1
|
Chen Y, Yu X, Chen S, Lu P. Stereoselective toxicity: Investigating the adverse effects of benzovindiflupyr on Xenopus laevis tadpoles. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135789. [PMID: 39276749 DOI: 10.1016/j.jhazmat.2024.135789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
The novel chiral fungicide benzovindiflupyr exerts adverse effects on aquatic organisms; however, its toxic mechanism and stereoselectivity remain largely unknown. The current study aimed to investigate the enantioselective ecotoxicity mechanism of benzovindiflupyr in Xenopus laevis tadpoles using a 28-day exposure experiment. Results of the acute toxicity assessment indicated that (1S,4R)- and (1R,4S)-benzovindiflupyr exhibited high toxicity, with (1S,4R)- demonstrating approximately 75 times greater toxicity than (1R,4S)-. Compared to the latter, (1S,4R)-benzovindiflupyr significantly affected the growth, movement behavior, and oxidative stress of X. laevis tadpoles. The integration of metabolomics and transcriptomics data revealed that (1S,4R)-benzovindiflupyr disrupted the glycine, serine, and threonine metabolic pathways by modulating the activities of key enzymes. This dysregulation resulted in aberrant carbohydrate utilization, antioxidant pathways, and structural protein synthesis and degradation. Molecular docking confirmed that (1S,4R)-benzovindiflupyr exhibited superior docking activity with key enzymes, potentially contributing to its stereoselective toxicity. This study offers novel molecular perspectives on the enantioselective ecotoxicity mechanism of benzovindiflupyr toward aquatic organisms and highlights potential target proteins implicated in metabolic disorders.
Collapse
Affiliation(s)
- Yafang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shaoqin Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Flach H, Pfeffer S, Dietmann P, Kühl M, Kühl SJ. Glyphosate formulations cause mortality and diverse sublethal defects during embryonic development of the amphibian Xenopuslaevis. CHEMOSPHERE 2024; 367:143624. [PMID: 39461437 DOI: 10.1016/j.chemosphere.2024.143624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The human impact on environmental landscapes, such as land use, climate change or pollution, is threatening global biodiversity and ecosystems maintenance. Pesticides like the herbicide glyphosate have garnered considerable attention due to their well-documented harmful effects on non-target species. During application, the active ingredient glyphosate is utilized in various formulations, each containing different additive adjuvants. However, the possible effects of these formulations on amphibians - the group with the highest decline rates among vertebrates - remain largely unknown. Therefore, the present study investigated the effects of four glyphosate formulations (Glyphosat TF, Durano TF, Helosate 450 TF, Kyleo) on the embryonic development of the model organism Xenopus laevis (South African clawed frog). Embryos at the 2-cell stage were exposed to various concentrations of glyphosate formulations (glyphosate: 0.01-100 mg/L), and mortality as well as sublethal effects on different organs and tissues were analyzed. The results indicated that the formulations had different effects, particularly on the mortality of Xenopus laevis embryos. At sublethal concentrations, the formulations altered the embryos' external appearance, leading to malformations such as reduced eye and head size. In addition, exposure to formulations impaired heart morphology and function, and the expression of heart-specific genes was altered at a molecular level. Our results confirmed that glyphosate formulations had a stronger effect on Xenopus laevis embryogenesis than pure glyphosate. Therefore, it is crucial to evaluate the active ingredient and the co-formulations independently, as well as the combined, commercially available products, during pesticide risk assessments and renewal procedures of agrochemicals. The severe global decline of amphibians, partly due to herbicide use, highlights the need for strict and efficient monitoring of environmental pesticide loads and application areas.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sarah Pfeffer
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
3
|
Santos GD, Rutkoski CF, Folador A, Skovronski VJ, Müller C, Pompermaier A, Hartmann PA, Hartmann M. 2,4-D-based herbicide underdoses cause mortality, malformations, and nuclear abnormalities in Physalaemus cuvieri tadpoles. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109840. [PMID: 38218566 DOI: 10.1016/j.cbpc.2024.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Amphibians are considered bioindicators of the environment due to their high sensitivity and involvement in terrestrial and aquatic ecosystems. In the last two decades, 2,4-D has been one of the most widely used herbicides in Brazil and around the world, as its use has been authorized for genetically modified crops and therefore has been detected in surface and groundwater. Against this background, the aim of this work was to investigate the effects of environmentally relevant concentrations of 2,4-D-based herbicides on survival, malformations, swimming activity, presence of micronuclei and erythrocyte nuclear abnormalities in Physalaemus cuvieri tadpoles. The amphibians were exposed to six concentrations of 2,4-D-based herbicides: 0.0, 4.0, 30.0, 52.5, 75.0, and 100 μg L-1, for 168 h. At concentrations higher than 52.5 μg L-1, significantly increased mortality was observed from 24 h after exposure. At the highest concentration (100 μg L-1), the occurrence of mouth and intestinal malformations was also observed. The occurrence of erythrocyte nuclear abnormalities at concentrations of 30.0, 52.5, 75.0 and 100 μg L-1 and the presence of micronuclei at concentrations of 52.5, 75.0, and 100 μg L-1 were also recorded. These effects of 2,4-D in P. cuvieri indicate that the ecological risk observed at concentrations above 10.35 μg L-1 2,4-D may represent a threat to the health and survival of this species, i.e., exposure to 2,4-D at concentrations already detected in surface waters in the species' range is toxic to P. cuvieri.
Collapse
Affiliation(s)
- Gilcinéia Dos Santos
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Camila Fátima Rutkoski
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Alexandre Folador
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Vrandrieli Jucieli Skovronski
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Caroline Müller
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Aline Pompermaier
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Paulo Afonso Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Marilia Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil.
| |
Collapse
|
4
|
Cheron M, Brischoux F. Exposure to Low Concentrations of AMPA Influences Morphology and Decreases Survival During Larval Development in a Widespread Amphibian Species. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:92-103. [PMID: 37468648 DOI: 10.1007/s00244-023-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/02/2023] [Indexed: 07/21/2023]
Abstract
Glyphosate's primary metabolite, AMPA (aminomethylphosphonic acid), is one of the most widely detected anthropogenic substance in surface waters worldwide. However, ecotoxicological studies on the potential effects of this metabolite at environmental concentrations on wildlife are scarce. Yet, due to its chemical properties, AMPA is likely to affect non-target species. In this study, we investigated sublethal effects of environmental concentrations of AMPA on the larval development of a widespread amphibian species, the spined toad Bufo spinosus. We performed a factorial experiment to study the effect of concentration and the timing of exposure (during embryonic development, larval development or both) to AMPA on the morphology, rate of development and survival of tadpoles. AMPA and timing of exposure interactively affected tadpole size (individuals exposed to AMPA after hatching were transitorily smaller, while individuals exposed to AMPA before hatching were longer), but not duration of development. Most of these effects were linked to exposure during embryonic development. Such effects in individuals exposed during embryonic development solely were long-lasting and persisted until the latest larval stages. Finally, we found that exposure to AMPA after hatching (during the larval stage) increased mortality. Exposure to low environmental concentrations of AMPA could have long-lasting consequences on fitness and population persistence. These findings are especially important to take into account at a time when multiple threats can interact to affect wildlife.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360, Villiers en Bois, France.
