1
|
Egler SG, Roldão TM, Santos GO, Heidelmann GP, Fraga IG, Correia FV, Saggioro EM. Phytotoxicity of single and mixed rare earth element (La, Nd and Sm) exposures on Lactuca sativa seed germination and growth. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1193-1209. [PMID: 39379770 DOI: 10.1007/s10646-024-02812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
The mode of action, bioaccumulation potential and toxicity of Rare Earth Elements (REE), with several applications in the technology, medical and agricultural fields, are still understudied. The nitrates acute effects on single exposures, binary and ternary mixtures of lanthanum (La), neodymium (Nd) and samarium (Sm) on Lactuca sativa lettuce seed germination and wet biomass in an artificial soil (AS) and an Ultisol were assessed. Germination (EC50), wet biomass (IC50) and germination inhibition (% GI) were evaluated. EC50 values show La was the most toxic in Ultisol, Sm in AS, and Nd appears with intermediate values on both substrates. The IC50, both single and mixed, decreased from 3- to 181-fold with increasing test concentrations in relation to the control in AS, while increases in Ultisol were observed, followed by decreases at higher doses which may be associated with the low-dose stimulation effect (hormesis). Our findings may be used to subsidize REE risk assessment studies and reinforce the hormesis effect to prevent the use of high application of REE fertilizers, avoiding the accumulation of REE in agricultural soils.
Collapse
Affiliation(s)
- Silvia Gonçalves Egler
- Centro de Tecnologia Mineral, CETEM/MCTI, Av. Pedro Calmon, 900, Cidade Universitária, CEP: 21.941-908, Rio de Janeiro, RJ, Brasil.
| | - Tamine Martins Roldão
- Centro de Tecnologia Mineral, CETEM/MCTI, Av. Pedro Calmon, 900, Cidade Universitária, CEP: 21.941-908, Rio de Janeiro, RJ, Brasil
| | - Gabriel Oliveira Santos
- Centro de Tecnologia Mineral, CETEM/MCTI, Av. Pedro Calmon, 900, Cidade Universitária, CEP: 21.941-908, Rio de Janeiro, RJ, Brasil
| | - Gisele Petronilho Heidelmann
- Centro de Tecnologia Mineral, CETEM/MCTI, Av. Pedro Calmon, 900, Cidade Universitária, CEP: 21.941-908, Rio de Janeiro, RJ, Brasil
| | - Inês Gomes Fraga
- Centro de Tecnologia Mineral, CETEM/MCTI, Av. Pedro Calmon, 900, Cidade Universitária, CEP: 21.941-908, Rio de Janeiro, RJ, Brasil
| | - Fabio Veríssimo Correia
- UNIRIO, Departamento de Ciências Naturais, Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, 22290-240, Brasil
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Av. Leopoldo Bulhões 1480, Rio de Janeiro, RJ, 21041-210, Brasil
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, 21040-360, Brasil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Av. Leopoldo Bulhões 1480, Rio de Janeiro, RJ, 21041-210, Brasil
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, 21040-360, Brasil
| |
Collapse
|
2
|
Tommasi F, Thomas PJ, Lyons DM, Pagano G, Oral R, Siciliano A, Toscanesi M, Guida M, Trifuoggi M. Evaluation of Rare Earth Element-Associated Hormetic Effects in Candidate Fertilizers and Livestock Feed Additives. Biol Trace Elem Res 2023; 201:2573-2581. [PMID: 35715718 PMCID: PMC10020260 DOI: 10.1007/s12011-022-03331-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
Abstract
Rare earth elements (REEs) are recognized as emerging contaminants with implications in human and environmental health. Apart from their adverse effects, REEs have been reported as having positive effects when amended to fertilizers and livestock feed additives, thus suggesting a hormetic trend, implying a concentration-related shift from stimulation to inhibition and toxicity, with analogous trends that have been assessed for a number of xenobiotics. In view of optimizing the success of REE mixtures in stimulating crop yield and/or livestock growth or egg production, one should foresee the comparative concentration-related effects of individual REEs (e.g., Ce and La) vs. their mixtures, which may display distinct trends. The results might prompt further explorations on the use of REE mixtures vs. single REEs aimed at optimizing the preparation of fertilizers and feed additives, in view of the potential recognition of their use in agronomy and zootechny.
