forms infectious protein aggregates, or prions, is a key pathogenic event in prion diseases. Functional prion-like protein aggregations, such as the mitochondrial adaptor protein MAVS and the inflammasome component protein ASC, have been identified to play a protective role in viral infections in mammalian cells. In this study, to investigate if PrPSc could play a functional role against external stimuli, we infected prion-infected cells with a neurotropic influenza A virus strain, IAV/WSN. We found that prion-infected cells were highly resistant to IAV/WSN infection. In these cells, NF-κB nuclear translocation was disturbed; therefore, mitochondrial superoxide dismutase (mtSOD) expression was suppressed, and mitochondrial reactive oxygen species (mtROS) was increased. The elevated mtROS subsequently activated NLRP3 inflammasomes, leading to the suppression of IAV/WSN-induced necroptosis. We also found that prion-infected cells accumulated a portion of PrP molecules in the cytosol, and that the N-terminal potential nuclear translocation signal of PrP impeded NF-κB nuclear translocation. These results suggest that PrPSc might play a functional role in protection against viral infections by stimulating the NLRP3 inflammasome-dependent antivirus mechanism through the cytosolic PrP-mediated disturbance of NF-κB nuclear translocation, which leads to suppression of mtSOD expression and consequently upregulation of the NLRP3 inflammasome activator mtROS. IMPORTANCE Cytosolic PrP has been detected in prion-infected cells and suggested to be involved in the neurotoxicity of prions. Here, we also detected cytosolic PrP in prion-infected cells. We further found that the nuclear translocation of NF-κB was disturbed in prion-infected cells and that the N-terminal potential nuclear translocation signal of PrP expressed in the cytosol disturbed the nuclear translocation of NF-κB. Thus, the N-terminal nuclear translocation signal of cytosolic PrP might play a role in prion neurotoxicity. Prion-like protein aggregates in other protein misfolding disorders, including Alzheimer's disease were reported to play a protective role against various environmental stimuli. We here showed that prion-infected cells were partially resistant to IAV/WSN infection due to the cytosolic PrP-mediated disturbance of the nuclear translocation of NF-κB, which consequently activated NLRP3 inflammasomes after IAV/WSN infection. It is thus possible that prions could also play a protective role in viral infections.
Collapse
Affiliation(s)
- Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
- Core Research Facility, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Batzaya Batchuluun
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| |
Collapse
|
4
|
Banik P, Ray K, Kamps J, Chen QY, Luesch H, Winklhofer KF, Tatzelt J. VCP/p97 mediates nuclear targeting of non-ER-imported prion protein to maintain proteostasis. Life Sci Alliance 2024; 7:e202302456. [PMID: 38570188 PMCID: PMC10992997 DOI: 10.26508/lsa.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.
Collapse
Affiliation(s)
- Papiya Banik
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Koustav Ray
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, USA
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| |
Collapse
|
5
|
Cordeiro Y, Freire MHO, Wiecikowski AF, do Amaral MJ. (Dys)functional insights into nucleic acids and RNA-binding proteins modulation of the prion protein and α-synuclein phase separation. Biophys Rev 2023; 15:577-589. [PMID: 37681103 PMCID: PMC10480379 DOI: 10.1007/s12551-023-01067-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 09/09/2023] Open
Abstract
Prion diseases are prototype of infectious diseases transmitted by a protein, the prion protein (PrP), and are still not understandable at the molecular level. Heterogenous species of aggregated PrP can be generated from its monomer. α-synuclein (αSyn), related to Parkinson's disease, has also shown a prion-like pathogenic character, and likewise PrP interacts with nucleic acids (NAs), which in turn modulate their aggregation. Recently, our group and others have characterized that NAs and/or RNA-binding proteins (RBPs) modulate recombinant PrP and/or αSyn condensates formation, and uncontrolled condensation might precede pathological aggregation. Tackling abnormal phase separation of neurodegenerative disease-related proteins has been proposed as a promising therapeutic target. Therefore, understanding the mechanism by which polyanions, like NAs, modulate phase transitions intracellularly, is key to assess their role on toxicity promotion and neuronal death. Herein we discuss data on the nucleic acids binding properties and phase separation ability of PrP and αSyn with a special focus on their modulation by NAs and RBPs. Furthermore, we provide insights into condensation of PrP and/or αSyn in the light of non-trivial subcellular locations such as the nuclear and cytosolic environments.
Collapse
Affiliation(s)
- Yraima Cordeiro
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Maria Heloisa O. Freire
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Adalgisa Felippe Wiecikowski
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Mariana Juliani do Amaral
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| |
Collapse
|
6
|
Intrinsic disorder and phase transitions: Pieces in the puzzling role of the prion protein in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:1-43. [PMID: 34656326 DOI: 10.1016/bs.pmbts.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After four decades of prion protein research, the pressing questions in the literature remain similar to the common existential dilemmas. Who am I? Some structural characteristics of the cellular prion protein (PrPC) and scrapie PrP (PrPSc) remain unknown: there are no high-resolution atomic structures for either full-length endogenous human PrPC or isolated infectious PrPSc particles. Why am I here? It is not known why PrPC and PrPSc are found in specific cellular compartments such as the nucleus; while the physiological functions of PrPC are still being uncovered, the misfolding site remains obscure. Where am I going? The subcellular distribution of PrPC and PrPSc is wide (reported in 10 different locations in the cell). This complexity is further exacerbated by the eight different PrP fragments yielded from conserved proteolytic cleavages and by reversible post-translational modifications, such as glycosylation, phosphorylation, and ubiquitination. Moreover, about 55 pathological mutations and 16 polymorphisms on the PrP gene (PRNP) have been described. Prion diseases also share unique, challenging features: strain phenomenon (associated with the heterogeneity of PrPSc conformations) and the possible transmissibility between species, factors which contribute to PrP undruggability. However, two recent concepts in biochemistry-intrinsically disordered proteins and phase transitions-may shed light on the molecular basis of PrP's role in physiology and disease.
Collapse
|
7
|
Lu J, Wu T, Zhang B, Liu S, Song W, Qiao J, Ruan H. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal 2021; 19:60. [PMID: 34022911 PMCID: PMC8140498 DOI: 10.1186/s12964-021-00741-y] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
Nuclear localization signals (NLS) are generally short peptides that act as a signal fragment that mediates the transport of proteins from the cytoplasm into the nucleus. This NLS-dependent protein recognition, a process necessary for cargo proteins to pass the nuclear envelope through the nuclear pore complex, is facilitated by members of the importin superfamily. Here, we summarized the types of NLS, focused on the recently reported related proteins containing nuclear localization signals, and briefly summarized some mechanisms that do not depend on nuclear localization signals into the nucleus. Video Abstract.
Collapse
Affiliation(s)
- Juane Lu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Tao Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Biao Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Suke Liu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Wenjun Song
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
8
|
The Cellular Prion Protein: A Promising Therapeutic Target for Cancer. Int J Mol Sci 2020; 21:ijms21239208. [PMID: 33276687 PMCID: PMC7730109 DOI: 10.3390/ijms21239208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Studies on the cellular prion protein (PrPC) have been actively conducted because misfolded PrPC is known to cause transmissible spongiform encephalopathies or prion disease. PrPC is a glycophosphatidylinositol-anchored cell surface glycoprotein that has been reported to affect several cellular functions such as stress protection, cellular differentiation, mitochondrial homeostasis, circadian rhythm, myelin homeostasis, and immune modulation. Recently, it has also been reported that PrPC mediates tumor progression by enhancing the proliferation, metastasis, and drug resistance of cancer cells. In addition, PrPC regulates cancer stem cell properties by interacting with cancer stem cell marker proteins. In this review, we summarize how PrPC promotes tumor progression in terms of proliferation, metastasis, drug resistance, and cancer stem cell properties. In addition, we discuss strategies to treat tumors by modulating the function and expression of PrPC via the regulation of HSPA1L/HIF-1α expression and using an anti-prion antibody.
Collapse
|
9
|
Pradhan P, Srivastava A, Singh J, Biswas B, Saini A, Siddique I, Kumari P, Khan MA, Mishra A, Yadav PK, Kumar S, Bhavesh NS, Venkatraman P, Vivekanandan P, Kundu B. Prion protein transcription is auto-regulated through dynamic interactions with G-quadruplex motifs in its own promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194479. [PMID: 31931179 DOI: 10.1016/j.bbagrm.2019.194479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 11/19/2022]
Abstract
Cellular prion protein (PrP) misfolds into an aberrant and infectious scrapie form (PrPSc) that lead to fatal transmissible spongiform encephalopathies (TSEs). Association of prions with G-quadruplex (GQ) forming nucleic acid motifs has been reported, but implications of these interactions remain elusive. Herein, we show that the promoter region of the human prion gene (PRNP) contains two putative GQ motifs (Q1 and Q2) that assume stable, hybrid, intra-molecular quadruplex structures and bind with high affinity to PrP. Here, we investigate the ability of PrP to bind to the quadruplexes in its own promoter. We used a battery of techniques including SPR, NMR, CD, MD simulations and cell culture-based reporter assays. Our results show that PrP auto-regulates its expression by binding and resolving the GQs present in its own promoter. Furthermore, we map this resolvase-like activity to the N-terminal region (residues 23-89) of PrP. Our findings highlight a positive transcriptional-translational feedback regulation of the PRNP gene by PrP through dynamic unwinding of GQs in its promoter. Taken together, our results shed light on a yet unknown mechanism of regulation of the PRNP gene. This work provides the necessary framework for a plethora of studies on understanding the regulation of PrP levels and its implications in prion pathogenesis.