| |
Collapse
|
5
|
Cheron M, Kato A, Ropert-Coudert Y, Meyer X, MacIntosh AJJ, Raoelison L, Brischoux F. Exposure, but not timing of exposure, to a sulfonylurea herbicide alters larval development and behaviour in an amphibian species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106355. [PMID: 36446167 DOI: 10.1016/j.aquatox.2022.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Environmental contamination is one of the major causes of biodiversity loss. Wetlands are particularly susceptible to contamination and species inhabiting these habitats are subjected to pollutants during sensitive phases of their development. In this study, tadpoles of a widespread amphibian, the spined toad (Bufo spinosus), were exposed to environmental concentrations of nicosulfuron (0 μg/L; 0.15 ± 0.05 μg/L and 0.83 ± 0.04 μg/L), a sulfonylurea herbicide, during different phases of development. Tadpoles were exposed during embryonic (12.98 ± 0.90 days) or larval development (93.74± 0.85 days), or throughout both phases, and we quantified development duration, morphological traits and behavioural features as responses to exposure. Developing tadpoles exposed to nicosulfuron were larger, but with smaller body, and had shorter but wider tail muscles. They were also more active and swam faster than control tadpoles and showed diverging patterns of behavioural complexity. We showed that higher concentrations had greater effects on individuals than lower concentrations, but the timing of nicosulfuron exposure did not influence the metrics studied: Exposure to nicosulfuron triggered similar effects irrespective of the developmental stages at which exposure occurred. These results further indicate that transient exposure (e.g., during embryonic development) can induce long-lasting effects throughout larval development to metamorphosis. Our study confirms that contaminants at environmental concentrations can have strong consequences on non-target organisms. Our results emphasize the need for regulation agencies and policy makers to consider sublethal concentrations of sulfonulyrea herbicides, such as nicosulfuron, as a minimum threshold in their recommendations.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France.
| | - Akiko Kato
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - Yan Ropert-Coudert
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - Xavier Meyer
- European Science Foundation, 1 quai Lezay-Marnesia, Strasbourg 67080, France
| | - Andrew J J MacIntosh
- Kyoto University Primate Research Institute, 41-2 Kanrin, Inuyama 484-8506, Japan
| | - Léa Raoelison
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - François Brischoux
- Centre d'Études Biologiques de Chizé, CEBC UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| |
Collapse
|
6
|
Silveyra GR, Medesani DA, Rodríguez EM. Effects of the Herbicide Atrazine on Crustacean Reproduction. Mini-Review. Front Physiol 2022; 13:926492. [PMID: 35784891 PMCID: PMC9244840 DOI: 10.3389/fphys.2022.926492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Atrazine, one of the most intensively applied herbicides worldwide, is commonly found in several water bodies, affecting the associated fauna. Autochthon crustacean species have been relatively less studied, compared to vertebrate species, particularly concerning reproductive success. In this mini-review, we summarize the relevant information about the effects of atrazine exposure on the main reproductive aspects of crustaceans. One of these effects is related to the inhibition of ovarian growth. In this respect, a diminished vitellogenin content was found in the ovary of crabs exposed to atrazine during the entire period of ovarian growth, in correlation with a reduced oocyte size and a delay of ovarian maturation. Similar results were observed in crayfish. Atrazine was also able to affect the reproductive process, acting as an endocrine disruptor. In this sense, this herbicide was suspected to affect the secretion of some neurohormones involved in the gonadal growth, as well as to alter the circulating levels of steroid hormones which promote the synthesis of vitellogenin for ovarian growth. Moreover, atrazine induced sexual differentiation in juvenile crayfish toward a higher proportion of females, while it produced an increment of males in daphnids. Another aspect affected by this herbicide was the reduction of offspring production, as well as several embryonic abnormalities; genotoxic effects have been also reported in crayfish. Finally, some metabolic imbalances, such as reduction in energy reserves, have been observed in some species, together with oxidative stress and histopathological effects.
Collapse
|
7
|
Cheron M, Costantini D, Brischoux F. Nicosulfuron, a sulfonylurea herbicide, alters embryonic development and oxidative status of hatchlings at environmental concentrations in an amphibian species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113277. [PMID: 35123186 DOI: 10.1016/j.ecoenv.2022.113277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of agrochemicals for controlling pests and diseases of crops is recognized as a main threat to biodiversity. Sulfonylurea herbicides are being increasingly used and display low levels of degradation in water which suggest that they might affect non-target organisms. In a common garden experiment, eggs of a widespread amphibian (Bufo spinosus) were exposed to sublethal environmentally relevant concentrations of a widely used sulfonylurea herbicide, nicosulfuron, during the whole embryonic development. We assessed development-related traits (i.e., development duration, hatching success, hatchling size and occurrence of malformation) as well as antioxidant markers in response to contamination (i.e., SOD, GPx, catalase, thiols and relevant ratios thereof). We found that sublethal concentrations of nicosulfuron increased embryonic development duration, increased hatchling size and tended to increase malformations. Embryos exposed to nicosulfuron displayed decreased thiols and increased catalase activity suggesting alteration of oxidative status. We did not find any effect of nicosulfuron on SOD and GPx levels. Interestingly, higher catalase activity was linked to higher proportion of malformed individuals, suggesting that exposure to nicosulfuron induced teratogenic effects. Our results suggest that alteration of antioxidant levels might be one physiological mechanism through which nicosulfuron might cause detrimental effects on amphibian embryos. Sublethal effects of pesticides at environmentally relevant concentrations have been overlooked and require further investigations, especially in non-target taxa occurring in agricultural landscapes.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Études Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360 Villiers en Bois, France.
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), UMR 7221 Muséum National d'Histoire Naturelle, CNRS, CP32, 7 Rue Cuvier, Paris, France
| | - François Brischoux
- Centre d'Études Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360 Villiers en Bois, France
| |
Collapse
|
8
|
Finkler M, Rodrigues GZP, Kayser JM, Ziulkoski AL, Gehlen G. Cytotoxic and genotoxic effects induced by associated commercial glyphosate and 2,4-D formulations using the Allium cepa bioassay. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:133-141. [PMID: 35112655 DOI: 10.1080/03601234.2022.2034432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Studies assessing the toxicity of glyphosate and 2,4-dichlorophenoxyacetic acid mixture are scarce. The aim of this study was to evaluate the cytotoxicity and genotoxicity of the mixture of these herbicides using Allium cepa. Roots were exposed to glyphosate (1.56 and 11.66 mg mL-1), 2,4-D (0.28 and 17.5 mg mL-1) and mixture for 24 h, based on the average concentration applied in the field and the acute reference dose (ARfD) established in Brazil. Both isolated and associated herbicides induced a significative decrease in mitotic index (MI) (P < 0.0001) in all tested concentrations. Regarding the genotoxicity results, 2,4-D and the mixture showed, at concentrations applied in the field, a significative increase of chromosomal anomalies (CA) index compared to control (P < 0.0001) and glyphosate (P = 0.024 and P = 0.0002, respectively). All tested groups from the ARfD showed a significative difference compared to the control group (P < 0.0001), as well as glyphosate and 2,4-D isolated compared to the mixture (P = 0.0005 and P < 0.0001, respectively). The most observed CA were apoptotic bodies, giant cells, and nuclear erosions. We emphasize the need for further studies assessing the toxicity of these herbicides' mixture due to the distinct effects caused in different organisms.