Collapse
Affiliation(s)
- Franca Tommasi
- Department of Biology, "Aldo Moro" Bari University, I-70125, Bari, Italy
| | - Philippe J Thomas
- Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Daniel M Lyons
- Center for Marine Research, Ruđer Bošković Institute, HR-52210 , Rovinj, Croatia
| | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, via Cintia, I-80126 , Naples, Italy.
| | - Rahime Oral
- Faculty of Fisheries, Ege University, TR-35100 Bornova, İzmir, Turkey
| | | | - Maria Toscanesi
- Department of Chemical Sciences, Federico II Naples University, via Cintia, I-80126 , Naples, Italy
| | - Marco Guida
- Department of Biology, Federico II Naples University, I-80126 , Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, via Cintia, I-80126 , Naples, Italy
| |
Collapse
|
3
|
Siciliano A, Guida M, Pagano G, Trifuoggi M, Tommasi F, Lofrano G, Padilla Suarez EG, Gjata I, Brouziotis AA, Liguori R, Libralato G. Cerium, gadolinium, lanthanum, and neodymium effects in simplified acid mine discharges to Raphidocelis subcapitata, Lepidium sativum, and Vicia faba. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147527. [PMID: 34000556 DOI: 10.1016/j.scitotenv.2021.147527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The alteration of rare earth elements (REEs) biogeochemical cycles has increased the potential effects related to their environmental exposure in a one-health perspective. Cerium (Ce), gadolinium (Gd), lanthanum (La), and neodymium (Nd) are frequently related to technological applications and their environmental concentrations are already in the μg/kg - mg/kg (i.e., or L) range depending on the considered matrices. The effect of Ce, Gd, La, and Nd was investigated in a simulated AMD (0.01-10.22 mg/L) at pH 4 and 6 considering a battery of photosynthetic organisms (Raphidocelis subcapitata, Lepidium sativum, and Vicia faba) according to a multiple-endpoint approach (growth inhibition, germination index, and mutagenicity). According to modelled chemical speciation, the considered elements were mostly in the trivalent free form (86-88%) at pH 4. Gd, La, and Nd exerted the most relevant toxic effect at pH 4. The pH 6 scenario evidenced a reduction in REEs toxicity level. Mutagenicity was detected only at pH 4 by Gd (up to 3-fold compared to negative controls), La and Nd, while Ce did not show any adverse effect. Toxic effects due to Ce, Gd, La, and Nd can be reduced by controlling the pH, but several gaps of knowledge still remain about their uptake and trophic transfer, and long-term effects on targeted species.
Collapse
Affiliation(s)
- Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giovanni Pagano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Marco Trifuoggi
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Franca Tommasi
- Department of Biology, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Giusy Lofrano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Edith Guadalupe Padilla Suarez
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Isidora Gjata
- Department of Biology, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Antonios Apostolos Brouziotis
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Renato Liguori
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy.
| |
Collapse
|
4
|
Brião GDV, da Silva MGC, Vieira MGA. Efficient and Selective Adsorption of Neodymium on Expanded Vermiculite. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giani de Vargas Brião
- School of Chemical Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo 13083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- School of Chemical Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo 13083-852, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo 13083-852, Brazil
| |
Collapse
|
5
|
Figueiredo C, Raimundo J, Lopes AR, Lopes C, Rosa N, Brito P, Diniz M, Caetano M, Grilo TF. Warming enhances lanthanum accumulation and toxicity promoting cellular damage in glass eels (Anguilla anguilla). ENVIRONMENTAL RESEARCH 2020; 191:110051. [PMID: 32818498 DOI: 10.1016/j.envres.2020.110051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Cumulative and continuing human emissions of greenhouse gases to the atmosphere are causing ocean warming. Rising temperature is a major threat to aquatic organisms and may affect physiological responses, such as acid-base balance, often compromising species fitness and survival. It is also expected that warming may influence the availability and toxicological effects of pollutants, including Rare Earth Elements. These are contaminants of environmental emerging concern with great economic interest. This group comprises yttrium, scandium and lanthanides, being Lanthanum (La) one of the most common. The European eel (Anguilla anguilla) is critically endangered and constitutes a delicacy in South East Asia and Europe, being subject to an increasing demand on a global scale. Considering the vulnerability of early life stages to contaminants, we exposed glass eels to 1.5 μg L-1 of La for five days, plus five days of depuration, under a present-day temperature and warming scenarios (△T = +4 °C). The aim of this study was to assess the bioaccumulation, elimination and specific biochemical enzymatic endpoints in glass eels (Anguilla anguilla) tissues, under warming and La. Overall, our results showed that the accumulation and toxicity of La were enhanced with increasing temperature. The accumulation was higher in the viscera, followed by the head, and ultimately the body. Elimination was less effective under warming. Exposure to La did not impact acetylcholinesterase activity. Moreover, lipid peroxidation peaked after five days under the combined exposure of La and warming. The expression of heat shock proteins was majorly suppressed in glass eels exposed to La, at both tested temperatures. This result suggests that, when exposed to La, glass eels were unable to efficiently prevent cellular damage, with a particularly dramatic setup in a near-future scenario. Further studies are needed towards a better understanding of the effects of lanthanum in a changing world.