Collapse
Affiliation(s)
- Prashant Pradhan
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Ankit Srivastava
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Jasdeep Singh
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Banhi Biswas
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Akanksha Saini
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Ibrar Siddique
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pooja Kumari
- Transcription Regulation group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mohd Asim Khan
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India
| | - Akhilesh Mishra
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramod Kumar Yadav
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Shivani Kumar
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prasanna Venkatraman
- Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, 2nd floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India.
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
10
|
Kouadri A, El Khatib M, Cormenier J, Chauvet S, Zeinyeh W, El Khoury M, Macari L, Richaud P, Coraux C, Michaud-Soret I, Alfaidy N, Benharouga M. Involvement of the Prion Protein in the Protection of the Human Bronchial Epithelial Barrier Against Oxidative Stress. Antioxid Redox Signal 2019; 31:59-74. [PMID: 30569742 DOI: 10.1089/ars.2018.7500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aim: Bronchial epithelium acts as a defensive barrier against inhaled pollutants and microorganisms. This barrier is often compromised in inflammatory airway diseases that are characterized by excessive oxidative stress responses, leading to bronchial epithelial shedding, barrier failure, and increased bronchial epithelium permeability. Among proteins expressed in the junctional barrier and participating to the regulation of the response to oxidative and to environmental stresses is the cellular prion protein (PrPC). However, the role of PrPC is still unknown in the bronchial epithelium. Herein, we investigated the cellular mechanisms by which PrPC protein participates into the junctional complexes formation, regulation, and oxidative protection in human bronchial epithelium. Results: Both PrPC messenger RNA and mature protein were expressed in human epithelial bronchial cells. PrPC was localized in the apical domain and became lateral, at high degree of cell polarization, where it colocalized and interacted with adherens (E-cadherin/γ-catenin) and desmosomal (desmoglein/desmoplakin) junctional proteins. No interaction was detected with tight junction proteins. Disruption of such interactions induced the loss of the epithelial barrier. Moreover, we demonstrated that PrPC protection against copper-associated oxidative stress was involved in multiple processes, including the stability of adherens and desmosomal junctional proteins. Innovation: PrPC is a pivotal protein in the protection against oxidative stress that is associated with the degradation of adherens and desmosomal junctional proteins. Conclusion: Altogether, these results demonstrate that the loss of the integrity of the epithelial barrier by oxidative stress is attenuated by the activation of PrPC expression, where deregulation might be associated with respiratory diseases.
Collapse
Affiliation(s)
- Amal Kouadri
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Mariam El Khatib
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Johanna Cormenier
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Sylvain Chauvet
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Wael Zeinyeh
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Micheline El Khoury
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Laurence Macari
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Pierre Richaud
- 2 University of Aix-Marseille, CNRS, CEA, Institute of Bisosciences and Biotechnologies of Aix Marseille (BIAM), UMR 7265, CEA Cadarache, Saint-Paul-lez Durance, France
| | - Christelle Coraux
- 3 National Institute of Health and Medical Research (INSERM), UMR-S 903, Reims, France
| | | | - Nadia Alfaidy
- 4 University of Grenoble Alpes, INSERM U1036, CEA, BIG, BCI, Grenoble, France
| | - Mohamed Benharouga
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| |
Collapse
|
11
|
Proteasomal Inhibition Redirects the PrP-Like Shadoo Protein to the Nucleus. Mol Neurobiol 2019; 56:7888-7904. [PMID: 31129810 PMCID: PMC6815274 DOI: 10.1007/s12035-019-1623-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
The Shadoo protein (Sho) exhibits homology to the hydrophobic region of the cellular isoform of prion protein (PrPC). As prion-infected brains gradually accumulate infectivity-associated isoforms of prion protein (PrPSc), levels of mature endogenous Sho become reduced. To study the regulatory effect of the proteostatic network on Sho expression, we investigated the action of lactacystin, MG132, NH4Cl, and 3-methyladenine (3-MA) in two cell culture models. In primary mixed neuronal and glial cell cultures (MNGCs) from transgenic mice expressing wild-type Sho from the PrP gene promoter (Tg.Sprn mice), lactacystin- and MG132-mediated inhibition of proteasomal activity shifted the repertoire of Sho species towards unglycosylated forms appearing in the nuclei; conversely, the autophagic modulators NH4Cl and 3-MA did not affect Sho or PrPC glycosylation patterns. Mouse N2a neuroblastoma cells expressing Sho under control of a housekeeping gene promoter treated with MG132 or lactacystin also showed increased nuclear localization of unglycosylated Sho. As two proteasomal inhibitors tested in two cell paradigms caused redirection of Sho to nuclei at the expense of processing through the secretory pathway, our findings define a balanced shift in subcellular localization that thereby differs from the decreases in net Sho species seen in prion-infected brains. Our data are indicative of a physiological pathway to access Sho functions in the nucleus under conditions of impaired proteasomal activity. We also infer that these conditions would comprise a context wherein Sho’s N-terminal nucleic acid–binding RGG repeat region is brought into play.
Collapse
|
12
|
Fernández-Vega I, Díaz-Lucena D, Azkune Calle I, Geijo M, Juste RA, Llorens F, Vicente Etxenausia I, Santos-Juanes J, Zarranz Imirizaldu JJ, Ferrer I. Sporadic Creutzfeldt-Jakob disease with glial PrP Res nuclear and perinuclear immunoreactivity. Neuropathology 2018; 38:561-567. [PMID: 30123962 DOI: 10.1111/neup.12505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/15/2018] [Accepted: 07/05/2018] [Indexed: 01/03/2023]
Abstract
Proteinase K-resistant prion protein (PrPRes ) nuclear and perinuclear immunoreactivity in oligodendrocytes of the frontal cortex is found in one case of otherwise typical sporadic Creutzfeldt-Jakob disease (sCJD) type VV2a. The PrP nature of the inclusions is validated with several anti-PrP antibodies directed to amino acids 130-160 (12F10), 109-112 (3F4), 97-102 (8G8) and the octarepeat region (amino acids 59-89: SAF32). Cellular identification and subcellular localization were evaluated with double- and triple-labeling immunofluorescence and confocal microscopy using antibodies against PrP, glial markers, and histone H3. Based on review of the literature and our own experience, this is a very odd situation that deserves further validation in other cases.
Collapse
Affiliation(s)
- Ivan Fernández-Vega
- Pathology Department, Hospital Universitario Araba, Vitoria, Spain
- Brain Bank Hospital Universitario Araba, Biobanco Vasco para la Investigación (O+eHun), Vitoria, Spain
| | - Daniela Díaz-Lucena
- Biomedical Research Institute of Bellvitge (IDIBELL), Hospitalet de Llobregat, Spain
- Biomedical Network Research Center of Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain
| | | | - Maria Geijo
- Department of Animal Health, NEIKER-Tecnalia, Derio, Spain
| | - Ramon A Juste
- Department of Animal Health, NEIKER-Tecnalia, Derio, Spain
| | - Franc Llorens
- Biomedical Research Institute of Bellvitge (IDIBELL), Hospitalet de Llobregat, Spain
- Biomedical Network Research Center of Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain
| | - Ikerne Vicente Etxenausia
- Brain Bank Hospital Universitario Araba, Biobanco Vasco para la Investigación (O+eHun), Vitoria, Spain
| | - Jorge Santos-Juanes
- Pathology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Isidro Ferrer
- Biomedical Research Institute of Bellvitge (IDIBELL), Hospitalet de Llobregat, Spain
- Biomedical Network Research Center of Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
- Service of Pathologic Anatomy, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| |
Collapse
|
13
|
Ulbrich S, Janning P, Seidel R, Matschke J, Gonsberg A, Jung S, Glatzel M, Engelhard M, Winklhofer KF, Tatzelt J. Alterations in the brain interactome of the intrinsically disordered N-terminal domain of the cellular prion protein (PrPC) in Alzheimer's disease. PLoS One 2018; 13:e0197659. [PMID: 29791485 PMCID: PMC5965872 DOI: 10.1371/journal.pone.0197659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/08/2018] [Indexed: 12/23/2022] Open
Abstract
The cellular prion protein (PrPC) is implicated in neuroprotective signaling and neurotoxic pathways in both prion diseases and Alzheimer's disease (AD). Specifically, the intrinsically disordered N-terminal domain (N-PrP) has been shown to interact with neurotoxic ligands, such as Aβ and Scrapie prion protein (PrPSc), and to be crucial for the neuroprotective activity of PrPC. To gain further insight into cellular pathways tied to PrP, we analyzed the brain interactome of N-PrP. As a novel approach employing recombinantly expressed PrP and intein-mediated protein ligation, we used N-PrP covalently coupled to beads as a bait for affinity purification. N-PrP beads were incubated with human AD or control brain lysates. N-PrP binding partners were then identified by electrospray ionization tandem mass spectrometry (nano ESI-MS/MS). In addition to newly identified proteins we found many previously described PrP interactors, indicating a crucial role of the intrinsically disordered part of PrP in mediating protein interactions. Moreover, some interactors were found only in either non-AD or AD brain, suggesting aberrant PrPC interactions in the pathogenesis of AD.