Collapse
Affiliation(s)
- Mariana Finkler
- Laboratório de Histologia Comparada, Universidade Feevale, Novo Hamburgo, Brazil
| | | | | | | | - Günther Gehlen
- Laboratório de Histologia Comparada, Universidade Feevale, Novo Hamburgo, Brazil
| |
Collapse
|
9
|
Cheron M, Costantini D, Angelier F, Ribout C, Brischoux F. Aminomethylphosphonic acid (AMPA) alters oxidative status during embryonic development in an amphibian species. CHEMOSPHERE 2022; 287:131882. [PMID: 34509012 DOI: 10.1016/j.chemosphere.2021.131882] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 05/09/2023]
Abstract
Glyphosate's primary metabolite (aminomethylphosphonic acid, AMPA) is known to alter embryonic development at environmentally relevant concentrations in amphibians. However, we have limited understanding of the physiological mechanisms through which AMPA affects organisms. In this study, we tested whether alteration of the oxidative status is one mechanism through which AMPA affects organism performance. To this end, we analysed several oxidative status markers in hatchling tadpoles that were exposed to sublethal concentrations of AMPA during embryonic development (~16 days). We compared the influence of environmentally relevant concentrations of AMPA (from 0.07 to 3.57 μg l-1) on the relation between developmental traits (i.e, embryonic development duration, embryonic mortality and hatchling size) and oxidative status markers known to alter homeostasis when unbalanced (superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), thiols and ratios thereof). We included measures of telomere length as an indicator of physiological state. We found that AMPA concentrations induce non-monotonic effects on some oxidative status markers with hatchlings displaying elevated antioxidant responses (elevated thiols and unbalanced SOD/(GPx + CAT) ratio). The lack of effect of AMPA on the relation between developmental traits, oxidative status and telomere length suggests that selective mortality of embryos susceptible to oxidative stress may have occurred prior to hatching in individuals less resistant to AMPA which display lower hatching success. Future studies are required to disentangle whether oxidative unbalance is a cause or a consequence of AMPA exposition. This study highlights the need to investigate effects of the metabolites of contaminants at environmental concentrations to comprehensively assess impacts of anthropogenic contamination on wildlife.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France.
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), UMR 7221 Muséum National d'Histoire Naturelle, CNRS, CP32, 7 Rue Cuvier, Paris, France
| | - Frédéric Angelier
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Cécile Ribout
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| |
Collapse
|
10
|
Mitidiero Stachissini Arcain B, Gross MC, Frasson Furtado D, Grade CVC. Embryotoxic effects of Rovral® for early chicken ( Gallus gallus) development. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:632-648. [PMID: 33970833 DOI: 10.1080/15287394.2021.1924331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rovral® is a fungicide used to control pests that affect various crops and little is known regarding its effects on embryonic development of amniotes. Thus, this study aimed to determine the influence of Rovral® during chicken organogenesis using acute in ovo contamination. Fertilized eggs were inoculated with different concentrations of Rovral® (100, 300, 500 or 750 µl/ml), injected into the egg's air chamber. After 7 days, embryos were examined for possible malformations, staging, weight and mortality. Subsequently, head, trunk, limbs and eyes were measured for morphometry and asymmetry. For blood analysis, eggs were treated with 300 µl/ml Rovral® and glucose, presence of micronuclei and erythrocyte nuclei abnormalities determined. Treatments with Rovral® affected the mortality rate in a concentration-dependent manner. LC50 value was found to be 596 µl/ml which represents 397-fold higher than the recommended concentration for use. Rovral® produced several malformations including hemorrhagic, ocular and cephalic abnormalities. No significant changes were observed in body weight, staging, body measurements, symmetry and glucose levels of live embryos, which indicates this fungicide presents low toxicity under the analyzed conditions. Changes in erythrocyte nuclei were noted; however significant difference was observed only for presence of binucleated erythrocytes. It is important to point out that possibly more significant changes may have occurred at lower concentrations through chronic contamination. Therefore, caution is needed in the use of this fungicide, since it presents teratogenic and mutagenic potential.
Collapse
Affiliation(s)
- Beatriz Mitidiero Stachissini Arcain
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal Da Integração Latino-Americana (UNILA), Foz Do Iguaçu, Paraná, Brazil
| | - Maria Cláudia Gross
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal Da Integração Latino-Americana (UNILA), Foz Do Iguaçu, Paraná, Brazil
| | - Danúbia Frasson Furtado
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal Da Integração Latino-Americana (UNILA), Foz Do Iguaçu, Paraná, Brazil
| | - Carla Vermeulen Carvalho Grade
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal Da Integração Latino-Americana (UNILA), Foz Do Iguaçu, Paraná, Brazil
| |
Collapse
|
11
|
Pavan FA, Samojeden CG, Rutkoski CF, Folador A, Da Fré SP, Müller C, Hartmann PA, Hartmann MT. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103637. [PMID: 33753236 DOI: 10.1016/j.etap.2021.103637] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Pesticide contamination is an important factor in the global decline of amphibians. The herbicides glyphosate and 2,4-D are the most applied worldwide. These herbicides are often found in surface waters close to agricultural areas. This study aims at evaluating the chronic effects caused by glyphosate + 2,4-D mixture in Boana faber and Leptodactylus latrans tadpoles. The combined solution of the glyphosate and 2,4-D, in 5 different concentrations, was applied for 168 h. Herbicide mixtures did not affect the survival of the exposed tadpoles but growth and swimming activity were altered; besides causing several damages in the mouth and intestine. The erythrocytes showed micronuclei and other nuclear abnormalities. There is an ecological risk in the exposure of tadpoles of B. faber and L. latrans from the mixture of glyphosate + 2,4-D. Therefore, the approach used in this study provides important information on how commonly used pesticides can affect non-target organisms.
Collapse
Affiliation(s)
- Felipe André Pavan
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Caroline Garcia Samojeden
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Camila Fátima Rutkoski
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Alexandre Folador
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Silvia Pricila Da Fré
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Caroline Müller
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Paulo Afonso Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Marilia Teresinha Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| |
Collapse
|
12
|
Lin L, Song S, Wu X, Liu L, Kuang H. A colloidal gold immunochromatography test strip based on a monoclonal antibody for the rapid detection of triadimefon and triadimenol in foods. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1736010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Lu Lin
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
13
|
Lin L, Song S, Wu X, Liu L, Kuang H. A colloidal gold immunochromatography test strip based on a monoclonal antibody for the rapid detection of triadimefon and triadimenol in foods. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1733934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Lu Lin
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
14
|
Slaby S, Marin M, Marchand G, Lemiere S. Exposures to chemical contaminants: What can we learn from reproduction and development endpoints in the amphibian toxicology literature? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:478-495. [PMID: 30831345 DOI: 10.1016/j.envpol.2019.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Environmental contamination is one of the major factors or cofactors affecting amphibian populations. Since 2000, the number of studies conducted in laboratory conditions to understand impacts of chemical exposures increased. They aimed to characterize biological effects on amphibians. This review proposes an overview of biological responses reported after exposures to metals, phytopharmaceuticals or emerging organic contaminants and focuses on endpoints relating to reproduction and development. Due to amphibian peculiar features, these periods of their life cycle are especially critical to pollutant exposures. Despite the large range of tested compounds, the same model species are often used as biological models and morphological alterations are the most studied observations. From the results, the laboratory-to-field extrapolation remained uneasy and exposure designs have to be more elaborated to be closer to environmental conditions. Few studies proposed such experimental approaches. Lastly, gametes, embryos and larvae constitute key stages of amphibian life cycle that can be harmed by exposures to freshwater pollutants. Specific efforts have to be intensified on the earliest stages and notably germ cells.