Collapse
Affiliation(s)
- Cátia Figueiredo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Joana Raimundo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Ana Rita Lopes
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Science Centre, ISPA - Instituto Universitário, R. Jardim Do Tabaco 34, 1100-304, Lisboa, Portugal
| | - Clara Lopes
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Nuno Rosa
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
| | - Pedro Brito
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
| | - Mário Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Miguel Caetano
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Tiago F Grilo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
6
|
Pagano G, Thomas PJ, Di Nunzio A, Trifuoggi M. Human exposures to rare earth elements: Present knowledge and research prospects. ENVIRONMENTAL RESEARCH 2019; 171:493-500. [PMID: 30743241 DOI: 10.1016/j.envres.2019.02.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 05/23/2023]
Abstract
The extensive use of rare earth elements (REEs) in a number of technologies is expected to impact on human health, including occupational and environmental REE exposures. A body of experimental evidence on REE-associated toxicity has been accumulated in recent decades, thus providing extensive background information on the adverse effects of REE exposures. Unlike experimental studies, the consequences of REE exposures to human health have been subjected to relatively fewer investigations. Geographical studies have been conducted on residents in REE mining districts, reporting on REE bioaccumulation, and associations between REE residential exposures and adverse health effects. A recent line of studies has associated tobacco smoking and indoor smoke with increased levels of some REEs in exposed residents. A body of literature has been focused on occupational REE exposures, with the observation of respiratory tract damage. The occupations related to REE mining and processing have shown REE bioaccumulation in scalp hair, excess REE urine levels, and defective gene expression. As for other REE occupational exposures, mention should be made of: a) jobs exposing to REE aerosol, such as movie operator; b) e-waste processing and, c) diesel engine repair and maintenance, with exposures to exhaust microparticulate (containing nanoCeO2 as a catalytic additive). Diesel exhaust microparticulate has been studied in animal models, leading to evidence of several pathological effects in animals exposed by respiratory or systemic routes. A working hypothesis for REE occupational exposures is raised on REE-based supermagnet production and manufacture, by reviewing experimental studies that suggest several pathological effects of static magnetic fields, and warrant further investigations.
Collapse
Affiliation(s)
- Giovanni Pagano
- Federico II Naples University, Department of Chemical Sciences, via Cinthia, I-80126 Naples, Italy.
| | - Philippe J Thomas
- Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, Ontario, Canada K1A 0H3
| | - Aldo Di Nunzio
- Federico II Naples University, Department of Chemical Sciences, via Cinthia, I-80126 Naples, Italy
| | - Marco Trifuoggi
- Federico II Naples University, Department of Chemical Sciences, via Cinthia, I-80126 Naples, Italy
| |
Collapse
|
7
|
Agathokleous E, Kitao M, Calabrese EJ. Hormetic dose responses induced by lanthanum in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:332-341. [PMID: 30347380 DOI: 10.1016/j.envpol.2018.10.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Rare earth elements (REEs) have recently received particular attention due to their accumulation in the environment. Such heightened recognition prompted our evaluation of the possible occurrence of La-induced plant hormesis in the peer-reviewed literature. This study revealed 703 La-induced hormetic concentration/dose responses in plants, which were quantitatively and qualitatively assessed. The maximum (MAX) biological response to low La concentrations/doses is commonly below 150% of control response, with a geometric mean of 142% at 56 μM (geometric mean). The geometric mean concentration of the no-observed-adverse-effect-level (NOAEL) was 249 μM. The MAX:NOAEL distance was commonly below 5-fold, with a geometric mean of 4.5-fold. Hormetic concentration/dose responses varied as per the growth substrate pH, number of concentrations/doses below the NOAEL, and time window. These results provide a unique insight into the effects of low doses of La on plant growth, as well as offer means for improving experimental designs to assess low dose effects.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
8
|
Rong H, Wang C, Yu X, Fan J, Jiang P, Wang Y, Gan X, Wang Y. Carboxylated multi-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L. seedlings under combined stress of lead and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:616-623. [PMID: 29933131 DOI: 10.1016/j.ecoenv.2018.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) and heavy metals could be absorbed and bioaccumulated by agricultural crops, implicating ecological risks. Herein, the present study investigated the ecotoxicological effects and mechanisms of individual carboxylated MWCNTs (MWCNTs-COOH) (2.5, 5.0 and 10 mg/L) and their combination with 20 µM Pb and 5 µM Cd (shortened as Pb + Cd) on roots of Vicia faba L. seedlings after 20 days of exposure. The results showed that the tested MWCNTs-COOH induced imbalance of nutrient elements, enhanced isozymes and activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), resulting in accumulation of carbonylated proteins, elevation of endoproteases (EPs) isozymes, and reduction of HSP70 synthesis in the roots. However, the tested MWCNTs-COOH facilitated the enrichment of Cd, Pb and Na elements, contributing to the decrease of SOD, CAT and APX activities, and the reduction of HSP70 synthesis, whereas the elevation of carbonylated proteins, EP activities and cell necrosis in the roots when Pb + Cd was combined in comparison to the treatments of MWCNTs-COOH, or Pb + Cd alone. Thus, the tested MWCNTs-COOH not only caused oxidative stress, but also aggravated the oxidative damage in the roots exposed to Pb + Cd in the culture solution.