Collapse
Affiliation(s)
- Sarah Ulbrich
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Petra Janning
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ralf Seidel
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Gonsberg
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Sebastian Jung
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| |
Collapse
|
14
|
Wu GR, Mu TC, Gao ZX, Wang J, Sy MS, Li CY. Prion protein is required for tumor necrosis factor α (TNFα)-triggered nuclear factor κB (NF-κB) signaling and cytokine production. J Biol Chem 2017; 292:18747-18759. [PMID: 28900035 PMCID: PMC5704461 DOI: 10.1074/jbc.m117.787283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/10/2017] [Indexed: 12/18/2022] Open
Abstract
The expression of normal cellular prion protein (PrP) is required for the pathogenesis of prion diseases. However, the physiological functions of PrP remain ambiguous. Here, we identified PrP as being critical for tumor necrosis factor (TNF) α-triggered signaling in a human melanoma cell line, M2, and a pancreatic ductal cell adenocarcinoma cell line, BxPC-3. In M2 cells, TNFα up-regulates the expression of p-IκB-kinase α/β (p-IKKα/β), p-p65, and p-JNK, but down-regulates the IκBα protein, all of which are downstream signaling intermediates in the TNF receptor signaling cascade. When PRNP is deleted in M2 cells, the effects of TNFα are no longer detectable. More importantly, p-p65 and p-JNK responses are restored when PRNP is reintroduced into the PRNP null cells. TNFα also activates NF-κB and increases TNFα production in wild-type M2 cells, but not in PrP-null M2 cells. Similar results are obtained in the BxPC-3 cells. Moreover, TNFα activation of NF-κB requires ubiquitination of receptor-interacting serine/threonine kinase 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). TNFα treatment increases the binding between PrP and the deubiquitinase tumor suppressor cylindromatosis (CYLD), in these treated cells, binding of CYLD to RIP1 and TRAF2 is reduced. We conclude that PrP traps CYLD, preventing it from binding and deubiquitinating RIP1 and TRAF2. Our findings reveal that PrP enhances the responses to TNFα, promoting proinflammatory cytokine production, which may contribute to inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Gui-Ru Wu
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China.,the University of Chinese Academy of Sciences, Beijing 100000, China
| | - Tian-Chen Mu
- the Department of Life Sciences, Wuhan University, Wuhan 430010, China
| | - Zhen-Xing Gao
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Jun Wang
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Man-Sun Sy
- the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Chao-Yang Li
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China, .,the Wuhan Brain Hospital, No. 5 Huiji Road, Jiang'an District, Wuhan 430010, China
| |
Collapse
|
15
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
16
|
Cellular prion protein is present in mitochondria of healthy mice. Sci Rep 2017; 7:41556. [PMID: 28148964 PMCID: PMC5288712 DOI: 10.1038/srep41556] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/13/2016] [Indexed: 01/04/2023] Open
Abstract
Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycophosphatidylinositol (GPI) anchor. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. The precise function of PrPC remains elusive but may depend upon its cellular localization. Here we show that PrPC is present in brain mitochondria from 6–12 week old wild-type and transgenic mice in the absence of disease. Mitochondrial PrPC was fully processed with mature N-linked glycans and did not require the GPI anchor for localization. Protease treatment of purified mitochondria suggested that mitochondrial PrPC exists as a transmembrane isoform with the C-terminus facing the mitochondrial matrix and the N-terminus facing the intermembrane space. Taken together, our data suggest that PrPC can be found in mitochondria in the absence of disease, old age, mutation, or overexpression and that PrPC may affect mitochondrial function.
Collapse
|
17
|
Mukundan V, Maksoudian C, Vogel MC, Chehade I, Katsiotis MS, Alhassan SM, Magzoub M. Cytotoxicity of prion protein-derived cell-penetrating peptides is modulated by pH but independent of amyloid formation. Arch Biochem Biophys 2016; 613:31-42. [PMID: 27818203 DOI: 10.1016/j.abb.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022]
Abstract
Prion diseases are associated with conversion of cellular prion protein (PrPC) into an abnormally folded and infectious scrapie isoform (PrPSc). We previously showed that peptides derived from the unprocessed N-termini of mouse and bovine prion proteins, mPrP1-28 and bPrP1-30, function as cell-penetrating peptides (CPPs), and destabilize model membrane systems, which could explain the infectivity and toxicity of prion diseases. However, subsequent studies revealed that treatment with mPrP1-28 or bPrP1-30 significantly reduce PrPSc levels in prion-infected cells. To explain these seemingly contradictory results, we correlated the aggregation, membrane perturbation and cytotoxicity of the peptides with their cellular uptake and intracellular localization. Although the peptides have a similar primary sequence, mPrP1-28 is amyloidogenic, whereas bPrP1-30 forms smaller oligomeric or non-fibrillar aggregates. Surprisingly, bPrP1-30 induces much higher cytotoxicity than mPrP1-28, indicating that amyloid formation and toxicity are independent. The toxicity is correlated with prolonged residence at the plasma membrane and membrane perturbation. Both ordered aggregation and toxicity of the peptides are inhibited by low pH. Under non-toxic conditions, the peptides are internalized by lipid-raft dependent macropinocytosis and localize to acidic lysosomal compartments. Our results shed light on the antiprion mechanism of the prion protein-derived CPPs and identify a potential site for PrPSc formation.
Collapse
Affiliation(s)
- Vineeth Mukundan
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Christy Maksoudian
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Maria C Vogel
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Marios S Katsiotis
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Saeed M Alhassan
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
18
|
Deng MY, Sun YH, Li P, Fu B, Shen D, Lu YJ. The phytopathogenic virulent effector protein RipI induces apoptosis in budding yeast Saccharomyces cerevisiae. Toxicon 2016; 121:109-118. [DOI: 10.1016/j.toxicon.2016.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 11/28/2022]
|
19
|
Haldar S, Tripathi A, Qian J, Beserra A, Suda S, McElwee M, Turner J, Hopfer U, Singh N. Prion protein promotes kidney iron uptake via its ferrireductase activity. J Biol Chem 2015; 290:5512-22. [PMID: 25572394 DOI: 10.1074/jbc.m114.607507] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrP(C)) from its normal conformation to an aggregated, PrP-scrapie (PrP(Sc)) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrP(C) in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrP(C) is lacking. Kidney provides a relevant model for this evaluation because PrP(C) is expressed in the kidney, and ∼370 μg of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrP(C) promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of (59)Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP(-/-)) mouse kidney relative to PrP(+/+) controls. Selective in vivo radiolabeling of plasma NTBI with (59)Fe revealed similar results. Expression of exogenous PrP(C) in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of (59)Fe-NTBI and to a smaller extent (59)Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrP(Δ51-89)) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrP(C) to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrP(C) promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism.
Collapse
Affiliation(s)
| | | | - Juan Qian
- From the Departments of Pathology and
| | | | | | | | - Jerrold Turner
- the Department of Pathology, University of Chicago, Chicago, Illinois 60637
| | - Ulrich Hopfer
- Physiology and Biophysics, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio 44106 and
| | | |
Collapse
|
20
|
Bravard A, Auvré F, Fantini D, Bernardino-Sgherri J, Sissoëff L, Daynac M, Xu Z, Etienne O, Dehen C, Comoy E, Boussin FD, Tell G, Deslys JP, Radicella JP. The prion protein is critical for DNA repair and cell survival after genotoxic stress. Nucleic Acids Res 2014; 43:904-16. [PMID: 25539913 PMCID: PMC4333392 DOI: 10.1093/nar/gku1342] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The prion protein (PrP) is highly conserved and ubiquitously expressed, suggesting that it plays an important physiological function. However, despite decades of investigation, this role remains elusive. Here, by using animal and cellular models, we unveil a key role of PrP in the DNA damage response. Exposure of neurons to a genotoxic stress activates PRNP transcription leading to an increased amount of PrP in the nucleus where it interacts with APE1, the major mammalian endonuclease essential for base excision repair, and stimulates its activity. Preventing the induction of PRNP results in accumulation of abasic sites in DNA and impairs cell survival after genotoxic treatment. Brains from Prnp−/− mice display a reduced APE1 activity and a defect in the repair of induced DNA damage in vivo. Thus, PrP is required to maintain genomic stability in response to genotoxic stresses.