Collapse
Affiliation(s)
- Sylvain Slaby
- Univ. Lille, CNRS, INRA, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France; Univ. Lille, EA 4515 - LGCgE - Laboratoire Génie Civil et Géo-Environnement, Cité Scientifique, SN3, F-59655, Villeneuve D'Ascq, France
| | - Matthieu Marin
- Univ. Lille, CNRS, INRA, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Guillaume Marchand
- Univ. Lille, CNRS, INRA, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Sébastien Lemiere
- Univ. Lille, EA 4515 - LGCgE - Laboratoire Génie Civil et Géo-Environnement, Cité Scientifique, SN3, F-59655, Villeneuve D'Ascq, France.
| |
Collapse
|
15
|
Zhang W, Lu Y, Huang L, Cheng C, Di S, Chen L, Zhou Z, Diao J. Comparison of triadimefon and its metabolite on acute toxicity and chronic effects during the early development of Rana nigromaculata tadpoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:247-254. [PMID: 29554609 DOI: 10.1016/j.ecoenv.2018.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Pesticides are one of major causes for amphibian population declines and the behavior of pesticide metabolite products to amphibians has become a rising concern. In this study, the acute toxicity and the chronic effects of triadimefon and triadimenol (the metabolite of triadimefon) on Rana. nigromaculata were investigated. In the acute assay, significant differences were observed in antioxidant enzyme activities and malondialdehyde levels between the triadimefon and triadimenol. The 96 h-acute toxicity of triadimefon (25.97 mg/L) and triadimenol (34.55 mg/L) to tadpoles was low. In 28d-chronic exposure, we studied the relative expression of tadpoles genes related to thyroid hormone-dependent metamorphic development, histological examination of liver and some biological index, including wet weight, snout-to-vent length (SVL) and development stages. The results revealed that the effects of triadimefon and triadimenol on tadpole development are driven by a disruption of the hormonal pathways involved in metamorphosis. Interestingly, triadimefon was more harmful on R. nigromaculata than triadimenol at high dose, whereas the reverse result was observed at low doses. According to the relative expression of thyroid hormone-dependent genes, we also found that the two compounds may have different mechanisms of toxic action on R. nigromaculata. Our study developed a pragmatic approach for use in the risk assessment of pesticide and its metabolite,and increased the information and understanding of the impacts of fungicides and other potential endocrine disrupting environmental contaminants on amphibians.
Collapse
Affiliation(s)
- Wenjun Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yuele Lu
- Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Ledan Huang
- Beijing Institute of Fashion Technology, Yinghua Road 2, Chaoyang District, Beijing 100029, China
| | - Cheng Cheng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Shanshan Di
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
16
|
Mesak C, de Oliveira Mendes B, de Oliveira Ferreira R, Malafaia G. Mutagenic assessment of Lithobates catesbeianus tadpoles exposed to the 2,4-D herbicide in a simulated realistic scenario. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15235-15244. [PMID: 29679270 DOI: 10.1007/s11356-018-1979-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
The aim of the current study is to assess possible erythrocyte mutagenic effects on Lithobates catesbeianus tadpoles exposed to water contaminated with 2,4-D. In order to do so, tadpoles were exposed to a predictive and environmentally relevant herbicide concentration (1.97 mg/L), which is likely to be found in lentic environments formed by superficial water runoffs in pasture areas where the herbicide was applied. The micronucleus test, as well as tests for other nuclear abnormalities, was conducted after 3, 5, and 9 days of exposure (d.e.). Changes in the biomass and mouth-cloaca length or interference in the larval development of the animals (in the three evaluated times) were not recorded. However, tadpoles exposed to 2,4-D showed the highest total number of nuclear abnormalities, as well as the highest frequency of binucleated erythrocytes and kidney-shaped nuclei (shortly after 3 d.e.). The micronucleus frequency was also higher in animals exposed to 2,4-D (in the 3rd, 5th, and 9th d.e.), as well as the frequency of binucleated cells (3rd, 5th, and 9th d.e.) presenting notched (9th d.e.) and blebbled (9th d.e.) nuclei in comparison to those of the control, after 5 and 9 days of exposure. Therefore, the current study is a pioneer in showing that 2,4-D has a mutagenic effect on L. catesbeianus tadpoles, even at low concentrations (environmentally relevant) and for a short period of time, a fact that may lead to direct losses in anuran populations living in areas adjacent to those subjected to 2,4-D herbicide application.
Collapse
Affiliation(s)
- Carlos Mesak
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, Goias, Brazil
| | - Bruna de Oliveira Mendes
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, Goias, Brazil
| | - Raíssa de Oliveira Ferreira
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, Goias, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute-Urutaí Campus, Urutaí, Goias, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano-Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, Goias, CEP: 75790-000, Brazil.
| |
Collapse
|
17
|
Curi LM, Peltzer PM, Martinuzzi C, Attademo MA, Seib S, Simoniello MF, Lajmanovich RC. Altered development, oxidative stress and DNA damage in Leptodactylus chaquensis (Anura: Leptodactylidae) larvae exposed to poultry litter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:62-71. [PMID: 28505481 DOI: 10.1016/j.ecoenv.2017.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Poultry litter (PL), which is usually used as organic fertilizer, is a source of nutrients, metals, veterinary pharmaceuticals and bacterial pathogens, which, through runoff, may end up in the nearest aquatic ecosystems. In this study, Leptodactylus chaquensis at different development stages (eggs, larval stages 28 and 31 here referred to as stages I, II and III respectively) were exposed to PL test sediments as follows: 6.25% (T1), 12.5% (T2); 25% (T3); 50% (T4); 75% (T5); 100% PL (T6) and to dechlorinated water as control. Larval survival, development endpoints (growth rate -GR-, development rate -DR-, abnormalities), antioxidant enzyme activities (Catalase -CAT- and Glutathione-S-Transferase -GST-), and genotoxic effect (DNA damage index by the Comet assay) were analyzed at different times. In stage I, no egg eclosion was observed in treatments T3-T6, and 50% of embryo mortality was recorded after 24h of exposure to T2. In stages II and III, mortality in treatments T3-T6 reached 100% between 24 and 48h. In the three development stages evaluated, the DR and GR were higher in controls than in PL treatments (T1, T2), except for those T1-treated larvae of stage II. Larvae of stage I showed five types of morphological abnormalities, being diamond body shape and lateral displacement of the intestine the most prevalent in T1, whereas larvae of stages II and III presented lower prevalence of abnormalities. In stage I, CAT activity was similar to that of control (p>0.05), whereas it was higher in T1- and T2- treated larvae of stages II and III than controls (p<0.05). In stages I and III, GST activity was similar to that of controls (p>0.05), whereas it was inhibited in T1-treated larvae of stage II (p<0.05). T1- and T2-treated larvae of stages II and III caused higher DNA damage respect to controls (p<0.05), varying from medium to severe damage (comet types II, III and IV). These results showed that PL treatments altered development and growth and induced oxidative stress and DNA damage, resulting ecotoxic for L. chaquensis larvae.