Collapse
Affiliation(s)
- Hong Rong
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China.
| | - Xiaorui Yu
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Jinbao Fan
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Pei Jiang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Yuchuan Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Xianqing Gan
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Yun Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| |
Collapse
|
9
|
Agathokleous E, Kitao M, Calabrese EJ. The rare earth element (REE) lanthanum (La) induces hormesis in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:1044-1047. [PMID: 29550253 DOI: 10.1016/j.envpol.2018.02.068] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Lanthanum is a rare earth element (REE) which has been extensively studied due to its wide application in numerous fields with a potential accumulation in the environment. It has long been known for its potential to stimulate plant growth within a hormetic-biphasic dose response framework. This article provides evidence from a series of high resolution studies published within the last two decades demonstrating a substantial and significant occurrence of lanthanum-induced hormesis in plants. These findings suggest that hormetic responses should be built into the study design of hazard assessment study protocols and included in the risk assessment process. Hormesis also offers the opportunity to substantially improve cost benefit estimates for environmental contaminants, which have the potential to induce beneficial/desirable effects at low doses.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan; Research Faculty of Agriculture, School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
10
|
Yang H, Zhang X, Liu H, Cui W, Zhang Q, Li Y, Yu Z, Jia X. Lanthanum nitrate genotoxicity evaluation: Ames test, mouse micronucleus assay, and chromosome aberration test. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 810:1-5. [PMID: 27776686 DOI: 10.1016/j.mrgentox.2016.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/19/2016] [Accepted: 09/14/2016] [Indexed: 01/24/2023]
Abstract
The increasing use of rare-earth elements (REE) and their compounds has led to their accumulation in the environment and has raised concern about their safety. The toxic effects of REE such as lanthanum are largely unknown; genotoxicity studies have been limited and results are controversial. We evaluated the genotoxicity of lanthanum nitrate (La(NO3)3) in several in vitro and in vivo tests, including bacterial reverse mutation assay (Ames test), mouse bone marrow micronucleus assay, and chromosome aberration assay. La(NO3)3 was not mutagenic in the Ames test. La(NO3)3 did not increase the frequencies of bone marrow micronuclei or chromosome aberration in the mouse after repeated treatments at oral doses up to 735 (females) and 855mg/kg (males). The compound did not increase the frequency of chromosome aberrations in CHO cells in vitro. These results indicate that lanthanum is not a genotoxic hazard.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xiaopeng Zhang
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Haibo Liu
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Wenming Cui
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Qiannan Zhang
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Li
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Zhou Yu
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xudong Jia
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, National Center for Food Safety Risk Assessment, Beijing 100021, China.