Collapse
Affiliation(s)
- Anne Bravard
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Frédéric Auvré
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Damiano Fantini
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Jacqueline Bernardino-Sgherri
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Ludmilla Sissoëff
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - Mathieu Daynac
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Zhou Xu
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - Olivier Etienne
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Capucine Dehen
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - Emmanuel Comoy
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - François D Boussin
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, I-33100 Udine, Italy
| | - Jean-Philippe Deslys
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - J Pablo Radicella
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
21
|
Singh N, Haldar S, Tripathi AK, McElwee MK, Horback K, Beserra A. Iron in neurodegenerative disorders of protein misfolding: a case of prion disorders and Parkinson's disease. Antioxid Redox Signal 2014; 21:471-84. [PMID: 24512387 PMCID: PMC4076993 DOI: 10.1089/ars.2014.5874] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Intracellular and extracellular aggregation of a specific protein or protein fragments is the principal pathological event in several neurodegenerative conditions. We describe two such conditions: sporadic Creutzfeldt-Jakob disease (sCJD), a rare but potentially infectious and invariably fatal human prion disorder, and Parkinson's disease (PD), a common neurodegenerative condition second only to Alzheimer's disease in prevalence. In sCJD, a cell surface glycoprotein known as the prion protein (PrP(C)) undergoes a conformational change to PrP-scrapie, a pathogenic and infectious isoform that accumulates in the brain parenchyma as insoluble aggregates. In PD, α-synuclein, a cytosolic protein, forms insoluble aggregates that accumulate in neurons of the substantia nigra and cause neurotoxicity. RECENT ADVANCES Although distinct processes are involved in the pathogenesis of sCJD and PD, both share brain iron dyshomeostasis as a common associated feature that is reflected in the cerebrospinal fluid in a disease-specific manner. CRITICAL ISSUES Since PrP(C) and α-synuclein play a significant role in maintaining cellular iron homeostasis, it is important to understand whether the aggregation of these proteins and iron dyshomeostasis are causally related. Here, we discuss recent information on the normal function of PrP(C) and α-synuclein in cellular iron metabolism and the cellular and biochemical processes that contribute to iron imbalance in sCJD and PD. FUTURE DIRECTIONS Improved understanding of the relationship between brain iron imbalance and protein aggregation is likely to help in the development of therapeutic strategies that can restore brain iron homeostasis and mitigate neurotoxicity.
Collapse
Affiliation(s)
- Neena Singh
- 1 Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | | | | | | | | | | |
Collapse
|
22
|
Copolovici DM, Langel K, Eriste E, Langel Ü. Cell-penetrating peptides: design, synthesis, and applications. ACS NANO 2014; 8:1972-94. [PMID: 24559246 DOI: 10.1021/nn4057269] [Citation(s) in RCA: 718] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The intrinsic property of cell-penetrating peptides (CPPs) to deliver therapeutic molecules (nucleic acids, drugs, imaging agents) to cells and tissues in a nontoxic manner has indicated that they may be potential components of future drugs and disease diagnostic agents. These versatile peptides are simple to synthesize, functionalize, and characterize yet are able to deliver covalently or noncovalently conjugated bioactive cargos (from small chemical drugs to large plasmid DNA) inside cells, primarily via endocytosis, in order to obtain high levels of gene expression, gene silencing, or tumor targeting. Typically, CPPs are often passive and nonselective yet must be functionalized or chemically modified to create effective delivery vectors that succeed in targeting specific cells or tissues. Furthermore, the design of clinically effective systemic delivery systems requires the same amount of attention to detail in both design of the delivered cargo and the cell-penetrating peptide used to deliver it.
Collapse
Affiliation(s)
- Dana Maria Copolovici
- Laboratory of Molecular Biotechnology, Institute of Technology, Tartu University , 504 11 Tartu, Estonia
| | | | | | | |
Collapse
|
23
|
Tóth E, Kulcsár PI, Fodor E, Ayaydin F, Kalmár L, Borsy AÉ, László L, Welker E. The highly conserved, N-terminal (RXXX)8 motif of mouse Shadoo mediates nuclear accumulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1199-211. [PMID: 23360978 DOI: 10.1016/j.bbamcr.2013.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/29/2012] [Accepted: 01/15/2013] [Indexed: 01/09/2023]
Abstract
The prion protein (PrP)-known for its central role in transmissible spongiform encephalopathies-has been reported to possess two nuclear localization signals and localize in the nuclei of certain cells in various forms. Although these data are superficially contradictory, it is apparent that nuclear forms of the prion protein can be found in cells in either the healthy or the diseased state. Here we report that Shadoo (Sho)-a member of the prion protein superfamily-is also found in the nucleus of several neural and non-neural cell lines as visualized by using an YFP-Sho construct. This nuclear localization is mediated by the (25-61) fragment of mouse Sho encompassing an (RXXX)8 motif. Bioinformatic analysis shows that the (RXXX)n motif (n=7-8) is a highly conserved and characteristic part of mammalian Shadoo proteins. Experiments to assess if Sho enters the nucleus by facilitated transport gave no decisive results: the inhibition of active processes that require energy in the cell, abolishes nuclear but not nucleolar accumulation. However, the (RXXX)8 motif is not able to mediate the nuclear transport of large fusion constructs exceeding the size limit of the nuclear pore for passive entry. Tracing the journey of various forms of Sho from translation to the nucleus and discerning the potential nuclear function of PrP and Sho requires further studies.
Collapse
Affiliation(s)
- E Tóth
- Institute of Biochemistry, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Transgenic mice expressing prion protein (PrP) molecules with several different internal deletions display spontaneous neurodegenerative phenotypes that can be dose-dependently suppressed by coexpression of wild-type PrP. Each of these deletions, including the largest one (Δ32-134), retains 9 aa immediately following the signal peptide cleavage site (residues 23-31; KKRPKPGGW). These residues have been implicated in several biological functions of PrP, including endocytic trafficking and binding of glycosaminoglycans. We report here on our experiments to test the role of this domain in the toxicity of deleted forms of PrP. We find that transgenic mice expressing Δ23-134 PrP display no clinical symptoms or neuropathology, in contrast to mice expressing Δ32-134 PrP, suggesting that residues 23-31 are essential for the toxic phenotype. Using a newly developed cell culture assay, we narrow the essential region to amino acids 23-26, and we show that mutant PrP toxicity is not related to the role of the N-terminal residues in endocytosis or binding to endogenous glycosaminoglycans. However, we find that mutant PrP toxicity is potently inhibited by application of exogenous glycosaminoglycans, suggesting that the latter molecules block an essential interaction between the N terminus of PrP and a membrane-associated target site. Our results demonstrate that a short segment containing positively charged amino acids at the N terminus of PrP plays an essential role in mediating PrP-related neurotoxicity. This finding identifies a protein domain that may serve as a drug target for amelioration of prion neurotoxicity.
Collapse
|
25
|
Turnbaugh JA, Westergard L, Unterberger U, Biasini E, Harris DA. The N-terminal, polybasic region is critical for prion protein neuroprotective activity. PLoS One 2011; 6:e25675. [PMID: 21980526 PMCID: PMC3183058 DOI: 10.1371/journal.pone.0025675] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022] Open
Abstract
Several lines of evidence suggest that the normal form of the prion protein, PrP(C), exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrP(C) to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32-134, called F35). To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23-31, Δ23-111, and Δ23-134) to rescue the phenotype of Tg(F35) mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23-31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrP(C) neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases.
Collapse
Affiliation(s)
- Jessie A. Turnbaugh
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis, St. Louis, Missouri, United States of America
| | - Laura Westergard
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis, St. Louis, Missouri, United States of America
| | - Ursula Unterberger
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Emiliano Biasini
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - David A. Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Cellular prion protein localizes to the nucleus of endocrine and neuronal cells and interacts with structural chromatin components. Eur J Cell Biol 2011; 90:414-9. [DOI: 10.1016/j.ejcb.2010.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/25/2010] [Accepted: 11/25/2010] [Indexed: 11/18/2022] Open
|
27
|
Nieznanski K. Interactions of prion protein with intracellular proteins: so many partners and no consequences? Cell Mol Neurobiol 2010; 30:653-66. [PMID: 20041289 PMCID: PMC11498852 DOI: 10.1007/s10571-009-9491-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Prion protein (PrP) plays a key role in the pathogenesis of transmissible spongiform encephalopathies (TSEs)--fatal diseases of the central nervous system. Its physiological function as well as exact role in neurodegeneration remain unclear, hence screens for proteins interacting with PrP seem to be the most promising approach to elucidating these issues. PrP is mostly a plasma membrane-anchored extracellular glycoprotein and only a small fraction resides inside the cell, yet the number of identified intracellular partners of PrP is comparable to that of its membranal or extracellular interactors. Since some TSEs are accompanied by significantly increased levels of cytoplasmic PrP and this fraction of the protein has been found to be neurotoxic, it is of particular interest to characterize the intracellular interactome of PrP. It seems reasonable that at elevated cytoplasmic levels, PrP may exert cytotoxic effect by affecting the physiological functions of its intracellular interactors. This review is focused on the cytoplasmic partners of PrP along with possible consequences of their binding.