Collapse
Affiliation(s)
- L M Curi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - P M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - C Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M A Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - S Seib
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - M F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal. Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - R C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
18
|
Zebrafish as an Alternative Vertebrate Model for Investigating Developmental Toxicity-The Triadimefon Example. Int J Mol Sci 2017; 18:ijms18040817. [PMID: 28417904 PMCID: PMC5412401 DOI: 10.3390/ijms18040817] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/16/2022] Open
Abstract
Triadimefon is a widely used triazole fungicide known to cause severe developmental defects in several model organisms and in humans. The present study evaluated in detail the developmental effects seen in zebrafish embryos exposed to triadimefon, confirmed and expanded upon previous phenotypic findings and compared them to those observed in other traditional animal models. In order to do this, we exposed embryos to 2 and 4 µg/mL triadimefon and evaluated growth until 120 h post-fertilization (hpf) through gross morphology examination. Our analysis revealed significant developmental defects at the highest tested concentration including somite deformities, severe craniofacial defects, a cleft phenotype along the three primary neural divisions, a rigorously hypoplastic or even absent mandible and a hypoplastic morphology of the pharyngeal arches. Interestingly, massive pericardial edemas, abnormal shaped hearts, brachycardia and inhibited or absent blood circulation were also observed. Our results revealed that the presented zebrafish phenotypes are comparable to those seen in other organism models and those derived from human observations as a result of triadimefon exposure. We therefore demonstrated that zebrafish provide an excellent system for study of compounds with toxic significance and can be used as an alternative model for developmental toxicity studies to predict effects in mammals.
Collapse
|
19
|
Wagner N, Müller H, Viertel B. Effects of a commonly used glyphosate-based herbicide formulation on early developmental stages of two anuran species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1495-1508. [PMID: 27785717 DOI: 10.1007/s11356-016-7927-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 10/16/2016] [Indexed: 05/02/2023]
Abstract
Environmental contamination, especially due to the increasing use of pesticides, is suggested to be one out of six main reasons for the global amphibian decline. Adverse effects of glyphosate-based herbicides on amphibians have been already discussed in several studies with different conclusions, especially regarding sublethal effects at environmentally relevant concentrations. Therefore, we studied the acute toxic effects (mortality, growth, and morphological changes) of the commonly used glyphosate-based herbicide formulation Roundup® UltraMax on early aquatic developmental stages of two anuran species with different larval types (obligate vs. facultative filtrating suspension feeders), the African clawed frog (Xenopus laevis) and the Mediterranean painted frog (Discoglossus pictus). While X. laevis is an established anuran model organism in amphibian toxicological studies, we aim to establish D. pictus as another model for species with facultative filtrating larvae. A special focus of the present study lies on malformations in X. laevis embryos, which were investigated using histological preparations. In general, embryos and larvae of X. laevis reacted more sensitive concerning lethal effects compared to early developmental stages of D. pictus. It was suggested, that especially the different morphology of their filter apparatus and the higher volume of water pumped through the buccopharynx of X. laevis larvae lead to higher exposure to the formulation. The test substance induced similar lethal effects in D. pictus larvae as it does in the teleost standard test organism used in pesticide approval, the rainbow trout (Oncorhynchus mykiss), whereas embryos of both species are apparently more tolerant and, conversely, X. laevis larvae about two times more sensitive. In both species, early larvae always reacted significantly more sensitive than embryos. Exposure to the test substance increased malformation rates in embryos of both species in a concentration-dependent manner, but not at environmentally relevant concentrations. However, the assumed field safety, based on calculated surface water concentrations of the active ingredient (glyphosate), should be validated with realistic field data and buffer strips have to be urgently regarded to any aquatic amphibian habitat.
Collapse
Affiliation(s)
- Norman Wagner
- Department of Biogeography, Trier University, Universitätsring 15, 54296, Trier, Germany.
| | - Hendrik Müller
- Department of Systematic Zoology and Evolutionary Biology with Phyletic Museum, Friedrich-Schiller-University Jena, Erbertstr. 1, 07743, Jena, Germany
| | - Bruno Viertel
- Department of Biogeography, Trier University, Universitätsring 15, 54296, Trier, Germany
| |
Collapse
|
20
|
Bach NC, Natale GS, Somoza GM, Ronco AE. Effect on the growth and development and induction of abnormalities by a glyphosate commercial formulation and its active ingredient during two developmental stages of the South-American Creole frog, Leptodactylus latrans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23959-23971. [PMID: 27638798 DOI: 10.1007/s11356-016-7631-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
We evaluated the acute lethal and sublethal effects of technical-grade glyphosate (GLY) and the GLY-based commercial formulation Roundup ULTRA MAX® (RU) on two Gosner stages (Gss) 25 and 36 of the South-American Creole frog, Leptodactylus latrans. Bioassays were performed following standardized methods within a wide range of concentrations (0.0007-9.62 mg of acid equivalents per liter-a.e./L-of RU and 3-300 mg/L of GLY). The endpoints evaluated were mortality, swimming activity, growth, development, and the presence of morphologic abnormalities, especially in the mouthparts. No lethal effects were observed on larvae exposed to GLY during either Gs-25 or Gs-36. The concentrations inducing 50 % lethality in RU-exposed larvae at different exposure times and Gss ranged from 3.26 to 9.61 mg a.e./L. Swimming activity was affected by only RU. Effects on growth and development and the induction of morphologic abnormalities-like oral abnormalities and edema-were observed after exposure to either GLY or RU. Gs-25 was the most sensitive stage to both forms of the herbicide. The commercial formulation was much more toxic than the active ingredient on all the endpoints assessed. Effects on growth, development, and the induction of morphologic abnormalities observed in the range of environmental concentrations reported for agroecosystems of Argentina constitute an alert to the potential detrimental effects of the herbicide that could be affecting the fitness and survival of anurans in agroecosystems.