| |
Collapse
|
11
|
Pagano G, Guida M, Tommasi F, Oral R. Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 115:40-8. [PMID: 25679485 DOI: 10.1016/j.ecoenv.2015.01.030] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/24/2015] [Accepted: 01/31/2015] [Indexed: 05/26/2023]
Abstract
In the recent decades, rare earth elements (REE) have undergone a steady spread in several industrial and medical applications, and in agriculture. Relatively scarce information has been acquired to date on REE-associated biological effects, from studies of bioaccumulation and of bioassays on animal, plant and models; a few case reports have focused on human health effects following occupational REE exposures, in the present lack of epidemiological studies of occupationally exposed groups. The literature is mostly confined to reports on few REE, namely cerium and lanthanum, whereas substantial information gaps persist on the health effects of other REE. An established action mechanism in REE-associated health effects relates to modulating oxidative stress, analogous to the recognized redox mechanisms observed for other transition elements. Adverse outcomes of REE exposures include a number of endpoints, such as growth inhibition, cytogenetic effects, and organ-specific toxicity. An apparent controversy regarding REE-associated health effects relates to opposed data pointing to either favorable or adverse effects of REE exposures. Several studies have demonstrated that REE, like a number of other xenobiotics, follow hormetic concentration-related trends, implying stimulatory or protective effects at low levels, then adverse effects at higher concentrations. Another major role for REE-associated effects should be focused on pH-dependent REE speciation and hence toxicity. Few reports have demonstrated that environmental acidification enhances REE toxicity; these data may assume particular relevance in REE-polluted acidic soils and in REE mining areas characterized by concomitant REE and acid pollution. The likely environmental threats arising from REE exposures deserve a new line of research efforts.
Collapse
Affiliation(s)
- Giovanni Pagano
- Federico II University of Naples, Environmental Hygiene, I-80126 Naples, Italy.
| | - Marco Guida
- Federico II University of Naples, Environmental Hygiene, I-80126 Naples, Italy
| | - Franca Tommasi
- "Aldo Moro" Bari University, Department o f Plant Biology, I-70124 Bari, Italy
| | - Rahime Oral
- Ege University, Faculty of Fisheries, TR-35100 Bornova, Izmir, Turkey
| |
Collapse
|
12
|
Shen Y, Zhang S, Li S, Xu X, Jia Y, Gong G. Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools. CHEMOSPHERE 2014; 117:567-574. [PMID: 25303462 DOI: 10.1016/j.chemosphere.2014.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/14/2014] [Accepted: 09/07/2014] [Indexed: 06/04/2023]
Abstract
Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis.
Collapse
Affiliation(s)
- Yichang Shen
- Key Laboratory of Soil Environment Protection of Sichuan Province, Wenjiang 611130, PR China; College of Resources and Environment, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Shirong Zhang
- College of Resources and Environment, Sichuan Agricultural University, Wenjiang 611130, PR China; Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China.
| | - Sen Li
- Key Laboratory of Soil Environment Protection of Sichuan Province, Wenjiang 611130, PR China; College of Resources and Environment, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Xiaoxun Xu
- College of Resources and Environment, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Yongxia Jia
- College of Resources and Environment, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Guoshu Gong
- Agricultural College, Sichuan Agricultural University, Wenjiang 611130, PR China
| |
Collapse
|
13
|
Wang CR, Xiao JJ, Tian Y, Bao X, Liu L, Yu Y, Wang XR, Chen TY. Antioxidant and prooxidant effects of lanthanum ions on Vicia faba L. seedlings under cadmium stress, suggesting ecological risk. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1355-1362. [PMID: 22447248 DOI: 10.1002/etc.1816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/09/2011] [Accepted: 01/27/2012] [Indexed: 05/31/2023]
Abstract
The present study combined chemical analyses and biological measurements to investigate biphasic effects of La on Cd stress in leaves of Vicia faba seedlings, which were hydroponically cultivated for 15 d in the combination of 6 µM CdCl(2) and 2 to 480 µM La(NO(3))(3), respectively. The results showed that contents of Cd first elevated above and then declined below the 6 µM single Cd treatment when 2 to 30 µM extraneous La were combined. Contents of mineral nutrients altered differentially and became imbalanced. No distinct band was observed in catalase (CAT), guaiacol peroxidase (GPX), or ascorbate peroxidase (APX) patterns, but in superoxide dismutase (SOD) isozymes by the supplementation with 8 to 480 µM of extraneous La. Superoxide dismutase and APX activities changed as a U-shaped curve; however, CAT and GPX changed as an inverted U-shaped curve along with increasing La. Moreover, heat shock protein 70 (HSP 70) production was reduced below the single treatment of Cd at 2 to 8 µM of extraneous La and enhanced thereafter. Thus, La at lower concentrations promoted antioxidation against Cd stress; La at higher concentrations turned to prooxidant effects, implicating potential ecological risk. Heat shock protein 70, combined with the antioxidant enzymes, constitutes an integrative defense system, which can be used to estimate the degree of antioxidation or prooxidation of extraneous La to Cd-induced oxidative stress in the seedlings.
Collapse
Affiliation(s)
- Cheng-Run Wang
- School of Life Science, Huainan Normal University, Huainan, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|