Collapse
Affiliation(s)
- Krzysztof Nieznanski
- Department of Biochemistry, Polish Academy of Sciences, Nencki Institute of Experimental Biology, 3 Pasteur St, Warsaw 02093, Poland.
| |
Collapse
|
28
|
Singh N, Singh A, Das D, Mohan ML. Redox control of prion and disease pathogenesis. Antioxid Redox Signal 2010; 12:1271-94. [PMID: 19803746 PMCID: PMC2864664 DOI: 10.1089/ars.2009.2628] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 09/22/2009] [Accepted: 10/03/2009] [Indexed: 11/12/2022]
Abstract
Imbalance of brain metal homeostasis and associated oxidative stress by redox-active metals like iron and copper is an important trigger of neurotoxicity in several neurodegenerative conditions, including prion disorders. Whereas some reports attribute this to end-stage disease, others provide evidence for specific mechanisms leading to brain metal dyshomeostasis during disease progression. In prion disorders, imbalance of brain-iron homeostasis is observed before end-stage disease and worsens with disease progression, implicating iron-induced oxidative stress in disease pathogenesis. This is an unexpected observation, because the underlying cause of brain pathology in all prion disorders is PrP-scrapie (PrP(Sc)), a beta-sheet-rich conformation of a normal glycoprotein, the prion protein (PrP(C)). Whether brain-iron dyshomeostasis occurs because of gain of toxic function by PrP(Sc) or loss of normal function of PrP(C) remains unclear. In this review, we summarize available evidence suggesting the involvement of oxidative stress in prion-disease pathogenesis. Subsequently, we review the biology of PrP(C) to highlight its possible role in maintaining brain metal homeostasis during health and the contribution of PrP(Sc) in inducing brain metal imbalance with disease progression. Finally, we discuss possible therapeutic avenues directed at restoring brain metal homeostasis and alleviating metal-induced oxidative stress in prion disorders.
Collapse
Affiliation(s)
- Neena Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
29
|
Osiecka KM, Nieznanska H, Skowronek KJ, Karolczak J, Schneider G, Nieznanski K. Prion protein region 23-32 interacts with tubulin and inhibits microtubule assembly. Proteins 2009; 77:279-96. [PMID: 19422054 DOI: 10.1002/prot.22435] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In previous studies we have demonstrated that prion protein (PrP) binds directly to tubulin and this interaction leads to the inhibition of microtubule formation by inducement of tubulin oligomerization. This report is aimed at mapping the regions of PrP and tubulin involved in the interaction and identification of PrP domains responsible for tubulin oligomerization. Preliminary studies focused our attention to the N-terminal flexible part of PrP encompassing residues 23-110. Using a panel of deletion mutants of PrP, we identified two microtubule-binding motifs at both ends of this part of the molecule. We found that residues 23-32 constitute a major site of interaction, whereas residues 101-110 represent a weak binding site. The crucial role of the 23-32 sequence in the interaction with tubulin was confirmed employing chymotryptic fragments of PrP. Surprisingly, the octarepeat region linking the above motifs plays only a supporting role in the interaction. The binding of Cu(2+) to PrP did not affect the interaction. We also demonstrate that PrP deletion mutants lacking residues 23-32 exhibit very low efficiency in the inducement of tubulin oligomerization. Moreover, a synthetic peptide corresponding to this sequence, but not that identical with fragment 101-110, mimics the effects of the full-length protein on tubulin oligomerization and microtubule assembly. At the cellular level, peptide composed of the PrP motive 23-30 and signal sequence (1-22) disrupted the microtubular cytoskeleton. Using tryptic and chymotryptic fragments of alpha- and beta-tubulin, we mapped the docking sites for PrP within the C-terminal domains constituting the outer surface of microtubule.
Collapse
Affiliation(s)
- Katarzyna M Osiecka
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
30
|
Jodoin J, Misiewicz M, Makhijani P, Giannopoulos PN, Hammond J, Goodyer CG, LeBlanc AC. Loss of anti-Bax function in Gerstmann-Sträussler-Scheinker syndrome-associated prion protein mutants. PLoS One 2009; 4:e6647. [PMID: 19680558 PMCID: PMC2722024 DOI: 10.1371/journal.pone.0006647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 07/15/2009] [Indexed: 11/18/2022] Open
Abstract
Previously, we have shown the loss of anti-Bax function in Creutzfeldt Jakob disease (CJD)-associated prion protein (PrP) mutants that are unable to generate cytosolic PrP (CyPrP). To determine if the anti-Bax function of PrP modulates the manifestation of prion diseases, we further investigated the anti-Bax function of eight familial Gerstmann-Sträussler-Scheinker Syndrome (GSS)-associated PrP mutants. These PrP mutants contained their respective methionine (M) or valine (V) at codon 129. All of the mutants lost their ability to prevent Bax-mediated chromatin condensation or DNA fragmentation in primary human neurons. In the breast carcinoma MCF-7 cells, the F198SV, D202NV, P102LV and Q217RV retained, whereas the P102LM, P105LV, Y145stopM and Q212PM PrP mutants lost their ability to inhibit Bax-mediated condensed chromatin. The inhibition of Bax-mediated condensed chromatin depended on the ability of the mutants to generate cytosolic PrP. However, except for the P102LV, none of the mutants significantly inhibited Bax-mediated caspase activation. These results show that the cytosolic PrP generated from the GSS mutants is not as efficient as wild type PrP in inhibiting Bax-mediated cell death. Furthermore, these results indicate that the anti-Bax function is also disrupted in GSS-associated PrP mutants and is not associated with the difference between CJD and GSS.
Collapse
Affiliation(s)
- Julie Jodoin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Micheal Misiewicz
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Priya Makhijani
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Paresa N. Giannopoulos
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Jennifer Hammond
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | | | - Andréa C. LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- * E-mail: .
| |
Collapse
|
31
|
Rajasekaran S, Balla S, Gradie P, Gryk MR, Kadaveru K, Kundeti V, Maciejewski MW, Mi T, Rubino N, Vyas J, Schiller MR. Minimotif miner 2nd release: a database and web system for motif search. Nucleic Acids Res 2009; 37:D185-90. [PMID: 18978024 PMCID: PMC2686579 DOI: 10.1093/nar/gkn865] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 10/16/2008] [Indexed: 11/24/2022] Open
Abstract
Minimotif Miner (MnM) consists of a minimotif database and a web-based application that enables prediction of motif-based functions in user-supplied protein queries. We have revised MnM by expanding the database more than 10-fold to approximately 5000 motifs and standardized the motif function definitions. The web-application user interface has been redeveloped with new features including improved navigation, screencast-driven help, support for alias names and expanded SNP analysis. A sample analysis of prion shows how MnM 2 can be used. Weblink: http://mnm.engr.uconn.edu, weblink for version 1 is http://sms.engr.uconn.edu.
Collapse
Affiliation(s)
- Sanguthevar Rajasekaran
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06029-2155, Department of Molecular, Microbial, and Structural Biology, Biological System Modeling Group, University of Connecticut Health Center, 263 Farmington Ave. Farmington, CT 06030-3305 and Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | - Sudha Balla
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06029-2155, Department of Molecular, Microbial, and Structural Biology, Biological System Modeling Group, University of Connecticut Health Center, 263 Farmington Ave. Farmington, CT 06030-3305 and Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | - Patrick Gradie
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06029-2155, Department of Molecular, Microbial, and Structural Biology, Biological System Modeling Group, University of Connecticut Health Center, 263 Farmington Ave. Farmington, CT 06030-3305 and Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | - Michael R. Gryk
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06029-2155, Department of Molecular, Microbial, and Structural Biology, Biological System Modeling Group, University of Connecticut Health Center, 263 Farmington Ave. Farmington, CT 06030-3305 and Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | - Krishna Kadaveru
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06029-2155, Department of Molecular, Microbial, and Structural Biology, Biological System Modeling Group, University of Connecticut Health Center, 263 Farmington Ave. Farmington, CT 06030-3305 and Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | - Vamsi Kundeti
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06029-2155, Department of Molecular, Microbial, and Structural Biology, Biological System Modeling Group, University of Connecticut Health Center, 263 Farmington Ave. Farmington, CT 06030-3305 and Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | - Mark W. Maciejewski
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06029-2155, Department of Molecular, Microbial, and Structural Biology, Biological System Modeling Group, University of Connecticut Health Center, 263 Farmington Ave. Farmington, CT 06030-3305 and Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | - Tian Mi
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06029-2155, Department of Molecular, Microbial, and Structural Biology, Biological System Modeling Group, University of Connecticut Health Center, 263 Farmington Ave. Farmington, CT 06030-3305 and Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | - Nicholas Rubino
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06029-2155, Department of Molecular, Microbial, and Structural Biology, Biological System Modeling Group, University of Connecticut Health Center, 263 Farmington Ave. Farmington, CT 06030-3305 and Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | - Jay Vyas
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06029-2155, Department of Molecular, Microbial, and Structural Biology, Biological System Modeling Group, University of Connecticut Health Center, 263 Farmington Ave. Farmington, CT 06030-3305 and Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | - Martin R. Schiller
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06029-2155, Department of Molecular, Microbial, and Structural Biology, Biological System Modeling Group, University of Connecticut Health Center, 263 Farmington Ave. Farmington, CT 06030-3305 and Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| |
Collapse
|
32
|
Anantharam V, Kanthasamy A, Choi CJ, Martin DP, Latchoumycandane C, Richt JA, Kanthasamy AG. Opposing roles of prion protein in oxidative stress- and ER stress-induced apoptotic signaling. Free Radic Biol Med 2008; 45:1530-41. [PMID: 18835352 PMCID: PMC2628483 DOI: 10.1016/j.freeradbiomed.2008.08.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 08/01/2008] [Accepted: 08/25/2008] [Indexed: 01/27/2023]
Abstract