Collapse
Affiliation(s)
- Nadia Carla Bach
- Centro de Investigaciones del Medio Ambiente (CIMA), Facultad de Ciencias Exactas and CONICET, Universidad Nacional de La Plata, Calle 47 y 115. La Plata, 1900, Buenos Aires, Argentina
| | - Guillermo Sebastián Natale
- Centro de Investigaciones del Medio Ambiente (CIMA), Facultad de Ciencias Exactas and CONICET, Universidad Nacional de La Plata, Calle 47 y 115. La Plata, 1900, Buenos Aires, Argentina
| | - Gustavo Manuel Somoza
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km. 8.2 (B7130IWA), Chascomús, Buenos Aires, Argentina
| | - Alicia Estela Ronco
- Centro de Investigaciones del Medio Ambiente (CIMA), Facultad de Ciencias Exactas and CONICET, Universidad Nacional de La Plata, Calle 47 y 115. La Plata, 1900, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Womble M, Pickett M, Nascone-Yoder N. Frogs as integrative models for understanding digestive organ development and evolution. Semin Cell Dev Biol 2016; 51:92-105. [PMID: 26851628 PMCID: PMC4798877 DOI: 10.1016/j.semcdb.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
The digestive system comprises numerous cells, tissues and organs that are essential for the proper assimilation of nutrients and energy. Many aspects of digestive organ function are highly conserved among vertebrates, yet the final anatomical configuration of the gut varies widely between species, especially those with different diets. Improved understanding of the complex molecular and cellular events that orchestrate digestive organ development is pertinent to many areas of biology and medicine, including the regeneration or replacement of diseased organs, the etiology of digestive organ birth defects, and the evolution of specialized features of digestive anatomy. In this review, we highlight specific examples of how investigations using Xenopus laevis frog embryos have revealed insight into the molecular and cellular dynamics of digestive organ patterning and morphogenesis that would have been difficult to obtain in other animal models. Additionally, we discuss recent studies of gut development in non-model frog species with unique feeding strategies, such as Lepidobatrachus laevis and Eleutherodactylous coqui, which are beginning to provide glimpses of the evolutionary mechanisms that may generate morphological variation in the digestive tract. The unparalleled experimental versatility of frog embryos make them excellent, integrative models for studying digestive organ development across multiple disciplines.
Collapse
Affiliation(s)
- Mandy Womble
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Melissa Pickett
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States.
| |
Collapse
|
22
|
Teglia CM, Attademo AM, Peltzer PM, Goicoechea HC, Lajmanovich RC. Plasma retinoids concentration in Leptodactylus chaquensis (Amphibia: Leptodactylidae) from rice agroecosystems, Santa Fe province, Argentina. CHEMOSPHERE 2015; 135:24-30. [PMID: 25880706 DOI: 10.1016/j.chemosphere.2015.03.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Retinoids are known to regulate important processes such as differentiation, development, and embryogenesis of vertebrates: Alteration in endogenous retinoids concentration is linked with teratogenic effects. Retinol (ROH), retinoid acid (RA), and isoform 13-Cis-retinoic acid (13-Cis-RA), in plasma of a native adults frog, Leptodactylus chaquensis from a rice field (RF) and a forest (reference site; RS) were measured. ROH did not vary between treatment sites. RA and 13-Cis-RA activities were higher (93.7±8.6 μg mL(-1) and 131.7±11.4 μg mL(-1), respectively) in individuals collected from RF than in those from RS (65.5±8.6 μg mL(-1) and 92.2±10.2 μg mL(-1), respectively). The ratios retinoic acid-retinol (RA/ROH) and 13-Cis-RA/ROH revealed significantly higher values in RF than in RS. RA and 13-Cis-RA concentrations in plasma on wild amphibian's species such as L. chaquensis would be suitable biomarkers of pesticide exposure in field monitoring. Finally, the mechanism of alteration in retinoid metabolites alteration should be further explored both in larvae and adult, considering that the potential exposition and uptake contaminants vary between the double lives of these vertebrates.
Collapse
Affiliation(s)
- Carla M Teglia
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), C.C. 242, S3000ZAA Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Ecotoxicología (FBCB-UNL), C.C. 242, S3000ZAA Santa Fe, Argentina.
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Ecotoxicología (FBCB-UNL), C.C. 242, S3000ZAA Santa Fe, Argentina
| | - Héctor C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), C.C. 242, S3000ZAA Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Ecotoxicología (FBCB-UNL), C.C. 242, S3000ZAA Santa Fe, Argentina
| |
Collapse
|
23
|
Ozmen M, Güngördü A, Erdemoglu S, Ozmen N, Asilturk M. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:144-153. [PMID: 26037099 DOI: 10.1016/j.aquatox.2015.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO2. Undoped and Mn-doped TiO2 nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV-vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO2 was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO2 nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO2 increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2-4h of degradation. However, biochemical assays showed that both Mn-doped TiO2 and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped TiO2 should be considered due to nanomaterial applications and for spilled nanoparticles in an aquatic ecosystem. Also, the risk of nanoparticles should be considered using indicator reference biochemical markers to verify the environmental health impacts.
Collapse
Affiliation(s)
- Murat Ozmen
- Inonu University, Faculty of Science, Department of Biology, Malatya, Turkey.
| | - Abbas Güngördü
- Inonu University, Faculty of Science, Department of Biology, Malatya, Turkey
| | - Sema Erdemoglu
- Inonu University, Faculty of Science, Department of Chemistry, Malatya, Turkey
| | - Nesrin Ozmen
- Inonu University, Faculty of Education, Department of Science Teaching Program, Malatya, Turkey
| | - Meltem Asilturk
- Akdeniz University, Department of Materials Science and Engineering, Antalya, Turkey
| |
Collapse
|
24
|
Van Der Kraak GJ, Hosmer AJ, Hanson ML, Kloas W, Solomon KR. Effects of atrazine in fish, amphibians, and reptiles: an analysis based on quantitative weight of evidence. Crit Rev Toxicol 2015; 44 Suppl 5:1-66. [PMID: 25375889 DOI: 10.3109/10408444.2014.967836] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A quantitative weight of evidence (WoE) approach was developed to evaluate studies used for regulatory purposes, as well as those in the open literature, that report the effects of the herbicide atrazine on fish, amphibians, and reptiles. The methodology for WoE analysis incorporated a detailed assessment of the relevance of the responses observed to apical endpoints directly related to survival, growth, development, and reproduction, as well as the strength and appropriateness of the experimental methods employed. Numerical scores were assigned for strength and relevance. The means of the scores for relevance and strength were then used to summarize and weigh the evidence for atrazine contributing to ecologically significant responses in the organisms of interest. The summary was presented graphically in a two-dimensional graph which showed the distributions of all the reports for a response. Over 1290 individual responses from studies in 31 species of fish, 32 amphibians, and 8 reptiles were evaluated. Overall, the WoE showed that atrazine might affect biomarker-type responses, such as expression of genes and/or associated proteins, concentrations of hormones, and biochemical processes (e.g. induction of detoxification responses), at concentrations sometimes found in the environment. However, these effects were not translated to adverse outcomes in terms of apical endpoints. The WoE approach provided a quantitative, transparent, reproducible, and robust framework that can be used to assist the decision-making process when assessing environmental chemicals. In addition, the process allowed easy identification of uncertainty and inconsistency in observations, and thus clearly identified areas where future investigations can be best directed.