Although the prion protein is abundantly expressed in the CNS, its biological functions remain unclear. To determine the endogenous function of the cellular prion protein (PrP(c)), we compared the effects of oxidative stress and endoplasmic reticulum (ER) stress inducers on apoptotic signaling in PrP(c)-expressing and PrP(ko) (knockout) neural cells. H(2)O(2), brefeldin A (BFA), and tunicamycin (TUN) induced increases in caspase-9 and caspase-3, PKCdelta proteolytic activation, and DNA fragmentation in PrP(c) and PrP(ko) cells. Interestingly, ER stress-induced activation of caspases, PKCdelta, and apoptosis was significantly exacerbated in PrP(c) cells, whereas H(2)O(2)-induced proapoptotic changes were suppressed in PrP(c) compared to PrP(ko) cells. Additionally, caspase-12 and caspase-8 were activated only in the BFA and TUN treatments. Inhibitors of caspase-9, caspase-3, and PKCdelta significantly blocked H(2)O(2)-, BFA-, and TUN-induced apoptosis, whereas the caspase-8 inhibitor attenuated only BFA- and TUN-induced cell death, and the antioxidant MnTBAP blocked only H(2)O(2)-induced apoptosis. Overexpression of the kinase-inactive PKCdelta(K376R) or the cleavage site-resistant PKCdelta(D327A) mutant suppressed both ER and oxidative stress-induced apoptosis. Thus, PrP(c) plays a proapoptotic role during ER stress and an antiapoptotic role during oxidative stress-induced cell death. Together, these results suggest that cellular PrP enhances the susceptibility of neural cells to impairment of protein processing and trafficking, but decreases the vulnerability to oxidative insults, and that PKCdelta is a key downstream mediator of cellular stress-induced neuronal apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anumantha G. Kanthasamy
- Corresponding Author: Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011. USA. Tel.: (515) 294-2516, Fax: (515) 294-2315, E-mail:
| |
Collapse
|
33
|
Morel E, Fouquet S, Strup-Perrot C, Thievend CP, Petit C, Loew D, Faussat AM, Yvernault L, Pinçon-Raymond M, Chambaz J, Rousset M, Thenet S, Clair C. The cellular prion protein PrP(c) is involved in the proliferation of epithelial cells and in the distribution of junction-associated proteins. PLoS One 2008; 3:e3000. [PMID: 18714380 PMCID: PMC2500194 DOI: 10.1371/journal.pone.0003000] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 07/28/2008] [Indexed: 12/20/2022] Open
Abstract
Background The physiological function of the ubiquitous cellular prion protein, PrPc, is still under debate. It was essentially studied in nervous system, but poorly investigated in epithelial cells. We previously reported that PrPc is targeted to cell–cell junctions of polarized epithelial cells, where it interacts with c-Src. Methodology/Findings We show here that, in cultured human enterocytes and in intestine in vivo, the mature PrPc is differentially targeted either to the nucleus in dividing cells or to cell–cell contacts in polarized/differentiated cells. By proteomic analysis, we demonstrate that the junctional PrPc interacts with cytoskeleton-associated proteins, such as gamma- and beta-actin, alpha-spectrin, annexin A2, and with the desmosome-associated proteins desmoglein, plakoglobin and desmoplakin. In addition, co-immunoprecipitation experiments revealed complexes associating PrPc, desmoglein and c-Src in raft domains. Through siRNA strategy, we show that PrPc is necessary to complete the process of epithelial cell proliferation and for the sub-cellular distribution of proteins involved in cell architecture and junctions. Moreover, analysis of the architecture of the intestinal epithelium of PrPc knock-out mice revealed a net decrease in the size of desmosomal junctions and, without change in the amount of BrdU incorporation, a shortening of the length of intestinal villi. Conclusions/Significance From these results, PrPc could be considered as a new partner involved in the balance between proliferation and polarization/differentiation in epithelial cells.
Collapse
Affiliation(s)
- Etienne Morel
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Stéphane Fouquet
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Carine Strup-Perrot
- Radiosensibilité des tissus sains, UPRES EA 27.10, Institut Gustave Roussy PRI, Villejuif F-94805, France
| | - Cathy Pichol Thievend
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Constance Petit
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Pavillon Pasteur, 75248 Paris, France
| | - Anne-Marie Faussat
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Lucile Yvernault
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Martine Pinçon-Raymond
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Jean Chambaz
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Monique Rousset
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Caroline Clair
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
- * E-mail:
| |
Collapse
|
34
|
Yin S, Fan X, Yu S, Li C, Sy MS. Binding of recombinant but not endogenous prion protein to DNA causes DNA internalization and expression in mammalian cells. J Biol Chem 2008; 283:25446-25454. [PMID: 18622017 DOI: 10.1074/jbc.m800814200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant prion protein, rPrP, binds DNA. Both the KKRPK motif and the octapeptide repeat region of rPrP are essential for maximal binding. rPrP with pathogenic insertional mutations binds more DNA than wild-type rPrP. DNA promotes the aggregation of rPrP and protects its N terminus from proteinase K digestion. When rPrP is mixed with an expression plasmid and Ca(2+), the rPrP.DNA complex is taken up by mammalian cells leading to gene expression. In the presence of Ca(2+), rPrP by itself is also taken up by cells in a temperature- and pinocytosis-dependent manner. Cells do not take up rPrP(DeltaKKRPK), which lacks the KKRPK motif. Thus, rPrP is the carrier for DNA and the KKRPK motif is essential for its uptake. When mixed with DNA, a pentapeptide KKRPK, but not KKKKK, is sufficient for DNA internalization and expression. In contrast, whereas the normal cellular prion protein, PrP(C), on the cell surface can also internalize DNA, the imported DNA is not expressed. These findings may have relevance to the normal functions of PrP(C) and the pathogenic mechanisms of human prion disease.
Collapse
Affiliation(s)
- Shaoman Yin
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120
| | - Xingjun Fan
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120
| | - Shuiliang Yu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120
| | - Chaoyang Li
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44120.
| |
Collapse
|
35
|
Satoh J, Obayashi S, Misawa T, Sumiyoshi K, Oosumi K, Tabunoki H. Protein microarray analysis identifies human cellular prion protein interactors. Neuropathol Appl Neurobiol 2008; 35:16-35. [PMID: 18482256 DOI: 10.1111/j.1365-2990.2008.00947.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS To obtain an insight into the function of cellular prion protein (PrPC), we studied PrPC-interacting proteins (PrPIPs) by analysing a protein microarray. METHODS We identified 47 novel PrPIPs by probing an array of 5000 human proteins with recombinant human PrPC spanning amino acid residues 23-231 named PR209. RESULTS The great majority of 47 PrPIPs were annotated as proteins involved in the recognition of nucleic acids. Coimmunoprecipitation and cell imaging in a transient expression system validated the interaction of PR209 with neuronal PrPIPs, such as FAM64A, HOXA1, PLK3 and MPG. However, the interaction did not generate proteinase K-resistant proteins. KeyMolnet, a bioinformatics tool for analysing molecular interaction on the curated knowledge database, revealed that the complex molecular network of PrPC and PrPIPs has a significant relationship with AKT, JNK and MAPK signalling pathways. CONCLUSIONS Protein microarray is a useful tool for systematic screening and comprehensive profiling of the human PrPC interactome. Because the network of PrPC and interactors involves signalling pathways essential for regulation of cell survival, differentiation, proliferation and apoptosis, these observations suggest a logical hypothesis that dysregulation of the PrPC interactome might induce extensive neurodegeneration in prion diseases.
Collapse
Affiliation(s)
- J Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Crozet C, Beranger F, Lehmann S. Cellular pathogenesis in prion diseases. Vet Res 2008; 39:44. [DOI: 10.1051/vetres:2008021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 04/15/2008] [Indexed: 01/15/2023] Open
|
37
|
Intriguing nucleic-acid-binding features of mammalian prion protein. Trends Biochem Sci 2008; 33:132-40. [DOI: 10.1016/j.tibs.2007.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/14/2007] [Accepted: 11/26/2007] [Indexed: 11/19/2022]
|
38
|
Löfgren K, Wahlström A, Lundberg P, Langel Ö, Gräslund A, Bedecs K. Antiprion properties of prion protein‐derived cell‐penetrating peptides. FASEB J 2008; 22:2177-84. [DOI: 10.1096/fj.07-099549] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kajsa Löfgren
- Department of Biochemistry and Biophysics The Arrhenius Laboratories Department of Neurochemistry and NeurotoxicologyStockholm UniversityStockholmSweden
| | - Anna Wahlström
- Department of Biochemistry and Biophysics The Arrhenius Laboratories Department of Neurochemistry and NeurotoxicologyStockholm UniversityStockholmSweden
| | - Pontus Lundberg
- Department of Neurochemistry and NeurotoxicologyStockholm UniversityStockholmSweden
| | - Ölo Langel
- Department of Neurochemistry and NeurotoxicologyStockholm UniversityStockholmSweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics The Arrhenius Laboratories Department of Neurochemistry and NeurotoxicologyStockholm UniversityStockholmSweden
| | - Katarina Bedecs
- Department of Biochemistry and Biophysics The Arrhenius Laboratories Department of Neurochemistry and NeurotoxicologyStockholm UniversityStockholmSweden
| |
Collapse
|
39
|
Hosokawa T, Tsuchiya K, Sato I, Takeyama N, Ueda S, Tagawa Y, Kimura KM, Nakamura I, Wu G, Sakudo A, Casalone C, Mazza M, Caramelli M, Takahashi H, Sata T, Sugiura K, Baj A, Toniolo A, Onodera T. A monoclonal antibody (1D12) defines novel distribution patterns of prion protein (PrP) as granules in nucleus. Biochem Biophys Res Commun 2008; 366:657-63. [DOI: 10.1016/j.bbrc.2007.11.163] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 11/23/2007] [Indexed: 01/25/2023]
|
40
|
Abstract
Subcellular fractionation is central to a range of cell biological, biochemical and proteomic studies. Purification of nuclear-enriched fractions is critical for studies on nuclear structure and function. Here we show that detergent-based nuclear isolation methods cause the redistribution of proteins associated with plasma membrane lipid rafts into nuclear fractions. The glycosyl-phosphatidylinositol (GPI)-anchored prion protein (PrP(C)) and a GPI-anchored construct of angiotensin converting enzyme (GPI-ACE), as well as the lipid raft markers flotillin-1 and -2, were present in the nuclear fractions derived using three different subcellular fractionation protocols. Incubation of intact cells with bacterial phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves GPI-anchored proteins from the cell surface, significantly reduced the amount of PrP(C) and GPI-ACE in the nuclear fraction. Buoyant sucrose density gradient centrifugation in the presence of Triton X-100 of the nuclear fraction resulted in a significant proportion of the GPI-anchored proteins being recovered in the low density lipid raft fractions. These data indicate that the nuclear fraction isolated using such subcellular fractionation protocols is contaminated with components of plasma membrane lipid rafts and raises questions as to the integrity of the nuclear fraction isolated by such protocols for use in detailed cell biological studies and proteomics analysis.
Collapse
Affiliation(s)
- Yee-How Say
- Proteolysis Research Group, Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
41
|
Kocer A, Gallozzi M, Renault L, Tilly G, Pinheiro I, Le Provost F, Pailhoux E, Vilotte JL. Goat PRND expression pattern suggests its involvement in early sex differentiation. Dev Dyn 2007; 236:836-42. [PMID: 17226816 DOI: 10.1002/dvdy.21066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Expression of the goat prion protein gene locus was assessed by reverse transcriptase-polymerase chain reaction on testes and ovaries at various developmental stages. A weak and stochastic expression of the PRNP and PRNT genes was observed. For PRNT, it is consistent with the detected deletions of two single nucleotides within its open reading frame in ruminant genes. PRND was expressed in both tissues at all stages. Whereas its expression is constant in the ovaries, it increases in testes between 36 and 46 days postcoitum (dpc) and remains high thereafter. In testes, Doppel was found in the nucleus of germinal cells and in the cytoplasm of Leydig cells at 44 dpc. It was detected in the cytoplasm of Leydig cells and of some Sertoli and germinal cells at 62 dpc. In the ovaries, it was observed in the nucleus of germinal cells at 44 dpc and mainly in their cytoplasm at 62 dpc. This expression pattern was shown to parallel that of C-kit and suggests Doppel involvement in early testis differentiation.
Collapse
Affiliation(s)
- A Kocer
- UMR de Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Arnoys EJ, Wang JL. Dual localization: proteins in extracellular and intracellular compartments. Acta Histochem 2007; 109:89-110. [PMID: 17257660 DOI: 10.1016/j.acthis.2006.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/01/2006] [Accepted: 10/09/2006] [Indexed: 12/24/2022]
Abstract
The goal of this article is to provide a comprehensive catalog of those proteins documented to exhibit dual localization, being found in both the extracellular compartment (cell surface and extracellular medium) as well as the intracellular compartment (cytosol and nucleus). A large subset of these proteins that show dual localization is found both in the nucleus and outside of cells. Proteins destined to be secreted out of the cell or to be expressed at the cell surface usually enter the endomembrane pathway on the basis of a signal sequence that targets them into the endoplasmic reticulum. Proteins destined for import into the nucleus, on the other hand, usually carry a nuclear localization signal. We have organized our catalog in terms of the presence and absence of these trafficking signals: (a) proteins that contain a signal sequence but no nuclear localization signal; (b) proteins that contain both a signal sequence as well as a nuclear localization signal; (c) proteins that contain a nuclear localization signal but lack a signal sequence; and (d) proteins containing neither a signal sequence nor a nuclear localization signal. Novel insights regarding the activities of several classes of proteins exhibiting dual localization can be derived when one targeting signal is experimentally abrogated. For example, the mitogenic activity of both fibroblasts growth factor-1 and schwannoma-derived growth factor clearly requires nuclear localization, independent of the activation of the receptor tyrosine kinase signaling pathway. In addition, there is a growing list of integral membrane receptors that undergo translocation to the nucleus, with bona fide nuclear localization signals and transcription activation activity. The information provided in this descriptive catalog will, hopefully, stimulate investigations into the pathways and mechanisms of transport between these compartments and the physiological significance of dual localization.
Collapse
Affiliation(s)
- Eric J Arnoys
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | | |
Collapse
|
43
|
Magzoub M, Sandgren S, Lundberg P, Oglecka K, Lilja J, Wittrup A, Göran Eriksson LE, Langel U, Belting M, Gräslund A. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis. Biochem Biophys Res Commun 2006; 348:379-85. [PMID: 16893522 DOI: 10.1016/j.bbrc.2006.07.065] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
A peptide derived from the N-terminus of the unprocessed bovine prion protein (bPrPp), incorporating the hydrophobic signal sequence (residues 1-24) and a basic domain (KKRPKP, residues 25-30), internalizes into mammalian cells, even when coupled to a sizeable cargo, and therefore functions as a cell-penetrating peptide (CPP). Confocal microscopy and co-localization studies indicate that the internalization of bPrPp is mainly through macropinocytosis, a fluid-phase endocytosis process, initiated by binding to cell-surface proteoglycans. Electron microscopy studies show internalized bPrPp-DNA-gold complexes residing in endosomal vesicles. bPrPp induces expression of a complexed luciferase-encoding DNA plasmid, demonstrating the peptide's ability to transport the cargo across the endosomal membrane and into the cytosol and nucleus. The novel CPP activity of the unprocessed N-terminal domain of PrP could be important for the retrotranslocation of partly processed PrP and for PrP trafficking inside or between cells, with implications for the infectivity associated with prion diseases.
Collapse
Affiliation(s)
- Mazin Magzoub
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Crozet C, Vézilier J, Delfieu V, Nishimura T, Onodera T, Casanova D, Lehmann S, Béranger F. The truncated 23-230 form of the prion protein localizes to the nuclei of inducible cell lines independently of its nuclear localization signals and is not cytotoxic. Mol Cell Neurosci 2006; 32:315-23. [PMID: 16806967 DOI: 10.1016/j.mcn.2006.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 05/04/2006] [Accepted: 05/04/2006] [Indexed: 11/16/2022] Open
Abstract
The mechanisms of prion-induced neurological dysfunction observed in prion diseases are poorly understood. Transgenic mice expressing a truncated form of the prion protein (23-230 PrP) acquire cerebellar degeneration (Ma and Lindquist, Science, 2002). To decipher the mechanisms of neurodegeneration induced by 23-230 PrP, we established inducible cell lines expressing this truncated form of PrP. We found that 23-230 PrP, expected to be cytosolic, accumulated mostly in the nucleus of the cells and was not cytotoxic. Nuclear localization of this mutant form of PrP is independent of its predicted nuclear localization signals. In contrast to what we previously described for PrPSc, nuclear accumulation of 23-230 PrP does not require a functional microtubule network. We observed that 23-230 PrP interacts with chromatin in vivo, as already described for recombinant PrP and for PrPSc. Our data demonstrate that the 23-230 PrP model does not reflect the situation of a cytosolic PrP but could represent a very useful tool to understand the consequences of the accumulation of the prion protein in the nucleus.
Collapse
Affiliation(s)
- Carole Crozet
- Institut de Génétique Humaine, UPR CNRS1142, 141 Rue de la Cardonille, 34396 Montpellier cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gu Y, Luo X, Basu S, Fujioka H, Singh N. Cell-specific metabolism and pathogenesis of transmembrane prion protein. Mol Cell Biol 2006; 26:2697-715. [PMID: 16537913 PMCID: PMC1430324 DOI: 10.1128/mcb.26.7.2697-2715.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The C-transmembrane form of prion protein ((Ctm)PrP) has been implicated in prion disease pathogenesis, but the factors underlying its biogenesis and cyotoxic potential remain unclear. Here we show that (Ctm)PrP interferes with cytokinesis in cell lines where it is transported to the plasma membrane. These cells fail to separate following cell division, assume a variety of shapes and sizes, and contain multiple nuclei, some of which are pyknotic. Furthermore, the synthesis and transport of (Ctm)PrP to the plasma membrane are modulated through a complex interaction between cis- and trans-acting factors and the endoplasmic reticulum translocation machinery. Thus, insertion of eight amino acids before or within the N region of the N signal peptide (N-SP) of PrP results in the exclusive synthesis of (Ctm)PrP regardless of the charge conferred to the N region. Subsequent processing and transport of (Ctm)PrP are modulated by specific amino acids in the N region of the N-SP and by the cell line of expression. Although the trigger for (Ctm)PrP upregulation in naturally occurring prion disorders remains elusive, these data highlight the underlying mechanisms of (Ctm)PrP biogenesis and neurotoxicity and reinforce the idea that (Ctm)PrP may serve as the proximate cause of neuronal death in certain prion disorders.