Collapse
|
25
|
Henao Muñoz LM, Triana Velásquez TM, Bernal Bautista MH. EVALUACIÓN DE LA TOXICIDAD DE DOS AGROQUIMICOS, ROUNDUP® ACTIVO Y COSMO-FLUX®411F, EN RENACUAJOS DE ANUROS COLOMBIANOS. ACTA BIOLÓGICA COLOMBIANA 2014. [DOI: 10.15446/abc.v20n2.43492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>El Roundup<sup>®</sup> Activo es un herbicida elaborado a base de glifosato ampliamente utilizado en Colombia para el control de malezas. Sin embargo, para su aplicación requiere ser mezclado con un coadyuvante que facilite su acción, tal como el Cosmo-Flux<sup>®</sup>411F, el cual mejora la adherencia y fijación del herbicida en las hojas de las plantas. El objetivo de este estudio fue determinar la concentración letal media (CL<sub>50</sub>) y algunos efectos subletales (cambios en el tamaño corporal y en el desempeño natatorio) del Roundup<sup>®</sup> Activo y del Cosmo-Flux<sup>®</sup>411F en renacuajos de cuatro especies de anuros colombianos, expuestos bajo condiciones controladas de laboratorio y en microcosmos. La especie más sensible a la exposición del Roundup<sup>®</sup> Activo fue <em>Hypsiboas crepitans</em> (Laboratorio: CL<sub>50 </sub>= 1414 µg a.e. de glifosato/L y microcosmos: CL<sub>50 </sub>= 4 kg a.e. de glifosato/ha) y para el Cosmo-Flux<sup>®</sup>411F <em>Rhinella humboldti</em> (Laboratorio: CL<sub>50 </sub>= 319 mg/L y microcosmos: CL<sub>50 </sub>= 632,3 L/ha). En laboratorio y microcosmos, la exposición al Roundup<sup>®</sup> Activo no alteró el tamaño corporal ni el desempeño natatorio de los renacuajos, mientras que el Cosmo-Flux<sup>®</sup>411F generó alteraciones del tamaño corporal, pero no afectó el desempeño natatorio. Al comparar los CL<sub>50</sub> de los dos agroquímicos con las concentraciones empleadas en campo, el Roundup<sup>®</sup> Activo generó un riesgo moderado mientras que el Cosmo-Flux<sup>®</sup>411F no resultó letal. Además, el Roundup<sup>®</sup> Activo fue notablemente más toxico que el Cosmo-Flux<sup>®</sup>411F.</p><p><strong>ABSTRACT</strong></p><p>Roundup<sup>®</sup> Active is a herbicide based on glyphosate widely used in Colombia for control of illicit crops and weeds. However, it must be mixed with an adjuvant that facilitates its action, such as the Cosmo-Flux<sup>®</sup>411F, which improves the adhesion and fixation of the herbicide into the leaves of the plants. The aim of this study was to determine the median lethal concentration (LC<sub>50</sub>) and some sublethal effects (changes in body size and swimming performance) of the Roundup<sup>®</sup> Active and the Cosmo-Flux<sup>®</sup>411F to tadpoles of four Colombian anuran species exposed under laboratory and microcosm conditions. The most sensitive species to exposure of Roundup<sup>®</sup> Active was <em>Hypsiboas crepitans</em> (Laboratory: LC<sub>50 </sub>= 1414 µg a.e. glyphosate/L; microcosm: LC<sub>50 </sub>= 4 kg a.e. glyphosate/ha), and for Cosmo-Flux<sup>®</sup>411F was <em>Rhinella humboldti</em> (Laboratory: LC<sub>50 </sub>= 319 mg/L; microcosm: LC<sub>50 </sub>= 632.3 L/ha). In laboratory and microcosms, Roundup<sup>®</sup> Active did not alter the tadpole body size or swimming performance, while the Cosmo-Flux<sup>®</sup>411F generated changes in the body size, but not in the swimming performance. Comparing the LC<sub>50</sub> of the two agrochemicals with respect to concentrations used in field, the Roundup<sup>®</sup> Active exerted a moderate risk whereas the Cosmo-Flux<sup>®</sup>411F was not lethal. In addition, the Roundup<sup>®</sup> Active was notably more toxic than the Cosmo-Flux<sup>®</sup>411F.</p><p> </p>
Collapse
|
26
|
Alves MG, Oliveira PF. 2,4-Dichlorophenoxyacetic acid alters intracellular pH and ion transport in the outer mantle epithelium of the bivalve Anodonta cygnea. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:12-18. [PMID: 24854203 DOI: 10.1016/j.aquatox.2014.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/15/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Bivalve molluscs, due to their sedentary mode of life and filter-feeding behavior, are very susceptible to pollutant bioaccumulation and used as sentinel organisms in the assessment of environment pollution. Herein we aimed to determine the in vivo, ex vivo and in vitro effects of 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used herbicide, in Anodonta cygnea shell growth mechanisms. For that, we evaluated the effect of 2,4-D (100 μM) exposure on the transepithelial short-circuit current (Isc), potential (Vt) and conductance (Gt), as well as on OME ion transport systems and intracellular pH (pHi). In vivo exposure to 2,4-D caused an increase of 50% on the Isc generated by OME and ex vivo addition of that compound to the apical side of OME also induced an Isc increase. Furthermore, 2,4-D was able to cause a pHi increase in isolated cells of OME. Noteworthy, when 2,4-D was added following the exposure to specific inhibitors of several membrane transporters identified as responsible for pHi maintenance in these cells, no significant effect was observed on pHi except when the V-type ATPase inhibitor was used, indicating an overlap with the effect of 2,4-D. Thus, we concluded that 2,4-D is able of enhancing the activity of the V-ATPases present on the OME of A. cygnea and that this effect seems to be due to a direct stimulation of those H(+) transporters present on the apical portion of the membrane of OME cells, which are vital for shell maintenance and growth. This study allows us to better understand the molecular mechanisms behind 2,4-D toxicity and its deleterious effect in aquatic ecosystems, with particular emphasis on those involved in shell formation of bivalves.
Collapse
Affiliation(s)
- Marco G Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Pedro F Oliveira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| |
Collapse
|
27
|
Peltzer PM, Lajmanovich RC, Attademo AM, Junges CM, Cabagna-Zenklusen MC, Repetti MR, Sigrist ME, Beldoménico H. Effect of exposure to contaminated pond sediments on survival, development, and enzyme and blood biomarkers in veined treefrog (Trachycephalus typhonius) tadpoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:142-151. [PMID: 24080097 DOI: 10.1016/j.ecoenv.2013.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Sediments are important elements of aquatic ecosystems and in general sediments accumulate diverse toxic substances. Amphibians potentially have a greater risk of exposure to contaminants in sediments, and the test of sediments provides first lines of evidences. Sediment outdoor microcosm experiments were conducted to analyze biological endpoints (survival, development, growth, and morphological and organ malformation), enzyme activity (butyrylcholinesterase, BChE; glutathione-S-transferase, GST; and catalase, CAT) and blood biomarkers in veined treefrog Trachycephalus typhonius tadpoles, a widespread neotropical species. Hatching (stage 23) of T. thyphonius was exposed until they reached metamorphosis (stage 46). Sediment tests were performed and four different treatments were used: three ponds (LTPA, ISP, and SSP) influenced by industrial and agricultural activities and a reference treatment from a forest (RFS). Physical and chemical variables and concentration of nutrients, pesticide residues, and metals were determined. One treatment was metal-rich (LPTA) and two were nutrient-rich (ISP and SSP). Sediment treatments had no significant effect on survival; in contrast they had significant sublethal effects on T. typhonius larval development and growth rates, and affected overall size and shape at stage 38. Principally, in LPTA animals were significantly larger than in RFS, exhibiting swollen bodies, tail muscles and tail fin. In addition, metamorphs from LPTA, ISP, and SSP were smaller and showed signs of emaciation by the end of the experiment. Statistical comparisons showed that the proportions of each type of morphological abnormalities (swollen bodies and diamond shape, gut uncoiling, diverted gut, stiff tails, polydactyly, and visceral and hindlimb hemorrhaging) were significantly greater in metal- and nutrient-rich sediment treatments. Moreover, activities of BChE, GST and CAT, as well as and presence of micronuclei, immature, mitotic, anucleated erythrocytes varied significantly among treatments. Our biological effects-based sediment study highlights the use of different biological endpoints and biomarkers on anuran larvae at sites where pond sediment is risky and sediment management should be considered. Finally, the information of those biological endpoints and biomarkers would be useful as a management tool to decide if there are sufficient exposures of tadpoles to suspected pollutants on sediment.
Collapse
Affiliation(s)
- Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (ESS-FBCB-UNL), 3000 Santa Fe, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wagner N, Reichenbecher W, Teichmann H, Tappeser B, Lötters S. Questions concerning the potential impact of glyphosate-based herbicides on amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1688-700. [PMID: 23637092 DOI: 10.1002/etc.2268] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/20/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration.
Collapse
Affiliation(s)
- Norman Wagner
- Biogeography Department, Trier University, Trier, Germany.
| | | | | | | | | |
Collapse
|
29
|
Coady K, Marino T, Thomas J, Sosinski L, Neal B, Hammond L. An evaluation of 2,4-dichlorophenoxyacetic acid in the Amphibian Metamorphosis Assay and the Fish Short-Term Reproduction Assay. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 90:143-150. [PMID: 23357564 DOI: 10.1016/j.ecoenv.2012.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/21/2012] [Accepted: 12/22/2012] [Indexed: 06/01/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) was evaluated in both the Amphibian Metamorphosis Assay (AMA) and the Fish Short Term Reproduction Assay (FSTRA). In the AMA, tadpoles were exposed to mean measured 2,4-D concentrations of 0 (water control), 0.273, 3.24, 38.0 and 113 mg acid equivalents (ae)/L for either seven or 21 days. In the FSTRA, fathead minnows were exposed to mean measured 2,4-D concentrations of 0 (water control), 0.245, 3.14, 34.0, and 96.5 mg ae/L for 21 days. The respective concentrations of 2,4-D were not overtly toxic to either Xenopus laevis tadpoles or fathead minnows (Pimephales promelas). In the AMA, there were no signs of either advanced or delayed development, asynchronous development, or significant histopathological effects of the thyroid gland among 2,4-D exposed tadpoles evaluated on either day seven or day 21 of the exposure. Therefore, following the AMA decision logic, 2,4-D is considered "likely thyroid inactive" in the AMA with a No Observable Effect Concentration (NOEC) of 113 mg ae 2,4-D/L. In the FSTRA, there were no significant differences between control and 2,4-D exposed fish in regard to fertility, wet weight, length, gonado-somatic indices, tubercle scores, or blood plasma concentrations of vitellogenin. Furthermore, there were no treatment-related histopathologic changes in the testes or ovaries in any 2,4-D exposed group. The only significant effect was a decrease in fecundity among fish exposed to 96.5 mg ae 2,4-D/L. The cause of the reduced fecundity at the highest concentration of 2,4-D tested in the assay was most likely due to a generalized stress response in the fish, and not due to a specific endocrine mode of action of 2,4-D. Based on fish reproduction, the NOEC in the FSTRA was 34.0 mg ae 2,4-D/L.
Collapse
|
30
|
Papoulias DM, Schwarz MS, Mena L. Gonadal abnormalities in frogs (Lithobates spp.) collected from managed wetlands in an agricultural region of Nebraska, USA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 172:1-8. [PMID: 22982548 DOI: 10.1016/j.envpol.2012.07.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/06/2012] [Accepted: 07/25/2012] [Indexed: 05/06/2023]
Abstract
Nebraska's Rainwater Basin (RWB) provides important wetland habitat for North American migratory birds. Concern exists that pesticide and nutrient runoff from surrounding row-crops enters wetlands degrading water quality and adversely affecting birds and wildlife. Frogs may be especially vulnerable. Plains leopard (Lithobates blairi) metamorphs from RWB wetlands with varying concentrations of pesticides were evaluated for a suite of biomarkers of exposure to endocrine active chemicals. Froglets had ovarian dysgenesis, high rates of testicular oocytes, and female-biased sex ratios however, there was no clear statistical association between pesticide concentrations and biomarkers. Data interpretation was hindered because timing and duration of exposures were unknown and due to an incomplete understanding of L. blairi sexual development. Emphasis is on describing the complex developmental biology of closely-related leopard frogs, how this understanding can explain RWB L. blairi anomalies, and the need for sampling at the appropriate life stage.
Collapse
Affiliation(s)
- Diana M Papoulias
- Columbia Environmental Research Center, U.S. Geological Survey, 4200 New Haven Rd., Columbia, MO 65201, USA.
| | | | | |
Collapse
|
31
|
Akcha F, Spagnol C, Rouxel J. Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 106-107:104-13. [PMID: 22115909 DOI: 10.1016/j.aquatox.2011.10.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 05/31/2023]
Abstract
We investigated the effects of genotoxicant exposure in gametes and embryos to find a possible link between genotoxicity and reproduction/developmental impairment, and explore the impact of chemical genotoxicity on population dynamics. Our study focused on the genotoxic effects of two herbicides on oyster gametes and embryos: glyphosate (both as an active substance and in the Roundup formulation) and diuron. France is Europe's leading consumer of agrochemical substances and as such, contamination of France's coastal waters by pesticides is a major concern. Glyphosate and diuron are among the most frequently detected herbicides in oyster production areas; as oyster is a specie with external reproduction, its gametes and embryos are in direct contact with the surrounding waters and are hence particularly exposed to these potentially dangerous substances. In the course of this study, differences in genotoxic and embryotoxic responses were observed in the various experiments, possibly due to differences in pollutant sensitivity between the tested genitor lots. Glyphosate and Roundup had no effect on oyster development at the concentrations tested, whereas diuron significantly affected embryo-larval development from the lowest tested concentration of 0.05 μg L⁻¹, i.e. an environmentally realistic concentration. Diuron may therefore have a significant impact on oyster recruitment rates in the natural environment. Our spermiotoxicity study revealed none of the tested herbicides to be cytotoxic for oyster spermatozoa. However, the alkaline comet assay showed diuron to have a significant genotoxic effect on oyster spermatozoa at concentrations of 0.05 μg L⁻¹ upwards. Conversely, no effects due to diuron exposure were observed on sperm mitochondrial function or acrosomal membrane integrity. Although our initial results showed no negative effect on sperm function, the possible impact on fertilization rate and the consequences of the transmission of damaged DNA for oyster development and physiological performances, requires further investigation. A likely hypothesis to explain the embryotoxic and genotoxic effects of diuron is that it may act via causing oxidative stress.
Collapse
Affiliation(s)
- F Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| | | | | |
Collapse
|
32
|
Thammachoti P, Khonsue W, Kitana J, Varanusupakul P, Kitana N. Morphometric and Gravimetric Parameters of the Rice Frog <i>Fejervarya limnocharis</i> Living in Areas with Different Agricultural Activity. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jep.2012.310159] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|