Collapse
Affiliation(s)
- Yaping Gu
- Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
46
|
Wang X, Wang F, Arterburn L, Wollmann R, Ma J. The interaction between cytoplasmic prion protein and the hydrophobic lipid core of membrane correlates with neurotoxicity. J Biol Chem 2006; 281:13559-13565. [PMID: 16537534 DOI: 10.1074/jbc.m512306200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion protein (PrP), normally a cell surface protein, has been detected in the cytosol of a subset of neurons. The appearance of PrP in the cytosol could result from either retro-translocation of misfolded PrP from the endoplasmic reticulum (ER) or impaired import of PrP into the ER. Transgenic mice expressing cytoplasmic PrP (cyPrP) developed neurodegeneration in cerebellar granular neurons, although no detectable pathology was observed in other brain regions. In order to understand why granular neurons in the cerebellum were most susceptible to cyPrP-induced degeneration, we investigated the subcellular localization of cyPrP. Interestingly, we found that cyPrP is membrane-bound. In transfected cells, it binds to the ER and plasma/endocytic vesicular membranes. In transgenic mice, it is associated with synaptic and microsomal membranes. Furthermore, the cerebellar neurodegeneration in transgenic mice correlates with the interaction between cyPrP and the hydrophobic lipid core of the membrane but not with either the aggregation status or the dosage of cyPrP. These results suggest that lipid membrane perturbation could be a cellular mechanism for cyPrP-induced neurotoxicity and explain the seemingly conflicting results concerning cyPrP.
Collapse
Affiliation(s)
- Xinhe Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Fei Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Linnea Arterburn
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Robert Wollmann
- Department of Pathology, University of Chicago, Chicago, Illinois 60637
| | - Jiyan Ma
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
47
|
Strom A, Diecke S, Hunsmann G, Stuke AW. Identification of prion protein binding proteins by combined use of far-Western immunoblotting, two dimensional gel electrophoresis and mass spectrometry. Proteomics 2006; 6:26-34. [PMID: 16294306 DOI: 10.1002/pmic.200500066] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cellular prion protein (PrP(C)), a highly conserved glycoprotein predominantly expressed by neuronal cells, can convert into an abnormal isoform (PrP(Sc)) and provoke a transmissible spongiform encephalopathy. In spite of many studies, the physiological function of PrP(C) remains unknown. Recent findings suggest that PrP(C) is a multifunctional protein participating in several cellular processes. Using recombinant human PrP as a probe, we performed far-Western immunoblotting (protein overlay assay) to detect cellular PrP(C) interactors. Brain extracts of wild-type and PrP knockout mice were screened by far-Western immunoblotting for PrP-specific interactions. Subsequently, putative ligands were isolated by 2-DE and identified by MALDI-TOF MS, enabling identification of heterogeneous nuclear ribonucleoprotein A2/B1 and aldolase C as novel interaction partners of PrP(C). These data provide the first evidence of a molecule indicating a mechanism for the predicted involvement of PrP(C) in nucleic acid metabolisms. In summary, we have shown the successful combination of 2-DE with far-Western immunoblotting and MALDI-TOF MS for identification of new cellular binding partners of a known protein. Especially the application of this technique to investigate other neurodegenerative diseases is promising.
Collapse
Affiliation(s)
- Alexander Strom
- Molecular Medicine, Ottawa Health Research Institute, Lab N1, Box 221, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada.
| | | | | | | |
Collapse
|
48
|
Taylor DR, Watt NT, Perera WSS, Hooper NM. Assigning functions to distinct regions of the N-terminus of the prion protein that are involved in its copper-stimulated, clathrin-dependent endocytosis. J Cell Sci 2005; 118:5141-53. [PMID: 16254249 DOI: 10.1242/jcs.02627] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cellular prion protein (PrPC) is essential for the pathogenesis and transmission of prion diseases. Although PrPC is known to be located in detergent-insoluble lipid rafts at the surface of neuronal cells, the mechanism of its internalisation is unclear, with both raft/caveolae-based and clathrin-mediated processes being proposed. We have investigated the mechanism of copper-induced internalisation of PrPC in neuronal cells by immunofluorescence microscopy, surface biotinylation assays and buoyant sucrose density gradient centrifugation in the presence of Triton X-100. Clathrin-mediated endocytosis was selectively blocked with tyrphostin A23, which disrupts the interaction between tyrosine motifs in the cytosolic domains of integral membrane proteins and the adaptor complex AP2, and a dominant-negative mutant of the adaptor protein AP180. Both these agents inhibited the copper-induced endocytosis of PrPC. Copper caused PrPC to move laterally out of detergent-insoluble lipid rafts into detergent-soluble regions of the plasma membrane. Using mutants of PrPC that lack either the octapeptide repeats or the N-terminal polybasic region, and a construct with a transmembrane anchor, we show that copper binding to the octapeptide repeats promotes dissociation of PrPC from lipid rafts, whereas the N-terminal polybasic region mediates its interaction with a transmembrane adaptor protein that engages the clathrin endocytic machinery. Our results provide an experimental basis for reconciling the apparently contradictory observations that the prion protein undergoes clathrin-dependent endocytosis despite being localised in lipid rafts. In addition, we have been able to assign distinct functions in the endocytic process to separate regions of the protein.
Collapse
Affiliation(s)
- David R Taylor
- Proteolysis Research Group, School of Biochemistry and Microbiology, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
49
|
Bragason BT, Palsdottir A. Processing of ovine PrP(ARQ)C-EGFP chimeras containing Asn138 and Cys151 polymorphisms. Biochem Biophys Res Commun 2005; 336:544-53. [PMID: 16143302 DOI: 10.1016/j.bbrc.2005.08.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/12/2005] [Indexed: 10/25/2022]
Abstract
Polymorphisms in the prion protein, PrP(C), affect the susceptibility of sheep to scrapie. Three rare polymorphisms, M137T, S138N, and R151C, have been found in Icelandic sheep. Observations suggest that R151C may be associated with lower scrapie susceptibility, whereas S138N is neutral. The effects of the S138N and R151C polymorphisms on the cellular processing of PrP(C) were examined in a model system consisting of the expression of ovine PrP(C)-EGFP (green fluorescent protein) chimeras in the mouse neuroblastoma cell line N2a. Chimeras with the haplotypes A136R154Q171 (ARQ), AN138RQ, and AC151RQ were compared. The chimeras did not differ regarding their translocation into the secretory system, glycosylation, and transport to the cell surface. However, the AC151RQ chimera differed from the other chimeras regarding disulfide bonding characteristics; furthermore, a slight difference was detected between AC151RQ and the other chimeras by limited proteolysis. The processing of the ARQ and AN138RQ chimeras was identical in the experiments performed consistent with observations that it is neutral.
Collapse
Affiliation(s)
- Birkir Thor Bragason
- Institute for Experimental Pathology, Keldur, University of Iceland, Vesturlandsvegur, Reykjavik 112, Iceland
| | | |
Collapse
|
50
|
Mishra RS, Basu S, Gu Y, Luo X, Zou WQ, Mishra R, Li R, Chen SG, Gambetti P, Fujioka H, Singh N. Protease-resistant human prion protein and ferritin are cotransported across Caco-2 epithelial cells: implications for species barrier in prion uptake from the intestine. J Neurosci 2005; 24:11280-90. [PMID: 15601934 PMCID: PMC6730364 DOI: 10.1523/jneurosci.2864-04.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Foodborne transmission of bovine spongiform encephalopathy (BSE) to humans as variant Creutzfeldt-Jakob disease (CJD) has affected over 100 individuals, and probably millions of others have been exposed to BSE-contaminated food substances. Despite these obvious public health concerns, surprisingly little is known about the mechanism by which PrP-scrapie (PrP(Sc)), the most reliable surrogate marker of infection in BSE-contaminated food, crosses the human intestinal epithelial cell barrier. Here we show that digestive enzyme (DE) treatment of sporadic CJD brain homogenate generates a C-terminal fragment similar to the proteinase K-resistant PrP(Sc) core of 27-30 kDa implicated in prion disease transmission and pathogenesis. Notably, DE treatment results in a PrP(Sc)-protein complex that is avidly transcytosed in vesicular structures across an in vitro model of the human intestinal epithelial cell barrier, regardless of the amount of endogenous PrP(C) expression. Unexpectedly, PrP(Sc) is cotransported with ferritin, a prominent component of the DE-treated PrP(Sc)-protein complex. The transport of PrP(Sc)-ferritin is sensitive to low temperature, brefeldin-A, and nocodazole treatment and is inhibited by excess free ferritin, implicating a receptor- or transporter-mediated pathway. Because ferritin shares considerable homology across species, these data suggest that PrP(Sc)-associated proteins, in particular ferritin, may facilitate PrP(Sc) uptake in the intestine from distant species, leading to a carrier state in humans.
Collapse
Affiliation(s)
- Ravi Shankar Mishra
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|